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1. Introduction

Throughout this paper, R will denote an associate, commutative ring with identity and
all modules are unital. E always denotes a certain injective cogenerator in the category

of R-modules.
Let M be an R-module. In [4] we introduce the notion of the dual module Homg(M, E)

with respect to E, and denote it by M*€. It is shown that the flatness of M*° is equivalent
to the FP-injectivity or the injectivity of M if and only if R is a coherent ring or a noether
ring respectively. The FP-injectivity, the injectivity of M and the projectivity of M*° are
pairwisely equivalent if and only if R is an artin ring (see [4]).

Recall that R is called a QF ring if R is an artin ring and for each ideal [ of R,
I =0:p(0:g I)(see [5]). Such rings have been extensively studied, many properties
equivalent to this definition have been obtained. For example, the following statements
are equivalent:

(1) R is a QF ring;

(2) R is a noether ring and for each ideal I of R, I = 0:5 (0 :r I);

(3) R is an artin ring (or a noether ring) and R is a cogenerator in the category of R-

modules;
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(4) R is an artin ring (or a noether ring) and R is selfinjective;

(5) Any projective R-module is injective;

(6) Any injective R-module is projective.

Also recall that R is called an IF ring if every injective R-module is flat (see [7]). It is
shown that R is an IF ring if and only if R is a coherent ring and R is self FP-injective.
It is clear that the notion of IF rings is a generalization of that of QF rings and Von
Neumann regular rings.

In this paper we will introduce the notions of E-artin rings, E-coherent rings and f-
cogenerators, and characterize QF rings, IF rings and semihereditary rings by using the
properties of dual modules.

2. Main results

Proposition 1 The following statements are equivalent.
(1) R is a QF ring;
(2) R is a noether ring and R® is flat;
(3) R is an artin ring and R° is flat;
(4) MF* is a projective module for any flat module M ;
(4) MF¢ is a projective module for any projective module M;
(4)" MF¢ is a projective module for any free module M,
(5) M¢ is a submodule of a projective module for any flat module M;
(5) M?° is a submodule of a projective module for any projective module M;
(5)! M*® is a submodule of a projective module for any free module M.

Proof (2) & (1) Suppose that R is a noether ring and R° is flat. Then R is an FP-
injective R-module by [4, Corollary 2]. So R is selfinjective and hence R is a QF ring. The
converse implication is trivial.

(1) => (3) Suppose R is a QF ring. Then R is an artin ring and any injective K-module
is projective. Because R® 2 F is injective, R® is projective.

(3) = (4) Suppose M is a flat module. Then there is a free module R(Y) where I is
a set such that RUY) — M — 0 is exact. Since M is flat, this exact sequence is pure. So
0 - Mc¢ — [RU)]° = (R*) is exact and splits by [4, Lemma 1]. It follows that M* is a
direct summand of (R*)}. Since R is an artin ring and R is flat, R® is projective. So
(R®)! is also projective, it follows that M¢ is projective.

(4) = {4) = (4)" = (5)” and (4) = (5) = (5)' = (5)" are trivial.

() = (1) Suppose M is an injective R-module. There is a free module F such that
F - M* — 0 is exact, so 0 — M*® — F° is exact. By (5)” F* is a submodule of a
projective module P, It is known [4, Corollary 1] that M is a submodule of M, we get
that M is isomorphic to a submodule of P. So M is projective and R is a QF ring. O

We know from Proposition 1 that R is a QF ring if and only if P is (a submodule of)
a projective module for any projective module P. It is natural to ask what properties R
possesses if Q¢ is (a submodule of) a projective module for any injective module Q. [4,
Theorem 3] says that R is an artin ring if and only if Q¢ is projective for any injective
module .
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Definition 1 R is called an E-artin ring if Q¢ is a submodule of a projective module for
any injective module Q.

Remark 1 An artin ring is an E-artin ring by [4, Theorem 3|. If R is a hereditary ring,
then R is artinian if and only if R is E-artinian.

Recall that an R-module A is called FP-injective if ExtL(B, A) = 0 for any finitely
presented R-module B. A ring R is called self FP-injective if R is FP-injective as an
R-module (see [7]).

