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Abstract

Let R be an arbitrary ring. We introduce and study a generalization of injective and flat complexes
of modules, called weak injective and weak flat complexes of modules respectively. We show that
a complex C is weak injective (resp. weak flat) if and only if C is exact and all cycles of C are
weak injective (resp. weak flat) as R-modules. In addition, we discuss the weak injective and weak
flat dimensions of complexes of modules. Finally, we show that the category of weak injective (resp.
weak flat) complexes is closed under direct pure subcomplexes, pure epimorphic images and direct
limits. As a result, we then determine the existence of weak injective (resp. weak flat) covers and
preenvelopes of complexes.

1. Introduction

Throughout this paper, R denotes an associative ring with unity, ModR (resp. ModRop) denotes the

category of left (resp. right) R-modules and C (resp. C op) denotes the abelian category of complexes of

left (resp. right) R-modules. A complex

· · · −→ C2
δC2−→ C1

δC1−→ C0
δC0−→ C−1

δC−1−→ · · ·

in C (or C op) is denoted by (C, δ) or C. The nth cycle and boundary of C are denoted by Zn(C) = Ker δCn

and Bn(C) = Im δCn+1 respectively; and C is exact if Zn(C) = Bn(C) for any n ∈ Z. General background

materials are referred to [17, 13, 11, 24].

As one of important abelian categories, the category of complexes of modules has been studied by

many authors (see, for example [1, 4, 13, 10, 11, 17, 25]), and many results of the category of modules

which have been generalized to the category of complexes of modules. As we know, injective and flat

complexes play important roles in the study of the category of complexes of modules, and a complex C

is injective (resp. flat) if and only if C is exact and Zm(C) is injective (resp. flat) as R-modules for

any m ∈ Z; In [25, 23], Liu et al. introduced the notion of FP-injective complexes, they obtained many

nice characterizations of them over coherent rings, and they showed that some properties of injective

complexes have counterparts for FP-injective complexes. More recently, we introduced and investigated

in [16, 14] weak injective and weak flat modules, and generalized many results from coherent rings to

arbitrary rings. In this process finitely presented modules were replaced by super finitely presented
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modules. Following the above philosophy, it is natural to extend the notions of weak injective and weak

flat modules to that of complexes, and then establish the relationship between the weak injectivity (resp.

weak flatness) of a complex and and its cycles.

In this paper, we introduce the notions of weak injective and weak flat complexes and show that some

properties of injective and flat complexes have counterparts for weak injective and weak flat complexes

respectively, and there exists a close link between the weak injective dimension and weak flat dimension

of complexes. We also study the existence of weak injective and weak flat covers and preenvelopes of

complexes. This paper is organized as follows.

In Section 2, we collect some notations and preliminary results.

In Section 3, we introduce the notions of weak injective and weak flat complexes. We show that a

complex C is weak flat (resp. weak injective) if and only if C+ is weak injective (resp. weak flat), where

C+ stands for the character complex of C. Then we get that a complex C in C is weak injective if and

only if C is exact and Zm(C) is weak injective in ModR for any m ∈ Z; a complex C in C op is weak flat

if and only if C is exact and Zm(C) is weak flat in ModRop for any m ∈ Z.
In Section 4, we introduce and study the weak injective dimension widC and the weak flat dimension

wfdC of a complex C. For a complex C in C , we prove that widC ≤ n if and only if C is exact and

widR Zm(C) (the weak injective dimension of Zm(C) in ModR) ≤ n for any m ∈ Z. Dually, for a complex

C in C op, we have that wfdC ≤ n if and only if C is exact and wfdRop Zm(C) (the weak flat dimension

of Zm(C) in ModRop) ≤ n for any m ∈ Z. As a consequence, we get that if C is an exact complex in

C (resp. C op), then widC = sup{widR Zm(C) | m ∈ Z} (resp. wfdC = sup{wfdRop Zm(C) | m ∈ Z}).
Moreover, for a complex C, we prove that widC = wfdC+ and wfdC = widC+.

In Section 5, we show that the category of weak injective complexes and the category of weak flat

complexes are closed under pure subcomplexes, pure epimorphic images and direct limits. As a conse-

quence, we get that any complex has a weak injective (resp. weak flat) cover and a weak injective (resp.

weak flat) preenvelope.

2. Preliminaries

In this paper, we use the superscripts to distinguish complexes and the subscripts for a complex. For

example, if {Ci}i∈I is a family of complexes in C , then Ci
n denotes the degree-n term of the complex Ci.

Given an R-module M , we use M to denote the complex

· · · −→ 0 −→ M
id−→ M −→ 0 −→ · · ·

with the M in the 1st and 0th positions; and we denote by Sn(M) the complex with M in the nth place

and 0 in the other places. Given a complex C in C and an integer m, C[m] denotes the complex such

that C[m]n = C−m+n and whose boundary operators are (−1)mδC−m+n.

For complexes C and D in C , Hom(C,D) is the abelian group of morphisms from C to D in the

category of complexes, and Exti(C,D) for i ≥ 1 will denote the groups we get from the right derived
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functor of Hom. We let H om(C,D) be the complex of abelian groups

· · · δn+1−→
∏
i∈Z

HomR(Ci, Dn+i)
δn−→

∏
i∈Z

HomR(Ci, Dn−1+i)
δn−1−→ · · ·

(where Z is the additive group of integers) such that if f ∈ H om(C,D)n, then

(δnf)m = δDn+mfm − (−1)nfm−1δ
C
m.

Let Hom(C,D) = Z(H om(C,D)). Then Hom(C,D) can be made into a complex with Hom(C,D)n the

abelian group of morphisms from C to D[n] and with a boundary operator given by δn(f) : C → D[n−1],

where f ∈ Hom(C,D)n and (δnf)m = (−1)nδDfm for any m ∈ Z. Note that the new functor Hom(C,D)

will have right derived functors whose values will be complexes. These values are denoted by Exti(C,D).

