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Abstract

Let A be an abelian category and let C and D be additive subcategories of A . As a
generalization of Gorenstein categories, we introduce one-sided n-(C ,D)-Gorenstein categories
with n ≥ 0. Under certain conditions, we give some equivalent characterizations of one-sided
n-(C ,D)-Gorenstein categories in term of the finiteness of projective and injective dimensions
relative to one-sided Gorenstein subcategories, which induce some new equivalent character-
izations of Gorenstein categories. Then we apply these results to categories of interest. In
particular, a necessary condition is obtained for the validity of the Wakamatsu tilting conjec-
ture.
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1 Introduction

Let A be an abelian category and C an additive subcategory of A . As a common generalization
of Gorenstein projective and Gorenstein injective modules, Sather-Wagstaff, Sharif and White
[31] introduced the Gorenstein subcategory G(C ) of A relative to C . From the definition of the
Gorenstein subcategory G(C ), it is known that C should be simultaneously a generator and a
cogenerator for G(C ) and both functors HomA (C ,−) and HomA (−,C ) should possess certain
exactness. It leads to some limitations. To overcome such limitations, Song, Zhao and Huang
[33] introduced one-sided Gorenstein subcategories by modifying the definition of Gorenstein
subcategories, and then Gao and Wu [13] generalized them to a more general setting. On the
other hand, Beligiannis and Reiten [3] introduced Gorenstein categories by categorizing Goren-
stein rings, and compare the relevant results about Gorenstein rings to Gorenstein categories. It
is a natural topic to study the relation between Gorenstein categories and (one-sided) Gorenstein
subcategories, we will study it in a more general setting.

In homological theory, homological dimensions are important and fundamental invariants,
which play a crucial role in studying the structures of modules and rings. The properties of
modules and rings have been studied when certain homological dimensions relative to some
special one-sided Gorenstein subcategories of a given module or all modules are finite, see [8,
13, 14, 19, 22, 33], and so on. In this paper, we will introduce generalized Gorenstein categories
and give them some equivalent characterizations in term of the finiteness of certain homological
dimensions relative to one-sided Gorenstein subcategories, which provide a unified framework
for some related results.

1The research was partially supported by NSFC (Grant Nos. 12371038, 12171207).
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The paper is organized as follows. In Section 2, we give some notions and preliminary results
which will be used in the sequel.

Let A be an abelian category and let C and D be additive subcategories of A . In Section
3, we introduce left or right n-(C ,D)-Gorenstein categories with n ≥ 0. Assume that A has
enough projective and injective objects and satisfies the AB4 and AB4∗ conditions (that is, A
has arbitrary direct sums and products which are exact) and C is closed under direct summands.
We prove the following result.

Theorem 1.1. (Parts of Theorems 3.11 and 3.14) It holds that

(1) Let rG(C ,D) be the right Gorenstein subcategory of A relative to C and D , which contains
P(A ) consisting of all projective objects in A . If C is closed under kernels of epimor-
phisms and C is contained in the intersection of D and its left orthogonal category, then
the following statements are equivalent.
(1.1) A is a right n-(C ,D)-Gorenstein category.
(1.2) The rG(C ,D)-projective dimension of any object in A is at most n.
(1.3) The three categories respectively consisting of objects with D-projective, injective and

C -projective dimensions at most n coincide.
(2) Let lG(C ,D) be the left Gorenstein subcategory of A relative to C and D , which contains

I(A ) consisting of all injective objects in A . If C is closed under cokernels of monomor-
phisms and C is contained in the intersection of D and its right orthogonal category, then
the following statements are equivalent.
(2.1) A is a left n-(C ,D)-Gorenstein category.
(2.2) The lG(C ,D)-injective dimension of any object in A is at most n.
(2.3) The three categories respectively consisting of objects with D-injective, projective and

C -injective dimensions at most n coincide.

As a consequence of Theorem 1.1, we get that A is n-Gorenstein if and only if the Gorenstein
projective dimension of any object in A is at most n, if and only if the Gorenstein injective
dimension of any object in A is at most n, if and only A is right n-(P(A ),P(A ))-Gorenstein, if
and only if A is left n-(I(A ), I(A ))-Gorenstein, and if and only if the two categories respectively
consisting of objects with projective and injective dimensions at most n coincide. (Theorem
3.17). This result extends [3, Proposition VII.2.4(i)].

In Section 4, we apply the results obtained in Section 3 to module categories. The study of
generalized tilting modules, which were usually called Wakamatsu tilting modules, was initiated
by Wakamatsu [40]. It follows from [42, Corollary 3.2] that RC is Wakamatsu tilting if and only
if CS is Wakamatsu tilting with R = End(CS), if and only if RCS is semidualizing bimodule
in the sense of [16]. Many authors have studied the properties of Wakamatsu tilting modules
and semidualizing bimodules and related modules, see [1, 3], [12], [15, 16], [19]–[22], [26], [28],
[35]–[42] and references therein.

Let R be an arbitrary ring and RC a Wakamatsu tilting module with R = End(CS). We use
PC(R) and FC(R) to denote the classes consisting of C-projective and C-flat left R-modules,
respectively, and use IC(S) and FIC(S) to denote the classes consisting of C-injective and C-
FP-injective left S-modules, respectively (see Section 2.2 for the definitions of these modules).
As an application of Theorem 1.1, we get the following result.

Theorem 1.2. (Theorem 4.6) It holds that

(1) For any n ≥ 0, the following statements are equivalent.
(1.1) The category of left R-modules is right n-PC(R)-Gorenstein.
(1.2) The category of left R-modules is right n-(PC(R),FC(R))-Gorenstein.
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(1.3) The category of left S-modules is left n-IC(S)-Gorenstein.
(1.4) The category of left S-modules is left n-(IC(S),FIC(S))-Gorenstein.
(1.5) The C-Gorenstein projective dimension of any left R-module is at most n.
(1.6) The C-strong Gorenstein flat dimension of any left R-module is at most n.
(1.7) The C-Gorenstein injective dimension of any left S-module is at most n.
(1.8) The C-Gorenstein FP-injective dimension of any left S-module is at most n.

(2) If C is faithful, then all the above and below conditions are equivalent.
(2.1) The two categories respectively consisting of left R-modules with injective and PC(R)-

projective dimensions at most n (and the category consisting of left R-modules with
FC(R)-projective dimension at most n) coincide.

(2.2) The two categories respectively consisting of left S-modules with projective and IC(S)-
injective dimensions at most n (and the category consisting of left S-modules with
FIC(S)-injective dimension at most n) coincide.

(3) If R is a left Noetherian ring and S is a right coherent ring, then all conditions in (1) are
equivalent to that both the FP-injective dimensions of RC and CS are at most n.

Note that the conditions in Theorem 1.2(1) are not left-right symmetric in general (Remark
4.17(1)), and that the assumption “R is a left Noetherian ring and S is a right coherent ring”
in Theorem 1.2(3) can not be weakened to “R is a left coherent ring and S is a right coherent
ring” (Example 4.13).

By Theorem 1.2, we obtain several equivalent characterizations for the category of left R-
modules and the ring R to be n-Gorenstein (Corollary 4.7). As an immediate consequence of
Theorem 1.2, we also get that the suprema of C-Gorenstein projective and C-strong Gorenstein
flat dimensions of all leftR-modules and the suprema of C-Gorenstein injective and C-Gorenstein
FP-injective dimensions of all left S-modules are identical (Corollary 4.8(1)). It extends some
results in [4, 22, 23, 43].

The Auslander class AC(S) and Bass class BC(R) with respect to a semidualizing bimodule

RCS (equivalently, a Wakamatsu tilting module RC with R = End(CS)) originated from [12]
are now collectively known as Foxby classes, and they are linked together by Foxby equivalence
[12, 16] and duality pairs [20]. These two classes of modules play a crucial role in studying
the homological theory related to semidualizing bimodules and Wakamatsu tilting modules, see
[1, 12, 15, 16], [19]–[22], [26, 28], [35]–[42] and references therein.

We use pdR C and pdSop C to denote the projective dimensions of RC and CS , respectively.
The Wakamatsu tilting conjecture states that for artin algebras R and S, it holds that pdR C =
pdSop C (cf. [3, 28]). This conjecture remains still open. It was proved in [38, Proposition
4.1] that pdR C = pdSop C when both of them are finite, which was proved in [40, Proposition
7] when R and S are artin algebras. As another application of Theorem 1.1, we get the the
following result, which greatly improves [38, Theorems 4.2 and 4.10]. Compare it with Theorem
1.2.

Theorem 1.3. (Part of Theorem 4.15) For any n ≥ 0, the following statements are equivalent.
(1) pdR C = pdSop C ≤ n.
(2) The category of left R-modules is left n-PC(R)-Gorenstein.
(3) The category of left S-modules is right n-IC(S)-Gorenstein.
(4) The BC(R)-injective dimension of any left R-module is at most n.
(5) The AC(S)-projective dimension of any left S-module is at most n.

(i)op The symmetric version of (i) with 2 ≤ i ≤ 5.

As an immediate consequence, we get that the supremum of AC(S)-projective dimensions of
all left S-modules and that of BC(R)-injective dimensions of all left R-modules are identical, and
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they are left and right symmetric (Corollary 4.16). Over coherent semi-local rings, we establish
the relation between the projective dimension of C and the Bass injective dimension as well
as the Auslander projective dimension of certain semisimple module (Proposition 4.19). Then
we obtain a necessary condition for the validity of the Wakamatsu tilting conjecture (Corollary
4.20).

2 Preliminaries

In this section, we give some notions and preliminary results needed in the sequel.

2.1 Relative homological dimensions and one-sided Gorenstein subcategories

In this paper, A is an abelian category and all subcategories of A involved are full, and closed
under isomorphisms. We use P(A ) and I(A ) to denote the subcategories of A consisting of
projective and injective objects, respectively.

Let X be a subcategory of A . We write

⊥X := {A ∈ A | Ext≥1
A (A,X) = 0 for any X ∈ X },

X ⊥ := {A ∈ A | Ext≥1
A (X,A) = 0 for any X ∈ X }.

The subcategory X is called self-orthogonal if X ⊆ ⊥X (equivalently, X ⊆ X ⊥). A se-
quence E in A is called HomA (X ,−)-exact (resp. HomA (−,X )-exact) if HomA (X,E) (resp.
HomA (E, X)) is exact for any X ∈ X .