Lemuma 1 Let R be an E-artin ring. Then the direct product of a family of projective
modules can be embedded in a projective module.

Proof Suppose {P;}ics is a family of projective modules where I is a set. Then each Ff
is injective. By [3, Corollary 2.1.12] @;cy PF is FP-injective, which implies that the exact
sequence 0 — @iz Pf — [lies PY is pure, and so ([lies F¥)* — (Dier F7)° = Thier F7° —
0 splits. It follows that [];.; P is a direct summand of ([];c; PF)°. Because [];e; Fy is
injective and R is an E-artin ring, ([I;c; P7)° is a submodule of a projective module P.
Since [];c; P; is a submodule of [[;c; PF, [;c; & can be embedded in P. O

Lemma 2 The following statements are equivalent.

(1) R is an E-artin ring;

(2) M* is a submodule of a projective module for any FP-injective module M;

(3) Hompg(B,C) is a submodule of a projective module for any injective module (or
FP-injective module) B and any injective module C;

(4) P°® is a submodule of a projective module for any flat module P;

(4 P°® is a submodule of a projective module for any projective module P;

(4)" P is a submodule of a projective module for any free module P.

Proof (1) = (2) Suppose M is an FP-injective module. Then the exact sequence (0 —
M — E(M) is pure where E(M) is the injective envelope of M. It follows from [4, Lemma
1] that M® is a direct summand of [E(M)]¢. We know from (1) and Definition 1 that M°
is a submodule of a projective module. '

(2) = (3) Suppose B is an FP-injective module and C is an injective module. Since
E is an injective cogenerator in the category.of R-modules, C is a direct summand of E?!
for some set I. So Homg(B,C) is a direct summand of Hompg(B, ET) & (B*)!. Since B
is a submodule of a projective module P; by (2), { B°)! is a submodule of Pl. It is known
from Lemma 1 that P{ can be embedded in some projective module, and we are done.

(3) = (4) ¥ P is a flat module, then P¢ is injective. By (3) P* is a submodule of a
projective module.

(4) = (4)' = (4)" are trivial.

(4)" = (1) For any injective module Q, Q is a direct summand of E? for some set I,
so Q° is a direct summand of (Ef)¢ = [R(D]ee. By (4)" Q¢ is a submodule of a projective
module, it follows that R is an E-artin ring. O

Remark 2 Suppose both E and E’ are injective cogenerators in the category of A-
modules. By Lemma 2, R is an E-artin ring if and only if R is an E’- artin ring.
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Definition 2 An R-module C is called an f-cogenerator in the category of R-modules if
C cogenerates every finitely presented R-module.

Lernma 3 Let C be an f-cogenerator in the category of R-modules. Then
0:r(0:cI)=1

for any finitely generated ideal I of R.

Proof It is clear that 7 C 0: (0 :c J). We only need to prove that
0:r{0:c ) C I

Let s € R—1I. Since C is an f-cogenerator and R/J is finitely presented, C' cogenerates
R/I. Then we have a nonzero homomorphism k& : R/I — C such that k(s + I) # 0.
Suppose that g : R — R/I is the natural epimorphism. Then

0 = hg(I) = hg(1)].

So hg(1) € 0 :c I. But
ho(1)s = ho(s) = k(s +I) £ 0.

It follows that s ¢ 0 :z (0 :¢c I). So
0:r(0:cI)CL O
For any R-modules M and N, recall from [1, p. 109} that
Rejp(N) = [ {{Kerf | f € Homp(M, N)}.

Lemma 4 Let R be a coherent ring. Then R is an f-cogenerator in the category of
R-modules if and only if R is self FP-injective.

Proof (=) Suppose that both I; and I are finitely generated ideals of R. Since R is
a coherent ring, it follows from [3, Theorem 2.3.2] that Iy N I3, 0 :x I and 0 :p I3 are
finitely generated ideals of R. Then from Lemma 3 we get that

0:r(0:r(LNL)=LNL=[0:r(0:r[)]N[0:r (0:r I3)]
=0:p(0:r 11 +0:p13).

So

0:r(LNL)=0:0[0:p(0:r{(IhNL)))=0:r0:r(0:8 11 +0:5 I3)]
=0:Rfl+ﬂ:ng. .

