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Abstract. Under some strong cograde conditions, we obtain two different
filtrations of modules in terms of the properties of cotransposes of modules

with respect to a semidualizing bimodule. Then we apply these two filtrations
of modules to investigate the relationship between artin algebras satisfying the
Auslander condition and Gorenstein algebras, which is related to a conjecture

of Auslander and Reiten.

1. Introduction

Let R be a left and right noetherian ring and M a finitely generated left R-
module. In [Au], Auslander devised the so-called Auslander sequence as follows.

0 → Ext1Rop(TrM,R) → M → HomRop(HomR(M,R), R) → Ext2Rop(TrM,R) → 0,

where TrM denotes the transpose of M . This sequence has already proved to be
very valuable for the homological study of noetherian rings. Huang in [H1, Theorem
2.3] established a semidualizing version of this sequence. Under the Auslander
condition, Hoshino and Nishida generalized in [HN, Theorem 2.2] the Auslander
sequence by using a certain filtration of modules. Iyama and Jasso extended in [IJ,
Proposition 2.7] this sequence to a dualizing R-variety. Recently, over arbitrary
associative rings R and S, we introduced in [TH1] the cotranspose cTrω M of M
with respect to a semidualizing bimodule RωS , and used it as a tool to provide the
dual Auslander sequence as follows.

0 → TorS2 (ω, cTrω M) → ω ⊗S HomR(ω,M) → M → TorS1 (ω, cTrω M) → 0.

In analogy with the philosophy of Hoshino and Nishida in the filtration of modules,
one of our aims in this paper is to look for a special filtration of modules to generalize
the dual Auslander sequence.

On the other hand, the grade condition of modules is bound up with some
interesting homological properties; see for example, [AB, AR1, DR, I, HI] and so
on. In particular, Auslander and Bridger showed in [AB, Theorem 2.37] that if
R satisfies some grade condition, then for any finitely generated left R-module M
there exists a spherical filtration

Mn ⊆ Mn−1 ⊆ · · · ⊆ M1 ⊆ M0 = M ⊕ P

with P a finitely generated projective leftR-module. Furthermore, Huang presented
in [H2] a different filtration result for modules over right quasi k-Gorenstein rings.
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Along this direction, the other aim of this paper is to see how the cograde condition
induces some filtrations of modules.

The paper is organized as follows.
In Section 2, we give some terminology and some preliminary results.
Let R and S be rings and RωS a semidualizing bimodule. In Section 3, we

particularly describe a certain filtration of submodules of a left noetherianR-module
M with finite Ext-cograde with respect to ω in case that ω satisfies the ∞-cograde
condition (Theorem 3.12). It is a dual version of [HN, Theorem 2.2]. In Section 4,
we prove that if ω satisfies the n-cograde condition with n > 1, then for any left R-
module M , there exists an injective left R-module I and a chain of monomorphisms

Mn � Mn−1 � · · · � M1 � M0 = M ⊕ I

satisfying some interesting homological properties (Theorem 4.5).
Recall that an artin algebra R is said to satisfy the Auslander condition if the

projective dimension of the i-th term in a minimal injective resolution of RR is
at most i − 1 for any i > 1. Auslander and Reiten conjectured in [AR1] that
an artin algebra R satisfying the Auslander condition is Gorenstein (that is, the
left and right self-injective dimensions of R are finite). In Section 5, we apply
the two filtrations of modules obtained in Sections 3 and 4 to give some necessary
(and sufficient) conditions for an artin algebra satisfying the Auslander condition
being Gorenstein (Theorems 5.2 and 5.4). Finally, we introduce the notion of dual
Evans-Griffith presentations of modules. We prove that if ω satisfies the n-cograde
condition with n > 1, then for any 0 6 i 6 n − 1, each i-Bass-cosyzygy module
admits a dual Evans-Griffith presentation (Proposition 5.6).

2. Preliminaries

Throughout this paper, R and S are fixed associative rings with unites. We
use ModR (resp. modR) to denote the class of left R-modules (resp. finitely
generated left R-modules). Let M ∈ ModR. We use pdR M and idR M to denote
the projective and injective dimensions of M respectively, and use AddR M to
denote the subclass of ModR consisting of all direct summands of direct sums of
copies of M .

Definition 2.1. ([HW]). An (R-S)-bimodule RωS is called semidualizing if the
following conditions are satisfied.

(1) Rω admits a degreewise finite R-projective resolution.
(2) ωS admits a degreewise finite S-projective resolution.

(3) The homothety map RRR
Rγ→ HomSop(ω, ω) is an isomorphism.

(4) The homothety map SSS
γS→ HomR(ω, ω) is an isomorphism.

(5) Ext>1
R (ω, ω) = 0.

(6) Ext>1
Sop(ω, ω) = 0.

From now on, RωS denotes a semidualizing bimodule. We write (−)∗ := Hom(ω,−).
Following [HW], set

Pω(R) := {ω ⊗S P | P is projective in ModS},

Iω(S) := {I∗ | I is injective in ModR}.
The modules in Pω(R) and Iω(S) are called ω-projective and ω-injective respective-
ly. We use I(R) to denote the subclass of ModR consisting of injective modules,
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and use P(S) to denote the subclasses of ModS consisting of projective modules.
Let M ∈ ModR and N ∈ ModS. Then we have the following two canonical
valuation homomorphisms:

θM : ω ⊗S M∗ → M

defined by θM (x⊗ f) = f(x) for any x ∈ ω and f ∈ M∗; and

µN : N → (ω ⊗S N)∗

defined by µN (y)(x) = x⊗ y for any y ∈ N and x ∈ ω.

Definition 2.2. ([HW]). The Bass class Bω(R) with respect to ω consists of all
left R-modules M satisfying the following conditions.

(1) Ext>1
R (ω,M) = 0.

(2) TorS>1(ω,M∗) = 0.
(3) θM is an isomorphism in ModR.

The Auslander class Aω(S) with respect to ω consists of all left S-modules N
satisfying the following conditions.

(1) TorSi>1(ω,N) = 0.

(2) Ext>1
R (ω, ω ⊗S N) = 0.

(3) µN is an isomorphism in ModS.

Note that Iω(S)∪P(S) ⊆ Aω(S) and Pω(R)∪I(R) ⊆ Bω(R) ([HW, Lemma 4.1
and Corollary 6.1]).

Let M ∈ ModR. We use

0 → M → I0(M)
f0

−→ I1(M)
f1

−→ · · · f
i−1

−→ Ii(M)
fi

−→ · · · (2.1)

to denote a minimal injective resolution of M . For any n > 1, coΩn(M) := Im fn−1

is called the n-th cosyzygy of M , and in particular, coΩ0(M) = M .

Definition 2.3. ([TH1]). Let M ∈ ModR and n > 1.

(1) cTrω M := Coker f0
∗ is called the cotranspose of M with respect to RωS ,

where f0 is as in (2.1).

(2) M is called n-ω-cotorsionfree if TorS16i6n(ω, cTrω M) = 0. In particular,
every module in ModR is 0-ω-cotorsionfree.