One easily sees that Exti(C,D) is the complex

· · · → Exti(C,D[n+ 1]) → Exti(C,D[n]) → Exti(C,D[n− 1]) → · · ·

with boundary operator induced by the boundary operator of D. For any complex C, the character

complex C+ = Hom(C,Q/Z), where Q is the additive group of rational numbers.

For any D ∈ C op and C ∈ C , let D ⊗· C be the usual tensor product of the complexes. We define

D ⊗ C to be D⊗·C
B(D⊗·C) with the maps

(D ⊗· C)n
Bn(D ⊗· C)

→ (D ⊗· C)n−1

Bn−1(D ⊗· C)
, x⊗ y 7→ δD(x)⊗ y

where x ⊗ y is used to denote the coset in (D⊗·C)n
Bn(D⊗·C) , we get a complex of abelian groups. It is obvious

that the new functor − ⊗ C is a right exact functor, so we can construct the corresponding left derived

functor Tori(−, C).

Recall from [11] that a complex C is called finitely generated if, in case C =
∑

i∈I Di with Di ∈ C

subcomplexes of C, there exists a finite subset J ⊆ I such that C =
∑

i∈J Di; and a complex C is called

finitely presented if C is finitely generated and for any exact sequence of complexes

0 → K → L → C → 0

with L finitely generated, K is also finitely generated. A complex C is called bounded above (respectively,

bounded below, bounded) [4] if there exists an n ∈ Z such that Ci = 0 for i < n (respectively, i > n,

|i| ≥ n). By [11, Lemma 2.2], a complex C in C is finitely generated (resp. finitely presented) if and only

if C is bounded and Cn is finitely generated (resp. finitely presented) in ModR for any n ∈ Z.
A complex P is called projective [13] if for any morphism P → D and any epimorphism C → D, the

diagram

P

��~~~
~
~
~

C // D
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can be completed to a commutative diagram by a morphism P → C. Dually, the notion of injective

complexes is defined. Also a complex C in C is projective (resp. injective) if and only if C is exact and

Zm(C) is projective (resp. injective) in ModR for any m ∈ Z.
Following [9], for any subcategory F of an abelian category A , the morphism f : F → M in A with

F ∈ F is called an F -precover of M if for any morphism g : F0 → M in A with F0 ∈ F , there exists a

morphism h : F0 → F such that the following diagram commutes:

F0

g

��

h

~~}
}
}
}

F
f // M.

The morphism f : F → M is called right minimal if an endomorphism h : F → F is an automorphism

whenever f = fh. An F -precover f : F → M is called an F -cover if f is right minimal. F is called

(pre)covering in A if every object in A has an F -(pre)cover. Dually, the notions of F -(pre)envelopes,

left minimal morphisms and (pre)enveloping subcategories are defined.

Recall from [15] that a left R-module M is called super finitely presented if there exists an exact

sequence:

· · · → Pn → · · · → P1 → P0 → M → 0

in ModR with each Pi finitely generated projective. Note that the super finitely presented modules are

also called strongly finitely presented in [19], or FP∞ in [6, 3, 20]. A left R-module M (resp. right

R-module N) is called weak injective (resp. weak flat) if Ext1R(F,M) = 0 (resp. TorR1 (N,F ) = 0) for

any super finitely presented left R-module F . The weak injective dimension of M , denoted by widR M ,

is defined as inf{n | Extn+1
R (F,M) = 0 for any super finitely presented left R-module F}. If no such n

exists, set widR M = ∞. The weak flat dimension wfdRop N of N is defined dually.

3. Weak Injective and Weak Flat Complexes

In this section, we give a treatment of weak injective and weak flat complexes. It is showed that some

properties of injective and flat complexes have counterparts for weak injective and weak flat complexes

respectively.

Definition 3.1. A complex C is called super finitely presented if there exists an exact sequence of

complexes of R-modules

· · · → Pn → · · · → P 1 → P 0 → C → 0

with each P i finitely generated projective.

From the definition, it follows that every super finitely presented complex is finitely presented.

Proposition 3.2. The following statements are equivalent for a complex C in C .

(1) C is super finitely presented.

(2) C is bounded and Cm is super finitely presented in ModR for any m ∈ Z.
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(3) There exists an exact sequence

0 → K → P → C → 0

in C with P finitely generated projective and K super finitely presented.

(4) For any exact sequence

0 → K → P → C → 0

in C with P finitely generated projective, K is super finitely presented.

Proof. (1) ⇒ (2) Let C be a super finitely presented complex in C . Then there exists an exact

sequence

· · · → Pn → · · · → P 1 → P 0 → C → 0

in C with each P i finitely generated projective. Then, for any m ∈ Z, we have the exactness of

· · · → Pn
m → · · · → P 1

m → P 0
m → Cm → 0

in ModR with each P i
m finitely generated projective. So Cm is super finitely presented for any m ∈ Z.

Because P 0 is bounded and P 0 → C is an epimorphism, it follows that C is bounded.

(2) ⇒ (1) Let C be the complex

C := · · · → 0 → Cn → Cn−1 → · · · → Cl → 0 → · · ·

in C with each Ci a super finitely presented left R-module. For each m, there exists an exact sequence

P 0
m

∂0
m→ Cm → 0

in ModR with P 0
m finitely generated projective. Then we have the following commutative diagram:

P 0 : 0 // P 0
n

//

∂0
n

��

P 0
n ⊕ P 0

n−1
//

(dC
n ∂0

n, ∂
0
n−1)

��

· · · // P 0
l+1 ⊕ P 0

l

(dC
l+1∂

0
l+1, ∂

0
l )

��

// P 0
l

0

��

// 0

C : 0 // Cn

dC
n // Cn−1

dC
n−1 // · · ·

dC
l+1 // Cl

// 0 // 0

in C , where P 0 is a finitely generated projective complex. Set K1 = Ker(P 0 → C). Then K1 is bounded

and K1
m is super finitely presented in ModR for any m ∈ Z by [20, Lemma 2.3]. By repeating this

process, we obtain an exact sequence

· · · → Pn → Pn−1 → · · · → P 0 → C → 0

in C with each P i finitely generated projective and C is super finitely presented.

