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Abstract

Let o7 be an abelian category and (&) the subcategory of & consisting of projective objects.
Let € be a full, additive and self-orthogonal subcategory of o/ with &?(<7) a generator, and let G(%)
be the Gorenstein subcategory of .27. Then the right 1-orthogonal category G(%€)*! of G(%) is both
projectively resolving and injectively coresolving in 7. We also get that the subcategory SPC(G(%))
of &/ consisting of objects admitting special G(%)-precovers is closed under extensions and %-stable
direct summands (*). Furthermore, if % is a generator for G(%)**, then we have that SPC(G(%¥)) is
the minimal subcategory of & containing G(%)*! U G(%) with respect to the property (*), and that
SPC(G(¥)) is €-resolving in & with a €-proper generator €.

1 Introduction

As a generalization of finitely generated projective modules, Auslander and Bridger introduced in [3] the
notion of finitely generated modules of Gorenstein dimension zero over commutative Noetherian rings.
Then Enochs and Jenda generalized it in [7] to arbitrary modules over a general ring and introduced the
notion of Gorenstein projective modules and its dual (that is, the notion of Gorenstein injective modules).
Let o7 be an abelian category and ¥ an additive and full subcategory of 7. Recently Sather-Wagstaff,
Sharif and White introduced in [14] the notion of the Gorenstein subcategory G(%¢) of <7, which is a
common generalization of the notions of modules of Gorenstein dimension zero [3], Gorenstein projective
modules, Gorenstein injective modules [7], V-Gorenstein projective modules and V-Gorenstein injective
modules [9], and so on.

Let R be an associative ring with identity, and let Mod R be the category of left R-modules and
G(Z(Mod R) the subcategory of Mod R cousisting of Gorenstein projective modules. Let PC(G(£?(Mod R))
and SPC(G(Z(Mod R)) be the subcategories of Mod R consisting of modules admitting a G(#?(Mod R))-
precover and admitting a special G(Z(Mod R))-precover respectively. The following question in relative
homological algebra remains still open: does PC(G(#(Mod R)) = Mod R always hold true? Several
authors have gave some partially positive answers to this question, see [2, 4, 5, 16]. Note that in these
references, PC(G(4(Mod R)) = SPC(G(Z(Mod R)), see Example 4.8 below for details. In particular, any

module in Mod R with finite Gorenstein projective dimension admits a G(#(Mod R))-precover which is
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also special ([10]). In fact, it is unknown whether PC(G(Z(Mod R)) = SPC(G(Z?(Mod R)) always holds
true. Based on the above, it is necessary to study the properties of these two subcategories.

Let o/ be an abelian category and ¢ an additive and full subcategory of «7. We use SPC(G(%)) to
denote the subcategory of & consisting of objects admitting special G(%)-precovers. The aim of this
paper is to investigate the structure of SPC(G(%)) in terms of the properties of the right 1-orthogonal
category G(%€)* of G(%). This paper is organized as follows.

In Section 2, we give some terminology and some preliminary results.

Assume that % is self-orthogonal and the subcategory of &/ consisting of projective objects is a
generator for . In Section 3, we prove that G(%)'* is both projectively resolving and injectively
coresolving in &7. We also characterize when all objects in o7 are in G(%)*1.

In Section 4, we prove that SPC(G(%)) is closed under extensions and %-stable direct summands
(*). Furthermore, if ¢ is a generator for G(%)1!, then we get the following two results: (1) SPC(G(%¥))
is the minimal subcategory of 7 containing G(¢)1* U G(¢) with respect to the property (*); and (2)
SPC(G(%¥)) is €-resolving in o with a €-proper generator €.

2 Preliminaries

Throughout this paper, &7 is an abelian category and all subcategories of o7 are full, additive and closed
under isomorphisms. We use # (&) (resp. #(«/)) to denote the subcategory of & consisting of projective
(resp. injective) objects. For a subcategory € of & and an object A in &, the €-dimension €-dim A of

A is defined as inf{n > 0 | there exists an exact sequence
0—-Cp—-=>Cr—=>Ch—A—0

in o with all C; in €}. Set €-dim A = oo if no such integer exists (cf. [12]). For a non-negative integer
n, we use €=" (resp. €<>°) to denote the subcategory of & consisting of objects with ¢-dimension at
most n (resp. finite ¥-dimension).

Let 2" be a subcategory of 7. Recall that a sequence in & is called Hom (2, —)-ezact if it is exact
after applying the functor Hom (X, —) for any X € 2Z". Dually, the notion of a Homy (—, Z")-ezact

sequence is defined. Set
Xt = {M|ExtZ'(X,M) =0 for any X € 2},

L= {M | ExtZ' (M, X) =0 for any X € 2},
and

X+ = {M | Extl, (X, M) =0 for any X € 27},

L= {M | Extl, (M, X) =0 for any X € Z°}.

We call 2741 (resp. +1.2") the right (resp. left) 1-orthogonal category of 2 . Let 2~ and % be subcate-
gories of /. We write 2 L & if Extffl(X, Y)=0forany X € Z andY € ¥.

Definition 2.1. (cf. [6]) Let 2" C % be subcategories of «/. The morphism f: X — Y in & with
X e Z andY € & is called an 2 -precover of Y if Homy (X', f) is epic for any X' € 2". An Z'-
precover f : X — Y is called special if f is epic and Ker f € 2°+1. 2 is called special precovering in %
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if any object in % admits a special 2 -precover. Dually, the notions of a (special) 2 -(pre)envelope and

a special preenveloping subcategory are defined.