We use cT n
ω(R) to denote the subcategory of ModS consisting of n-ω-cotorsionfree

modules.
Dually, let N ∈ ModS. We use

· · · fi−→ Fi(N)
fi−1−→ · · · f1−→ F1(N)

f0−→ F0(N)
f−1−→ N → 0 (2.2)

to denote a minimal flat resolution of N in ModS, where each Fi(N) � Coker fi is
the flat cover of Coker fi. The existence of such a resolution is guaranteed by the
fact that any module has a flat cover (see [BBE]). Note that (ω⊗S−, HomR(ω,−))
is an adjoint pair. So, it is reasonable to introduce the adjoint counterparts of the
notions in Definition 2.3, which were given in [TH3] as follows.

Definition 2.4. ([TH3]). Let N ∈ ModS and n > 1.

(1) acTrω N := Ker(1ω⊗f0) is called the adjoint cotranspose of N with respect
to RωS , where f0 is as in (2.2).
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(2) N is called adjoint n-ω-cotorsionfree if Ext16i6n
R (ω, acTrω N) = 0; and N

is called adjoint ∞-ω-cotorsionfree if it is adjoint n-ω-cotorsionfree for all
n. In particular, every module in ModS is adjoint 0-ω-cotorsionfree.

We use acT (S) to denote the subcategory of ModS consisting of adjoint ∞-ω-
cotorsionfree modules.

Definition 2.5. ([TH2, Definition 6.2]) Let M ∈ ModR, N ∈ ModS and n > 0.

(1) The Ext-cograde of M with respect to ω is defined as E-cogradeω M :=
inf{i > 0 | ExtiR(ω,M) ̸= 0}; and the strong Ext-cograde of M with respect
to ω, denoted by s.E-cogradeω M , is said to be at least n if E-cogradeω X
> n for any quotient module X of M .

(2) The Tor-cograde of N with respect to ω is defined as T-cogradeω N :=

inf{i > 0 | TorSi (ω,N) ̸= 0}; and the strong Tor-cograde of N with respect
to ω, denoted by s.T-cogradeω N , is said to be at least n if T-cogradeω Y
> n for any submodule Y of N .

Let M ∈ ModR. An exact sequence (of finite or infinite length):

· · · → Xn → · · · → X1 → X0 → M → 0

in ModR is called an X -resolution of M if all Xi are in X . The X -projective
dimension X -pdR M of M is defined as inf{n | there exists an X -resolution

0 → Xn → · · · → X1 → X0 → M → 0

of M in ModR}. We always take X -pdR 0 = −1. Dually, the notions of an X -
coresolution and the X -injective dimension X -idR M of M are defined.

3. A filtration of modules with finite Ext-cograde

In this section, given M ∈ ModR and let i, j be integers such that i, j > 1 or
i = j = 0. Set

M j
i := TorSi (ω, cTrω coΩj(M)),

M−1
0 := M, M−1

1 := 0, M0
i := TorSi (ω, cTrω M).

The following result is a generalization of the dual Auslander formula demonstrated
in Section 1.

Proposition 3.1. Let i, j be integers such that i, j > 1 or i = j = 0 and let
M ∈ ModR with TorSi−1(ω,Ext

j
R(ω,M)) = 0. Then there exists an exact sequence

M j−1
i+1 → M j

i+2 → TorSi (ω,Ext
j
R(ω,M)) → M j−1

i → M j
i+1 → 0.

Proof. The case for i = j = 0 has been proved in [TH1, Proposition 3.2].
Now suppose i, j > 1. Applying the functor (−)∗ to the minimal injective reso-

lution of M as in (2.1), we get a complex

0 → M∗ → I0(M)∗ → I1(M)∗ → · · · f
j−1

∗−→ Ij(M)∗
fj

∗−→ Ij+1(M)∗ → · · · .
4
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Consider the following commutative diagram with exact columns and rows

0 // Ker f j
∗

// Ij(M)∗
fj

∗ //

πj

��

Ij+1(M)∗
πj+1

// Coker f j
∗

// 0

Coker f j−1
∗

��
0

with πj and πj+1 natural epimorphisms. Because Kerπj = Im f j−1
∗ ⊆ Ker f j

∗,
there exists αj : Coker f j−1

∗ → Ij+1(M)∗ such that f j
∗ = αj ·πj by [AF, Theorem

3.6(1)]. So we get the following commutative diagram with exact columns and rows

0

���
�
� 0

���
�
�

Ker g
h //_____

���
�
� Kerπj

���
�
�

0 // Ker f j
∗

//

g

���
�
�

Ij(M)∗
fj

∗ //

πj

��

Ij+1(M)∗
πj+1

// Coker f j
∗

//

f

���
�
�

0

0 // Kerαj // Coker f j−1
∗

αj
//

��

Ij+1(M)∗
// Cokerαj // 0

0

with f, g, h induced homomorphisms. By the diagram chasing, it is easy to see that
f is an isomorphism and

Cokerαj ∼= Coker f j
∗ = cTrω coΩj(M).

Then g is an epimorphism and h is an isomorphism by the snake lemma. So

Kerαj ∼= Ker f j
∗/Ker g ∼= Ker f j

∗/Kerπj ∼= Ker f j
∗/ Im f j−1

∗
∼= ExtjR(ω,M),

and hence we get the following exact sequence

0 → ExtjR(ω,M) → cTrω coΩj−1(M)
αj

−→ Ij+1(M)∗ → cTrω coΩj(M) → 0,

which induces two an exact sequences

0 → ExtjR(ω,M) → cTrω coΩj−1(M) → Imαj → 0, (3.1)

and

0 → Imαj → Ij+1(M)∗ → cTrω coΩj(M) → 0. (3.2)

Note that TorS>1(ω, I
j+1(M)∗) = 0 by [HW, Lemma 4.1]. So, applying the functor

ω ⊗S − to (3.2) yields

TorSi (ω, Imαj) ∼= TorSi+1(ω, cTrω coΩj(M)) = M j
i+1
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for any i > 1. Now applying the functor ω ⊗S − to (3.1) yields the following exact
sequence

M j−1
i+1 → TorSi+1(ω, Imαj)(∼= M j

i+2) → TorSi (ω,Ext
j
R(ω,M)) → M j−1

i

→ TorSi (ω, Imαj)(∼= M j
i+1) → TorSi−1(ω,Ext

j
R(ω,M)). (3.3)

Because TorSi−1(ω,Ext
j
R(ω,M)) = 0 by assumption, the assertion follows. �

The following proposition is useful in the sequel.

Proposition 3.2. Let M ∈ ModR with E-cogradeω M = n > 1. Then we have
Iω(S)-pdS cTrω coΩj−1(M) 6 j for any 1 6 j 6 n and M ∼= Mn−1

n .

Proof. Since E-cogradeω M = n by assumption, we get the following exact sequence

0 → I0(M)∗ → I1(M)∗ → · · · → Ij(M)∗ → cTrω coΩj−1(M) → 0 (3.4(j))

for any 1 6 j 6 n. It implies that Iω(S)-pdS cTrω coΩj−1(M) 6 j. Note that

TorS>1(ω, I
i(M)∗) = 0 for any i > 0 by [HW, Lemma 4.1]. So, applying the functor

ω ⊗S − to (3.4(n)) gives the following commutative diagram with exact rows

0 // Mn−1
n

f

���
�
�

// ω ⊗S I0(M)∗ //

θI0(M)

��

ω ⊗S I1(M)∗

θI1(M)

��
0 // M // I0(M) // I1(M).