(2) ⇒ (4) Let

0 → K → P → C → 0

be an exact sequence in C with P finitely generated projective. Then K is bounded because it is a

subcomplex of a bounded complex P . Since Cm is a super finitely presented module for any m ∈ Z, there
exists an exact sequence

0 → Km → Pm → Cm → 0
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in ModR with Pm finitely generated projective and Km super finitely presented by [20, Lemma 2.3]. So

K is super finitely presented by the equivalence between (1) and (2).

(4) ⇒ (3) is trivial.

(3) ⇒ (1) Suppose that there exists an exact sequence

0 → K → P → C → 0

in C with P finitely generated projective and K super finitely presented. Since K is super finitely

presented, there exists an exact sequence

· · · → P
′

2 → P
′

1 → P
′

0 → K → 0

in C with each P
′

i finitely generated projective. Assembling the above two exact sequences, we obtain

the exactness of

· · · → P
′

2 → P
′

1 → P
′

0 → P → C → 0

and C is super finitely presented. �

We now introduce the notions of weak injective and weak flat complexes as follows.

Definition 3.3. A complex C in C is called weak injective if Ext1(F,C) = 0 for any super finitely

presented complex F in C . A complex D in C op is called weak flat if Tor1(D,F ) = 0 for any super

finitely presented complex F in C .

Remark 3.4. (1) Because every super finitely presented complex is finitely presented, every FP-

injective (resp. flat) complex is weak injective (resp. weak flat). When R is left coherent, the category

of super finitely presented complexes coincides with that of finitely presented complexes by Proposition

3.2, and so a complex is weak injective (resp. weak flat) if and only if it is FP-injective (resp. flat).

(2) By definition, one easily checks that the category of weak injective complexes is closed under

extensions, direct products and direct summands; and the category of weak flat complexes is closed

under extensions, direct sums and direct summands.

Proposition 3.5. The category of weak injective complexes is closed under direct sums.

Proof. Let {Ci}i∈I be a family of weak injective complexes and F a super finitely presented complex

in C . Then there exists an exact sequence

0 → K → P → F → 0

in C with P finitely generated projective and K super finitely presented by Proposition 3.2. By [25,

Lemma 2.8], we have the following commutative diagram with exact rows:

0 // Hom(F,
⊕

i∈i Ci) //

∼=
��

Hom(P,
⊕

i∈i Ci) //

∼=
��

Hom(K,
⊕

i∈i Ci)

∼=
��

0 // ⊕
i∈i HomR(F,Ci) // ⊕

i∈i HomR(P,Ci) // ⊕
i∈i HomR(K,Ci) // 0.
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Because Ext1(P,
⊕

i∈i Ci) = 0, we have that Ext1(F,
⊕

i∈i Ci) = 0 and
⊕

i∈i Ci is weak injective. �

The following result shows that there exists a dual between weak injective complexes in C and weak

flat complexes in C op.

Proposition 3.6.

(1) A complex C in C is weak flat if and only if C+ is weak injective in C op

(2) A complex C in C is weak injective if and only if C+ is weak flat in C op.

Proof. (1) By [17, Lemma 5.4.2], we have that Ext1(G,C+) ∼= Tor1(G,C)+ for any complex C in C

and any complex G in C op. So the assertion follows.

(2) Let F be a super finitely presented complex in C . Then there exists an exact sequence

0 → K → P → F → 0

in C with P finitely generated projective and K super finitely presented. Consider the commutative

diagram with exact rows:

0 // Tor1(C+, F ) //

��

C+ ⊗K //

θK��

C+ ⊗ P

θP��
0 // Ext1(F,C)+ // Hom(K,C)+ // Hom(P,C)+.

Since θK and θP are isomorphisms by [10, Lemma 2.3], we have Ext1(F,C)+ ∼= Tor1(C
+, F ). Thus the

desired result follows. �

Proposition 3.7.

(1) If C is a weak injective left R-module, then C[n] is a weak injective complex.

(2) If D is a weak flat right R-module, then D[n] is a weak flat complex.

Proof. (1) We will show that Ext1(F,C[n]) = 0 for any super finitely presented complex F in C . Let

0 −→ C −→ X
β−→ Fn −→ 0

be an exact sequence in ModR with Fn super finitely presented. By the factor theorem ([2, Theorem

3.6(2)]), we have the following commutative diagram:

Fn+2

θ

xxr
r
r
r

δFn+2

��
0 // Ker δFn+1 λ

// Fn+1,
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where λ is the inclusion. Consider the pullback of X
β−→ Fn and Fn+1

δFn+1−→ Fn:

0

��

0

��
Ker δFn+1

γ

��

Ker δFn+1

λ
��

0 // C
αn+1 // D

u //

v
��

Fn+1

δFn+1
��

// 0

0 // C
αn // X

β // Fn
// 0.

Then we get the following commutative diagram

...

��

...

��

...

��
0 // 0

��

// Fn+3

δFn+3

��

id // Fn+3

δFn+3

��

// 0

0 // 0

��

// Fn+2

γθ

��

id // Fn+2

δFn+2

��

// 0

0 // C
αn+1 // D

v

��

u // Fn+1

δFn+1

��

// 0

0 // C
αn //

��

X

δFn β

��

β // Fn

δFn
��

// 0

0 // 0 //

��

Fn−1

δFn−1

��

id // Fn−1

δFn−1

��

// 0

0 // 0 //

��

Fn−2

��

id // Fn−2

��

// 0

...
...

...

and a complex

H := · · · → Fn+3 → Fn+2 → D → X → Fn−1 → · · · .

