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Abstract
Let R be a ring and Rω a selforthogonal module. We introduce the notion of the right

orthogonal dimension (relative to Rω) of modules. We give a criterion for computing this
relative right orthogonal dimension of modules. For a left coherent and semi-local ring R
and a finitely presented selforthogonal module Rω, we show that the projective dimension
of Rω and the right orthogonal dimension (relative to Rω) of R/J are identical, where
J is the Jacobson radical of R. As a consequence, we get that Rω has finite projective
dimension if and only if every left (finitely presented) R-module has finite right orthogonal
dimension (relative to Rω). If ω is a tilting module, we then prove that a left R-module
has finite right orthogonal dimension (relative to Rω) if and only if it has a special
ω⊥-preenvelope.

Tilting modules and cotilting modules are very important research objects in representa-

tion theory of artin algebras, which are some special kinds of orthogonal modules. Let Rω be

a finitely generated selforthogonal module over an Artinian algebra R. Huang in [H] intro-

duced the notion of left orthogonal dimension (relative to Rω) of modules, and proved that

the injective dimension of Rω is finite if and only if every finitely generated left R-module

has finite left orthogonal dimension (relative to Rω). In [CT] Colpi and Trlifaj investigated

the properties of tilting torsion theories. Futhermore, Angeleri Hügel and Coelho established

in [AnC] the relationship between the tilting theory and relative homological theory.

Motivated by the papers mentioned above, in this paper we introduce in Section 1 the

notion of right orthogonal dimension (relative to a given selfothogonal module) of modules.

In Section 2, we first give a criterion for computing this relative right orthogonal dimension

of modules and prove that for a left R-module M and a non-negative integer n, the right

orthogonal dimension (relative to a selfothogonal module Rω) of M is at most n if and only

if the n-th cosyzygy of M is right orthogonal with Rω. Let R be a left coherent and semi-

local ring and Rω a finitely presented selforthogonal module. We show that the projective
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dimension of Rω and the right orthogonal dimension (relative to Rω) of R/J are identical,

where J is the Jacobson radical of R. As a consequence of the obtained results, we get that

Rω has finite projective dimension if and only if every left (finitely presented) R-module has

finite right orthogonal dimension (relative to Rω). In Section 3 we study the properties of

right orthogonal dimension (relative to Rω) of modules when ω is a tilting module. We prove

that a left R-module has finite right orthogonal dimension (relative to Rω) if and only if it

has a special ω⊥-preenvelope if and only if it has a special X -precover, where X denotes the

subcategory of left R-modules consisting of all X with AddRω-coresol.dimR(X) (see Section

3 for the defintion) at most n.

1. Definitions and Notations

For a ring R, We use Mod R to denote the category of left R-modules. For a left R-module

M , we use l.pdR(M) to denote the left projective dimension of M .

Definition 1.1 Let ω ∈ Mod R. We call ω a selforthogonal module if Exti
R(ω, ω) = 0 for

any i≥1.

Definition 1.2 Let ω ∈ Mod R be a selforthogonal module and X ∈ Mod R. X is

said to be right orthogonal with ω if Exti
R(ω, X)=0 for any i≥1. We use ω⊥ to denote the

subcategory of Mod R consisting of the modules which are right orthogonal with ω. An

exact sequence 0 → X → X0 → · · · → Xn → · · · in Mod R is called a ω⊥-coresolution of X

if all Xi ∈ ω⊥.

We now introduce the notion of the right orthogonal dimension (relative to a given

module) of modules as follows.

Definition 1.3 Let ω and M be in Mod R. If M has a ω⊥-coresolution 0 → M → X0 →
· · · → Xn → · · · , then set ω⊥-dimR(M) = inf{n|0 → M → X0 → · · · → Xn → 0 is a right

orthogonal coresolution of M}. If no such an integer exists set ω⊥-dimR(M) = ∞. We call

ω⊥-dimR(M) the right orthogonal dimension of M .