Since θI0(M) and θI1(M) are isomorphisms, the induced map f is also an isomor-

phism and M ∼= Mn−1
n . �

The following result establishes a relation between the strong Ext-cograde and
the strong Tor-cograde of modules.

Lemma 3.3. ([TH2, Theorem 6.9]) For any n > 1, the following statements are
equivalent.

(1) s.E-cogradeω TorSi (ω,N) > i for any N ∈ ModS and 1 6 i 6 n.
(2) s.T-cogradeω ExtiR(ω,M) > i for any M ∈ ModR and 1 6 i 6 n.

Based on this lemma, we introduce the following

Definition 3.4. For an integer n > 1, we say that ω satisfies the n-cograde con-
dition if one of the equivalent conditions in Lemma 3.3 is satisfied; and ω satisfies
the ∞-cograde condition if it satisfies the n-cograde condition for any n > 1.

Let R be an artin algebra and D the usual duality between modR and modRop.
Then D(R) is a typical semidualizing (R,R)-bimodule. Recall from [FGR] that R is
said to satisfy the Auslander condition if pdR Ii(R) 6 i for any i > 0; equivalently,
idRop HomR(Pi(R), D(R)) 6 i for any i > 0, where Pi(R) is the (i + 1)-st term in
the minimal projective resolution of RR. Note that an Artin algebra R satisfies the
Auslander condition if and only if DR satisfies the ∞-cograde condition by [TH4,
Proposition 7.7].

From Propositions 3.1 and 3.2, we get the following two corollaries.

Corollary 3.5. Assume that ω satisfies the (n+ 1)-cograde condition with n > 0.
If M ∈ ModR with E-cogradeω M = n, then T-cogradeω ExtnR(ω,M) = n.
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Proof. If n = 0, then M∗ ̸= 0. It follows from [TH2, Lemma 6.1(1)] that ω⊗SM∗ ̸=
0 and T-cogradeω M∗ = 0.

Now suppose n > 1. Then by Proposition 3.1, we have an exact sequence

TorSn(ω,Ext
n
R(ω,M)) → Mn−1

n → Mn
n+1 → 0.

By Lemma 3.3, we have T-cogradeω ExtnR(ω,M) > n. If T-cogradeω ExtnR(ω,M) >
n, then the above exact sequence implies Mn−1

n
∼= Mn

n+1. So by Proposition 3.2 we
have

M ∼= Mn
n+1 = TorSn+1(ω, cTrω coΩn(M)).

Then it follows from Lemma 3.3 that E-cogradeω M > n+1, which contradicts the
assumption E-cogradeω M = n. �
Corollary 3.6. Let M ∈ ModR with E-cogradeω M = n > 1. Then we have

TorSi (ω,Ext
n
R(ω,M)) ∼= Mn

i+2 for any i > n+ 1.

Proof. By the proof of Proposition 3.1, we have an exact sequence

Mn−1
i+1 → Mn

i+2 → TorSi (ω,Ext
n
R(ω,M)) → Mn−1

i .

Because i > n+1, it follows from Proposition 3.2 that Mn−1
i+1 = Mn−1

i = 0 and the
assertion follows. �

Applying Corollary 3.5, we get the following lemma which shows how the Ext-
cograde and the Tor-cograde of modules behave in short exact sequences. Because
the argument is standard, we omit it.

Lemma 3.7. Assume that ω satisfies the (n+ 1)-cograde condition with n > 0.

(1) Let
0 → M1 → M2 → M3 → 0

be an exact sequence in ModR with ni = E-cogradeω Mi for i = 1, 2, 3 and
max{n1, n2, n3} 6 n. Then n2 = min{n1, n3}.

(2) Let
0 → N1 → N2 → N3 → 0

be an exact sequence in ModS with ni = T-cogradeω Ni for i = 1, 2, 3 and
max{n1, n2, n3} 6 n. Then n2 = min{n1, n3}.

We say that a module M ∈ ModR is pure of Ext-cograde k if E-cogradeω M =
E-cogradeω M/M ′ = k for any proper R-submodule M ′ of M ; dually, a module
N ∈ ModS is pure of Tor-cograde l if T-cogradeω N = T-cogradeω N ′ = l for any
non-zero S-submodule N ′ of N .

Example 3.8. Let R be a finite-dimensional algebra over an algebraically closed
field given by the quiver

1
α1 // 2

α2 // 3.

Then ω := I(1) ⊕ I(2) ⊕ I(3) is a semidualizing (R-R)-bimodule. Set M := S(2).
It is easy to see that M∗ = 0. By [ASS, IV.2 Theorem 2.13] and [ARS, VII.1
Example], we have that Ext1R(I(1),M) ∼= DHomR(M,M) ̸= 0 and E-cogradeω M =
1. Because M is simple, it follows that M is pure of Ext-cograde of 1 and D(M) is
pure of Tor-cograde of 1.

On the other hand, because N := I(3) is a direct summand of ω, it follows
that E-cogradeω N = 0. Thus E-cogradeω M ⊕ N = 0 and M ⊕ N is not pure

of Ext-cograde of 0. Because TorRi (D(M), ω) ∼= D(ExtiR(ω,M)) and TorRi (D(M ⊕
7
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N), ω) ∼= D(ExtiR(ω,M⊕N)) for any i > 0, we have that T-cogradeω D(M⊕N) = 0
and M ⊕N is not pure of Tor-cograde of 0.

Proposition 3.9. Assume that ω satisfies the ∞-cograde condition.

(1) If M ∈ ModR with E-cogradeω M = k such that TorSi (ω,Ext
i
R(ω,M)) = 0

for any i > k + 1, then M is pure of Ext-cograde k.
(2) If N ∈ ModS with T-cogradeω N = l such that ExtiR(ω,Tor

S
i (ω,N)) = 0

for any i > l + 1, then N is pure of Tor-cograde l.

Proof. (1) LetM ′ be a proper R-submodule ofM and E-cogradeω M/M ′ = t. Then
T-cogradeω ExttR(ω,M/M ′) = t by Corollary 3.5.

We claim that t 6 k. If t > k, then by assumption, T-cogradeω ExttR(ω,M) >
t and TorSt (ω,Ext

t
R(ω,M)) = 0. So we have T-cogradeω ExttR(ω,M) > t + 1.

Consider the following exact sequence

ExttR(ω,M)
f−→ ExttR(ω,M/M ′)

g−→ Extt+1
R (ω,M ′).

By Lemma 3.7(2), we have

T-cogradeω Im f > T-cogradeω ExttR(ω,M) > t+ 1,

T-cogradeω Im g > T-cogradeω Extt+1
R (ω,M ′) > t+ 1.

Thus T-cogradeω ExttR(ω,M/M ′) > t + 1, which is a contradiction. The claim
follows. Then by Lemma 3.7(1), we have E-cogradeω M = E-cogradeω M/M ′.