Thus we obtain an exact sequence

0 −→ C[n]
α−→ H −→ F −→ 0 (3.1)

in C . By Proposition 3.2, Fn is a super finitely presented left R-module. Since C is weak injective, we

have Ext1R(Fn, C) = 0. So the exact sequence

0 −→ C
αn−→ X −→ Fn −→ 0

8



in ModR splits, and there exists an R-homomorphism fn : X → C such that fnαn = 1C . Now define

fn+1 : D → C by fn+1 = fnv and fi = 0 for i ̸= n, n + 1. Then we get a morphism of complexes

f : H → C[n] such that fα = 1C[n], and so the sequence (3.1) splits. It follows that Ext1(F,C[n]) = 0

for any super finitely presented complex F in C , as desired.

(2) Let D be a weak flat right R-module. Then D+ is weak injective in ModR by [16, Remark 2.2(2)],

and so D+[n] is a weak injective complex in C by (1). One easily sees that D+[n] ∼= D[n]+, it follows

that D[n] is weak flat in C op by Proposition 3.6(1). The desired assertion follows. �

Lemma 3.8. The following statements are equivalent for a complex C in C .

(1) C is a weak injective complex.

(2) Cn is weak injective in ModR for any n ∈ Z and H om(F,C) is exact for any super finitely

presented complex F in C .

(3) For any exact sequence

0 → Q → X → F → 0

in C with F super finitely presented, the functor Hom(−, C) preserves the exactness.

Proof. (1) ⇒ (2) Let G be a super finitely presented left R-module. Then there exists an exact

sequence

0 → N → P0 → G → 0

in ModR with P0 finitely generated projective and N super finitely presented. So

0 → N → P0 → G → 0

is exact in C , where G is a super finitely presented complex. Let C be a weak injective complex in C .

Then, by [10, Proposition 2.1], we have the following commutative diagram with the upper row exact:

0 // Hom(G,C) //

∼=��

Hom(P0, C) //

∼=��

Hom(N,C) //

∼=��

0

0 // HomR(G,C)[1] // HomR(P0, C)[1] // HomR(N,C)[1].

So

0 → HomR(G,C) → HomR(P0, C) → HomR(N,C) → 0

is exact, which gives the exactness of

0 → HomR(G,Cn) → HomR(P0, Cn) → HomR(N,Cn) → 0

for any n ∈ Z. Since Ext1R(P0, Cn) = 0, we have that Ext1R(G,Cn) = 0 and Cn is weak injective.

Now let F be a super finitely presented complex and f : F → C[i] any morphism in C . Then, for any

i ∈ Z, there exists a split exact sequence

0 → C[i] → M(f) → F [−1] → 0
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in C , where M(f) is the mapping cone of f . Thus f is homotopic to 0 by [17, Lemma 2.3.2]. It follows

that H om(F,C) is exact, as desired.

(2) ⇒ (1) Let

0 → C → H → F → 0

be an exact sequence in C with F super finitely presented. Since each Ci is weak injective by (2), this

exact sequence splits at the module level and it is isomorphic to

0 → C → M(f) → F → 0,

where f : F [1] → C is a map of complexes. Since H om(F [1], C) is exact by (2), f is homotopic to 0. It

follows that

0 → C → M(f) → F → 0

is a split exact sequence in C by [17, Lemma 2.3.2]. Therefore Ext1(F,C) = 0 and C is weak injective.

(1) ⇒ (3) is trivial.

(3) ⇒ (1) Let F be any super finitely presented complex in C . Then there exists an exact sequence

0 → Q → P → F → 0

in C with P finitely generated projective. Applying Hom(−, C) to it we get the exactness of

Hom(P,C) → Hom(Q,C) → Ext1(F,C) → 0.

But the sequence

Hom(P,C) → Hom(Q,C) → 0

is exact by (3). Consequently Ext1(F,C) = 0 and C is weak injective. �

We are now in the position to give our main result.

Theorem 3.9. The following statements are equivalent for a complex C in C .

(1) C is weak injective.

(2) C is exact and Zm(C) is weak injective in ModR for any m ∈ Z.

Proof. (1) ⇒ (2) Let C be a weak injective complex in C . Then Ext1(Sn(R), C) = 0 since Sn(R)

is super finitely presented for any n ∈ Z. Because H−n+1(C) = Ext1(Sn(R), C) for any n ∈ Z (see [17,

p.33]), it follows that C is exact. Next we will show that Ext1(G,Zm(C)) = 0 for any super finitely

presented left R-module G and m ∈ Z.
Let G be a super finitely presented left R-module and

0 → Q → P → G → 0 (3.2)

an exact sequence in ModR with P finitely generated projective and Q super finitely presented. It

induces an exact sequence

0 → Sn(Q) → Sn(P ) → Sn(G) → 0
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in C . Then Ext1(Sn(G), C) = 0 by assumption. So we have the exactness of

Hom(Sn(P ), C) → Hom(Sn(Q), C) → 0. (3.3)

Now suppose f : Q → Zn(C) be an R-homomorphism. Since C is exact, we have the following

diagram with exact row:

Q

f
��

αn

##G
G

G
G

0 // Zn(C)
i // Cn

// Zn−1(C) // 0

in ModR. Define αn : Q → Cn by αn = if and αj = 0 for j ̸= n. Then we obtain a morphism

α : Sn(Q) → C in C . Because the sequence (3.3) is exact, there exists β : Sn(P ) → C such that the

following diagram commutes:

Sn(Q) //

α
��

Sn(P )

βzzt
t
t
t

C.

Therefore, we have a commutative diagram

Q //

αn

��

P
βn

{{v v
v v

v

0 // Zn(C) // Cn

δCn // Cn−1

in ModR. It is clear that δCn βn = 0, which implies that Imβn ⊆ Ker δCn = Zn(C). So we can define a

morphism g : P → Zn(C) by g = βn. Consequently, the sequence

HomR(P,Zn(C)) → HomR(Q,Zn(C)) → 0

is exact.