For any M ∈Mod R, it is clear that ω⊥-dimR(M) is at most the injective dimension of M ,

and ω⊥-dimR(M) = 0 if and only if M ∈ ω⊥. So the notion of this relative right orthogonal

dimension can be regarded as a generalization of that of the injective dimension. On the other

hand, there is a close relation between the right orthogonal dimension of modules (relative

to a given selforthogonal module Rω) and the projective dimension of Rω. In fact, in next

section we will show that if Rω is selforthogonal, then for any M ∈Mod R, ω⊥-dimR(M) is

at most the projective dimension of Rω.
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2. The Right Orthogonal Dimension of Modules

In this section, R is a ring and Rω ∈ Mod R is a selforthogonal module. The right

orthogonal dimension relative to Rω of a module M is called the right orthogonal dimension

of M for short.

Definition 2.1 ([R]) Let B ∈Mod R and 0 → B → E0
d0−→ E1

d1−→ · · · di−1−→ Ei
di−→ · · · be

an injective coresolution; denote Imε by coΩ0(B) and, for n ≥1, denote Imdn−1 by coΩn(B).

For any n ≥0, coΩn(B) is called the n-th cosyzygy of B.

The following theorem gives a criterion for computing the right orthogonal dimension of

modules.

Theorem 2.2 Let M ∈Mod R. Then ω⊥-dimR(M) ≤ n if and only if coΩn(M) ∈ ω⊥.

Proof. Assume that

0 → M → E0
d0−→ E1

d1−→ · · · di−1−→ Ei
di−→ · · ·

is a minimal injective coresolution of RM . The sufficiency is trivial. We next prove the

necessity.

The case n=0 is trivial. Now suppose that n ≥1 and M has the following right orthogonal

coresolution: 0 → M → Y0
f0−→ Y1

f1−→ · · ·Yn−1
fn−1−→ Yn −→ 0.

Consider the following push-out diagram:

0

²²

0

²²
0 // M //

²²

E0

²²

// coΩ1(M) // 0

0 // Y0
//

²²

E0
⊕

Imf0
//

²²

coΩ1(M) // 0

Imf0

²²

Imf0

²²
0 0

By the exactness of the middle row in the above diagram we get that Exti
R(ω, Imf0) ∼=

Exti
R(ω, coΩ1(M)) for any i ≥1. On the other hand, it is easy to see that Exti

R(ω, coΩn(M)) ∼=
Exti+n−1

R (ω, coΩ1(M)) for any i ≥1 and Extt+n−1
R (ω, Imf0) ∼= Extt

R(ω, Yn) = 0 for any t ≥ 1.

So Exti
R(ω, coΩn(M)) = 0 for any i ≥1 and coΩn(M) ∈ ω⊥. This completes the proof. ¤
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Lemma 2.3 Let M ∈Mod R and ω⊥-dimR(M) < ∞. Then ω⊥-dimR(M)=sup{t |Extt
R(ω,

M) 6= 0}.

Proof. Suppose ω⊥-dimR(M)=n < ∞. By Theorem 2.2, Extk
R(ω, M) ∼= Extk−n

R (ω,

coΩn(M))=0 for any k ≥ n + 1. So sup{t | Extt
R(ω, M) 6= 0} ≤ n. Suppose that

0 → M → E0 → E1 → · · · → Ei → · · ·

is a minimal injective coresolution of M . For any n ≥ 1, from the exact sequence 0 →
coΩn−1(M) → En−1 → coΩn(M) → 0 we get a long exact sequence:

· · · → Exti−1
R (ω, coΩn(M)) → Exti

R(ω, coΩn−1(M)) → Exti
R(ω, En−1)

→ Exti
R(ω, coΩn(M)) → Exti+1

R (ω, coΩn−1(M)) → · · · .

So Exti
R(ω, coΩn−1(M))=0 for any i ≥ 2. We claim that Ext1R(ω, coΩn−1(M)) 6=0. Other-

wise, if Ext1R(ω, coΩn−1(M))=0, then Exti
R(ω, coΩn−1(M))=0 for any i ≥ 1 and coΩn−1(M) ∈

ω⊥. It follows from Theorem 2.2 that ω⊥-dimR(M) ≤ n−1, which is a contradiction. In addi-

tion Extn
R(ω, M) ∼=Ext1R(ω, coΩn−1(M)), so Extn

R(ω, M) 6=0, which implies sup{t |Extt
R(ω, M)

6= 0} ≥ n. This finishes the proof. ¤

Lemma 2.4 ω⊥-dimR(M) ≤l.pdR(ω) for any M ∈Mod R.

