Journal of Mathematical Research & Exposition Vol.21, No.3, 377-383, August, 2001

On the Flatness and Injectivity of Dual Modules (II) *

HUANG Zhao-yong¹, TANG Jin-yu²

(1. Dept. of Math., Nanjing University, Jiangsu 210093, China;

2. Dept. of Math. & Info. Sci., Guangxi University, Nanning 530004, China)

Abstract: For a commutative ring R and an injective cogenerator E in the category of R-modules, we characterize QF rings, IF rings and semihereditary rings by using the properties of the dual modules with respect to E.

Key words: QF rings; flatness; injectivity; dual modules.

Classification: AMS(1991) 13D05,16E10/CLC 0153.3

Document code: A Article ID: 1000-341X(2001)03-0377-07

1. Introduction

Throughout this paper, R will denote an associate, commutative ring with identity and all modules are unital. E always denotes a certain injective cogenerator in the category of R-modules.

Let M be an R-module. In [4] we introduce the notion of the dual module $\operatorname{Hom}_R(M, E)$ with respect to E, and denote it by M^c . It is shown that the flatness of M^c is equivalent to the FP-injectivity or the injectivity of M if and only if R is a coherent ring or a noether ring respectively. The FP-injectivity, the injectivity of M and the projectivity of M^c are

pairwisely equivalent if and only if R is an artin ring (see [4]).

Recall that R is called a QF ring if R is an artin ring and for each ideal I of R, $I = 0 :_R (0 :_R I)$ (see [5]). Such rings have been extensively studied, many properties equivalent to this definition have been obtained. For example, the following statements are equivalent:

(1) R is a QF ring;

(2) R is a noether ring and for each ideal I of R, $I = 0 :_R (0 :_R I);$

(3) R is an artin ring (or a noether ring) and R is a cogenerator in the category of R-modules;

*Received date: 1998-10-26

Foundation item: Supported by National Natural Science Foundation of China (10001017) and Scientific Research Foundation for Returned Overseas Chinese Scholars (State Education Commission)

Biography: HUANG Zhao-yong (1968-), male, born in Daye county, Hubei province, Ph.D, associate professor.

E-mail: huangzy@netra.nju.edu.cn

— 377 —

- (4) R is an artin ring (or a noether ring) and R is selfinjective;
- (5) Any projective *R*-module is injective;
- (6) Any injective *R*-module is projective.

Also recall that R is called an IF ring if every injective R-module is flat (see [7]). It is shown that R is an IF ring if and only if R is a coherent ring and R is self FP-injective. It is clear that the notion of IF rings is a generalization of that of QF rings and Von Neumann regular rings.

In this paper we will introduce the notions of E-artin rings, E-coherent rings and fcogenerators, and characterize QF rings, IF rings and semihereditary rings by using the
properties of dual modules.

2. Main results

Proposition 1 The following statements are equivalent.

- (1) R is a QF ring;
- (2) R is a noether ring and R^e is flat;
- (3) R is an artin ring and R^e is flat;
- (4) M^{e} is a projective module for any flat module M;
- (4) M^{e} is a projective module for any projective module M;
- (4)" M^{e} is a projective module for any free module M;
- (5) M° is a submodule of a projective module for any flat module M;
- (5)' M^e is a submodule of a projective module for any projective module M;
- (5)" M^{ϵ} is a submodule of a projective module for any free module M.

Proof (2) \Leftrightarrow (1) Suppose that R is a noether ring and R^e is flat. Then R is an FP-injective R-module by [4, Corollary 2]. So R is selfinjective and hence R is a QF ring. The converse implication is trivial.

(1) \Rightarrow (3) Suppose R is a QF ring. Then R is an artin ring and any injective R-module is projective. Because $R^e \cong E$ is injective, R^e is projective.

(3) \Rightarrow (4) Suppose *M* is a flat module. Then there is a free module $R^{(I)}$ where *I* is a set such that $R^{(I)} \rightarrow M \rightarrow 0$ is exact. Since *M* is flat, this exact sequence is pure. So $0 \rightarrow M^c \rightarrow [R^{(I)}]^c \cong (R^c)^I$ is exact and splits by [4, Lemma 1]. It follows that M^c is a direct summand of $(R^c)^I$. Since *R* is an artin ring and R^c is flat, R^c is projective. So $(R^c)^I$ is also projective, it follows that M^c is projective.