By [5, Theorem 1} R is self FP-injective.

(<) Let M be a finitely presented R-module and let § # z € M. We claim that
there is a nonzero homomorphism A : Rz — R with h(z) # 0. Otherwise, suppose
(Rz)* =Hompg(Rz,R) = 0. Since Rz is finitely presented, there is an exact sequence

— 380 —



Fy =+ Fy = Rz — 0 with F and F, finitely generated free modules. Then 0 — Fj —
Fy — A — 0 is exact where A =Coker(F; — Fy). Consider the following commutative
diagram with exact rows.

B
lag log, Ly
F* — Fy — Ezth(A,R) — 0

— Fg — Rz —s 0

where op,, oF, are the canonical evaluation homomorphisms, ¢ is an induced homomor-
phism. It is known that og,, o, are isomorphisms, so ¢ is also an isomorphism and hence
ExtL(A,R) = Rz # 0, which contradicts that R is self FP-injective since A is finitely
presented.

Since Rz and M are finitely presented, a nonzero homomorphism % : Rz — R can be
extended to a homomorphism k : M — R with h(z) = k(z) # 0. Thus Rejy(R) = 0, and
R cogenerates M by [1, Corollary 8.13]. The proof is finished. O

We now in a position to give the main result.

Theorem 1 The following statemenis are equivalent.
(1) R is a QF ring;
(2) R is an artin ring and R® is flat;
(2Y R is a noether ring and R° is flat;
(3) Mc is a projective module for any free (projective, flat) module M;
(3) M?* is a submodule of a projective module for any free (projective, flat) module
M;
(4) R is an E-artin ring and R is self FP-injective;
(5) R is an artin ring and R is an f-cogenerator in the category of R-modules;
(5] R is a noether ring and R is an f-cogenerator in the category of R-modules;
(6) R is an artin ring and some injective cogenerator is fiat;
(6Y R is a noether ring and some injective cogenerator is flat;
(7) R is an artin ring and E(R/m) is flat for each m € Max(R), "vhere Max(R) is the
maximal spectrum of R;
(7) R is a noether ring and E(R/m) is flat for each mn € Max(R).

Proof (1) & (2) © (2) & (3) < (3) See Proposition 1.

(1) & (5) & (5) follow easily from Lemma 4.

(1) = (4), (1) = (6) = (6) = (7)Y and (1) = (7) = (7) are trivial.

(4) = (1) Suppose that Q is an injective module. We know that @ is a submodule
of E! for some set I. Since R is self FP-injective, R(Y) is FP-injective. By Lemma 2 E’
is a submodule of a projective module P because Ef & [RU)]e. It follows that Q is a
submodule of P. Hence Q is projective and then R is a QF ring.

(7)’ = (1) Suppose that R is a noether ring and E(R/m) is flat for each m € Max(R).
Let By = @, emax(r) E(&/m). Then Ey is flat. It follows from [8, Theorem 9.51] that

Hompg(ExtL1(R/I, R), Ey) >Torf(Homp(R, E;), R/I) for any ideal I of R. Since
Tor®(Homp(R, E;), R/I) = Torf(Ey, R/I) = 0,
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Homp(Exth(R/I,R), E1) = 0.

It is known [1, Corollary 18.16] that E; is an injective cogenerator in the category of
R-modules, so ExtL(R/I, R) = 0 and hence R is selfinjective and R is a QF ring. O

Definition 3 R is called an E-coherent ring if Q¢ is a submodule of a flat module for
any injective module Q.

Remark 3 By (4, Theorem 1], a coherent ring is an E-coherent ring. If K is a semihered-
itary ring, then R is coherent if and only if R is E-coherent.

Remark 4 We can get similar conclusions about E-ccherent rings to that about E-artin
rings in Lemmas 1 and 2, which we omit.

Theorem 2 The following statements are equivalent.
(1) R is an IF ring;
(2) R is a coherent ring and R* is flat;
(3) M¢ is a flat module for any free (projective, flat) module M;
(3) Mc is a submodule of a flat module for any free (projective, flat) module M;
(4) R is an E-coherent ring and R is self FP-injective;
(5) R is a coherent ring and R is an f-cogenerator in the category of R-modules;
(6) R is a coherent ring and some injective cogenerator is flat;
(7) R is a coherent ring and E{R/m} is flat for each m € Max(R).