Proof. Without loss of generalization, suppose l.pdR(ω) = n < ∞. Then for any

M ∈Mod R and i ≥ n + 1, we have that Exti
R(ω, coΩn(M)) ∼=Extn+i

R (ω, M)=0 for any i ≥ 1

and coΩn(M) ∈ ω⊥. It follows from Theorem 2.2 that ω⊥-dimR(M) ≤ n. We are done. ¤

Recall from [S] that R is called a semi-local ring if R/J is an Artinian semi-simple ring.

It is well known that a semi-perfect ring (more specially, an Artinian ring or a semi-primary

ring) is semi-local (see [AF]). Also recall from [S] that a left R-module M is called finitely

presented if there is a finitely generated projective left R-module P and a finitely generated

submodule N of P such that P/N ∼= M . A left R-module M is said to admit a finitely

generated projective resolution if there is an exact sequence: · · · −→ Pi
fi−→ · · · −→ P1

f1−→
P0 −→ M −→ 0, where Pi is a finitely generated projective left R-module for any i ≥ 0 (see

[G]). It is clear that if M admits a finitely generated projective resolution as above, then M

and Imfi are finitely presented for any i ≥ 1.

Theorem 2.5 Let R be a semi-local ring. If Rω admits a finitely generated projective

resolution, then l.pdR(ω) = ω⊥-dimR(R/J).
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Proof. By Lemma 2.4, we have that ω⊥-dimR(R/J) ≤l.pdR(ω). Then we need to prove

that l.pdR(ω) ≤ ω⊥-dimR(R/J). Without loss of generalization, suppose ω⊥-dimR(R/J) =

n < ∞. Then by Lemma 2.3, we have that Exti
R(ω, R/J)=0 for any i ≥ n + 1.

Now suppose that

· · · → Pi
fi−→ · · · −→ P1

f1−→ P0 → Rω → 0

is a finitely generated projective resolution of Rω. Then Exti
R(Imfn, R/J) ∼= Extn+i

R (ω, R/J)=0

for any i ≥ 1. So by [XC, Lemma 3], we have that Imfn is projective and hence l.pdR(ω) ≤ n.

We are done. ¤

Recall from [S] that R is called a left coherent ring if every finitely generated submodule of

a finitely presented left R-module is also finitely presented. It is clear that R is left coherent

if R is a left Noetherian ring. On the other hand, it is not difficult to see that if R is a

left coherent ring, then every presented left R-module admits a finitely generated projective

resolution. So, the following corollary is an immediate consequence of Theorem 2.5.

Corollary 2.6 Let R be a left coherent and semi-local ring. If Rω is finitely presented,

then l.pdR(ω) = ω⊥-dimR(R/J).

The following result is a dual version of [H, Theorem 2].

Corollary 2.7 Let R be a left coherent and semi-local ring and Rω finitely presented.

Then the following statements are equivalent.

(1) l.pdR(ω) < ∞.

(2) Every (finitely presented) left R-module has finite right orthogonal dimension.

(3) Every cyclic left R-module has finite right orthogonal dimension.

(4) ω⊥-dimR(R/J) < ∞.

Proof. By Lemma 2.4 and Corollary 2.6. ¤

3. Tilting Case

Recall from [AnC] that a module M ∈Mod R is called a tilting module provided the

following conditions are satisfied:

(1) l.pdR(M) < ∞.

(2) Exti
R(M, M (I))=0 for any i ≥ 1 and index set I.

(3) There exists an exact sequence 0 → RR → M0 → M1 → · · · → Mr → 0 with

Mi ∈ AddRM for any 0 ≤ i ≤ r, where AddRM denotes the full subcategory of Mod R

consisting of all modules isomorphic to direct summands of direct sums of copies of RM .
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In this section, ω ∈Mod R is a tilting module.

Let A be a subcategory of Mod R. We use ⊥A the subcategory of Mod R consisting of

the modules X with Exti
R(A,X) = 0 for any A ∈ A and i ≥ 1.

Lemma 3.1 ([AnC, Lemma 2.4]) (1) For any X ∈ ω⊥, there exists an exact sequence

0 → K → M → X → 0 with M ∈AddRω and K ∈ ω⊥.