(2) It is dual to (1). �

As a consequence, we get the follwoing

Corollary 3.10. Assume that ω satisfies the ∞-cograde condition. Then we have

(1) ExtkR(ω,M) is pure of Tor-cograde k for any M ∈ ModR with E-cogradeω M
= k.

(2) TorSl (ω,N) is pure of Ext-cograde l for any N ∈ ModS with T-cogradeω N =
l.

Proof. (1) Let M ∈ ModR with E-cogradeω M = k. It follows from Corollary 3.5

that T-cogradeω ExtkR(ω,M) = k.

We claim that ExtiR(ω,Tor
S
i (ω,Ext

k
R(ω,M))) = 0 for any i > k+1. If k = 0, then

E-cogradeω TorSi (ω,M∗) = E-cogradeω TorSi+2(ω, cTrω M) > i + 2 for any i > 1. If

k > 1, then E-cogradeω TorSi (ω,Ext
k
R(ω,M)) = E-cogradeω Mk

i+2 > i + 2 for any

i > k + 1 by Corollary 3.6. The claim follows. Thus ExtkR(ω,M) is pure of Tor-
cograde k by Proposition 3.9(2).

(2) It is dual to (1). �

Recall that a sequence

· · · → M1 → M2 → M3 → · · ·
in ModR is called HomR(ω,−)-exact if it is exact after applying the functor HomR(ω,−).

Lemma 3.11. Let M ∈ Bω(R), then cTrω M ∈ Aω(S).

Proof. Let M ∈ Bω(R). Then by [TH1, Proposition 3.7 and Theorem 3.9], there
exists a HomR(ω,−)-exact exact sequence

· · · → W1 → W0 → I0(M) → I1(M) → · · · (3.5)
8
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in ModR with all Wi in AddR ω such that M ∼= Im(W0 → I0(M)). Applying the
functor (−)∗ to (3.5) yields an exact sequence

· · · → W1∗ → W0∗ → I0(M)∗ → I1(M)∗ → · · · . (3.6)

Applying the functor ωS ⊗ − to (3.6), it is easy to verify that it remains exact.

This implies that TorS>1(ω, cTrω M) = 0 and cTrω M ∈ acT (S) by Corollary [TH3,
Corollary 3.9]. It follows from [TH3, Theroem 3.11(1)] that cTrω M ∈ Aω(S). �

Now we are ready to present the main theorem in this section, which is useful
in providing an information about noetherian modules with finite Ext-cograde.

Theorem 3.12. Assume that ω satisfies the ∞-cograde condition. If M is a noe-
therian left R-module with E-cogradeω M = k < ∞, then there exists a filtration

0 = M0 ⊆ M1 ⊆ M2 ⊆ · · · ⊆ Mi ⊆ · · · (3.7)

of R-submodules of M such that

(1) M1 = · · · = Mk = 0 and there exists the following exact sequence

0 → TorSk+2(ω, cTrω coΩk(M)) → TorSk (ω,Ext
k
R(ω,M)) → M/Mk → M/Mk+1 → 0.

(2) If TorSi (ω,Ext
i
R(ω,M)) ̸= 0, then E-cogradeω M/Mi = i, Mi ̸= Mi+1 and

Mi+1/Mi is pure of Ext-cograde i.

(3) If TorSi (ω,Ext
i
R(ω,M)) = 0, then Mi = Mi+1.

(4) If Bω(R)-idR M = d < ∞, then

M = Md+1 and M/Md
∼= TorSd (ω,Ext

d
R(ω,M)).

(5) If Bω(R)-idR M = d < ∞, then fil(M) 6 d− k + 1, and the equality holds
whenever T-cogradeω ExtiR(ω,M) = i for any k 6 i 6 d, where fil(M) is
the number of strict inclusions in (3.7).

Proof. By Proposition 3.1, there exists a chain of epimorphisms

M−1
0 (= M) → M0

1 → · · · → M i−1
i → · · · .

Then we get a filtration

0 = M0 ⊆ M1 ⊆ M2 ⊆ · · · ⊆ Mi ⊆ · · ·
of R-submodules of M with M/Mi = M i−1

i .
(1) The case for k = 0 is trivial. If k > 1, then it follows from Proposition 3.2

that M ∼= Mk−1
k . Since there exists an exact sequence

0 → Mk → M → Mk−1
k (∼= M) → 0

and M is noetherian, we get from [L, Proposition 1.14] that Mk = 0, and hence

M1 = · · · = Mk = 0. Since Iω(S)-pdR cTrω coΩk−1(M) 6 k by Proposition 3.2

again, we have Mk−1
k+1 = 0 by the dimension shifting. Now we get the desired exact

sequence from Proposition 3.1.
(2) If TorSi (ω,Ext

i
R(ω,M)) ≠ 0, then T-cogradeω ExtiR(ω,M) = i by assump-

tion. It follows from Corollary 3.10(2) that TorSi (ω,Ext
i
R(ω,M)) is pure of Ext-

cograde i. By Proposition 3.1 we have the following exact sequence

M i
i+2

f−→ TorSi (ω,Ext
i
R(ω,M)) → M i−1

i → M i
i+1 → 0. (3.8)

If Mi = Mi+1, then M i−1
i = M i

i+1 and f is an epimorphism. So E-cogradeω M i
i+2 6

i by Lemma 3.7(1), a contradiction. Thus Mi ̸= Mi+1. Since Mi+1/Mi
∼= Coker f

9
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is a quotient module of TorSi (ω,Ext
i
R(ω,M)), we have that Mi+1/Mi is pure of

Ext-cograde i. Notice that E-cogradeω M i
i+1 > i + 1 by assumption, so we have

E-cogradeω M/Mi = i by Lemma 3.7(1).
(3) It is induced directly from the exact sequence (3.8).

(4) If Bω(R)-idR M = d, then coΩd(M) ∈ Bω(R) by [TH2, Theorem 4.2]. It

follows from Lemma 3.11 that cTrω coΩd(M) ∈ Aω(S) and Md
d+1 = Md

d+2 = 0.

Thus we have that M = Md+1 and M/Md
∼= TorSd (ω,Ext

d
R(ω,M)) by the exact

sequence (3.8).
(5) It is a consequence of the former assertions. �

4. Another filtration of modules

We begin with the following

Definition 4.1. Let n > 1. A module M in ModR is called n-Bass-cosyzygy if
there exists an exact sequence

B−(n−1) → · · · → B−1 → B0 → M → 0

in ModR with all Bi in Bω(R).

We use coΩn
B(R) to denote the subclass of ModR consisting of n-Bass-cosyzygy

modules.

Lemma 4.2. Let n > 1. If T-cogradeω ExtiR(ω,M) > i − 1 for any M ∈ ModR
and 1 6 i 6 n, then coΩi

B(R) = cT i
ω(R) for any 1 6 i 6 n.

Proof. Because Pω(R) ⊆ Bω(R) by [HW, Corollary 6.1], we have cT i
ω(R) ⊆ coΩi

B(R)
by [TH1, Proposition 3.7].