 $(4) \Rightarrow (4)' \Rightarrow (4)'' \Rightarrow (5)'' \text{ and } (4) \Rightarrow (5) \Rightarrow (5)' \Rightarrow (5)'' \text{ are trivial.}$

 $(5)'' \Rightarrow (1)$ Suppose *M* is an injective *R*-module. There is a free module *F* such that $F \to M^e \to 0$ is exact, so $0 \to M^{ee} \to F^e$ is exact. By $(5)'' F^e$ is a submodule of a projective module *P*. It is known [4, Corollary 1] that *M* is a submodule of M^{ee} , we get that *M* is isomorphic to a submodule of *P*. So *M* is projective and *R* is a QF ring. \Box

We know from Proposition 1 that R is a QF ring if and only if P^e is (a submodule of) a projective module for any projective module P. It is natural to ask what properties Rpossesses if Q^e is (a submodule of) a projective module for any injective module Q. [4, Theorem 3] says that R is an artin ring if and only if Q^e is projective for any injective module Q.

— 378 —

Definition 1 R is called an E-artin ring if Q^e is a submodule of a projective module for any injective module Q.

Remark 1 An artin ring is an E-artin ring by [4, Theorem 3]. If R is a hereditary ring, then R is artinian if and only if R is E-artinian.

Recall that an *R*-module *A* is called FP-injective if $\text{Ext}_R^1(B, A) = 0$ for any finitely presented *R*-module *B*. A ring *R* is called self FP-injective if *R* is FP-injective as an *R*-module (see [7]).

Lemma 1 Let R be an E-artin ring. Then the direct product of a family of projective modules can be embedded in a projective module.

Proof Suppose $\{P_i\}_{i\in I}$ is a family of projective modules where I is a set. Then each P_i^e is injective. By [3, Corollary 2.1.12] $\bigoplus_{i\in I} P_i^e$ is FP-injective, which implies that the exact sequence $0 \to \bigoplus_{i\in I} P_i^e \to \prod_{i\in I} P_i^e$ is pure, and so $(\prod_{i\in I} P_i^e)^e \to (\bigoplus_{i\in I} P_i^e)^e \cong \prod_{i\in I} P_i^{ee} \to 0$ splits. It follows that $\prod_{i\in I} P_i^{ee}$ is a direct summand of $(\prod_{i\in I} P_i^e)^e$. Because $\prod_{i\in I} P_i^e$ is injective and R is an E-artin ring, $(\prod_{i\in I} P_i^e)^e$ is a submodule of a projective module P. Since $\prod_{i\in I} P_i$ is a submodule of $\prod_{i\in I} P_i^{ee}$, $\prod_{i\in I} P_i^e$ can be embedded in P. \Box

Lemma 2 The following statements are equivalent.

(1) R is an E-artin ring;

(2) M° is a submodule of a projective module for any FP-injective module M;

(3) Hom_R(B,C) is a submodule of a projective module for any injective module (or FP-injective module) B and any injective module C;

(4) P^{ee} is a submodule of a projective module for any flat module P;

(4)' P^{ee} is a submodule of a projective module for any projective module P;

(4)" P^{ee} is a submodule of a projective module for any free module P.

Proof (1) \Rightarrow (2) Suppose *M* is an FP-injective module. Then the exact sequence $0 \rightarrow M \rightarrow E(M)$ is pure where E(M) is the injective envelope of *M*. It follows from [4, Lemma 1] that M^{c} is a direct summand of $[E(M)]^{c}$. We know from (1) and Definition 1 that M^{c} is a unbrodule of a projective module.

is a submodule of a projective module.

(2) \Rightarrow (3) Suppose B is an FP-injective module and C is an injective module. Since E is an injective cogenerator in the category of R-modules, C is a direct summand of E^I for some set I. So $\operatorname{Hom}_R(B,C)$ is a direct summand of $\operatorname{Hom}_R(B,E^I) \cong (B^e)^I$. Since B^e is a submodule of a projective module P_1 by (2), $(B^e)^I$ is a submodule of P_1^I . It is known from Lemma 1 that P_1^I can be embedded in some projective module, and we are done.

(3) \Rightarrow (4) If P is a flat module, then P^e is injective. By (3) P^{ee} is a submodule of a projective module.