Let A ∈ A . The X -projective dimension X -pdA of A is defined as

inf{n | there exists an exact sequence 0 → Xn → · · · → X1 → X0 → A → 0

in A with all Xi ∈ X },

and set X -pdA = ∞ if no such integer exists. Dually, the X -injective dimension X -idA of A
is defined as

inf{n | there exists an exact sequence 0 → A → X0 → X1 → · · · → Xn → 0

in A with all Xi ∈ X },

and set X -idA = ∞ if no such integer exists. For simplicity, we write

pdA := P(A )- pdA and idA := I(A )- idA.

For any n ≥ 0, We use X - pd≤n and X - id≤n to denote the subcategories of A consisting
of objects with X -projective and X -injective dimensions at most n, respectively; and use
X - pd<∞ and X - id<∞ to denote the subcategories of A consisting of objects with finite X -
projective and X -injective dimensions, respectively. For a subcategory Y of A , we write

X - pdY := sup{X - pdY | Y ∈ Y } and X - idY := sup{X - idY | Y ∈ Y }.

Recall that X is called resolving in A if P(A ) ⊆ X and X is closed under extensions and
kernels of epimorphisms; dually, X is called coresolving in A if I(A ) ⊆ X and X is closed
under extensions and cokernels of monomorphisms.
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Lemma 2.1. Let X be a subcategory of A closed under direct summands.
(1) If X is resolving in A , then X -pd≤n is closed under direct summands for any n ≥ 0.
(2) If X is coresolving in A , then X -id≤n is closed under direct summands for any n ≥ 0.

Proof. If X is resolving (respectively, coresolving), then X is P(A )-resolving admitting a
P(A )-proper generator P(A ) (respectively, I(A )-coresolving admitting an I(A )-coproper co-
generator I(A )) in the sense of [18]. Now the assertions follow from [18, Theorems 3.9 and 4.9],
respectively.

Definition 2.2. ([8]) Let X be a subcategory of A . A morphism f : X → A in A with
X ∈ X and A ∈ A is called an X -precover of A if HomA (X ′, f) is epic for any X ′ ∈ X . The
subcategory X is called precovering in A if any object in A admits an X -precover. Dually,
the notions of an X -preenvelope and a preenveloping subcategory are defined.

For subcategories X and Y of A , we write

˜resY X :=

{
A ∈ A | there exists a HomA (Y ,−)-exact exact sequence

· · · → Xi → · · · → X1 → X0 → A → 0 in A with all Xi in X

}
,

and

˜coresY X :=

{
A ∈ A | there exists a HomA (−,Y )-exact exact sequence

0 → A → X0 → X1 → · · · → Xi → · · · in A with all Xi in X

}
.

For simplicity, we write

˜coresX := ˜coresX X and ˜coresX := ˜coresX X .

Lemma 2.3. Let X be a subcategory of A . Assume that M ∈ ˜coresX and N ∈ r̃esX , that
is, there exist a HomA (−,X )-exact exact sequence

0 → M
f−→ X0 f0

−→ X1 f1

−→ · · · (2.1)

and a HomA (X ,−)-exact exact sequence

· · · g1−→ X1
g0−→ X0

g−→ N → 0 (2.2)

in A with all Xi and Xi in X . Then (2.1) is HomA (−, N)-exact if and only if (2.2) is
HomA (M,−)-exact.

Proof. From (2.1) and (2.2), we get the following commutative diagram:

...

(X1,g1)

��

...

(X,g1)

��

...

(M,g1)

��
· · ·

(f1,X1)// (X1, X1)
(f0,X1)//

(X1,g0)
��

(X0, X1)

(X0,g0)
��

(f,X1) // (M,X1)

(M,g0)

��

// 0

· · ·
(f1,X0)// (X1, X0)

(f0,X0)//

(X1,g)
��

(X0, X0)

(X0,g)
��

(f,X0) // (M,X0)

(M,g)

��

// 0

· · ·
(f1,N)// (X1, N)

(f0,N) //

��

(X0, N)

��

(f,N) // (M,N)

��

// 0

0 0 0,
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where (−,−) = HomA (−,−). By assumption, all rows but the bottom one and all columns but
the rightmost one are exact. Thus the bottom row is exact if and only if so is the rightmost
column, that is, (2.1) is HomA (−, N)-exact if and only if (2.2) is HomA (M,−)-exact.

Definition 2.4. ([31]) Let C be a subcategory of A . The Gorenstein subcategory G(C ) of A
relative to C is defined to be {G ∈ A | there exists an exact sequence

· · · → C1 → C0 → C0 → C1 → · · ·

in A with all Ci, C
i in C , which is HomA (C ,−)-exact and HomA (−,C )-exact, such that G ∼=

Im(C0 → C0)}.

Note that G(P(A )) and G(I(A )) are exactly Gorenstein projective and injective subcate-
gories of A , respectively ([8]).

For a subcategory C of A , following [17, Lemma 5.7], if C is self-orthogonal, then

G(C ) = (⊥C ∩ ˜coresC ) ∩ (C⊥ ∩ r̃esC ).

Motivated by this, one-sided Gorenstein subcategories were introduced as follows.

Definition 2.5. Let C and D be subcategories of A . Write

rG(C ) := ⊥C ∩ ˜coresC (respectively, lG(C ) := C⊥ ∩ r̃esC ),

rG(C ,D) := ⊥D ∩ ˜coresD C (respectively, lG(C ,D) := D⊥ ∩ r̃esD C ).

We call rG(C ) (respectively, lG(C )) the right (respectively, left) Gorenstein subcategory of A
relative to C ([33]), and call rG(C ,D) (respectively, lG(C ,D)) the right (respectively, left)
Gorenstein subcategory of A relative to C and D ([13]).

It is easy to see that if C ⊆ C ′ and D ⊇ D ′, then rG(C ,D) ⊆ rG(C ′,D ′) and lG(C ,D) ⊆
lG(C ′,D ′).

2.2 Wakamatsu tilting modules

In this paper, all rings are arbitrary associative rings with unit. Let R be a ring. We use
ModR to denote the category of left R-modules, and use P(R), F(R) and I(R) to denote the
subcategories of ModR consisting of projective, flat and injective modules, respectively. For a
left R-module M , we use pdR M , fdR M and idR M to denote the projective, flat and injective
dimensions of M , respectively, and use AddR M (addR M) to denote the subcateory of ModR
consisting of direct summands of direct sums of (finite) copies of M .

Definition 2.6. ([40, 42]). Let R be a ring. A left R-module C is called generalized tilting if
the following conditions are satisfied.

(1) RC admits a degreewise finite R-projective resolution.
(2) Ext≥1

R (C,C) = 0.
(3) There exists a HomR(−, addR C)-exact exact sequence

0 → RR → C0 → C1 → · · · → Ci → · · ·

in ModR with all Ci in addR C.
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Generalized tilting modules are usually called Wakamatsu tilting modules, see [3, 28]. Let C
be a left R-module and S = End(RC). It follows from [42, Corollary 3.2] that RC is Wakamatsu
tilting if and only if CS is Wakamatsu tilting with R = End(CS), if and only if RCS is semidu-
alizing bimodule in the sense of [1, 16]. Typical examples of Wakamatsu tilting modules include
the free module of rank one and the dualizing module over a Cohen-Macaulay local ring. For
more examples of Wakamatsu tilting modules, the reader is referred to [16, 37, 41].

Recall from [27, 34] that a module M ∈ ModR is called FP-injective (or absolutely pure) if
M ∈ FI(R), where FI(R) = {M ∈ ModR | Ext1R(X,M) = 0 for any finitely presented left
R-module X}.

In the following, let R be an arbitrary ring, and let RC be a Wakamatsu tilting module with
S = End(RC). We write

(−)∗ := Hom(C,−),

and write

PC(R) := {C ⊗S P | P ∈ P(S)} and PC(S
op) := {P ′ ⊗R C | P ′ ∈ P(Rop)},

IC(S) := {I∗ | I ∈ I(R)} and IC(Rop) := {I ′∗ | I ′ ∈ I(Sop)},

FC(R) := {C ⊗S F | F ∈ F(S)} and FIC(S) := {M∗ | M ∈ FI(R)}.

The modules in PC(R) (respectively, PC(S
op)), FC(R), IC(S) (respectively, IC(Rop)) and

FIC(S) are called C-projective, C-flat, C-injective and C-FP-injective, respectively. When

RCS = RRR, C-projective, C-flat, C-injective and C-FP-injective modules are exactly projec-
tive, flat, injective and FP-injective modules, respectively.

Lemma 2.7. It holds that

idPC(R) = idFC(R) = IC(S)- idP(S) = IC(S)- idF(S).

Proof. By [39, Theorem 3.3(1)], we have

idPC(R) = IC(S)- idP(S) = IC(S)- idF(S).

Since F(S) ⊆ AC(S) by [16, Lemma 4.1], we have idFC(R) = IC(S)- idF(S) by [37, Theorem
3.5(3)].

The first two notions in the following definition were introduced by Holm and Jørgensen [15]
for commutative rings, and their non-commutative versions were given in [26].

Definition 2.8.
(1) A module M ∈ ModR is called C-Gorenstein projective if M ∈ rG(PC(R)).
(2) A module N ∈ ModS is called C-Gorenstein injective if M ∈ lG(IC(S)).
(3) ([22]) A module M ∈ ModR is called C-strong Gorenstein flat if M ∈ rG(PC(R),FC(R)).
(4) A module N ∈ ModS is called C-Gorenstein FP-injective if M ∈ lG(IC(S),FIC(S)).

When RCS = RRR, C-Gorenstein projective, C-Gorenstein injective, C-strong Gorenstein
flat and C-Gorenstein FP-injective moduels are exactly Gorenstein projective, Gorenstein injec-
tive, strong Gorenstein flat and Gorenstein FP-injective modules, respectively ([7, 8, 14, 29]).

Definition 2.9. ([16])
(1) The Auslander class AC(S) with respect to C consists of all modules N in ModS satisfying

the following conditions:
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(A1) TorS≥1(C,N) = 0.

(A2) Ext≥1
R (C,C ⊗S N) = 0.

(A3) The canonical evaluation homomorphism

µN : N → (C ⊗S N)∗

defined by µN (y)(x) = x⊗ y for any y ∈ N and x ∈ C is an isomorphism.