Assume that T-cogradeω ExtiR(ω,M) > i−1 for any M ∈ ModR and 1 6 i 6 n.
In the following, we proceed by induction on n to show that coΩi

B(R) ⊆ cT i
ω(R)

for any 1 6 i 6 n. Let M ∈ coΩ1
B(R). Then there exists an exact sequence

B0 f0

−→ M → 0 in ModR with B0 ∈ Bω(R), and we get the following commutative
diagram with the bottom row exact

ω ⊗S B0
∗
1ω⊗f0

∗//

θB0

��

ω ⊗S M∗

θM

��
B0 f0

// M // 0.

Since θB0 is an isomorphism, we have that θM is an epimorphism and M ∈ cT 1
ω(R).

The case for n = 1 is proved.
Now let M ∈ coΩn

B(R) with n > 2. Then there exists an exact sequence

B−(n−1) fn−1

−→ · · · → B−1 f1

−→ B0 f0

−→ M → 0 (4.1)

in ModR with all Bi in Bω(R). By the induction hypothesis, we have Im f1 ∈
cT n−1

ω (R). Applying the functor (−)∗ to (4.1) gives an exact sequence

0 → (Im f1)∗ → B0
∗

f0
∗−→ M∗ → ExtnR(ω,Ker fn−1) → 0. (4.2)

Set N := Im f0
∗ and let f0

∗ := α · π be the natural epic-monic decompositions of
f0

∗ with π : B0
∗ � N and α : N ↪→ M∗. Then we have the following commutative

10
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diagram with exact rows

0 // TorS1 (ω,N) // ω ⊗S (Im f1)∗ //

θIm f1

��

ω ⊗S B0
∗

1ω⊗π //

θB0

��

ω ⊗S N

g

���
�
�

// 0

0 // Im f1 // B0 f0

// M // 0.

Diagram (4.3)

So we have θM · (1ω ⊗ α) · (1ω ⊗ π) = θM · (1ω ⊗ f0
∗) = f0 · θB0 = g · (1ω ⊗ π).

Because 1ω ⊗ π is epic, we have θM · (1ω ⊗ α) = g and the following commutative
diagram with exact rows

ω ⊗S N

g

��

1ω⊗α // ω ⊗S M∗ //

θM

��

ω ⊗S ExtnR(ω,Ker fn−1) // 0

M M.

Diagram (4.4)

Since θIm f1 is an epimorphism by the above argument, it follows from the snake
lemma that g is a monomorphism. Because ω ⊗S ExtnR(ω,Ker fn−1) = 0 by as-
sumption, we have that θM is an isomorphism and M ∈ cT 2

ω(R) by the diagram
(4.4). It means that the assertion holds true for n = 2. If n > 3, then the fact that

Im f1 ∈ cT n−1
ω (R) implies θIm f1 is an isomorphism. So TorS1 (ω,N) = 0 by the di-

agram (4.3). In addition, we have TorS16i6n−3(ω, (Im f1)∗) = 0 by [TH1, Corollary

3.4(3)]. Because T-cogradeω ExtnR(ω,Ker fn−1) > n − 1 by assumption, applying

the dimension shifting to (4.2) we obtain TorS16i6n−2(ω,M∗) = 0. Therefore we
conclude that M ∈ cT n

ω(R) by [TH1, Corollary 3.4(3)] again. �

The following result shows how the strong Tor-cograde conditions on modules
affect the extension closure of cT n

ω(R). It is a dual version of [AR2, Theorem 1.1].

Lemma 4.3. Let n > 1 and

0 → A → B → C → 0 (4.5)

be an exact sequence in ModR with A,C ∈ cT n
ω(R). If s.T-cogradeω Ext1R(ω,A) >

n, then B ∈ cT n
ω(R).

Proof. Applying the functor (−)∗ to the exact sequence (4.5) gives rise to the
following exact sequence

0 → A∗ → B∗ → C∗ → Ext1R(ω,A).

Set L = Coker(B∗ → C∗) and K := Im(B∗ → C∗).
Let n = 1. Since s.T-cogradeω Ext1R(ω,A) ≥ 1 and L ⊆ Ext1R(ω,A), we have

ω ⊗S L = 0. It yields an epimorphism ω ⊗S B∗ → ω ⊗S C∗ and the following
11
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commutative diagram with the bottom row exact

ω ⊗S A∗

θA
��

// ω ⊗S B∗

θB
��

// ω ⊗S C∗

θC
��

// 0

0 // A // B // C // 0.

Because A,C ∈ cT 1
ω(R) by assumption, we have that θA and θC are epimorphisms.

Then by the diagram chasing, we have that θB is also an epimorphism and B ∈
cT 1

ω(R).
Let n = 2. Since s.T-cogradeω Ext1R(ω,A) > 2 and L ⊆ Ext1R(ω,A), we obtain

an isomorphism ω ⊗S K → ω ⊗S C∗. It yields the following exact sequence

ω ⊗S A∗ → ω ⊗S B∗ → ω ⊗S C∗ → 0

and the following commutative diagram with exact rows

ω ⊗S A∗

θA
��

// ω ⊗S B∗

θB
��

// ω ⊗S C∗

θC
��

// 0

0 // A // B // C // 0.

Because A,C ∈ cT 2
ω(R) by assumption, we have that θA and θC are isomorphisms.

So θB is also an isomorphism and B ∈ cT 2
ω(R).

Let n > 3. Since s.T-cogradeω Ext1R(ω,A) > n > 3, we have B ∈ cT 2
ω(R) by the

above argument. Consider the following exact sequence

0 → K → C∗ → L → 0.

Since L ⊆ Ext1R(ω,A), we have TorS06i6n−1(ω,L) = 0. Then we have TorSi (ω,K) ∼=
TorSi (ω,C∗) for any 0 6 i 6 n−2. Because A,C ∈ cT n

ω(R) by assumption, we have

TorS16i6n−2(ω,A∗) = 0 = TorS16i6n−2(ω,C∗) = 0 by [TH1, Corollory 3.4]. Now
applying the functor ω ⊗S − to the exact sequence

0 → A∗ → B∗ → K → 0

yields TorS16i6n−2(ω,B∗) = 0. Therefore B ∈ cT n
ω(R) by [TH1, Corollory 3.4]

again. �

The following proposition is crucial in proving the main result in this section.

Proposition 4.4. Assume that ω satisfies the n-cograde condition with n > 1 and
M ∈ coΩi

B(R) with 0 6 i 6 n − 1. Then there exists a HomR(ω,−)-exact exact
sequence

0 → A → M ⊕ I → B → 0

in ModR satisfying the following conditions.

(1) A ∈ coΩi+1
B (R), I ∈ I(R) and B ∼= coΩi(TorSi+1(ω, cTrω M)).

(2) Iω(S)-pdS B∗ 6 i− 1.

Proof. Let i = 0. Set A := Im θM , I := 0 and B := TorS1 (ω, cTrω M). Then by
[TH1, Proposition 3.2], we have an exact sequence

0 → A → M → B → 0. (4.6)

Since θω⊗SM∗ is an epimorphism by [TH2, Lemma 6.1], we have ω⊗SM∗ ∈ cT 1
ω(R).