Proof The proof is similar to that of Theorem 1, and is omitted here. O

Theorem 3 Consider the following conditions.

(1) R is a semihereditary ring;

(2) M?* is an FP-injective module for any finitely presented module M;

(3) M¢®c is a flat module for any finitely presented module M;

(4) Mecc is an FP-injective module for any finitely presented module M.

In general (1) < (2) & (3) & (4). If R is self FP-injective, then the above conditions
are equivalent.

Proof (2) = (1) Suppose K is a finitely generated submodule of a projective module.
Then K is a submodule of some finitely generatéd free module R, So we have an exact
sequence 0 - X — R®™ — M — 0 with M finitely presented, and hence 0 — AM¢ —
(R")* — K° — 0 is exact. Since M* is FP-injective by (2), the latter exact sequence
is pure. So it splits by [4, Lemma 1]. Because (R")° = E™ is injective, M*° is also
injective. Then M is flat by {6, Theorem 1.4]. It follows from [8, Theorem 3.57] that
0— K —+ R® -+ M — 0 splits. Thus K is projective and R is a semihereditary ring.

(2) = (3) If (2) holds, then R is a semihereditary ring. So R is a coherent ring. If M
is a finitely presented module, then M* is FP-injective by (2). It follows from |4, Thearem
1] that M®® is flat.

(3) = (4) It follows from [6, Theorem 1.4].

(4) = (2) Suppose M is a finitely presented module. Then M is FP-injective by
(4). Since M¢ is a direct summand of M** by [9, Exercise 23, p. 46), M* is FP-injective.
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Now let R be self FP-injective. We will show that (1) implies {2).

Let R be a semihereditary ring. Since R is self FP-injective, R is an IF ring. Suppose
that M is a finitely presented module. Then there is an exact sequence 0 — K — F —
M — 0 with K a finitely generated module and F a finitely generated projective module.
K* is flat by Theorem 2, so the exact sequence 0 — M® — F° — K* — 0 is pure. It
follows that M* is a pure submodule of the injective module F¢. So M*° is FP-injective.
This completes the proof of this theorem. O
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1. An extension of Raney’s lemmma

Consider a sequence < @3,a3,"* - ,Gm > of real numbers with 3 2, a; > 0.

We arrange < Gy, @2," -8, > on a circle in clockwise direction, and let (@1,83,-*,Gm)
denote this circle arrangement of length m. For given a;,i = 1,2,.--,m, define a;, =
i@y = Giyl, @iy, = @1 With a; = g if 7 = k(modm). If E;f:l a;; > 0 for all
k.k=1,2---,m, we call g; an initial point of (a;,az,***,am).

Now, we prove the existence of initial point in (;, a2, *, @m) by induction on m.

If m =1, ay is an initial point.

For given (a;,a2,**,a@m,8m4+1) Of length m + 1, if a; > 0,5 = 1,2,---,m +1, since
E:’.‘__"l'l a; > 0, if there exists ax > 0, aj is an initial point; If there exists a; < 0, we consider
the following algorithm.

If {ag,, 0Ky, ", G],l) satisfies

K, Ok < 0, apap,, <0, ayax; 20

for all § = 1,2,--,1, then we ignore the sequence structure of {ax,,a,,"--,ar,) While
regarding it as a big point with value Egﬂ ax;. The circle arrangement can be partitioned
into the union of such subsequences. Denote these big points by Az, Az, - - -, beginning from
any chosen big point 4,. So, we obtain a circle arrangement (A;, 42,---) with 4;, A;, < 0.

Since
m+41

1ZA,;=ZG.,->D,

=1
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there exist two consecutive big points A;, , Az, such that
Akl > 0] Akl + Ah > U.

Regarding (A, , Ag,) as a new big point B with value A, + A;, and replacing {4z, , Az,)
by B in (A;, Az, --+), we obtain a new circle arrangement of length < . There is an initial
point in this new circle arrangement by induction assumption. Obviously, if A; # B is an
initial point, then the first element of the subsequence expressed by A; is an initial point
of (a1,az,"**,am41); if B is an initial point, then the first element of the subsequence
expressed by A, is an initial point of (a1,az, -, amqy1).