(2) The Bass class BC(R) with respect to C consists of all modules M in ModR satisfying
the following conditions:
(B1) Ext≥1

R (C,M) = 0.
(B2) TorS≥1(C,M∗) = 0.
(B3) The canonical evaluation homomorphism

θM : C ⊗S M∗ → M

defined by θM (x⊗ f) = f(x) for any x ∈ C and f ∈ M∗ is an isomorphism.
(3) The Auslander class AC(R

op) in ModRop and the Bass class BC(S
op) in ModSop are

defined symmetrically.

The Auslander and Bass classes are certain right and left Gorenstein subcategories, respec-
tively (see Section 4.2 for details).

3 General results

In this section, A is an abelian category.

3.1 Relative projective and injective dimensions

Lemma 3.1. Let U be a subcategory of A . Assume that one of the following two conditions is
satisfied:

(a) U is self-orthogonal and closed under kernels of epimorphisms;
(b) U is precovering and resolving and U is closed under direct summands.

Then for any M ∈ A and n ≥ 0, the following statements are equivalent.

(1) U -pdM ≤ n.
(2) There exists a HomA (U ,−)-exact exact sequence

0 → Un → · · · → U1 → U0 → M → 0

in A with all Ui ∈ U .

Proof. (2) =⇒ (1) It is clear.

(1) =⇒ (2) If the condition (a) is satisfied, then any exact sequence

0 → Un → · · · → U1 → U0 → M → 0

in A with all Ui ∈ U is HomA (U ,−)-exact, and the assertion follows.

Now suppose that the condition (b) is satisfied. We proceed by induction on n. The case for
n = 0 is trivial. Suppose n ≥ 1. Then there exists an exact sequence

0 → K ′ → U ′
0 → M → 0

8



in A with U ′
0 ∈ U and U -pdK ′ ≤ n by (1). It yields that any U -precover of M is epic. Since

U is precovering in A , there exists a HomA (U ,−)-exact exact sequence

0 → K → U0 → M → 0

in A with U0 ∈ U . Consider the following pull-back diagram:

0

��

0

��
K

��

K

��
0 // K ′ // X

��

// U0

��

// 0

0 // K ′ // U ′
0

��

//M

��

// 0

0 0.

Since U is resolving, applying [19, Theorem 3.2] to the middle row in the above diagram
yields U -pdX ≤ n − 1. On the other hand, since the middle column in the above diagram is
HomA (U ,−)-exact by [17, Lemma 2.4(1)], it splits and X ∼= K ⊕ U ′

0. Thus U -pdK ≤ n by
[18, Corollary 3.9], and the assertion follows by induction.

Dually, we have the following result.

Lemma 3.2. Let E be a subcategory of A . Assume that one of the following two conditions is
satisfied:

(a) E is self-orthogonal and closed under cokernels of monomorphisms;
(b) E is preenveloping and coresolving and E is closed under direct summands.

Then for any M ∈ A and n ≥ 0, the following statements are equivalent.

(1) E -idM ≤ n.
(2) There exists a HomA (−,E )-exact exact sequence

0 → M → E0 → E1 → · · · → En → 0

in A with all Ei ∈ E .

Remark 3.3. Both the condition “U is closed under kernels of epimorphisms” in Lemma
3.1(a) and the condition “E is closed under cokernels of monomorphisms” in Lemma 3.2(a) are
superfluous. However, In view that they are necessary to prove the rest results in this subsection,
for the sake simplicity of subsequent statements we include them there.

Proposition 3.4. Let U and E be subcategories of A . If one of the conditions (a) and (b) in
Lemma 3.1 is satisfied, then for any n ≥ 0, the following statements are equivalent.

(1) U -pdE ≤ n.
(2) E -id<∞ ⊆ U -pd≤n.
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Proof. (2) =⇒ (1) It is trivial.

(1) =⇒ (2) Let M ∈ E -id<∞. Then there exists the following exact sequence

0 → M → E0 → E1 → · · · → Em → 0

in A with m ≥ 0 and all Ei in E is exact. By (1) and Lemma 3.1, there exists a HomA (U ,−)-
exact exact sequence

0 → U i
n → · · · → U i

1 → U i
0 → Ei → 0

in A with all U i
j in U for any 0 ≤ i ≤ m and 0 ≤ j ≤ n. Applying [17, Corollary 3.3(1)] yields

the following two exact sequences:

0 → ⊕m
i=0U

i
i+n → · · · → ⊕m

i=0U
i
i+2 → ⊕m

i=0U
i
i+1 → U → M → 0, (3.1)

0 → U → ⊕m
i=0U

i
i → ⊕m

i=1U
i
i−1 → · · · → Um−1

0 ⊕ Um
1 → Um

0 → 0, (3.2)

where U j
i = 0 whenever i ≥ n+1. Since U is additive and closed under kernels of epimorphisms,

we have U ∈ U by (3.2). It follows from (3.1) that U -pdM ≤ n and M ∈ U -pd≤n.

Dually, we have the following result.

Proposition 3.5. Let U and E be subcategories of A . If one of the conditions (a) and (b) in
Lemma 3.2 is satisfied, then for any n ≥ 0, the following statements are equivalent.

(1) E -idU ≤ n.
(2) U -pd<∞ ⊆ E -id≤n.

As a consequence of Propositions 3.4 and 3.5, we get the following result.

Proposition 3.6. Let U and E be subcategories of A . If one of the conditions (a) and (b) in
Lemma 3.1 and one of the conditions (a) and (b) in Lemma 3.2 are satisfied.

(1) If V is a subcategory of A containing U , then for any n ≥ 0, the following statements
are equivalent.
(1.1) U -pdE ≤ n and E -idV ≤ n.
(1.2) U -pd≤n = E -id≤n = V -pd≤n.

(2) If F is a subcategory of A containing E , then for any n ≥ 0, the following statements are
equivalent.
(2.1) E -idU ≤ n and U -pdF ≤ n.
(2.2) E -id≤n = U -pd≤n = F -id≤n.

Proof. (1) By Propositions 3.4 and 3.5, we have that U -pdE ≤ n and E -idV ≤ n if and only if

V - pd≤n ⊆ V - pd<∞ ⊆ E - id≤n ⊆ E - id<∞ ⊆ U - pd≤n .

Since U ⊆ V by assumption, we have U - pd≤n ⊆ V - pd≤n, and the assertion follows.

(2) It is dual to (1).

Remark 3.7. In the case when all “≤ n” in Propositions 3.4–3.6 are replaced by “< ∞”, all
these results still hold true.
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3.2 One-sided Gorenstein categories

In this subsection, A is an abelian category having enough projective and injective objects. We
first introduce one-sided Gorensrein categories as follows.

Definition 3.8. Let C and D be subcategories of A , and let n ≥ 0.
(1) A is called a right n-(C ,D)-Gorenstein category if

C - pd I(A ) ≤ n and idD ≤ n.

In particular, if C = D , then a right n-(C ,D)-Gorenstein category is called a right n-C -
Gorenstein category for short.

(2) A is called a left n-(C ,D)-Gorenstein category if

C - idP(A ) ≤ n and pdD ≤ n.

In particular, if C = D , then a left n-(C ,D)-Gorenstein category is called a left n-C -
Gorenstein category for short.

If C ⊆ C ′ and D ⊇ D ′, then a right n-(C ,D)-Gorenstein category and a left n-(C ,D)-
Gorenstein category are right n-(C ′,D ′)-Gorenstein and left n-(C ′,D ′)-Gorenstein, respectively.
We list some examples of one-sided Gorenstein categories as follows. See Section 4 for more
examples.

Example 3.9. Recall from [3, Definition VII.2.1] that A is called Gorenstein if idP(A ) < ∞
and pd I(A ) < ∞. It follows from [3, Proposition VII.1.3(vi)] that A is Gorenstein if and only
if idP(A ) = pd I(A ) < ∞. If idP(A ) = pd I(A ) ≤ n < ∞, then we call A n-Gorenstein. It
is easy to see that A is n-Gorenstein if and only if it is right n-P(A )-Gorenstein, and if and
only if it is left n-I(A )-Gorenstein.

From now on, assume that A satisfies the AB4 and AB4∗ conditions, that is, A has arbitrary
direct sums and products which are exact.

Lemma 3.10. For any M ∈ A , there exists an exact sequence

0 → M ⊕X → P ⊕ I → M ⊕X → 0

in A with P projective and I injective.

Proof. Let M ∈ A , and let

· · · → Pi → · · · → P1 → P0 → M → 0

and

0 → M → I0 → I1 → · · · → Ii → · · ·

be a projective resolution and an injective coresolution of M in A , respectively. Decompose
them respectively into short exact sequences:

0 → Ui → Pi → Ui−1 → 0,

and

0 → V i−1 → Ii → V i → 0,

11



where Ui = Im(Pi+1 → Pi) and V i = Im(Ii → Ii+1) with i ≥ 0, and in particular, U−1 = V −1 =
M . Then we get the following two exact sequences:

0 → ⊕i≥0Ui → ⊕i≥0Pi → M ⊕ (⊕i≥0Ui) → 0

and

0 → M ⊕ (Πi≥0V
i) → Πi≥0I

i → Πi≥0V
i → 0.

It induces the following exact sequence:

0 → M ⊕ (U ⊕ V ) → P ⊕ I → M ⊕ (U ⊕ V ) → 0,

where U = ⊕i≥0Ui, V = Πi≥0V
i, P := ⊕i≥0Pi ∈ P(A ) and I := Πi≥0I

i ∈ I(A ).

We write

pd≤n := {A ∈ A | pdA ≤ n} and id≤n := {A ∈ A | idA ≤ n}.

The following is the main result in this section.

Theorem 3.11. Let C and D be subcategories of A with C closed under direct summands.
Assume that

C ⊆ D ∩ ⊥D and P(A ) ⊆ rG(C ,D)

and n ≥ 0. Consider the following conditions.

(1) A is right n-(C ,D)-Gorenstein (that is, C -pd I(A ) ≤ n and idD ≤ n).
(2) rG(C ,D)-pdM ≤ n for any M ∈ A .
(3) rG(C ,D)-pd I(A ) ≤ n and idD ≤ n.
(4) D-pd≤n = id≤n = C -pd≤n.
(5) D-pd≤n ⊆ id≤n ⊆ rG(C ,D)-pd≤n.

It holds that (4) =⇒ (1) ⇐⇒ (2) ⇐⇒ (3) ⇐= (5).

(i) If C is closed under kernels of epimorphisms, then all the conditions (1)–(4) are equivalent.
(ii) If rG(C ,D) is precovering and resolving, then all the conditions (1)–(3) and (5) are equiv-

alent.