Note that A is a quotient module of ω⊗SM∗. So A ∈ cT 1
ω(R) by [TH1, Lemma 3.6],

12
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and hence A ∈ coΩ1
B(R) by Lemma 4.2. On the other hand, since E-cogradeω B > 1

by assumption, we have B∗ = 0. So (4.6) is the desired exact sequence.
Let i = 1. Consider the exact sequence

0 → TorS2 (ω, cTrω M) → I → B → 0

in ModR with I = I0(TorS2 (ω, cTrω M)) ∈ I(R) and B = coΩ1(TorS2 (ω, cTrω M)).
Then by [TH1, Proposition 3.2], we have the following push-out diagram with the
middle column splitting

0

��

0

��
0 // TorS2 (ω, cTrω M) //

��

I
f //

��

B // 0

0 // ω ⊗S M∗ //

��

M ⊕ I
g //

��

B // 0

M

��

M

��
0 0.

Because E-cogradeω(Tor
S
2 (ω, cTrω M)) > 2 by assumption, we have that f∗ is an

isomorphism. So B∗(∼= I∗) ∈ Iω(S) and g∗ is an epimorphism. Now let

Q1 → Q0 → M∗ → 0

be an exact sequence in ModS with Q0, Q1 ∈ P(S). Then

ω ⊗S Q1 → ω ⊗S Q0 → ω ⊗S M∗ → 0

is exact in ModR and ω ⊗S M∗ ∈ coΩ2
B(R). Thus the middle row in the above

diagram is the desired exact sequence.
Now suppose i > 2. By Lemma 4.2, we have M ∈ coΩi

B(R) = cT i
ω(R). Then by

[TH1, Proposition 3.7], there exists a HomR(ω,−)-exact exact sequence

0 → N → Wi−1
f−→ Wi−2 → · · · → W0 → M → 0

in ModR with all Wj in AddR ω and N = Ker f . Note that TorSi+1(ω, cTrω M) ∼=
TorS1 (ω,Coker f∗) and TorSi+2(ω, cTrω M) ∼= TorS2 (ω,Coker f∗). Then by [TH4,
Proposition 5.1], we have the following exact sequence

0 → TorSi+2(ω, cTrω M) → ω ⊗S N∗
θN−→ N → TorSi+1(ω, cTrω M) → 0.

13
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Set X := Im θN and L := TorSi+1(ω, cTrω M). Consider the following commutative
diagram with exact rows and columns

0

��

0

��

0

��
0 // X //

��

N //

��

L //

��

0

0 // I0(X) //

��

I0(X)⊕ I0(L) //

��

I0(L) //

��

0

...

��

...

��

...

��
0 // Ii−1(X) //

��

Ii−1(X)⊕ Ii−1(L) //

��

Ii−1(L) //

��

0

0 // D
α //

��

H
β //

��

B //

��

0

0 0 0.

SinceX is a quotient module of ω⊗SN∗, we haveX ∈ coΩ1
B(R) andD ∈ coΩi+1

B (R).
Because E-cogradeω L > i+ 1 by assumption, we get the following exact sequence

0 → I0(L)∗ → I1(L)∗ → · · · → Ii−1(L)∗ → B∗ → 0.

Thus Iω(S)-pdS B∗ 6 i− 1 and β∗ is an epimorphism. Next we have the following
commutative diagram with exact rows

0 // N // Wi−1
//

gi−1

���
�
�

Wi−2
//

gi−2

���
�
�

· · · // W0
//

g0

���
�
� M //

g−1

���
�
� 0

0 // N // E0 // E1 // · · · // Ei−1 // H // 0,

where Ej = Ij(X)⊕ Ij(L) for any 0 6 j 6 i− 1. The injectivity of Ej guarantees
the existence of all gj . Now we view the sequence (gi−1, gi−2, · · · , g−1) as a quasi-
isomorphism between the following two complexes

0 → Wi−1 → Wi−2 → · · · → W0 → M → 0

and

0 → E0 → E1 → · · · → Ei−1 → H → 0.

We then obtain an exact sequence

0 → Wi−1 → Wi−2⊕E0 → Wi−3⊕E1 → · · · → W0⊕Ei−2 → M⊕Ei−1 → H → 0.
14
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Set K := Im(W0 ⊕Ei−2 → M ⊕Ei−1). It is not hard to see that Ext>1
R (ω,K) = 0

and K ∈ coΩj
B(R) for j > 1. Consider the following pull-back diagram

0

��

0

��
0 // K // A //

��

D //

α

��

0

0 // K // M ⊕ Ei−1 γ //

��

H //

β

��

0

B

��

B

��
0 0.

Since K,D ∈ cT i+1
ω (R), we have A ∈ cT i+1

ω (R) by Lemma 4.3. Thus A ∈
coΩi+1

B (R) by Lemma 4.2. It follows from the fact Ext>1
R (ω,K) = 0 that γ∗ is

an epimorphism. Notice that β∗ is also an epimorphism, so

0 → A∗ → (M ⊕ Ei−1)∗ → B∗ → 0

is exact. The proof is finished. �

We are now in a position to give the main result in this section.

Theorem 4.5. Assume that ω satisfies the n-cograde condition with n > 1. Then
for any M ∈ ModR, there exists an injective left R-module I and a chain of
monomorphisms

Mn � Mn−1 � · · · � M1 → M0 = M ⊕ I

in ModR such that for any 0 6 i 6 n− 1, we have

(1) Bi = Coker(Mi+1 → Mi) ∼= coΩi(TorSi+1(ω, cTrω M)).

(2) Mi ∈ coΩi
B(R).

(3) Iω(S)-pdS Bi∗ 6 i− 1.
(4) The exact sequence 0 → Mi+1 → Mi → Bi → 0 in ModR is HomR(ω,−)-

exact.

Proof. From the proof of Proposition 4.4, we get a HomR(ω,−)-exact exact se-
quence

0 → Ai+1 → Ai ⊕ Ii → Bi → 0

in ModR such thatA0 = M , Ai ∈ coΩi
B(R), Ii ∈ I(R), Bi

∼= coΩi(TorSi+1(ω, cTrω M))

with Iω(S)-pdSBi∗ 6 i − 1 for 0 6 i 6 n − 1. Set I := ⊕n−1
i=0 Ii, M0 := M ⊕ I,

Mn := An and Mi := Ai ⊕ (⊕n−1
j=i Ij) for any 1 6 i 6 n − 1. Now the assertion

follows easily. �

As a consequence of Theorem 4.5, we have the following
15
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Corollary 4.6. Assume that ω satisfies the n-cograde condition with n > 2. Then
for any N ∈ ModS, there exists an injective left R-module I and a chain of
monomorphisms

Nn � Nn−1 � · · · � N2 � (ω ⊗S N)∗ ⊕ I∗

in ModR such that

(1) Iω(S)-pdS Yi 6 i, where Yi = ((ω⊗S N)∗⊕ I∗)/Ni+2 for any 0 6 i 6 n−2.
(2) 0 → ω⊗S Ni+2 → ω⊗S ((ω⊗S N)∗⊕ I∗) → ω⊗S Yi → 0 in ModR is exact

for any 0 6 i 6 n− 2.
(3) For 1 6 i 6 n− 2, the natural epimorphism (ω⊗S N)∗ ⊕ I∗ � Yi in ModS

induces an isomorphism

TorSj (ω, (ω ⊗S N)∗)
∼=−→ TorSj (ω, Yi)

for any 1 6 j 6 n− 2.