 $(4) \Rightarrow (4)' \Rightarrow (4)''$ are trivial.

 $(4)'' \Rightarrow (1)$ For any injective module Q, Q is a direct summand of E^I for some set I, so Q^e is a direct summand of $(E^I)^e \cong [R^{(I)}]^{ee}$. By $(4)'' Q^e$ is a submodule of a projective module, it follows that R is an E-artin ring. \Box

Remark 2 Suppose both E and E' are injective cogenerators in the category of Rmodules. By Lemma 2, R is an E-artin ring if and only if R is an E'- artin ring.

— 379 —

Definition 2 An R-module C is called an f-cogenerator in the category of R-modules if C cogenerates every finitely presented R-module.

Lemma 3 Let C be an f-cogenerator in the category of R-modules. Then

 $0:_{R}(0:_{C}I)=I$

for any finitely generated ideal I of R.

Proof It is clear that $I \subseteq 0 :_R (0 :_C I)$. We only need to prove that

 $0:_{R}(0:_{C}I)\subseteq I.$

Let $s \in R-I$. Since C is an f-cogenerator and R/I is finitely presented, C cogenerates R/I. Then we have a nonzero homomorphism $h : R/I \to C$ such that $h(s + I) \neq 0$. Suppose that $g: R \to R/I$ is the natural epimorphism. Then

0 = hg(I) = hg(1)I.

So $hg(1) \in 0 :_C I$. But

 $hg(1)s = hg(s) = h(s+I) \neq 0.$

It follows that $s \notin 0 :_R (0 :_C I)$. So

 $0:_R(0:_C I)\subseteq I.$

0

For any R-modules M and N, recall from [1, p. 109] that

$$\operatorname{Rej}_M(N) = \bigcap \{\operatorname{Ker} f \mid f \in \operatorname{Hom}_R(M, N)\}.$$

Lemma 4 Let R be a coherent ring. Then R is an f-cogenerator in the category of R-modules if and only if R is self FP-injective.

Proof (\Rightarrow) Suppose that both I_1 and I_2 are finitely generated ideals of R. Since R is a coherent ring, it follows from [3, Theorem 2.3.2] that $I_1 \cap I_2$, $0:_R I_1$ and $0:_R I_2$ are finitely generated ideals of R. Then from Lemma 3 we get that

$$0:_{R} (0:_{R} (I_{1} \cap I_{2})) = I_{1} \cap I_{2} = [0:_{R} (0:_{R} I_{1})] \cap [0:_{R} (0:_{R} I_{2})]$$

= 0:_{R} (0:_{R} I_{1} + 0:_{R} I_{2}).

So

$$0:_{R}(I_{1}\cap I_{2}) = 0:_{R}[0:_{R}(0:_{R}(I_{1}\cap I_{2}))] = 0:_{R}[0:_{R}(0:_{R}I_{1}+0:_{R}I_{2})]$$

= 0:_{R}I_{1}+0:_{R}I_{2}.

By [5, Theorem 1] R is self FP-injective.

(\Leftarrow) Let *M* be a finitely presented *R*-module and let $0 \neq x \in M$. We claim that there is a nonzero homomorphism $h : Rx \to R$ with $h(x) \neq 0$. Otherwise, suppose $(Rx)^* = \operatorname{Hom}_R(Rx, R) = 0$. Since Rx is finitely presented, there is an exact sequence

— 380 —

 $F_1 \to F_0 \to Rx \to 0$ with F_0 and F_1 finitely generated free modules. Then $0 \to F_0^* \to F_1^* \to A \to 0$ is exact where $A = \operatorname{Coker}(F_0^* \to F_1^*)$. Consider the following commutative diagram with exact rows.

where σ_{F_0} , σ_{F_1} are the canonical evaluation homomorphisms, φ is an induced homomorphism. It is known that σ_{F_0} , σ_{F_1} are isomorphisms, so φ is also an isomorphism and hence $\operatorname{Ext}^1_R(A, R) \cong Rx \neq 0$, which contradicts that R is self FP-injective since A is finitely presented.

Since Rx and M are finitely presented, a nonzero homomorphism $h: Rx \to R$ can be extended to a homomorphism $\bar{h}: M \to R$ with $\bar{h}(x) = h(x) \neq 0$. Thus $\operatorname{Rej}_M(R) = 0$, and R cogenerates M by [1, Corollary 8.13]. The proof is finished. \Box

We now in a position to give the main result.