On the other hand, applying HomR(−, Zn(C)) to the exact sequence (3.2), we get the exactness of

HomR(P,Zn(C)) → HomR(Q,Zn(C)) → Ext1R(G,Zn(C)) → 0.

It follows that Ext1R(G,Zn(C)) = 0 and Zn(C) is weak injective.

(2) ⇒ (1) Because C is exact by (2), for any n ∈ Z we have an exact sequence

0 → Zn(C) → Cn → Zn−1(C) → 0

in ModR. Since both Zn(C) and Zn−1(C) are weak injective, Cn is weak injective. Now, by Lemma 3.8,

it suffices to prove that H om(G,C) is exact for any super finitely presented complex G in C .

Let G be a super finitely presented complex in C . Then G is bounded by Proposition 3.2. Thus we

may suppose that

G := · · · −→ 0 −→ Gn
δGn−→ Gn−1

δGn−1−→ · · · δG2−→ G1
δG1−→ G0 −→ 0 −→ · · · .
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Since H om(G,C) is a complex of abelian groups with

H om(G,C) := · · · δn+1−→
∏
t∈Z

HomR(Gt, Cn+t)
δn−→

∏
t∈Z

HomR(Gt, Cn−1+t)
δn−1−→ · · · .

It follows that δn−1δn = 0, which implies that Im δn ⊆ Ker δn−1 for any n ∈ Z. So we only need to show

that Ker δn−1 ⊆ Im δn.

Let f ∈ Ker δn−1. Then δn−1(f) = (δCn−1+tft − (−1)n−1ft−1δ
G
t )t∈Z = 0. Next we will construct a

morphism

g ∈ H omC (G,C)n =
∏
t∈Z

HomR(Gt, Cn+t),

such that δn(g) = (δCn+tgt − (−1)ngt−1δ
G
t )t∈Z = (ft)t∈Z = f.

Notice that ft = 0 for t ≤ −1, so we take gt = 0 if t ≤ −1.

If t = 0, then δCn−1f0 = 0. It follows that Im f0 ⊆ Ker δCn−1 = Im δCn . Now consider the following

diagram:

G0

g0

yys s
s
s
s

f0
��

0 // Zn(C) // Cn
δCn

// Zn−1(C) // 0.

Since Zn(C) is weak injective and G0 is super finitely presented in ModR, there exists a homomorphism

g0 : G0 → Cn in ModR such that f0 = δCn g0.

If t = 1, then we have

δCn (f1 − (−1)n−1g0δ
G
1 ) = δCn f1 − (−1)n−1δCn g0δ

G
1 = δCn f1 − (−1)n−1f0δ

G
1 = 0,

and so

Im(f1 − (−1)n−1g0δ
G
1 ) ⊆ Ker δCn = Im δCn+1.

Putting h1 = f1 − (−1)n−1g0δ
G
1 , we have the following diagram:

G1

g1

yys s s s s
h1

��
0 // Zn+1(C) // Cn+1

δCn+1

// Zn(C) // 0.

Since Zn+1(C) is weak injective and G1 is super finitely presented in ModR, there exists a homomorphism

g1 : G1 → Cn+1 in ModR such that h1 = δCn+1g1. Thus

f1 = h1 − (−1)ng0δ
G
1 = δCn+1g1 − (−1)ng0δ

G
1 .

If t = 2, then

δCn+1(f2 − (−1)n−1g1δ
G
2 ) = δCn+1f2 − (−1)n−1δCn+1g1δ

G
2

= δCn+1f2 − (−1)n−1h1δ
G
2

= δCn+1f2 − (−1)n−1(f1 − (−1)n−1g0δ
G
1 )δ

G
2

= δCn+1f2 − (−1)n−1f1δ
G
2 = 0.

12



Thus Im(f2 − (−1)n−1g1δ
G
2 ) ⊆ Ker δCn+1 = Im δCn+2. Set h2 = f2 − (−1)n−1g1δ

G
2 . Consider the following

diagram:

G2

g2

xxq q q q q
h2

��
0 // Zn+2(C) // Cn+2

δCn+2

// Zn+1(C) // 0.

Then there exists a homomorphism g2 : G2 → Cn+2 in ModR such that h2 = δCn+2g2. Also,

f2 = h2 − (−1)ng1δ
G
2 = δCn+2g2 − (−1)ng1δ

G
2 .

Continuing this process, we get that f = (ft)t∈Z = δng ∈ Im δn. Consequently Ker δn−1 ⊆ Im δn. The

proof is finished. �

Similar to the proof of [11, Theorem 2.4], we have the following

Theorem 3.10. The following statements are equivalent for a complex D in C op.

(1) D is a weak flat complex.

(2) D is exact and Zi(D) is weak flat in ModRop for any i ∈ Z.
(3) D+ is a weak inective complex in C , where

D+ := · · · → (Di−2)
+ → (Di−1)

+ → (Di)
+ → · · · .

4. Weak Injective and Weak Flat Dimensions of Complexes

In this section, we introduce and investigate weak injective and weak flat dimensions of complexes.

Some known results in [17] are generalized. We also show that there exists a close link between the weak

injective dimension and the weak flat dimension of complexes.

Definition 4.1. (1) The weak injective dimension of a complex C in C , written widC, is defined as

inf{n | there exists an exact sequence

0 → C → E0 → E1 → · · · → En → 0

in C with each Ei weak injective}. If no such n exists, set widC = ∞.

(2) The weak flat dimension of a complex D in C op, written wfdD, is defined as inf{n | there exists

an exact sequence

0 → Fn → · · · → F 1 → F 0 → D → 0

in C op with each F i weak flat}. If no such n exists, set wfdC = ∞.