Proof. By [13, Proposition 4.6(1)], we have (1) ⇐⇒ (3).

(2) =⇒ (3) Let M ∈ A . By (2), there exists an exact sequence

0 → Gn → · · · → G1 → G0 → M → 0

in A with all Gi ∈ rG(C ,D). For any D ∈ D , applying the functor HomA (−, D) to the above
exact sequence yields

Extn+1
A (M,D) ∼= Ext1A (Gn, D) = 0,

and thus idD ≤ n.

(3) =⇒ (2) Let M ∈ A . By Lemma 3.10, there exists an exact sequence

0 → M ⊕X → P ⊕ I → M ⊕X → 0

12



in A with P projective and I injective. By the horseshoe lemma, we get the following commu-
tative diagram with exact columns and rows:

0

��

0

��

0

��
0 // Kn

��

// Gn

��

// Kn

��

// 0

0 // Qn−1

��

// Qn−1 ⊕Qn−1

��

// Qn−1

��

// 0

...

��

...

��

...

��
0 // Q1

��

// Q1 ⊕Q1

��

// Q1

��

// 0

0 // Q0

��

// Q0 ⊕Q0

��

// Q0

��

// 0

0 //M ⊕X

��

// P ⊕ I

��

//M ⊕X

��

// 0

0 0 0

in A with all Qi projective. Since P ∈ rG(C ,D) and rG(C ,D)-pd I ≤ n by assumption, we
have rG(C ,D)-pd(P ⊕ I) ≤ n. Since P(A ) ⊆ rG(C ,D) by assumption, it follows from [13,
Theorem 3.4] that rG(C ,D) is resolving. Then Gn ∈ rG(C ,D) by [19, Lemma 3.1(1)].

Since idD ≤ n by (3), according to the leftmost or rightmost column in the above diagram,
it is easy to get Kn ∈ ⊥D by dimension shifting. Then we get the following HomA (−,D)-exact
exact sequence:

· · · → Gn → · · · → Gn → Gn → Gn → · · · → Gn → · · · ,

in which the image of each homomorphism is Kn. By [13, Proposition 3.12], we have Kn ∈
rG(C ,D). According to the leftmost or rightmost column in the above diagram again, we have
rG(C ,D)-pd(M ⊕X) ≤ n. Since rG(C ,D) is closed under direct summands by [13, Theorem
3.6], it follows from Lemma 2.1(1) that rG(C ,D)-pdM ≤ n.

It is easy to see that (4) =⇒ (1) and (5) =⇒ (3).
Note that I(A ) is self-orthogonal and closed under cokernels of monomorphisms.
Assume that C is closed under kernels of epimorphisms. Since C is self-orthogonal by

assumption, the implication (1) =⇒ (4) follows by putting U = C , V = D and E = I(A ) in
Proposition 3.6(1).

Assume that rG(C ,D) is precovering and resolving. By [13, Theorem 3.6], we have that
rG(C ,D) is closed under direct summands. If (3) holds true, then rG(C ,D)-pd I(A ) ≤ n, and
hence

id≤n ⊆ rG(C ,D)- pd≤n

by putting U = rG(C ,D) and E = I(A ) in Proposition 3.4. On the other hand, we have

D- pd≤n ⊆ id≤n
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by putting U = D and E = I(A ) in Proposition 3.5, and thus the assertion (5) follows. This
proves (3) =⇒ (5).

The following result is a special case of Theorem 3.11.

Corollary 3.12. Let C be a self-orthogonal subcategory of A closed under direct summands. If
P(A ) ⊆ rG(C ), then for any n ≥ 0, the following statements are equivalent.

(1) A is right n-C -Gorenstein (that is, pd I(A ) ≤ n and idD ≤ n).
(2) rG(C )-pdM ≤ n for any M ∈ A .
(3) rG(C )-pd I(A ) ≤ n and idC ≤ n.

Furthermore, if C is closed kernels of epimorphisms, then all the above and below conditions are
equivalent.

(4) C -pd≤n = id≤n.

We also have the following corollary.

Corollary 3.13. Let D be a subcategory of A containing P(A ). Then for any n ≥ 0, the
following statements are equivalent.

(1) A is right n-(P(A ),D)-Gorenstein (that is, pd I(A ) ≤ n and idD ≤ n).
(2) rG((P(A ),D))-pdM ≤ n for any M ∈ A .
(3) rG((P(A ),D))-pd I(A ) ≤ n and idD ≤ n.
(4) D-pd≤n = id≤n = pd≤n.

Proof. It is trivial that P(A ) ⊆ rG((P(A ),D)). Putting C = P(A ) in Theorem 3.11, the
assertion follows.

The following result is dual to Theorem 3.11, we omit its proof.

Theorem 3.14. Let C and D be subcategories of A such that C is closed under direct sum-
mands. Assume that

C ⊆ D ∩ D⊥ and I(A ) ⊆ lG(C ,D)

and n ≥ 0. Consider the following conditions.

(1) A is left n-(C ,D)-Gorenstein (that is, C -idP(A ) ≤ n and pdD ≤ n).
(2) lG(C ,D)-idM ≤ n for any M ∈ A .
(3) lG(C ,D)-idP(A ) ≤ n and pdD ≤ n.
(4) D-id≤n = pd≤n = C -id≤n.
(5) D-id≤n ⊆ pd≤n ⊆ lG(C ,D)-id≤n.

It holds that (4) =⇒ (1) ⇐⇒ (2) ⇐⇒ (3) ⇐= (5).

(i) If C is closed under cokernels of monomorphisms, then all the conditions (1)–(4) are
equivalent.

(ii) If lG(C ,D) is preenveloping and coresolving, then all the conditions (1)–(3) and (5) are
equivalent.

The following result is a special case of Theorem 3.14.

Corollary 3.15. Let C be a self-orthogonal subcategory of A closed under direct summands. If
I(A ) ⊆ lG(C ), then for any n ≥ 0, the following statements are equivalent.

(1) A is left n-C -Gorenstein (that is, C -idP(A ) ≤ n and pdC ≤ n).
(2) lG(C )-idM ≤ n for any M ∈ A .
(3) lG(C )-idP(A ) ≤ n and pdC ≤ n.
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Furthermore, if C is closed cokernels of monomorphisms, then all the above and below conditions
are equivalent.
(4) C -id≤n = pd≤n.

We also have the following corollary, which is dual to Corollary 3.13.

Corollary 3.16. Let D be a subcategory of A containing I(A ). Then for any n ≥ 0, the
following statements are equivalent.
(1) A is left n-(I(A ),D)-Gorenstein (that is, idP(A ) ≤ n and pdD ≤ n).
(2) lG((I(A ),D))-idM ≤ n for any M ∈ A .
(3) lG((I(A ),D))-idP(A ) ≤ n and pdD ≤ n.
(4) D-id≤n = pd≤n = id≤n.

We write

G-pdM := rG(P(A ))- pdM and G-idN := lG(I(A ))- idN.

As a consequence of Corollaries 3.12 and 3.15 (or Corollaries 3.13 and 3.16), we obtain some
equivalent characterization of n-Gorenstein categories as follows, which extends [3, Proposition
VII.2.4(i)].

Theorem 3.17. For any n ≥ 0, the following statements are equivalent.
(1) A is n-Gorenstein (that is, pd I(A ) = idP(A ) ≤ n).
(2) G-pdM ≤ n for any M ∈ A .
(3) G-idN ≤ n for any N ∈ A .
(4) G-pd I(A ) ≤ n and idP(A ) ≤ n.
(5) G-idP(A ) ≤ n and pd I(A ) ≤ n.
(6) pd≤n = id≤n.

Proof. Putting C = P(A ) in Corollary 3.12, we get (1) ⇐⇒ (2) ⇐⇒ (4) ⇐⇒ (6). Putting
C = I(A ) in Corollary 3.15, we get (1) ⇐⇒ (3) ⇐⇒ (5) ⇐⇒ (6).

Finally, we list other cases that satisfy the conditions in Corollaries 3.12 and 3.15.

Remark 3.18. Let R be a ring and let (U ,V ) be a hereditary cotorsion pair in ModR with
C := U ∩ V .
(1) If P(R) ⊆ C , then P(R) ⊆ rG(C ) and the conditions in Corollary 3.12 are satisfied.

For example, by [6, Corollary 3.4(1)], we have that (G(P(R)),G(P(R))⊥) is a hereditary
cotorsion pair and P(R) ⊆ C := G(P(R)) ∩ G(P(R))⊥.

(2) If I(R) ⊆ C , then I(R) ⊆ lG(C ) and the conditions in Corollary 3.15 are satisfied. For
example, by [30, Theorem 5.6], we have that (⊥G(I(R)),G(I(R))) is a hereditary cotorsion
pair and I(R) ⊆ C := ⊥G(I(R)) ∩ G(I(R)).

4 Categories of interest

In this section, R is an arbitrary ring and RC is Wakamatsu tilting module with S = End(RC).
For any subcategory X of ModR and n ≥ 0, we use X - pd≤n(R) and X - id≤n(R) to denote the
subcategories of ModR consisting of modules with X -projective and X -injective dimensions
at most n, respectively. We write

(−)+ := HomZ(−,Q/Z),

where Z is the additive group of integers and Q is the additive group of rational numbers.
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Proposition 4.1. Let X be a coresolving subcategory of ModR closed under direct summands,
and let Y be a resolving subcategory of ModRop closed under direct summands. Assume that
the following conditions are satisfied:

(a) For a module X ∈ ModR, it holds that X ∈ X if and only if X+ ∈ Y ;
(b) For a module Y ∈ ModRop, it holds that Y ∈ Y if and only if Y + ∈ X .

Then we have

(1) X -idM = Y -pdM+ for any M ∈ ModR.
(2) Y -pdN = X -idN+ for any N ∈ ModRop.

Proof. (1) Let M ∈ ModR. We first prove Y -pdM+ ≤ X -idM . If X -idM = ∞, then the
assertion follows trivially. Now suppose that X -idM = n < ∞ and

0 → M → X0 → X1 → · · · → Xn → 0

is an exact sequence in ModR with all Xi in X . It yields the following exact sequence

0 → Xn+ → · · · → X1+ → X0+ → M+ → 0

in ModRop. By assumption, we have that all Xi+ are in Y and Y -pdM+ ≤ n = X -idM .