Theorem 1 The following statements are equivalent.

(1) R is a QF ring;

(2) R is an artin ring and R^c is flat;

(2)' R is a noether ring and R^e is flat;

(3) M^{e} is a projective module for any free (projective, flat) module M;

(3)' M^e is a submodule of a projective module for any free (projective, flat) module M;

(4) R is an E-artin ring and R is self FP-injective;

- (5) R is an artin ring and R is an f-cogenerator in the category of R-modules;
- (5) R is a noether ring and R is an f-cogenerator in the category of R-modules;
- (6) R is an artin ring and some injective cogenerator is flat;
- (6)' R is a noether ring and some injective cogenerator is flat;
- (7) R is an artin ring and E(R/m) is flat for each $m \in Max(R)$, where Max(R) is the

maximal spectrum of R;

(7)' R is a noether ring and E(R/m) is flat for each $m \in Max(R)$.

Proof (1) \Leftrightarrow (2) \Leftrightarrow (2)' \Leftrightarrow (3) \Leftrightarrow (3)' See Proposition 1.

(1) \Leftrightarrow (5) \Leftrightarrow (5)' follow easily from Lemma 4.

 $(1) \Rightarrow (4), (1) \Rightarrow (6) \Rightarrow (6)' \Rightarrow (7)' \text{ and } (1) \Rightarrow (7) \Rightarrow (7)' \text{ are trivial.}$

(4) \Rightarrow (1) Suppose that Q is an injective module. We know that Q is a submodule of E^I for some set I. Since R is self FP-injective, $R^{(I)}$ is FP-injective. By Lemma 2 E^I is a submodule of a projective module P because $E^I \cong [R^{(I)}]^e$. It follows that Q is a submodule of P. Hence Q is projective and then R is a QF ring.

(7)' \Rightarrow (1) Suppose that R is a noether ring and E(R/m) is flat for each $m \in Max(R)$. Let $E_1 = \bigoplus_{m \in Max(R)} E(R/m)$. Then E_1 is flat. It follows from [8, Theorem 9.51] that $\operatorname{Hom}_R(\operatorname{Ext}^1_R(R/I, R), E_1) \cong \operatorname{Tor}^R_1(\operatorname{Hom}_R(R, E_1), R/I)$ for any ideal I of R. Since

 $\operatorname{Tor}_{1}^{R}(\operatorname{Hom}_{R}(R, E_{1}), R/I) \cong \operatorname{Tor}_{1}^{R}(E_{1}, R/I) = 0,$

$\operatorname{Hom}_{R}(\operatorname{Ext}^{1}_{R}(R/I,R),E_{1})=0.$

It is known [1, Corollary 18.16] that E_1 is an injective cogenerator in the category of *R*-modules, so $\operatorname{Ext}^1_R(R/I, R) = 0$ and hence *R* is selfinjective and *R* is a QF ring. \Box

Definition 3 R is called an E-coherent ring if Q^e is a submodule of a flat module for any injective module Q.

Remark 3 By [4, Theorem 1], a coherent ring is an E-coherent ring. If R is a semihereditary ring, then R is coherent if and only if R is E-coherent.

Remark 4 We can get similar conclusions about *E*-coherent rings to that about *E*-artin rings in Lemmas 1 and 2, which we omit.

Theorem 2 The following statements are equivalent.

- (1) R is an IF ring;
- (2) R is a coherent ring and R^e is flat;
- (3) M^e is a flat module for any free (projective, flat) module M;
- (3)' M^e is a submodule of a flat module for any free (projective, flat) module M;
- (4) R is an E-coherent ring and R is self FP-injective;
- (5) R is a coherent ring and R is an f-cogenerator in the category of R-modules;
- (6) R is a coherent ring and some injective cogenerator is flat;
- (7) R is a coherent ring and E(R/m) is flat for each $m \in Max(R)$.

Proof The proof is similar to that of Theorem 1, and is omitted here. \Box

Theorem 3 Consider the following conditions.

- (1) R is a semihereditary ring;
- (2) M^e is an FP-injective module for any finitely presented module M;
- (3) M^{ee} is a flat module for any finitely presented module M;
- (4) M^{eee} is an FP-injective module for any finitely presented module M.