Proof. Let M = ω ⊗S N . By Theorem 4.5, there exists a HomR(ω,−)-exact exact
sequence

0 → M1 → M0(∼= M ⊕ I) → B0 → 0

in ModR such that B0
∼= TorS1 (ω, cTrω M), M1 ∈ coΩ1

B(R) and B0∗(= 0) ∈ Iω(S).
By Theorem 4.5 again, we further have the following two HomR(ω,−)-exact exact
sequences

0 → M2 → M1 → B1 → 0,

0 → M3 → M2 → B2 → 0

in ModR such that M2 ∈ coΩ2
B(R), M3 ∈ coΩ3

B(R), B1∗ ∈ Iω(S) and Iω(S)-
pdSB2∗ 6 1. Now consider the following push-out diagram

0

��

0

��
M3∗

α

��

M3∗

β

��
0 // M2∗

δ //

��

M1∗ //

γ

��

B1∗ // 0

0 // B2∗ //

��

Y1
//

��

B1∗ // 0

0 0.

By [HW, Theorem 6.4], we have Ext>1
R (V,B2∗) = 0 for any V ∈ Iω(S). So Iω(S)-

pdSY1 6 1 by [EJ, Lemma 8.2.1]. Moreover, there exists the following commutative
diagram with exact rows

ω ⊗S M3∗
1ω⊗α //

θM3

��

ω ⊗S M2∗ //

θM2

��

ω ⊗S B2∗ //

θB2

��

0

0 // M3
// M2

// B2
// 0.
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Because M3 ∈ coΩ3
B(R) = cT 3

ω(R) by Lemma 4.2, we have that θM3
is an isomor-

phism and 1ω⊗α is a monomorphism. Similarly 1ω⊗δ is also a monomorphism, and
hence 1ω ⊗ β is also a monomorphism. Since TorS1 (ω,M3∗) = 0 by [TH1, Corollary
3.4], the sequence

0 → ω ⊗S M3∗ → ω ⊗S M1∗(∼= ω ⊗S ((ω ⊗S N)∗ ⊕ I∗)) → ω ⊗S Y1 → 0

is exact and γ induces an isomorphism TorS1 (ω, (ω ⊗S N)∗)
∼=−→ TorS1 (ω, Y1). Now

put Y0 := B1∗ and Ni := Mi∗ for i = 2, 3. Continuing this process, we may
construct a submodule chain of (ω⊗SN)∗⊕I∗ satisfying the desired properties. �

5. Applications

In this section, we apply the two filtrations of modules obtained in Sections 3 and
4 to study mainly the relationship between artin algebras satisfying the Auslander
condition and Gorenstein algebras.

Following [EJ, Definition 10.1.1], a module M in ModR is called Gorenstein
injective if there exists an exact sequence

I := · · · → I1 → I0 → I0 → I1 → · · ·
in ModR with all Ii, I

i ∈ I(R) such that HomR(E, I) is exact for any E ∈ I(R) and
M ∼= Im(I0 → I0). We use GI to denote the class of Gorenstein injective modules
and use GidR M to denote the GI-injective dimension (that is, the Gorenstein
injective dimension) of M .

Note that a module M in modR belongs to BD(R)(R) if and only if M is in GI by
[TH1, Theorem 3.9 and Corollary 5.2]. So, if putting ω := D(R) in Theorem 3.12,
then we get the following

Corollary 5.1. Let R be an artin algebra satisfying the Auslander condition. If
M ∈ modR with E-cogradeD(R) M = k < ∞, then there exists a filtration

0 = M0 ⊆ M1 ⊆ M2 ⊆ · · · ⊆ Mi ⊆ · · ·
of R-submodules of M such that

(1) M1 = · · · = Mk = 0 and there exists the following exact sequence

0 → TorRk+2(D(R), cTrD(R) coΩ
k(M)) → TorRk (D(R),ExtkR(D(R),M)) →

M/Mk → M/Mk+1 → 0.

(2) If TorRi (D(R),ExtiR(D(R),M)) ̸= 0, then E-cogradeD(R) M/Mi = i, Mi ̸=
Mi+1 and Mi+1/Mi is pure of Ext-cograde i.

(3) If TorRi (D(R),ExtiR(D(R),M)) = 0, then Mi = Mi+1.
(4) If GidR M = d < ∞, then

M = Md+1 and M/Md
∼= TorRd (D(R),ExtdR(D(R),M)).

(5) If GidR M = d < ∞, then fil(M) 6 d − k + 1, and the equality holds
whenever T-cogradeD(R) Ext

i
R(D(R),M) = i for any k 6 i 6 d.

Auslander and Reiten conjuctured in [AR1] that any artin algebra R satisfying
the Auslander condition is Gorenstein.

Theorem 5.2. Let R be an artin algebra satisfying the Auslander condition. If
R is Gorenstein with idR R = idRop R = n, then fil(coΩ2(R/J)) 6 n − 1, and

the equality holds provided that TorRi (D(R),ExtiR(D(R), coΩ2(R/J))) ̸= 0 for any
0 6 i 6 n− 2 or that coΩ2(R/J) is Gorenstein injective.
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Proof. Since idR R = n, it follows from [EJ, Theorem 12.3.1] and [T, Theorem 2.1]
that GidR R/J = n.

If n > 2, we get from [EJ, Theorem 12.3.1] that coΩn(R/J) is Gorenstein
injective. Thus GidR coΩ2(R/J) 6 n − 2. Because GidR R/J = n, we have
GidR coΩ2(R/J) = n − 2. So coΩ2(R/J) ̸= 0 and D(coΩ2(R/J)) ̸= 0. Be-
cause D(coΩ2(R/J)) is 2-syzygy, it follows from [AR2, Theorems 1.7 and 4.7] that
HomR(HomRop(D(coΩ2(R/J)), R), R) ∼= D(coΩ2(R/J)) ̸= 0. Take ω := D(R).
Then we have that

HomR(D(R), coΩ2(R/J))

∼= HomRop(D(coΩ2(R/J)), DD(R))

∼= HomRop(D(coΩ2(R/J)), R)

̸= 0.

and E-cogradeD(R) coΩ
2(R/J) = 0. Now the first assertion follows from Corol-

lary 5.1.
If n < 2, then coΩ1(R/J) is Gorenstein injective. So coΩ2(R/J) is also Goren-

stein injective by [EJ, Theorem 10.1.4]. �

Secondly, we turn to give an application of the filtration of modules obtained in
Section 4. Inspired by [K, Definition 2.15], we give its dual version as follows.

Definition 5.3.
(1) Two homomorphisms f : A → B and f ′ : A′ → B′ in ModR are said to be

isomorphic up to a direct sum of injective modules if there exist injective
modules I, E, U , I ′, E′ and U ′ such that

A⊕ I ⊕ E
g−→ B ⊕ E ⊕ U

and

A′ ⊕ I ′ ⊕ E′ h−→ B′ ⊕ E′ ⊕ U ′

are isomorphic, where g and h are given by the following matrices

g =

 f 0 0
0 0 1
0 0 0

 , h =

 f ′ 0 0
0 0 1
0 0 0

 .