In the following, we prove X -idM ≤ Y -pdM+. If Y -pdM+ = ∞, then the assertion
follows trivially. Now suppose that Y -pdM+ = n < ∞ and

0 → M → I0 → I1 → · · · → In−1 → Xn → 0

is an exact sequence in ModR with all Ii injective. It yields the following exact sequence

0 → Xn+ → In−1+ → · · · → I1
+ → I0

+ → M+ → 0

in ModRop. Since all Ii are in X , we have that all Ii
+

are in Y . Since Y is resolving and
closed under direct summands, we have Xn+ ∈ Y by [19, Lemma 3.1(1)]. Then Xn ∈ X by
assumption, and thus X -idM ≤ n = Y -pdM+.

(2) It is dual to (1).

Recall from [8, 14] an exact sequence

0 → K → M → L → 0

in ModR is called pure exact if

0 → A⊗R K → A⊗R M → A⊗R L → 0

is exact for any A ∈ ModRop. In this case, K and L are called a pure submodule and a pure
quotient of M , respectively. As a consequence of Proposition 4.1, we obtain the following result.

Corollary 4.2. It holds that

(1) Under the assumptions in Proposition 4.1, for any n ≥ 0, both X -id≤n(R) and Y -
pd≤n(Rop) are closed under pure submodules and pure quotients.

(2) For any n ≥ 0, both BC(R)-id≤n and AC(S)-pd
≤n are closed under pure submodules and

pure quotients.
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Proof. (1) Let

0 → K → M → L → 0

be a pure exact sequence in ModR with X -idM ≤ n. Then by [8, Proposition 5.3.8], the
induced exact sequence

0 → L+ → M+ → K+ → 0

splits and both K+ and L+ are direct summands of M+. By Proposition 4.1(1), we have
Y -pdM+ ≤ n. Since Y is resolving and closed under direct summands, we have that Y -
pd≤n is closed under direct summands by Lemma 2.1(1). It follows that Y -pdK+ ≤ n and
Y -pdL+ ≤ n. Thus X -idK ≤ n and X -idL ≤ n by Proposition 4.1(1) again.

Similarly, we have that Y -pd≤n(Rop) is closed under pure submodules and pure quotients.
(2) By [16, Theorem 6.2 and Proposition 4.2(a)], we have that both BC(R) and BC(S

op) are
coresolving and closed under direct summands, and both AC(S) and AC(R

op) are resolving and
closed under direct summands. On the other hand, by [20, Proposition 3.2], we have
(a) a module B ∈ ModR (respectively, ModSop), it holds that B ∈ BC(R) (respectively,

BC(S
op)) if and only if B+ ∈ AC(R

op) (respectively, AC(S));
(b) a module A ∈ ModRop (respectively, ModS), it holds that A ∈ AC(R

op) (respectively,
AC(S)) if and only if A+ ∈ BC(R) (respectively, BC(S

op)).
Now the assertion follows from (1).

For a left R-module M , we use E(M) to denote the injective envelope of M , and write

FP-idR M := FI(R)- idM.

The following result shows that the assumption “R is a left coherent ring” in [21, Proposition
3.3 and Theorem 3.4] is superfluous.

Proposition 4.3. It holds that
(1) If M ∈ FI(R), then M+ is a direct summand of E(M)+ and M∗

+ is a direct summand
of E(M)∗

+.
(2) FI(R) ⊆ BC(R) and FIC(S)-id

<∞ ⊆ AC(S) ⊆ ⊥IC(S).
(3) FP-idR C⊗SN ≤ FIC(S)-idN for any N ∈ ModS; the equality holds true if N ∈ AC(S).

Proof. Let M ∈ FI(R). Then M is a pure submodule of E(M).
(1) By using an argument similar to that in the proof of Corollary 4.2(1), we get that M+ is

a direct summand of E(M)+, and hence M+ ⊗R C is a direct summand of E(M)+ ⊗R C. Since
M∗

+ ∼= M+ ⊗R C and E(M)∗
+ ∼= E(M)+ ⊗R C by [10, Lemma 1.16(c)], it follows that M∗

+ is
a direct summand of E(M)∗

+.
(2) Since E(M) ∈ BC(R) by [16, Lemma 4.1], we have M ∈ BC(R) by Corollary 4.2(2), and

thus FI(R) ⊆ BC(R). Then by [16, Proposition 4.1], we have FIC(S) ⊆ AC(S). It follows
from [16, Theorem 6.2] and [38, Corollary 3.5(2)] that FIC(S)-id

<∞ ⊆ AC(S) ⊆ ⊥IC(S).
(3) When R is a left coherent ring, the assertion (3) was proved in [21, Theorem 3.4] and

its proof depends on that the containment FI(R) ⊆ BC(R) holds true. In view that FI(R) ⊆
BC(R) over arbitrary rings by (2), the argument in the proof of [21, Theorem 3.4] is valid in our
setting.

The following observation is useful.

Proposition 4.4. Let H be a subclass of ˜resPC(R), and let T be a subclass of ˜cores IC(S). It
holds that
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(1) P(R) ⊆ rG(PC(R),H ) and I(S) ⊆ lG(IC(S),T ).
(2) If PC(R) ⊆ H , then rG(PC(R),H ) is resolving. If IC(S) ⊆ T , then lG(IC(S),T ) is

coresolving.

Proof. (1) Let P ∈ P(R) and I ∈ I(S). Since rG(PC(R)) is resolving and lG(IC(S)) is core-
solving (cf. [19, Remark 4.4(3)]), there exists a HomR(−,PC(R))-exact exact sequence

0 → P → Q0 → Q1 → · · · → · · ·Qi → · · · (4.1)

in ModR with all Qi in PC(R), and there exists a HomS(IC(S),−)-exact exact sequence

· · · → Ei → · · · → E1 → E0 → I → 0 (4.2)

in ModS with all Ei in IC(S). On the other hand, since H ⊆ ˜resPC(R) and T ⊆ ˜cores IC(S)
by assumption, we have that for any H ∈ H and T ∈ T , there exists a HomR(PC(R),−)-exact
exact sequence

· · · → Qi → · · · → Q1 → Q0 → H → 0 (4.3)

in ModR with all Qi in PC(R), and there exists a HomS(−, IC(S))-exact exact sequence

0 → T → E0 → E1 → · · · → · · ·Ei → · · · (4.4)

in ModS with all Ei in IC(S). It is trivial that (4.3) is HomR(P,−)-exact and (4.4) is
HomS(−, I)-exact. Then (4.1) is HomR(−, H)-exact and (4.2) is HomS(T,−)-exact by Lemma

2.3. So P ∈ ˜coresH PC(R) and I ∈ ˜resT IC(S), and hence

P ∈ ⊥H ∩ ˜coresH PC(R) = rG(PC(R),H )

and
I ∈ T ⊥ ∩ ˜resT IC(S) = lG(IC(S),T ).

(2) If PC(R) ⊆ H and IC(S) ⊆ T , then rG(PC(R),H ) is closed under extensions and
kernels of epimorphisms and lG(IC(S),T ) is closed under extensions and cokernels of monomor-
phisms by [13, Theorem 3.4] and its dual result, respectively. Now both assertions follow from
(1).

We write
IC(Rop)+ := {E+ | E ∈ IC(Rop)}.

For simplicity, we write

GFC(R) := rG(FC(R), IC(Rop)+) and PGFC(R) := rG(PC(R), IC(Rop)+),

SGFC(R) := rG(PC(R),FC(R)) (the class of C-strong Gorenstein flat left R-modules),

GFIC(S) := lG(IC(S),FIC(S)) (the class of C-Gorenstein FP-injective left S-modules).

Corollary 4.5. It holds that
(1) P(R) ⊆ PGFC(R) ⊆ GFC(R).
(2) Both SGFC(R) and rG(PC(R),BC(R)) are resolving.
(3) Both GFIC(S) and lG(IC(S),AC(S)) are coresolving.

Proof. We have the following facts:
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(i) Since IC(Rop) ⊆ AC(R
op) by [16, Corollary 6.1], it follows from [20, Proposition 3.2(1)]

and [16, Theorem 6.1] that IC(Rop)+ ⊆ BC(R) ⊆ ˜resPC(R).

(ii) PC(R) ⊆ FC(R) ⊆ BC(R) ⊆ ˜resPC(R) by [16, Corollary 6.1 and Theorem 6.1].

(iii) IC(S) ⊆ FIC(S) ⊆ AC(S) ⊆ ˜cores IC(S) by Proposition 4.3(2) and [16, Theorem 2].
Now all assertions follow from Proposition 4.4.

Note that GFC(R) := rG(FC(R), IC(Rop)+) and PGFC(R) := rG(PC(R), IC(Rop)+) are
exactly the classes of C-Gorenstein flat and C-projectively coresolved Gorenstein flat left R-
modules, respectively ([22]). When RCS = RRR, they are exactly the classes of Gorenstein flat
and projectively coresolved Gorenstein flat left R-modules, respectively ([8, 30]).

4.1 Usual C-Gorenstein subcategories

Following the usual customary notation, we write

GC -pdR M := rG(PC(R))- pdM and GC -idS N := lG(IC(S))- idN,

SGFC -pdR M := SGFC(R)- pdM and GFPC -idS N := GFIC(S)- idN.

A Wakamatsu tilting module RC with S = End(RC) (equivalently, a semidualizing bimodule

RCS) is called faithful if the following conditions are satisfied: (i) if M ∈ ModR satisfying
M∗ = 0, then M = 0; and (ii) if N ∈ ModSop satisfying N∗ = 0, then N = 0 ([16]). In the
following result, the implications (1.1) ⇐⇒ (1.2) ⇐⇒ (2.1) ⇐⇒ (2.2) have been obtained in [22,
Theorem 5.4(1)].

Theorem 4.6. It holds that
(i) For any n ≥ 0, the following statements are equivalent.

(1.1) ModR is right n-PC(R)-Gorenstein (that is, PC(R)-pd I(R) ≤ n and idPC(R) ≤
n).