(2) Every homomorphism A → X with A ∈⊥(ω⊥) and X ∈ ω⊥ factors through AddRω.

In particular, AddRω= ω⊥
⋂⊥(ω⊥).

Definition 3.2 ([EJ]) Assume that C ⊃ D are subcategories of Mod R and C ∈ C , D ∈
D . The morphism C → D is said to be a preenvelope of C if HomR(D, X) → HomR(C, X) →0

is exact for all X ∈ D . The subcategory D is said to be preenveloping in C if every C in C

has a preenvelope. An D-preenvelope f of C is called special if it is a monomorphism and

Ext1R(Cokerf,X)=0 for any X ∈ D . Dually, the morphism D → C is said to be a precover

of C if HomR(X, D) →HomR(X, C) →0 is exact for all X ∈ D . The subcategory D is said

to be precovering in C if every C in C has a precover. An D-precover f of C is called special

if it is an epimorphism and Ext1R(X, Kerf)=0 for any X ∈ D .

Lemma 3.3 ω⊥-dimR(M) ≤ 1 if and only if there exists an exact sequence 0 → M →
V → M ′ → 0 with V ∈ ω⊥ and M ′ ∈ AddRω.

Proof. Since Rω is a tilting module, AddRω ∈ ω⊥. So the sufficiency is trivial. Hence

it suffices to prove the necessity. Suppose ω⊥-dimR(M) ≤ 1, then there exists an exact

sequence 0 → M → V0 → V1 → 0 with V0, V1 ∈ ω⊥. By Lemma 3.1(1), there exists an exact

sequence 0 → K → M ′ → V1 → 0 with M ′ ∈ AddRω and K ∈ ω⊥. Consider the following

pull-back diagram:

0

²²

0

²²
K

²²

K

²²
0 // M // V

²²

// M ′

²²

// 0

0 // M // V0
//

²²

V1

²²

// 0

0 0

From the middle column in the above diagram, We know that V ∈ ω⊥. So the middle row

is desired. ¤
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Let X be a full subcategory of Mod R and A a module in Mod R. If there is an exact

sequence 0 → A → X0 → X1 → · · · → Xn → · · · in Mod R with Xi ∈ X for any i ≥ 0, then

we define the X -coresolution dimension of A, denoted by X -coresol.dimR(A), as inf{n|there

is an exact sequence 0 → A → X0 → X1 → · · · → Xn → 0 in Mod R with Xi ∈ X for any

0 ≤ i ≤ n}. We set X -coresol.dimR(A) infinity if no such an integer exists (see [AuB]).

Proposition 3.4 Let n be a non-negative integer. For any M ∈ ModR, ω⊥-dimR(M) ≤
n if and only if there exists an exact sequence 0 → M → V → M ′ → 0 with AddRω-

coresol.dimR(M ′) ≤ n− 1 and V ∈ ω⊥.

Proof. The sufficiency is trivial. In the following we will prove the necessity by using

induction on n. The case for n ≤ 1 follows from Lemma 3.3. Now suppose n ≥ 2. We have

an exact sequence 0 → M → V0 → Q → 0 in Mod R with V0 ∈ ω⊥ and ω⊥-dimR(Q) ≤ n−1.

By induction assumption, we have an exact sequence 0 → Q → V1 → K → 0 with AddRω-

coresol.dimR(K) ≤ n − 2 and V1 ∈ ω⊥. Since V1 ∈ ω⊥, by Lemma 3.1(1) there exists an

exact sequence 0 → Y → X → V1 → 0 with X ∈AddRω and Y ∈ ω⊥. First, consider the

following pull-back diagram:

0

²²

0

²²
0 // Y // M ′

²²

// Q

²²

// 0

0 // Y // X //

²²

V1
//

²²

0

K

²²

K

²²
0 0

From the middle column in the above diagram, we have that AddRω-coresol.dimR(M ′) ≤
n− 1.
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Next, consider the following pull-back diagram:

0

²²

0

²²
Y

²²

Y

²²
0 // M // V

²²

// M ′

²²

// 0

0 // M // V0
//

²²

Q

²²

// 0

0 0

From the middle column in the above diagram, we know that E ∈ ω⊥. So the middle row is

desired. ¤

Proposition 3.5 The following statements are equivalent for a non-negative integer n.