(2) For an integer k > 0, a module M ∈ ModR is called injectively stationary
of type k if for any i > k, the inclusions λi : Mi → M0 and λk : Mk → M0

are isomorphic up to a direct sum of injective modules, where all Mi are
the modules as in Theorem 4.5.

We use modR to denote the stable category of modR modulo projectives.

Theorem 5.4. Let R be an artin algebra satisfying the Auslander condition. Then
the following statements are equivalent.

(1) R is Gorenstein.
(2) For some k > 0, any 2-D(R)-cotorsionfree left R-module is injectively sta-

tionary of type k.
(3) For some k > 0, any finitely generated 2-D(R)-cotorsionfree left R-module

is injectively stationary of type k.
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Proof. (1) ⇒ (2) Let M ∈ modR. Since R is Gorenstein, we have GidR M <
∞ by [EJ, Theorem 12.3.1]. Then M ∈ BD(R)(R) by [CFH, Theorem 4.4]. So
cTrD(R) M ∈ AD(R)(R) by Lemma 3.11. It implies

Bi
∼= coΩi(TorSi+1(D(R), cTrD(R) M)) = 0

for any i > 0. Thus all filtration submodules Mi equal M0 and the assertion follows.
(2) ⇒ (3) It is trivial.
(3) ⇒ (1) By [G, Theorem 4.1], it only needs to show that pdR M 6 k + 2 for

any M ∈ modR with pdR M < ∞. Let M ∈ modR with pdR M = l < ∞ and

0 → Ql → · · · → Q1 → Q0 → M → 0

be a minimal projective resolution of M in modR. Take M ′ := Ker(Q1 → Q0) and
ω := D(R). Because M ′ is 2-syzygy, we have

(D(R)⊗R M ′)∗
∼= (D(HomR(M

′, R)))∗ (by [EJ, Theorem 3.2.13])

∼= HomRop(HomR(M
′, R), R)

∼= M ′ (by [AR2, Theorems 1.7 and 4.7]).

So M ′ is adjoint 2-D(R)-cotorsionfree and (D(R) ⊗R M ′)∗ ∼= M ′. Note that I∗ is
projective left R-module for any injective left R-module I by [EJ, Theorem 3.2.9].
So, putting N = M ′ in Corollary 4.6, from the proof of this corollary, we get that
there exists an exact sequence

0 → Ni+2 → M ′ ⊕ P
fi−→ Yi → 0

in modR with P ∈ P(R) and pdR Yi 6 i for any i > 0, and the homomorphism fi
also induces an isomorphism

TorRj (D(R),M ′ ⊕ P )
∼=−→ TorRj (D(R), Yi)

for any j > 1. By [EJ, Theorem 3.2.13], we have

TorRj (D(R),M ′⊕P ) ∼= D(ExtjR(M
′⊕P,R)) and TorRj (D(R), Yi) ∼= D(ExtjR(Yi, R)).

Then by [AB, Lemma 2.42], any homomorphism M ′ → L in modR with pdR L 6 i
factors through fi. Because D(R) ⊗R (D(R) ⊗R M ′)∗ ∼= D(R) ⊗R M ′, we have
that D(R)⊗R M ′ ∈ modR is 2-D(R)-cotorsionfree. By the construction of Ni and
[K, Lemma 2.16], we have Yk

∼= Yi for any i > k by the assumption of (3). We
immediately have a homomorphism g : Yl−2 → M ′ of left R-modules such that
1M ′ = g · fl−2. It follows that there exists a projective left R-module Q such that

M ′ is isomorphic a direct summand of Yl−2 ⊕ Q. Since Yk
∼= Yl−2 in modR, by

[FLM, Proposition 3.1] there exist projective left R-modules P1 and P2 such that
Yl−2 ⊕ P1

∼= Yk ⊕ P2. Thus pdR M ′ 6 k and pdR M 6 k + 2. �

For a commutative noetherian ring R and an n-syzygy module M in modR with
n > 0, an Evans-Griffith presentation of M is defined as such an exact sequence

0 → S → B → M → 0

in modR with B an n-th syzygy of Extn+1
Rop (TrM,R) and S an (n + 2)-syzygy

module ([EG, M]). We introduce the dual version of this notion as follows.
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Definition 5.5. Let n > 0 and M ∈ coΩn
B(R). A dual Evans-Griffith presentation

of M is an exact sequence

0 → M → B → C → 0

in ModR with B an n-th cosyzygy of TorSn+1(ω, cTrω M) and C ∈ coΩn+2
B (R).

As an application of Proposition 4.4, we have the following

Proposition 5.6. Assume that ω satisfies the n-cograde condition with n > 1.
Then for any 0 6 i 6 n− 1, each module in coΩi

B(R) admits a dual Evans-Griffith
presentation.

Proof. Let M ∈ coΩi
B(R) with 0 6 i 6 n−1. Then by Proposition 4.4, there exists

an exact sequence

0 → A
α−→ M ⊕ I

β−→ B → 0

in ModR with A ∈ coΩi+1
B (R), I ∈ I(R) and B ∼= coΩi(TorSi+1(ω, cTrω M)). Let

γ := β

(
1M
0

)
and λ : M ↪→ E be an embedding in ModR with E injective. Then

we have the following commutative diagram with exact columns and rows

0

��

0

��
M(

1M
0
λ

)
��

M(
γ
λ

)
��

0 // A

(
α
0

)
// M ⊕ I ⊕ E

(
β 0
0 1E

)
//(

0 1I 0
−λ 0 1E

)
��

B ⊕ E //

��

0

0 // A // I ⊕ E //

��

C //

��

0

0 0,

where C = Coker

(
γ
λ

)
. It yields from the bottom row in the above diagram that

C ∈ coΩi+2
B (R). Thus the rightmost column is a dual Evans-Griffith presentation

of M . �

Acknowledgements. This research was partially supported by NSFC (Grant
Nos. 11571164, 11501144), a Project Funded by the Priority Academic Program De-
velopment of Jiangsu Higher Education Institutions and NSF of Guangxi Province
of China (Grant No. 2016GXNSFAA380151).

References

[AF] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Secondnd edition,

Grad. Texts in Math. 13, Springer-Verlag, Berlin, 1992.
[Au] M. Auslander, Coherent functors, in: Proceedings Conference Categorical Algebra (La

Jolla), Springer-Verlag, Berlin-Heidelberg-New York, 1965, 189–231.

20



Two filtration results for modules with applications to the Auslander condition

[AB] M. Auslander and M. Bridger, Stable Module Theory, Memoirs Amer. Math. Soc. 94,

Amer. Math. Soc., Providence, RI, 1969.
[AR1] M. Auslander and I. Reiten, k-Gorenstein algebras and syzygy modules, J. Pure Appl.

Algebra 92 (1994), 1–27.

[AR2] M. Auslander and I. Reiten, Syzygy modules for noetherian rings, J. Algebra 183 (1996),
167–185.

[ARS] M. Auslander, I. Reiten and S. O. Smalø, Representation Theory of Artin Algebras,
Cambridge Stud. in Adv. Math. 36, Cambridge Univ. Press, Cambridge, 1995.
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