In general (1) \leftarrow (2) \Leftrightarrow (3) \Leftrightarrow (4). If R is self FP-injective, then the above conditions

are equivalent.

Proof (2) \Rightarrow (1) Suppose K is a finitely generated submodule of a projective module. Then K is a submodule of some finitely generated free module \mathbb{R}^n . So we have an exact sequence $0 \to K \to \mathbb{R}^n \to M \to 0$ with M finitely presented, and hence $0 \to M^e \to (\mathbb{R}^n)^e \to K^e \to 0$ is exact. Since M^e is FP-injective by (2), the latter exact sequence is pure. So it splits by [4, Lemma 1]. Because $(\mathbb{R}^n)^e \cong \mathbb{E}^n$ is injective, M^e is also injective. Then M is flat by [6, Theorem 1.4]. It follows from [8, Theorem 3.57] that $0 \to K \to \mathbb{R}^n \to M \to 0$ splits. Thus K is projective and R is a semihereditary ring.

(2) \Rightarrow (3) If (2) holds, then R is a semihereditary ring. So R is a coherent ring. If M is a finitely presented module, then M^c is FP-injective by (2). It follows from [4, Theorem 1] that M^{cc} is flat.

(3) \Rightarrow (4) It follows from [6, Theorem 1.4].

(4) \Rightarrow (2) Suppose *M* is a finitely presented module. Then M^{eee} is FP-injective by (4). Since M^e is a direct summand of M^{eee} by [9, Exercise 23, p. 46], M^e is FP-injective.

Now let R be self FP-injective. We will show that (1) implies (2).

Let R be a semihereditary ring. Since R is self FP-injective, R is an IF ring. Suppose that M is a finitely presented module. Then there is an exact sequence $0 \to K \to F \to M \to 0$ with K a finitely generated module and F a finitely generated projective module. K^e is flat by Theorem 2, so the exact sequence $0 \to M^e \to F^e \to K^e \to 0$ is pure. It follows that M^e is a pure submodule of the injective module F^e . So M^e is FP-injective. This completes the proof of this theorem. \Box

References:

- ANDERSON F W, FULLER K R. Rings and Categories of Modules [M]. 2nd ed, Graduate Texts in Mathematics, Vol. 13, Springer-Verlag, 1992.
- [2] CARTAN H, EILENBERG S. Homological Algebra [M]. Princeton University Press, 1956.
- [3] GLAZ S. Commutative Coherent Rings [M]. Lecture Notes in Mathematics, Vol. 1371, Springer-Verlag, 1989.
- [4] HUANG Z Y. On the flatness and injectivity of dual modules [J]. Southeast Asian Bull. of Math., 1997, 21: 257-262.
- [5] IDEDA M, NAKAYAMA T. On some characteristic properties [J]. Proc. Amer. Math. Soc., 1954, 5: 15-19.
- [6] ISHIKAWA T. On injective and flat modules [J]. Jour. Math. Soc. Japan, 1965, 17: 291-296.
- [7] JAIN S. Flat and FP-injectivity [J], Proc. Amer. Math. Soc., 1973, 41: 437-442.
- [8] ROTMAN J J. An Introduction to Homological Algebra [M]. Academic Press, New York, 1979.
- [9] STENTRÖM B. Rings of Quotients [M], Spinger-Verlag, Springer, 1975.

关于对偶模的平坦性和内射性 (II)

黄兆泳ì,唐金玉2

(1. 南京大学教学系, 江苏 南京 210093; 2. 广西大学教学与信息科学系, 广西 南宁 530004)

摘 要: 对交换环 R 和 R-模范畴上的一个内射余生成元 E,我们用相对于 E 的对偶 模的性质刻画了 QF 环, IF 环和半遗传环.

Journal of Mathematical Research & Exposition Vol.21, No.3, 384-386, August, 2001

An Extension and a Correction Concerning Raney's Lemma *

YIN Dong-sheng (Dept. of Math., Beijing Normal University, Beijing 100875, China)

Abstract: We give an extension of Raney's lemma and correct a generalization of Raney's lemma in R.L.Graham et al's Concrete Mathematics.