Summing up the above discussion, we obtain the following

Theorem 1 There exists an initial point in circle arrangement {a,,a2,---,ay,) of real
numbers with 3 2, a; > 0.

If ajs (¢t = 1,2,-++,m) are integers with "2, a; > 0, and ag,,a;, (s > 1) are two
initial points in (a3, az,*-,ap,), then

m =1 m
Ea,-=2a;,j+2clkj >141=2,
=1 7=1 j=s

so,there exists only one initial point in (a;, a3, --,a,,) of integers with } 2, a; = 1, viz.,
exactly one of the cyclic shifts

{‘11132:"'1%>1 (32:"':%1‘11)1' ":(afnnal:"':am-—l)

has all of its partial sums positive.This is the conclusion of Raney’s lemma (see{1]). Hence,
Theorem 1 can be regarded as an extension of Raney’s lemuna.

Remark We point out that Theorem 1 can be extented to the setting of ordered semi-
group, the details omitted here,

2. A correction of a generalization of Raney’s lemma

Consider circle arrangement (a;,asz,---,a,,) of integers with a; < 1 for all £, and

2?;1 a;=1>0.
Theorem 1 tells us that there exist initial points in (a1, a2, -, am), if ar,,ar, (8> 1)
are two consecutive initial points, that is, a,, (1 < k < s) is not initial point,we assert

that 41 a,, = 1. Otherwise, .{=; a,, > 1. Since a,, = 1,3{7; a,, > 1. Now, let

=1
k
S={klY a; =0, and 2<k<as-1}
=2
h=maxS+1, if S#£0; =2, if §5=0.

Obviously, a,, is an initial point, contradicting the consecutivity of a,, and a,, (since
1 < h < 3). Hence, -1 a,, = 1. Since 17, a; = I, there are exactly ! initial points in
(ﬂ'l: A2y am)'
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Untying (a1, a2, -, a,,) at a;, we obtain a line arrangement or sequence
(@i, @iy -2 Gy )-
Let p = min{qla;, = a;,,, forall i=1,2,.--.m}, then
(a1,82, -, 8m) = (81, *,0p, 81, >~ ,qpy ", 8y, &p)

consists of = sequences {a;, az, -, I initial points in (a1, a2, -, @m) produce w =
p Gpl» ry

different sequences.
Summing up the above discussion, we have the following

Theorem 2 If (a1,a3, -*,6m) is any circle arrangement of integers with a; < 1 for all
i, and with Y i=, a; =l > 0, then there are exactly l initial points, but exactly ff of the
cyclic shifts
(ﬂl,ﬂn,'",%),(ﬂz,"',ﬂm:ﬂl):“';(%,ﬂh'”,ﬂm-—l)

have all positive partial sums.

This is a correction of the generalization of Raney’s lemma (see [1] } which says: If
(21,23, - -, Zm) is any sequence of integers with z; < 1for all j, and with 214224 - -+2,, =
! > 0, then exactly { of the cyclic shifts

(zl‘l L PR :tm>: (Zg, “e Izﬂ'I-lzl}'l. -t l(zﬂiﬂlzll nt e 1zm—1)
have all positive partial sums.
For example, for given sequence {(-2,1,1,1,-2,1,1,1},m = 8, = 2,p = 4, there is

exactly 3-’5-—‘! = 1, but not two, cyclic shift (1,1,1,—2,1,1,1, —2) which has all partial sums
positive. Of course, there are 2 initial points in the circle arrangement (-2,1,1,1,-2,1,1,1).

References:

[1] GRAHAM R L, KNUTH D F, PATASHNIK O. Concrete Mathematics [M]. Addison-Wesley
Publishing Company, 1992, 345, 348.

%F Raney 5|ZEMIBIEST &

B R 7
(LXK EWE R, JL 100875)

3 8. XX Raney 5{BEH#TTH B, H3 R.L.Graham 2 A#)FH1F Concrete Mathe-
matics P KA —4T" X Raney 3|EH#T T EIE.

— 386 —