(1.2) GC -pdR M ≤ n for any M ∈ ModR.
(1.3) GC -pd I(R) ≤ n and idPC(R) ≤ n.
(2.1) ModS is left n-IC(S)-Gorenstein (that is, IC(S)-idP(S) ≤ n and pd IC(S) ≤ n).
(2.2) GC -idS N ≤ n for any N ∈ ModS.
(2.3) GC -idP(S) ≤ n and pd IC(S) ≤ n.
(3.1) ModR is right n-(PC(R),FC(R))-Gorenstein (that is, PC(R)-pd I(R) ≤ n and

idFC(R) ≤ n).
(3.2) SGFC -pdR M ≤ n for any M ∈ ModR.
(3.3) SGFC -pd I(R) ≤ n and idFC(R) ≤ n.
(4.1) ModS is left n-(IC(S),FIC(S))-Gorenstein (that is, IC(S)-idP(S) ≤ n and pdFIC(S)

≤ n).
(4.2) GFPC -idS N ≤ n for any N ∈ ModS.
(4.3) GFPC -idP(S) ≤ n and pdFIC(S) ≤ n.

(ii) If the Wakamatsu tilting module C is faithful, then all conditions in (i) and the below
conditions are equivalent.
(1.4) id≤n(R) = PC(R)-pd≤n.
(2.4) pd≤n(S) = IC(S)-id≤n.
(3.4) FC(R)-pd≤n = id≤n(R) = PC(R)-pd≤n.
(4.4) FIC(S)-id

≤n = pd≤n(S) = IC(S)-id≤n.
(iii) If R is a left Noetherian ring and S is a right coherent ring, then all conditions in (i) and

the below condition are equivalent.
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(5) FP-idR C ≤ n and FP-idSop C ≤ n.
(iv) If R is a left Noetherian ring and S is a right Noetherian ring, then all conditions in (i)

and the below condition are equivalent.
(6) idR C ≤ n and idSop C ≤ n.

Proof. Note that the following assertions hold true:
(a) Both PC(R) and IC(S) are self-orthogonal by [22, Lemma 2.7].
(b) rG(PC(R)) is resolving and lG(IC(S)) is coresolving (cf. [19, Remark 4.4(3)]).
(c) If the Wakamatsu tilting module RC with S = End(RC) is faithful, then PC(R) is closed

under kernels of epimorphisms and IC(S) is closed under cokernels of monomorphisms by
[16, Corollary 6.4].

Putting C = D = PC(R) in Theorem 3.11, we get (1.1) ⇐⇒ (1.2) ⇐⇒ (1.3) (⇐⇒ (1.4) if C is
faithful). Putting C = D = IC(S) in Theorem 3.14, we get (2.1) ⇐⇒ (2.2) ⇐⇒ (2.3) (⇐⇒ (2.4)
if C is faithful). By [22, Theorem 5.4(1)], we have (1.2) ⇐⇒ (2.2).

By Corollary 4.5, we have P(R) ⊆ SGFC(R) and I(S) ⊆ GFIC(S). Note that

PC(R) ⊆ FC(R) ∩ ⊥FC(R) and IC(S) ⊆ FIC(S) ∩ FIC(S)
⊥

by [39, Lemma 2.5(1)] and Proposition 4.3(2), respectively. Putting C = PC(R) and D = FC(R)
in Theorem 3.11, we get (3.1) ⇐⇒ (3.2) ⇐⇒ (3.3) (⇐⇒ (3.4) if C is faithful). Putting C =
IC(S) and D = FIC(S) in Theorem 3.14, we get (4.1) ⇐⇒ (4.2) ⇐⇒ (4.3) (⇐⇒ (4.4) if C is
faithful)

By Lemma 2.7, we get (1.1) ⇐⇒ (3.1). It is trivial that (4.1) =⇒ (2.1).
(2.1) + (3.1) =⇒ (4.1) By (2.1), it suffices to prove pdS N ≤ n for any N ∈ FIC(S).
Let N ∈ FIC(S). Then N = M∗ for some M ∈ FI(R). By Proposition 4.3(2), we have

M ∈ BC(R) and N ∈ AC(S). It holds that

FC(R)- pdM = fdS M∗ (by [37, Theorem 3.5(1)])

= idSop M∗
+ ≤ idSop E(M)∗

+ (by [11, Theorem 2.1] and Proposition 4.3(1))

= fdS E(M)∗ ≤ pdS E(M)∗ ≤ n. (by [11, Theorem 2.1] and (2.1))

Since idFC(R) ≤ n by (3.1), we have idR M ≤ n. Since M ∈ BC(R), we have C ⊗S M∗ ∼= M .
Notice that N ∈ AC(S), it follows from [37, Theorem 3.5(3)] that

IC(S)- idN = idR C ⊗S N = idR C ⊗S M∗ = idR M ≤ n.

Since pd IC(S) ≤ n by (2.1), we have pdS N ≤ n. This proves (i) and (ii).
The assertion (iv) is a special case of (iii). In the following, we prove (iii).
Let R be a left Noetherian ring and S a right coherent ring. By [16, Lemma 4.1], we have

I(R) ⊆ BC(R). Then
FP-idSop C = fd IC(S) = FC(R)- pd I(R) (4.5)

by [46, Lemma 2.1(2)] and [37, Theorem 3.5(1)].
(1.1) =⇒ (5) By the assertion (1.1), we have FP-idR C = idR C ≤ n. Then by the equality

(4.5) and the assertion (1.1) again, we have

FP-idSop C = FC(R)- pd I(R) ≤ PC(R)- pd I(R) ≤ n.

(5) =⇒ (1.1) By the assertion (5), we have idR C = FP-idR C ≤ n. Since PC(R) = AddR C
by [26, Proposition 2.4(a)], we have idPC(R) ≤ n by [2, Theorem 1.1]. On the other hand, since
FC(R)- pd I(R) = FP-idSop C ≤ n by the equality (4.5) and the assertion (5), it follows from
[22, Lemma 5.19(1)] that PC(R)- pd I(R) ≤ n.
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In general, the conditions in Theorem 4.6(i) are not left-right symmetric, see Remark 4.17(1)
below.

When RCS =R RR, we write

G-pdR M := GC -pdR M and G-idR M := GC -idR M,

SGF-pdR M := SGFC -pdR M and GFP-idR M := GFPC -idR M.

Recall that a left and right Noetherian ring R is called n-Gorenstein if idR R = idRop R ≤ n.
The following result provides several equivalent characterizations for the category ModR and
the ring R to be n-Gorenstein.

Corollary 4.7. It holds that
(i) For any n ≥ 0, the following statements are equivalent.

(1.1) ModR is n-Gorenstein (that is, pd I(R) ≤ n and idP(R) ≤ n).
(1.2) G-pdR M ≤ n for any M ∈ ModR.
(1.3) G-pdR I(R) ≤ n and idP(R) ≤ n.
(1.4) G-idR N ≤ n for any N ∈ ModR.
(1.5) G-idP(R) ≤ n and pd I(R) ≤ n.
(1.6) id≤n(R) = pd≤n(R).
(1.7) id≤n(R) ⊆ pd≤n(R) ⊆ G-id≤n(R).
(2.1) ModR is right n-(P(R),F(R))-Gorenstein (that is, pd I(R) ≤ n and idF(R) ≤ n).
(2.2) SGF-pdR M ≤ n for any M ∈ ModR.
(2.3) SGF-pd I(R) ≤ n and idF(R) ≤ n.
(2.4) fd≤n(R) = id≤n(R) = pd≤n(R).
(3.1) ModR is left n-(I(R),FI(R))-Gorenstein (that is, idP(R) ≤ n and pdFI(R) ≤ n).
(3.2) GFP-idR M ≤ n for any M ∈ ModR.
(3.3) GFP-idP(R) ≤ n and pdFI(R) ≤ n.
(3.4) FP-id≤n(R) = pd≤n(R) = id≤n(R).
(3.5) FP-id≤n(R) ⊆ pd≤n(R) ⊆ GFP-id≤n(R).

(ii) If R is a left Noetherian and right coherent ring, then all conditions in (i) and the below
condition are equivalent.
(4) FP-idR R ≤ n and FP-idRop R ≤ n.

(iii) If R is a left and right Noetherian ring, then all conditions in (i) and the below condition
are equivalent.
(5) R is n-Gorenstein.

Proof. By [30, Theorem 5.6] and [14, Theorem 2.6] (respectively, [9, Theorem 3] and [45, Theo-
rem 2.8]), we have that the class of Gorenstein injective (respectively, Gorenstein FP-injective)
left R-modules is preenveloping and coresolving. On the other hand, if R is a left and right
Noetherian ring, then (1.2) ⇐⇒ (4) by [19, Theorem 1.2]. Now, putting RCS = RRR in Theo-
rem 4.6, and then, by combining with Theorem 3.14, we obtain the desired conclusion.

As an immediate consequence of Theorem 4.6 and Corollary 4.7, we get the following result,
in which the first equality in the assertion (1) was proved in [22, Corollary 5.13(1)].

Corollary 4.8. It holds that
(1)

sup{GC -pdR M | M ∈ ModR} = sup{GC -idS N | N ∈ ModS}
=sup{SGFC -pdR M | M ∈ ModR} = sup{GFPC -idS N | N ∈ ModS}.
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(2) ([4, Theorem 1.1], [23, Corollary 8.8] and [43, Theorem 1.1])

sup{G-pdR M | M ∈ ModR} = sup{G-idR M | M ∈ ModR}
=sup{SGF-pdR M | M ∈ ModR} = sup{GFP-idR M | M ∈ ModR}.

By Theorems 3.11 and 3.14, we also get the following result, which can be regarded as a
supplement to Corollary 4.7.

Proposition 4.9. Let n ≥ 0.
(1) Let D be a subcategory of ModR containing P(R). Then the following statements are

equivalent.
(1.1) ModR is right n-(P(R),D)-Gorenstein (that is, pd I(R) ≤ n and idD ≤ n).
(1.2) rG(P(R),D)-pdM ≤ n for any M ∈ ModR.
(1.3) rG(P(R),D)-pd I(R) ≤ n and idD ≤ n.
(1.4) D-pd≤n(R) = id≤n(R) = pd≤n(R).

(2) Let D be a subcategory of ModR containing I(R). Then the following statements are
equivalent.
(2.1) ModR is left n-(I(R),D)-Gorenstein (that is, idP(R) ≤ n and pdD ≤ n).
(2.2) lG(I(R),D)-idM ≤ n for any M ∈ ModR.
(2.3) lG(I(R),D)-idP(R) ≤ n and pdD ≤ n.
(2.4) D-id≤n = pd≤n(R) = id≤n(R).

Proof. It is trivial that P(R) ⊆ rG(P(R),D) and I(R) ⊆ lG(I(R),D). Putting C = P(R) in
Theorem 3.11, we get the assertion (1). Putting C = I(R) in Theorem 3.14, we get the assertion
(2).