Key words: sequence; circle arrangement; Raney's lemma,

Classification: AMS(1991) 05A15,11B99,06F05/CLC 0157.1

Article ID: 1000-341X(2001)03-0384-03 Document code: A

1. An extension of Raney's lemma

Consider a sequence $\langle a_1, a_2, \cdots, a_m \rangle$ of real numbers with $\sum_{i=1}^m a_i > 0$.

We arrange $\langle a_1, a_2, \cdots, a_m \rangle$ on a circle in clockwise direction, and let (a_1, a_2, \cdots, a_m) denote this circle arrangement of length m. For given $a_i, i = 1, 2, \dots, m$, define $a_{i_1} =$ $a_i, a_{i_2} = a_{i+1}, \dots, a_{i_m} = a_{i-1}$ with $a_j = a_k$ if $j \equiv k \pmod{m}$. If $\sum_{j=1}^k a_{i_j} > 0$ for all $k, k = 1, 2, \dots, m$, we call a_i an initial point of (a_1, a_2, \dots, a_m) .

Now, we prove the existence of initial point in (a_1, a_2, \dots, a_m) by induction on m. If m = 1, a_1 is an initial point.

For given $(a_1, a_2, \dots, a_m, a_{m+1})$ of length m+1, if $a_i \geq 0, i = 1, 2, \dots, m+1$, since $\sum_{i=1}^{m+1} a_i > 0$, if there exists $a_k > 0$, a_k is an initial point; If there exists $a_i < 0$, we consider the following algorithm.

If $\langle a_{k_1}, a_{k_2}, \cdots, a_{k_l} \rangle$ satisfies

$$a_{k_1}a_{k_m} < 0, \ a_{k_1}a_{k_{l+1}} < 0, \ a_{k_1}a_{k_j} \ge 0$$

for all $j = 1, 2, \dots, l$, then we ignore the sequence structure of $(a_{k_1}, a_{k_2}, \dots, a_{k_l})$ while regarding it as a big point with value $\sum_{j=1}^{l} a_{k_j}$. The circle arrangement can be partitioned into the union of such subsequences. Denote these big points by A_1, A_2, \cdots , beginning from any chosen big point A_1 . So, we obtain a circle arrangement (A_1, A_2, \cdots) with $A_{i_1}A_{i_2} < 0$. Since

$$\sum A_i = \sum_{j=1}^{m+1} a_j > 0,$$

*Received date: 1998-09-23 Biography: YIN Dong-sheng (1964-), male, Ph.D.

- 384 -

there exist two consecutive big points A_{k_1}, A_{k_2} such that

$$A_{k_1} > 0, A_{k_1} + A_{k_2} > 0.$$

Regarding $\langle A_{k_1}, A_{k_2} \rangle$ as a new big point *B* with value $A_{k_1} + A_{k_2}$ and replacing $\langle A_{k_1}, A_{k_2} \rangle$ by *B* in (A_1, A_2, \cdots) , we obtain a new circle arrangement of length $\leq m$. There is an initial point in this new circle arrangement by induction assumption. Obviously, if $A_i \neq B$ is an initial point, then the first element of the subsequence expressed by A_i is an initial point of $(a_1, a_2, \cdots, a_{m+1})$; if *B* is an initial point, then the first element of $(a_1, a_2, \cdots, a_{m+1})$.

Summing up the above discussion, we obtain the following

Theorem 1 There exists an initial point in circle arrangement (a_1, a_2, \dots, a_m) of real numbers with $\sum_{i=1}^{m} a_i > 0$.

If $a'_i s$ $(i = 1, 2, \dots, m)$ are integers with $\sum_{i=1}^m a_i > 0$, and a_{k_1}, a_{k_n} (s > 1) are two initial points in (a_1, a_2, \dots, a_m) , then

$$\sum_{i=1}^{m} a_i = \sum_{j=1}^{n-1} a_{k_j} + \sum_{j=n}^{m} a_{k_j} \ge 1 + 1 = 2,$$

so, there exists only one initial point in (a_1, a_2, \dots, a_m) of integers with $\sum_{i=1}^m a_i = 1$, viz., exactly one of the cyclic shifts

$$\langle a_1, a_2, \cdots, a_m \rangle, \langle a_2, \cdots, a_m, a_1 \rangle, \cdots, \langle a_m, a_1, \cdots, a_{m-1} \rangle$$

has all of its partial sums positive. This is the conclusion of Raney's lemma (see[1]). Hence, Theorem 1 can be regarded as an extension of Raney's lemma.