Garćıa Rozas proved in [17, Theorem 3.1.3] that for any complex C in C , the injective dimension of

C in C is at most n if and only if C is exact and the injective dimension of Zm(C) in ModR is at most

n for any m ∈ Z. The following theorem generalizes this result.
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Theorem 4.2. Let C be a complex in C . Then the following statements are equivalent.

(1) widC ≤ n.

(2) C is exact and widR Zm(C) ≤ n for any m ∈ Z.

Proof. (1) ⇒ (2) Assume that widC ≤ n and

0 → C → E0 → E1 → · · · → En → 0

is a weak injective resolution of C in C . By Theorem 3.9, each Ei is an exact complex. Thus we easily

deduce that C is exact by [21, Theorem 6.3]. On the other hand, for any m ∈ Z, we have the following

exact sequence

0 → Zm(C) → Zm(E0) → Zm(E1) → · · · → Zm(En) → 0

in ModR. By Theorem 3.9, each Zm(Ei) is weak injective. Therefore widR Zm(C) ≤ n for any m ∈ Z.
(2) ⇒ (1) Let

0 → C → E0 → E1 → · · · → En−1 → Ln → 0

be an exact sequence in C with each Ei weak injective. We only need to show that Ln is weak injective.

Consider the following exact sequence:

0 → Zm(C) → Zm(E0) → · · · → Zm(En−1) → Zm(Ln) → 0

in ModR. Because widR Zm(C) ≤ n and each Zm(Ei) is weak injective by Theorem 3.9, we have Zm(Ln)

is weak injective. Because C and all Ei are exact, one easily gets that Ln is exact by [21, Theorem 6.3].

Consequently, Ln is a weak injective complex by Theorem 3.9 again, and the assertion follows. �

For any complex D in C op, it is known that the flat dimension of D in C op is at most n if and only

if D is exact and the flat dimension of Zm(D) in ModRop is at most n for any m ∈ Z (see [17, Lemma

5.4.1]). By a dual argument to that in Theorem 4.2, we get the following

Theorem 4.3. Let D be a complex in C op. Then the following statements are equivalent.

(1) wfdD ≤ n.

(2) D is exact and wfdRop Zm(D) ≤ n for any m ∈ Z.

As an application of Theorems 4.2 and 4.3, we have the following

Corollary 4.4. Let C (resp. D) be an exact complex in C (resp. C op). Then we have

(1) widC = sup{widR Zm(C) | m ∈ Z}.
(2) wfdD = sup{wfdRop Zm(D) | m ∈ Z}.

Proof. The assertions follows from Theorems 4.2 and 4.3 respectively with standard arguments. �

Similar to the proofs of [16, Propositions 3.1, 3.3 and 3.4], we get the following two results.

Proposition 4.5. For a complex C in C , the following conditions are equivalent.

(1) widC ≤ n

(2) Extn+1(F,C) = 0 for any super finitely presented complex F in C .
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(3) Extn+i(F,C) = 0 for any super finitely presented complex F in C and i ≥ 1.

Proposition 4.6. For a complex D in C op, the following conditions are equivalent.

(1) wfdD ≤ n

(2) Torn+1(D,F ) = 0 for any super finitely presented complex F in C .

(3) Torn+i(D,F ) = 0 for any super finitely presented complex F in C and i ≥ 1.

We finish this section with the following theorem, which illustrates that there exists a close link

between the weak injective and the weak flat dimension of complexes.

Theorem 4.7. For a complex C in C (or C op), we have

(1) widC = wfdC+.

(2) wfdC = widC+.

Proof. (1) Let F a super finitely presented complex in C . There exists an exact sequence

0 → K → P 0 → F → 0

in C with P 0 finitely generated projective and K super finitely presented by Proposition 3.2. For any

i ≥ 1, we have the following commutative diagram with exact rows:

0 // Exti+1(F,C)+ //

��

Exti(K,C)+ //

θK��

Exti(P 0, C)+ = 0

0 // Tori+1(C
+, F ) // Tori(C+,K) // Tori(C+, P 0) = 0

By Proposition 3.6(2), θK is an isomorphism for i = 1. Thus Ext2(F,C)+ ∼= Tor2(C
+, F ) by the five

lemma. By using induction, we get that Exti+1(F,C)+ ∼= Tori+1(C
+, F ) for any super finitely presented

complex F in C , and so (1) holds true.

(2) It is dual to (1). �

5. Weak Injective Covers and Preenvelopes of Complexes

In this section, we show that any complex has a weak injective (resp. weak flat) cover and preenvelope.

Recall from [17] that an exact sequence

0 → S → C → C/S → 0

in C is called pure if

Hom(P,C) → Hom(P,C/S) → 0

is exact for any finitely presented complex P in C , or equivalently, if

0 → D ⊗ S → D ⊗ C

is exact for any (finitely presented) complex D in C . In this case, S and C/S are called a pure subcomplex

and a pure epimorphic image of C respectively.
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Proposition 5.1. The category of weak injective complexes and the category of weak flat complexes

are closed under pure subcomplexes, pure epimorphic images and direct limits.

Proof. Let B be a pure subcomplex of a weak injective complex C and

0 → B → C → C/B → 0

a pure exact sequence in C . Then for any super finitely presented complex F in C , we get the exactness

of

0 → Hom(F,B) → Hom(F,C) → Hom(F,C/B) → 0.

It follows that Ext1(F,B) = 0 since Ext1(F,C) = 0. Therefore, B is weak injective. On the other hand,

one can easily conclude that C/B is also weak injective by Proposition 4.5, and hence the category of

weak injective complexes is closed under pure epimorphic images.

Let {Ci}i∈I be a direct system of weak injective complexes and F a super finitely presented complex

in C . Then there exists an exact sequence

0 → K → P → F → 0

in C with P finitely generated projective and K super finitely presented. Consider the following commu-

tative diagram with exact rows:

Hom(P, lim−→Ci) //

∼=
��

Hom(K, lim−→Ci) //

∼=
��

Ext1(F, lim−→Ci)

��

// 0

lim−→Hom(P,Ci) // lim−→Hom(K,Ci) // lim−→Ext1(F,Ci) // 0.