Recall from [5] that a module M ∈ ModR is called level if M ∈ L(R), where L(R) = {M ∈
ModR | TorR1 (X,M) = 0 (equivalently, TorR≥1(X,M) = 0) for any right R-module X admitting
a degreewise finite Rop-projective resolution}; and a module M ∈ ModR is called Gorenstein
AC-projective if M ∈ GPac(R), where

GPac(R) := rG(P(R),L(R)).

Also recall from [5] that a module M ∈ ModR is called absolutely clean if M ∈ AC(R), where
AC(R) = {M ∈ ModR | Ext1R(X,M) = 0 (equivalently, Ext≥1

R (X,M) = 0) for any left R-
module X admitting a degreewise finite R-projective resolution}; and a module M ∈ ModR is
called Gorenstein AC-injective if M ∈ GIac(R), where

GIac(R) := lG(I(R),AC(R)).

Lemma 4.10. For any M ∈ ModR, it holds that
(1) AC(R)- idM = L(Rop)-pdM+.
(2) L(R)- pdM = AC(Rop)- idM+.

Proof. By [5, Propositions 2.7(3) and 2.10(3)], we have that both AC(R) and AC(Rop) are
coresolving and closed under direct summands, and both L(R) and L(Rop) are resolving and
closed under direct summands. On the other hand, by [5, Theorem 2.12], we have
(a) a module M ∈ ModR (respectively, ModRop), it holds that M ∈ AC(R) (respectively,

AC(Rop)) if and only if M+ ∈ L(Rop) (respectively, L(R));
(b) a module N ∈ ModRop (respectively, ModR), it holds that N ∈ L(Rop) (respectively,

L(R)) if and only if N+ ∈ AC(R) (respectively, AC(Rop)).
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Now the assertion follows from Proposition 4.1.

The following result provides some special n-Gorenstein categories.

Proposition 4.11. Let n ≥ 0.
(1) The following statements are equivalent.

(1.1) ModR is right n-(P(R),L(R))-Gorenstein (that is, pd I(R) ≤ n and idL(R) ≤ n).
(1.2) GPac(R)-pdM ≤ n for any M ∈ ModR.
(1.3) GPac(R)-pd I(R) ≤ n and idL(R) ≤ n.
(1.4) L(R)-pd≤n = id≤n(R) = pd≤n(R).
(1.5) L(R)-pd≤n ⊆ id≤n(R) ⊆ rG(P(R),L(R))-pd≤n.

(2) The following statements are equivalent.
(2.1) ModR is left n-(I(R),AC(R))-Gorenstein (that is, idP(R) ≤ n and pdAC(R) ≤ n).
(2.2) GIac(R)-idM ≤ n for any M ∈ ModR.
(2.3) GIac(R)-idP(R) ≤ n and pdAC(R) ≤ n.
(2.4) AC(R)-id≤n = pd≤n(R) = id≤n(R).
(2.5) AC(R)-id≤n ⊆ pd≤n(R) ⊆ lG(I(R),AC(R))-id≤n.

If one of the equivalent conditions in (1) or (2) is satisfied, then it holds that
(3) idR R ≤ n and AC(Rop)- idR ≤ n.
(4) AC(R)- idR ≤ n and AC(Rop)- idR ≤ n.

If R is a left Noetherian and right coherent ring, then all the above conditions are equivalent.

Proof. By [5, Theorem 8.5 and Lemma 8.6], we have that GPac(R) is precovering and resolving.
By [5, Theorem 5.5 and Lemma 5.6], we have that GIac(R) is preenveloping and coresolving.
Putting C = P(R) and D = L(R) in Theorem 3.11, we get the assertion (1). Putting C = I(R)
and D = AC(R) in Theorem 3.14, we get the assertion (2).

(1.4) (respectively, (2.4)) =⇒ (3) By (1.4) (respectively, (2.4)), we have idR R ≤ n. Since
R+ ∈ I(R) by [11, Theorem 2.1], we have

AC(Rop)- idR = L(R)- pdR+ ≤ pdR R+ ≤ n

by the symmetric version of Lemma 4.10(1) and (1.4) (respectively, (2.4)).
Since I(R) ⊆ AC(R), we have AC(R)- idR ≤ idR R, and thus (3) =⇒ (4) follows.
Assume that R is a left Noetherian and right coherent ring. Then

L(R) = F(R) and AC(R) = FI(R) = I(R).

It yields (4) =⇒ (3) immediately. In addition, it also yields (1.4) ⇐⇒ (3) ⇐⇒ (2.4) by Corollary
4.7.

It is interesting to ask the following question.

Question 4.12. In general, are all the conditions in Proposition 4.11(1)(2) equivalent?

We claim that the answer to this question is positive provided that R is either a left and
right coherent ring or a commutative ring. The reasons are as follows: (i) If R is a left and
right coherent ring, then L(R) = F(R) and AC(R) = FI(R). So L(R)-pd≤n = fd≤n(R) and
AC(R)-id≤n = FP-id≤n(R), and hence the equivalence (2.4) ⇐⇒ (3.4) in Corollary 4.7 implies
the equivalence (1.4) ⇐⇒ (2.4) in Proposition 4.11. (ii) Let R be a commutative ring. Suppose
that L(R)-pd≤n = id≤n(R) = pd≤n(R) holds true. If M ∈ AC(R)-id≤n, then M+ ∈ L(R)-
pd≤n = pd≤n(R) by Lemma 4.10(1). It follows from [11, Theorem 2.1] that M ∈ id≤n(R). So
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AC(R)-id≤n ⊆ id≤n(R), and hence AC(R)-id≤n = id≤n(R) = pd≤n(R). Conversely, suppose
that AC(R)-id≤n = id≤n(R) = pd≤n(R) holds true. If M ∈ L(R)-pd≤n, then M+ ∈ AC(R)-
id≤n = pd≤n(R) by Lemma 4.10(2). It again follows from [11, Theorem 2.1] thatM ∈ id≤n(R) =
pd≤n(R). So L(R)-pd≤n ⊆ pd≤n(R), and hence L(R)-id≤n = id≤n(R) = pd≤n(R). This proves
the equivalence (1.4) ⇐⇒ (2.4) in Proposition 4.11.

The following example illustrates that the assumption “R is a left Noetherian and right
coherent ring” in Corollary 4.7(ii) and the last assertion in Proposition 4.11 can not be weakened
to that “R is a left and right coherent ring”, and hence the assumption “R is a left Noetherian
ring and S is a right coherent ring” in Theorem 4.6(iii) can not be weakened to that “R is a left
coherent ring and S is a right coherent ring”.

Example 4.13. If R is a left and right coherent ring, then in Proposition 4.11, the condition
(3) is equivalent to that idR R ≤ n and FP-idRop R ≤ n, and the condition (4) is equivalent to
that FP-idR R ≤ n and FP-idRop R ≤ n.

Let D be a division ring and let V be an infinite dimensional right D-vector space. Set
R := End(VD). Then R is a von Neumann regular ring (that is, any left R-module is flat) by [25,
Example 3.74A], and hence R is a left and right coherent ring and FP-idR R = FP-idRop R = 0
by [25, Example 4.46(b)] and [27, Theorem 5]. Moreover, we have idR R ̸= 0 and idRop R = 0
by [25, Example 3.74B]. In this case, we have (4) ⇏ (3) in Proposition 4.11.

Now set R′ := Rop. Then R′ is a von Neumann regular ring, and hence R′ is a left and
right coherent ring and FP-idR′ R′ = FP-idR′op R′ = 0. By [27, Theorem 5], we have ModR′ =
FI(R′). In addition, we have idR′ R′ = 0 and idR′op R′ ̸= 0 by the above argument, which implies
that R′ is not semisimple, and thus P(R′) ⫋ ModR′ = F(R′) and I(R′) ⫋ ModR′ = FI(R′).
In this case, we have (3) ⇏ (1.4) and (3) ⇏ (2.4) in Proposition 4.11.

4.2 Auslander and Bass classes

We first establish the relation among the projective dimension of C and certain relative homo-
logical dimensions.

Lemma 4.14. It holds that

(1) pdR C = pdPC(R) = PC(S
op)-idP(Sop) = PC(S

op)-idS = FC(S
op)-idS = BC(S

op)-idS
= id IC(Rop) = IC(S)-pd I(S) = IC(S)-pdS+ = AC(S)-pdS

+.
(2) pdSop C = pdPC(S

op) = PC(R)-idP(R) = PC(R)-idR = FC(R)-idR = BC(R)-idR
= id IC(S) = IC(Rop)-pd I(Rop) = IC(Rop)-pdR+ = AC(R

op)-pdR+.

Proof. (1) Since PC(R) = AddR C by [26, Proposition 2.4(a)], we have

pdR C = pdPC(R).

By [38, Lemma 4.3], we have

pdR C = PC(S
op)- idS.

Since PC(S
op) ⊆ FC(S

op) ⊆ BC(S
op) by the symmetric version of [16, Corollary 6.1], we have

PC(S
op)- idS = FC(S

op)- idS = BC(S
op)- idS

by the symmetric version of [38, Lemma 4.5].

Note that PC(S
op) = AddCS by [26, Proposition 2.4(a)]. If PC(S

op)- idS = n < ∞, then
it is easy to see that PC(S

op)- idF ≤ n for any free right S-module F . It follows from the
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symmetric version of [37, Lemma 4.6] that PC(S
op)-idP ≤ n for any projective right S-module

P . This shows PC(S
op)-idP(Sop) ≤ PC(S

op)-idS, and hence

PC(S
op)- idP(Sop) = PC(S

op)- idS.

Since IC(Rop) = Prod(RC)+ by the symmetric version of [26, Proposition 2.4(b)], we have
idRop(RC)+ = id IC(Rop). On the other hand, by [11, Theorem 2.1], we have pdR C = fdR C =
idRop(RC)+, and hence

pdR C = id IC(Rop).

Suppose IC(S)-pdS+ = n < ∞. Since IC(S) is closed under direct products by [16, Propo-
sition 5.1(c)], we have IC(S)-pd(S+)J ≤ n for any set J . For any injective left S-module E,
since E is a direct summand of (S+)J for some set J , we have IC(S)-pdE ≤ n by [38, Lemma
4.7]. This shows IC(S)-pd I(S) ≤ IC(S)-pdS+, and hence

ICS)- pd I(S) = IC(S)- pdS+.