Remark We point out that Theorem 1 can be extended to the setting of ordered semigroup, the details omitted here.

2. A correction of a generalization of Raney's lemma

Consider circle arrangement (a_1, a_2, \dots, a_m) of integers with $a_i \leq 1$ for all *i*, and $\sum_{i=1}^{m} a_i = l > 0$.

Theorem 1 tells us that there exist initial points in (a_1, a_2, \dots, a_m) , if a_{r_1}, a_{r_n} (s > 1) are two consecutive initial points, that is, a_{r_k} (1 < k < s) is not initial point, we assert that $\sum_{i=1}^{s-1} a_{r_i} = 1$. Otherwise, $\sum_{i=1}^{s-1} a_{r_i} > 1$. Since $a_{r_1} = 1$, $\sum_{i=2}^{s-1} a_{r_i} \ge 1$. Now, let

$$S = \{k | \sum_{j=2}^{k} a_{r_j} = 0, \text{ and } 2 \le k < s - 1\},$$

 $h = \max S + 1$, if $S \neq \emptyset$; = 2, if $S = \emptyset$.

Obviously, a_{r_k} is an initial point, contradicting the consecutivity of a_{r_1} and a_{r_s} (since 1 < h < s). Hence, $\sum_{i=1}^{s-1} a_{r_i} = 1$. Since $\sum_{i=1}^{m} a_i = l$, there are exactly l initial points in (a_1, a_2, \dots, a_m) .

Untying (a_1, a_2, \dots, a_m) at a_i , we obtain a line arrangement or sequence

$$\langle a_{i_1}, a_{i_2}, \cdots, a_{i_m} \rangle.$$

Let $p = \min\{q | a_{i_1} = a_{i_{1+q}} \text{ for all } i = 1, 2, \dots, m\}$, then

$$(a_1, a_2, \cdots, a_m) = (a_1, \cdots, a_p, a_1, \cdots, a_p, \cdots, a_1, \cdots, a_p)$$

consists of $\frac{m}{p}$ sequences $\langle a_1, a_2, \dots, a_p \rangle$, *l* initial points in (a_1, a_2, \dots, a_m) produce $\frac{l}{m} = \frac{lp}{m}$ different sequences.

Summing up the above discussion, we have the following

Theorem 2 If (a_1, a_2, \dots, a_m) is any circle arrangement of integers with $a_i \leq 1$ for all *i*, and with $\sum_{i=1}^{m} a_i = l > 0$, then there are exactly *l* initial points, but exactly $\frac{lp}{m}$ of the cyclic shifts

$$\langle a_1, a_2, \cdots, a_m \rangle, \langle a_2, \cdots, a_m, a_1 \rangle, \cdots, \langle a_m, a_1, \cdots, a_{m-1} \rangle$$

have all positive partial sums.

This is a correction of the generalization of Raney's lemma (see [1]) which says: If (x_1, x_2, \dots, x_m) is any sequence of integers with $x_i \leq 1$ for all j, and with $x_1 + x_2 + \dots + x_m = l \geq 0$, then exactly l of the cyclic shifts

$$\langle x_1, x_2, \cdots, x_m \rangle, \langle x_2, \cdots, x_m, x_1 \rangle, \cdots, \langle x_m, x_1, \cdots, x_{m-1} \rangle$$

have all positive partial sums.

For example, for given sequence $\langle -2, 1, 1, 1, -2, 1, 1, 1 \rangle$, m = 8, l = 2, p = 4, there is exactly $\frac{2 \times 4}{8} = 1$, but not two, cyclic shift $\langle 1, 1, 1, -2, 1, 1, 1, -2 \rangle$ which has all partial sums positive. Of course, there are 2 initial points in the circle arrangement (-2, 1, 1, 1, -2, 1, 1, 1).

References:

[1] GRAHAM R L, KNUTH D F, PATASHNIK O. Concrete Mathematics [M]. Addison-Wesley Publishing Company, 1992, 345, 348.

关于 Raney 引理的修正与扩展

阴东升

(北京师范大学数学系,北京 100875)

摘 要: 本文对 Raney 引理进行了扩展,并对 R.L.Graham 等人的著作 Concrete Mathematics 中涉及的一个广义 Raney 引理进行了修正.

- 386 -