Because C is locally finitely generated in the sense of [22], we have that Hom(P, lim−→Ci) ∼= lim−→Hom(P,Ci)

and Hom(K, lim−→Ci) ∼= lim−→Hom(K,Ci) by [22, Chapter V, Proposition 3.4]. Consequently we have that

Ext1(F, lim−→Ci) ∼= lim−→Ext1(F,Ci) = 0 and lim−→Ci is weak injective.

Now suppose that A is a pure subcomplex of a weak flat complex C in C op. Then there exists a pure

exact sequence

0 → A → C → C/A → 0

in C op, which induces a split exact sequence

0 → (C/A)+ → C+ → A+ → 0

in C . By Proposition 3.6(1), C+ is weak injective. Since A+ is isomorphic to a direct summand of C+,

A+ is also weak injective by Remark 3.4(2). Therefore A is weak flat by Proposition 3.6(1) again. On the

other hand, let F be a super finitely presented complex in C . Then we have the following exact sequence

0 → A⊗ F → C ⊗ F → C/A⊗ F → 0.

It follows that Tor1(C/A,F ) = 0 since Tor1(C,F ) = 0. Thus C/A is weak flat and the category of weak

flat complexes is closed under pure epimorphic images.
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Let {Di}i∈I be a direct system of weak flat complexes in C op and F a super finitely presented complex

in C . Then there exists an exact sequence

0 → L → P → F → 0

in C with P finitely generated projective and L super finitely presented. By [17, Proposition 4.2.1], we

obtain the commutative diagram with exact rows:

0 // Tor1(lim−→Di, F ) //

��

(lim−→Di)⊗ L //

∼=
��

(lim−→Di)⊗ P

∼=
��

0 // lim−→Tor1(Di, F ) // lim−→(Di ⊗ L) // lim−→(Di ⊗ P )

It follows that Tor1(lim−→Di, F ) ∼= lim−→Tor1(Di, F ) = 0, and so lim−→Di is weak flat. �

Recall from [8] that a category D is called finitely accessible (or locally finitely presented in [7]) if it

has direct limits, the class of finitely presented objects is skeletally small, and every object is a direct

limit of finitely presented objects. It was showed in [8] that if D is a finitely accessible category and B

is a class of objects of D closed under direct limits and pure epimorphic images, then B is covering; if

D is a finitely accessible additive category with products and B is a class of objects of D closed under

products and pure subobjects, then B is a preenveloping class.

We now are in a position to prove the following

Theorem 5.2.

(1) Any complex in C has a weak injective cover.

(2) Any complex in C op has a weak flat cover.

Proof. (1) By [10, Lemma 2.2], any complex is a direct limit of finitely presented complexes. It is

easy to see that C is finitely accessible. Because the category of weak injective complexes is closed under

direct limits and pure epimorphic images by Proposition 5.1, it follows from [8, Theorem 2.6] that any

complex in C has a weak injective cover.

(2) It is dual to (1). �

For a complex C, its cardinality is defined to be |
⨿

n∈Z Cn| in [18].

Theorem 5.3.

(1) Any complex in C op has a weak flat preenvelope.

(2) Any complex in C has a weak injective preenvelope.

Proof. (1) The proof is modelled on that of [17, Theorem 5.2.2].

Because any direct product of weak flat modules is weak flat by [16, Theorem 2.13], it follows that a

direct product of weak flat complexes is also a weak flat complex since it is exact and the kernels of the

boundary operators are weak flat.

Let C be a complex in C op and Nβ an infinite cardinal number such that Card(C) · Card(R) ≤
Nβ . Set Y = {D |D is a weak flat complex in C op and Card(D) ≤ Nβ}. Let {Di}i∈I be a family of
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representatives of this class with the index set I. Let Hi = Hom(C,Di) for any i ∈ I, and let F =
∏

DHi
i .

Then F is a weak flat complex in C op. Define φ : C → F such that the composition of φ with the

projective map F → DHi
i maps x ∈ F k to (hk(x))h∈Hi . Then it is easy to see that φ : C → F is a map of

complexes. We claim that φ : C → F is a weak flat preenvelope. Now let φ
′
: C → G with G a weak flat

complex. By [17, Lemma 5.2.1], the subcomplex φ
′
(C) can be enlarged to a pure subcomplex G

′ ⊆ G

with Card(G
′
) ≤ Nβ . Note that G

′
is weak flat by Proposition 5.1. So G

′
is isomorphic to one of the Di.

By the construction of the map φ, one easily sees that φ
′
can be factored through φ. Consequently, the

first assertion follows.

(2) It is dual to (1). �

Remark 5.4. From the proof of Theorem 5.3, it follows that the category of weak flat complexes is

closed under direct products. Note that the category of weak injective complexes is closed under direct

products by Remark 3.4(2). We can also obtain Theorem 5.3 directly from [8, Theorem 4.1] because

the category of weak injective complexes and the category of weak flat complexes are closed under pure

subcomplexes by Proposition 5.1.

Proposition 5.5. Let C be a complex in C .

(1) If f : G → C is a weak injective precover in C , then fn : Gn → Cn is a weak injective precover in

ModR for any n ∈ Z.
(2) If g : C → D is a weak injective preenvelope in C , then gn : Cn → Dn is a weak injective

preenvelope in ModR for any n ∈ Z.

Proof. (1) Let E be a weak injective left R-module and h : E → Cn an R-homomorphism. Define a

morphism h : E[n− 1] → C in C as follows:

0 // 0 //

��

E
id //

h
��

E //

δCn h
��

0 //

��

· · ·

0 // Cn+1
// Cn

// Cn−1
// Cn−2

// · · · .