(1) For any M ∈Mod R, there exists an exact sequence 0 → M → V → K → 0 with

AddRω-coresol.dimR(K) ≤ n− 1 and V ∈ ω⊥.

(2) For any M ∈Mod R, there exists an exact sequence 0 → V ′ → K ′ → M → 0 with

AddRω-coresol.dimR(K ′) ≤ n and V ′ ∈ ω⊥.

Proof. (1)⇒(2) Let M ∈Mod R. Then by (1), there exists an exact sequence 0 → M →
V → K → 0 with AddRω-coresol.dimR(K) ≤ n − 1 and V ∈ ω⊥. By Lemma 3.1(1) there

exists an exact sequence 0 → V ′ → X → V → 0 with X ∈AddRω and V ′ ∈ ω⊥.

Consider the following pull-back diagram:

0

²²

0

²²
0 // V ′ // K ′

²²

// M

²²

// 0

0 // V ′ // X //

²²

V //

²²

0

K

²²

K

²²
0 0

From the middle column in the above diagram, we have AddRω-coresol.dimR(K ′) ≤ n. So

the first row is desired.
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(2)⇒(1) Let M ∈Mod R. Then by (2), there exists an exact sequence 0 → V ′ → K ′ →
M → 0 with AddRω-coresol.dimR(K ′) ≤ n and V ′ ∈ ω⊥. So there exists an exact sequence

0 → K ′ → X → K → 0 with X ∈AddRω and AddRω-coresol.dimR(K) ≤ n− 1.

Consider the following push-out diagram:

0

²²

0

²²
V ′

²²

V ′

²²
0 // K ′

²²

// X

²²

// K // 0

0 // M //

²²

V //

²²

K // 0

0 0

From the middle column in the above diagram, we have V ∈ ω⊥. So the last row is desired.

¤

It is easy to verify that the exact sequence in Proposition 3.5(1) is a special ω⊥-preenvelope

of M , and that of Proposition 3.5(2) is a special X -precover of M , where X denotes the sub-

category of Mod R consisting of all X with AddRω-coresol.dimR(X) ≤ n. Thus we get the

main result in this section as follows.

Theorem 3.6 For any M ∈Mod R, the following are equivalent:

(1) ω⊥-dimR(M) ≤ n.

(2) coΩn(M) ∈ ω⊥.

(3) M has a special ω⊥-preenvelope f : M → V with AddRω-coresol.dimR(Cokerf) ≤
n− 1.

(4) M has a special X -precover g : K ′ → M with Kerg ∈ ω⊥, where X denotes the

subcategory of Mod R consisting of all X with AddRω-coresol.dimR(X) ≤ n .

Proof. By Theorem 2.2 we have (1)⇔(2). By Propositions 3.4 and 3.5 we have

(1)⇔(3)⇔(4). ¤
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[AnC] L. Angeleri Hügel and F.U. Coelho, Infinitely generated tilting modules of finite pro-

jective dimension, Forum Math., 13(2001)239-250.

[AuB] M. Auslander and R.O. Buchweitz, The homological theory of maximal Cohen-

Macaulay approximations, Soc. Math. France 38(1989), 5-37.

[CT] R. Colpi and J. Trlifaj, Tilting modules and tilting torsion theories, J. Algebra

178(1995), 614-634.

[EJ] E.E. Enochs and O.M.G. Jenda, Relative Homological Algebra, De Gruyter Exp. in

Math. 30, Walter de Gruyter, Berlin, New York, 2000.

[G] S. Glaz, Commutative Coherent Rings, Lect. Notes in Math. 1371, Springer-Verlag,

Berlin, 1989.

[H] Z.Y. Huang, Selforthogonal modules with finite injective dimension, Science in China

(Ser. A), 43(2000), 1174-1181.

[R] J.J. Rotman, An Introduction to Homological Algebra, Academic Press, New York,

1979.

[S] B. Stenström, Rings of Quotients, Die Grund. der Math. Wissen. in Einz. 217,

Springer-Verlag, Berlin, 1975.

[XC] J.Z. Xu and F.C. Cheng, Homological dimensions over non-commutative semi-local

rings, J. Algebra, 169(1994), 679-685.

10