By [38, Lemma 4.8] and the symmetric version of Proposition 4.1(1) and, we have

IC(S)- pdS+ = AC(S)- pdS
+ = BC(S

op)- idS.

(2) It is the symmetric version of (1).

By [16, Theorems 1 and 6.1] (cf. [38, Theorem 3.11(1)] and [36, Theorem 3.9]), we have

AC(S) =
⊥IC(S) ∩ ˜cores IC(S) = rG(IC(S)),

AC(R
op) = ⊥IC(Rop) ∩ ˜cores IC(Rop) = rG(IC(Rop)),

BC(R) = PC(R)⊥ ∩ ˜resPC(R) = lG(PC(R)),

BC(S
op) = PC(S

op)⊥ ∩ ˜resPC(Sop) = lG(PC(S
op)).

The following result greatly improves [38, Theorems 4.2 and 4.10].

Theorem 4.15. For any n ≥ 0, the following statements are equivalent.

(1) pdR C = pdSop C ≤ n.
(a-1) ModS is right n-IC(S)-Gorenstein (that is, IC(S)-pd I(S) ≤ n and id IC(S) ≤ n).
(a-2) AC(S)-pdN ≤ n for any N ∈ ModS.
(a-3) AC(S)-pd I(S) ≤ n and id IC(S) ≤ n.
(a-4) AC(S)-pdS

+ ≤ n and id IC(S) ≤ n.
(a-5) IC(S)-pdS+ ≤ n and id IC(S) ≤ n.
(a-6) IC(S)-pd≤n ⊆ id≤n(S) ⊆ AC(S)-pd

≤n.
(a-i)op The Rop-version of (a-i) with 1 ≤ i ≤ 6.
(b-1) ModR is left n-PC(R)-Gorenstein (that is, PC(R)-idP(R) ≤ n and pdPC(R) ≤ n).
(b-2) BC(R)-idM ≤ n for any M ∈ ModR.
(b-3) BC(R)-idP(R) ≤ n and pdPC(R) ≤ n.
(b-4) BC(R)-idR ≤ n and pdPC(R) ≤ n.
(b-5) PC(R)-idR ≤ n and pdPC(R) ≤ n.
(b-6) PC(R)-id≤n ⊆ pd≤n(R) ⊆ BC(R)-id≤n.
(b-i)op The Sop-version of (b-i) with 1 ≤ i ≤ 6.
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Proof. By [20, Theorem 3.3] and [16, Theorem 6.2], we have that both AC(S) and AC(R
op) are

precovering and resolving, and that both BC(R) and BC(S
op) are preenveloping and coresolving.

Putting C = D = IC(S) in Theorem 3.11, we get (a-1)⇐⇒(a-2)⇐⇒(a-3)⇐⇒(a-6). Putting
C = D = PC(R) in Theorem 3.14, we get (b-1)⇐⇒(b-2)⇐⇒(b-3)⇐⇒(b-6). By Lemma 4.14, we
have (1)⇐⇒(a-3)⇐⇒(a-4)⇐⇒(a-5) and (1)⇐⇒(b-3)⇐⇒(b-4)⇐⇒(b-5), and (a-4)op ⇐⇒(b-4).
By symmetry, the proof is finished.

As an immediate consequence, we obtain the following result.

Corollary 4.16. It holds that

sup{AC(S)-pdN | N ∈ ModS} = sup{AC(R
op)-pdN ′ | N ′ ∈ ModRop}

=sup{BC(R)- idM | M ∈ ModR} = sup{BC(S
op)- idM ′ | M ′ ∈ ModSop}.

We give the following remark.

Remark 4.17. Compare Theorems 4.6(i) and 4.15.
(1) It is natural to ask whether the conditions in Theorem 4.6(i) are left-right symmetric. In

general, the answer is no. Otherwise, if the conditions in Theorem 4.6(i) are left-right
symmetric, then so are those in Corollary 4.7(i). It yields

{G-pdR M | M ∈ ModR} = {G-pdRop N | N ∈ ModRop}.

By [14, Proposition 2.27], if gl.dimR < ∞ and gl.dimRop < ∞, where gl.dimR and
gl.dimRop are the left and right global dimensions of R, respectively, then

gl.dimR = {G-pdR M | M ∈ ModR} and gl.dimRop = {G-pdRop N | N ∈ ModRop}.

On the other hand, for any 0 ≤ m ̸= n < ∞, there exists a ring R such that

gl.dimR = m and gl.dimRop = n

by [24, p.439, Corollary]. In this case, we have

{G-pdR M | M ∈ ModR} = m ̸= n = {G-pdRop N | N ∈ ModRop},

which is a contradiction.
(2) For any n ≥ 0, it is also natural to consider the following conditions:

(i) ModR is left n-PC(R)-Gorenstein (that is, PC(R)-idP(R) ≤ n and pdPC(R) ≤ n).
(ii) ModS is right n-IC(S)-Gorenstein (that is, IC(S)-pd I(S) ≤ n and id IC(S) ≤ n).
(iii) ModR is left n-(PC(R),FC(R))-Gorenstein (that is, PC(R)-idP(R) ≤ n and pdFC(R)

≤ n).
(iv) ModS is right n-(IC(S),FIC(S))-Gorenstein (that is, IC(S)-pd I(S) ≤ n and idFIC(S)

≤ n).
By Theorem 4.15, we have (i)⇐⇒(ii). It is trivial that (iii)=⇒(i) and (iv)=⇒(ii). Putting

RCS = RRR and n = 0, we have that the assertions (i) and (ii) hold true. In this case,
the assertion (iii) holds true ⇐⇒ pdF(R) = 0 ⇐⇒ R is a left perfect ring by [8, Theorem
5.3.2]; and the assertion (iv) holds true ⇐⇒ idFI(R) = 0 ⇐⇒ R is a left Noetherian ring
by [27, Theorem 3]. Thus, in general, we have

(i) + (ii) ⇏ (iii), (i) + (ii) ⇏ (iv), (iii) ⇏ (iv) and (iv) ⇏ (iii).

26



In the following, we apply Theorem 4.15 to coherent semilocal rings. We need the following
result.

Proposition 4.18. It holds that
(1) Let I be an ideal of R such that R/I is a semisimple ring. Then

BC(R)- idR/I = AC(R
op)-pdR/I

provided that both of them are finite.
(2) Let I ′ be an ideal of S such that S/I ′ is a semisimple ring. Then

BC(S
op)- idS/I ′ = AC(S)-pdS/I

′

provided that both of them are finite.

Proof. (1) For any n ≥ 0, we have

BC(R)- idR/I ≤ n

⇐⇒Ext≥n+1
R (C,R/I) = 0 (by [37, Theorem 4.2])

⇐⇒TorR≥n+1(R/I,C) = 0 (by [32, Lemma 3.1])

⇐⇒AC(R
op)- pdR/I ≤ n. (by [20, Theorem 4.4])

(2) It is the symmetric version of (1).

Recall that a ring is called semilocal if R/J(R) is a semisimple ring, where J(R) is the
Jacobson radical of R.

Proposition 4.19. It holds that
(1) Let R be a left coherent semilocal ring. Then

pdR C ≤ min{BC(R)- idR/J(R),AC(R
op)-pdR/J(R)}.

Furthermore, if pdSop C < ∞, then

pdR C = BC(R)- idR/J(R) = AC(R
op)-pdR/J(R).

(2) Let S be a right coherent semilocal ring. Then

pdSop C ≤ min{BC(S
op)- idS/J(S),AC(S)- pdS/J(S)}.

Furthermore, if pdR C < ∞, then

pdSop C = BC(S
op)- idS/J(S) = AC(S)-pdS/J(S).

Proof. (1) If BC(R)- idR/J(R) = n < ∞, then Ext≥n+1
R (C,R/J(R)) = 0 by [37, Theorem 4.2],

and hence pdR C ≤ n by [44, Theorem 2(1)]. This proves pdR C ≤ BC(R)- idR/J(R).
If AC(R

op)- pdR/J(R) = n < ∞, then TorR≥n+1(R/J(R), C) = 0 by [20, Theorem 4.4].

It follows from [32, Lemma 3.1] that Ext≥n+1
R (C,R/J(R)) = 0, and thus pdR C ≤ n by [44,

Theorem 2(1)] again. This proves pdR C ≤ AC(R
op)- pdR/J(R).

Now suppose pdSop C < ∞. Let pdR C = n < ∞. Then pdR C = pdSop C = n by [38,
Proposition 4.1]. Thus BC(R)- idR/J(R) ≤ n and AC(R

op)- pdR/J(R) ≤ n by Theorem 4.15.
It follows from Proposition 4.18(1) that

AC(R
op)- pdR/J(R) = BC(R)- idR/J(R) ≤ n = pdR C.

The proof is finished.
(2) It is the symmetric version of (1).
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The Wakamatsu tilting conjecture states that if R and S are artin algebras, then pdR C =
pdSop C ([3, 28]). The following result provides a necessary condition for the validity of this
conjecture.

Corollary 4.20. Let R be a left coherent semilocal ring and S a right coherent semilocal ring.
If pdR C = pdSop C, then

BC(R)- idR/J(R) = BC(S
op)- idS/J(S) = AC(R

op)-pdR/J(R) = AC(S)-pdS/J(S). (4.6)

Proof. Suppose BC(R)- idR/J(R) = n < ∞. Then pdR C = pdSop C = n by assumption and
Proposition 4.19(1), and thus

BC(S
op)- idS/J(S) = AC(R

op)- pdR/J(R) = AC(S)- pdS/J(S) = n

by Proposition 4.19. This shows that the the first quantity in (4.6) is at least the last three
ones. Similarly, we get that any quantity in (4.6) is at least the other three ones.

As a consequence, we get the following result.

Corollary 4.21. Let R be a left coherent semilocal ring and S a right coherent semilocal ring.
Then the following statements are equivalent.
(1) pdR C = pdSop C < ∞.
(2) BC(R)- idR/J(R) < ∞ and BC(S

op)- idS/J(S) < ∞.
(3) AC(R

op)- pdR/J(R) < ∞ and AC(S)- pdS/J(S) < ∞.
If one of the above conditions is satisfied, then all these six quantities are identical.

Proof. The implications that (1) =⇒ (2) and (1) =⇒ (3) follow from Theorem 4.15, and the
implications that (2) =⇒ (1) and (3) =⇒ (1) follow from Proposition 4.19. The last assertion
follows from Corollary 4.20.
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