Since E[n − 1] is a weak injective complex by Proposition 3.7, and since f : G → C is a weak injective

precover of C in C by assumption, there exists a morphism α : E[n− 1] → G in C such that fα = h. So

we have a commutative diagram:

E
αn

zzu
u
u
u

h
��

Gn
fn

// Cn

in ModR. This means that fn : Gn → Cn is a weak injective precover of Cn in ModR.

(2) Let F be a weak injective left R-module and β : Cn → F an R-homomorphism. Define a morphism

β : C → F [n] in C as follows:

0 // Cn+2
//

��

Cn+1
//

βδCn+1
��

Cn
//

β
��

Cn−1
//

��

· · ·

0 // 0 // F
id // F // 0 // · · · .
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Because F [n] is a weak injective complex by Proposition 3.7, and since g : C → D is a weak injective

preenvelope of C in C by assumption, there exists a morphism γ : D → F [n] in C such that γg = β. So

we have a commutative diagram:

Cn

β
��

gn // Dn

γnzzu
u
u
u

F

in ModR. This shows that gn : Cn → Dn is a weak injective preenvelope of Cnin ModR. �

Dually, we have the following

Proposition 5.6. Let C be a complex in C op.

(1) If f : G → C is a weak flat precover in C op, then fn : Gn → Cn is a weak flat precover in ModRop

for any n ∈ Z.
(2) If g : C → D is a weak flat preenvelope in C op, then gn : Cn → Dn is a weak flat preenvelope in

ModRop for any n ∈ Z.

In the following result, we give some equivalent characterizations for RR being weak injective in terms

of the properties of weak injective and weak flat complexes.

Theorem 5.7. The following statements are equivalent.

(1) RR is weak injective.

(2) Every injective complex in C op is weak flat.

(3) Every flat complex in C is weak injective.

(4) Every complex in C op has a monic weak flat preenvelope.

(5) Every complex in C has an epic weak injective cover.

Proof. (1) ⇒ (2) Let C be an injective complex in C op. Then C is exact and Zm(C) is an injective

right R-module for any m ∈ Z. Since RR is weak injective, Zm(C) is a weak flat right R-module by [16,

Proposition 2.17]. Thus C is weak flat by Theorem 3.10.

(2) ⇒ (1) Let M be an injective right R-module. Then M is an injective complex in C op, and hence

M is a weak flat complex by (2). It follows that M is a weak flat right R-module. Then RR is weak

injective by [16, Proposition 2.17].

(1) ⇔ (3) It is dual to (1) ⇔ (2).

(1) ⇒ (4) Since RR is weak injective, every injective right R-module is weak flat by [16, Proposition

2.17]. Thus every injective complex in C op is weak flat, and so (4) follows.

(4) ⇒ (2) Let I be an injective complex in C op. By (4), there exists an exact sequence

0 → I → F → N → 0

in C op with I → F a weak flat preenvelope of I. The sequence is split since I is injective. Thus I is weak

flat as a direct summand of F by Remark 3.4(2).
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(1) ⇒ (5) Let C be a complex in C . Then, by Theorem 5.2, C has a weak injective cover f : E → C

in C . On the other hand, there exists an exact sequence

F → C → 0

in C with F free. Then F ∼=
⊕

n∈Z R
(Xn)

[n]. Since RR is weak injective by (1), we have that R
(Xn)

[n]

is weak injective, and so f is an epimorphism.

(5) ⇒ (1) Let E → R be an epic weak injective cover of R in C . Then RR is isomorphic to a direct

summand of a weak injective left R-module E0, and so RR is weak injective by [16, Proposition 2.3]. �
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[1] Aldrich, S. T., Enochs, E. E., Garćıa Rozas, J. R., Oyonarte, L.: Covers and envelopes in

Grothendieck categories: flat covers of complexes with applications, J. Algebra 243 (2001), 615–630.

[2] Anderson, F. W., Fuller, K. R.: Rings and Categories of Modules, 2nd edition, Graduate Texts in

Math. 13, Springer-Verlag, New York, 1992.

[3] Angeleri Hügel, L., Herbera, D., Trlifaj, J.: Tilting modules and Gorenstein rings, Forum Math.

18 (2006), 211–229.

[4] Avramov, L. L., Foxby, H. B.: Homological dimensions of unbounded complexes, J. Pure Appl.

Algebra 71(1991): 129–155.

[5] Bican, L., El Bashir, R., Enochs, E. E.: All modules have flat covers, Bull. London Math. Soc. 33

(2001), 385–390.

[6] Brown, K. S.: Cohomology of Groups, Springer-Verlag, New York, 1982.

[7] Crawley-Boevey, W.: Locally finitely presented additive categories, Comm. Algebra 22 (1994),

1641–1674.

[8] Crivei, S., Prest, M., Torrecillas, B.: Covers in finitely accessible categories, Proc. Amer. Math.

Soc. 138 (2010), 1213–1221.

[9] Enochs, E. E.: Injective and flat covers, envelopes and resolvents, Israel J. Math. 39 (1981), 189–

209.
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[11] Enochs, E. E., Garćıa Rozas, J. R.: Flat covers of complexes, J. Algebra 210 (1998), 86–102.

[12] Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra, de Gruyter Expositions in Math.

30, Walter de Gruyter GmbH & Co. KG, Berlin, 2000.

[13] Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra, Vol. 2, de Gruyter Expositions in

Math. 54, Walter de Gruyter GmbH & Co. KG, Berlin, 2011.

[14] Gao, Z. H., Huang, Z. Y.: Weak injective covers and dimension of modules, preprint is available at

http://math.nju.edu.cn/∼huangzy/papers/weakinj.pdf

[15] Gao, Z. H., Wang, F. G.: All Gorenstein hereditary rings are coherent, J. Algebra Appl. 13 (2014),

1350140 (5 pages).

[16] Gao, Z. H., Wang, F. G.: Weak injective and weak flat modules, Comm. Algebra (to appear).
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