Definition 2.2. (cf. [10]) A subcategory of & is called projectively resolving if it contains & (/) and is
closed under extensions and under kernels of epimorphisms. Dually, the notion of injectively coresolving

subcategories is defined.
From now on, assume that ¢ is a given subcategory of 7.

Definition 2.3. (cf. [14]) The Gorenstein subcategory G(€) of < is defined as G(€) = {M is an object

in o7 | there exists an exact sequence:
02 Cp=C' =0t — - (2.1)

in €, which is both Hom, (%, —)-exact and Hom . (—, €)-exact, such that M = Im(Cy — C°)}; in this

case, (2.1) is called a complete € -resolution of M.

In what follows, R is an associative ring with identity, Mod R is the category of left R-modules and

mod R is the category of finitely generated left R-modules.

Remark 2.4.

(1) Let R be a left and right Noetherian ring. Then G(£?(mod R)) coincides with the subcategory of
mod R consisting of modules with Gorenstein dimension zero ([3]).

(2) G(Z(Mod R)) (resp. G(#(Mod R))) coincides with the subcategory of Mod R consisting of Goren-
stein projective (resp. injective) modules ([7]).

(3) Let R be a left Noetherian ring, S a right Noetherian ring and rVs a dualizing bimodule. Put
W ={VQgP | P e ModS)} and = {Homg(V,E) | E € #(ModS°)}. Then G(¥#)
(resp. G(%)) coincides with the subcategory of Mod R consisting of V-Gorenstein projective (resp.

injective) modules ([9]).

Definition 2.5. (cf. [14]) Let " C 7 be subcategories of &/. Then 2 is called a generator (resp.
cogenerator) for 7 if for any T € 7, there exists an exact sequence 0 — 7" — X — T — 0 (resp.
0T —>X—>T —0)in I with X € 27; and 2 is called a projective generator (resp. an injective
cogenerator) for J if 2 is a generator (resp. cogenerator) for 7 and 2" L .J (resp. 7 L Z).

We have the following easy observation.

Lemma 2.6. Assume that € L € and P () is a generator for €. Then for any G € G(€), there exists

a Homy (€, —)-exact and Homg (—, € )-exact exact sequence
0G -P—=>G—0
in o with P € P() and G' € G(F).
Proof. Let G € G(€). Then there exists a Hom (%, —)-exact and Hom g (—, €)-exact exact sequence

0—>G —>Cyh—>G—0
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in o with Cy € ¢ and G; € G(%). Because Z () is a generator for € by assumption, there exists an
exact sequence
0=-C' =P —=Cy—0

in & with P € #(/) and C' € €. Counsider the following pullback diagram

0 0
|
v
CI:::C/
\
|
Y

\
I
Y I
0 G1 Co G 0
0 0.
By [11, Lemma 2.5], the middle row is both Hom (%, —)-exact and Homg (—, % )-exact, and hence
G’ € G(¥) by [11, Proposition 4.7], that is, the middle row is the desired sequence. O

The following result is useful in the sequel.

Proposition 2.7. Assume that € 1L € and () is a generator for €. Then
(1) G(€) =g(€)* .
(2) G(¥) C+enEt.

Proof. (1) Tt suffices to prove that G(¢)** C G(%)*. Let M € G(¥)*! and G € G(%). By Lemma 2.6,
we have an exact sequence
0G —-P—=>G—0

in o with P € 2(&) and G’ € G(¥). Tt induces Ext?, (G, M) = Ext, (G’ M) = 0, and hence
Ext?,(G', M) = 0 and Ext3,(G, M) = Ext?,(G’, M) = 0. Repeating this process, we get Ext='(G, M) =
0.

(2) See [11, Lemma 5.7]. O

We remark that if & has enough projective objects, and if (&) C € and € is closed under kernels
of epimorphisms, then Z(f) is a generator for €.

3 The right 1-orthogonal category of G(%)

In the rest of this paper, assume that the subcategory € is self-orthogonal (that is, € L €) and & ()
is a generator for ¢. In this section, we mainly investigate the homological properties of G(%)*1. We

begin with some examples of G(%)*1.

Example 3.1.
(1) By Proposition 2.7 and [11, Theorem 5.8], we have & (&) C € C €<> C G(¥)*1.
(2) P(A)<>®U I ()< CG(E)* .
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(3) If the global dimension of R is finite, then G(?(Mod R))** = Mod R.
(4) By [8, Theorem 11.5.1] and [1, Theorem 31.9], we have that R is quasi-Frobenius if and only if
G(Z2(Mod R))*+ = #(Mod R), and if and only if G(£(Mod R))** = £(Mod R) = .# (Mod R).

For a non-negative integer n, recall that a left and right noetherian ring R is called n-Gorenstein if
the left and right self-injective dimensions of R are at most n. The following result is a generalization of
Example 3.1(4).

Example 3.2. If R is n-Gorenstein, then

G(Z(Mod R))* ' = Z(Mod R)<" = 2(Mod R)<* = .# (Mod R)<" = .# (Mod R)<*°.
Proof. By [13, Theorem 2] and Example 3.1(2), we have

P(Mod R)=" = Z(Mod R)<*° = .#(Mod R)=" = .#(Mod R)<* C G(#(Mod R))**.

Now let M € G(Z(Mod R))** and N € ModR. Since R is n-Gorenstein, there exists an exact

sequence

0—-G,—>Pr1—>—>FPh—->M=0

in Mod R with all P; in Z(Mod R) and G,, € G(Z(Mod R)) by [8, Theorem 11.5.1]. Then we have
Ext)yH (N, M) = Extj(G,, M) = 0 and M € .#(Mod R)=", and thus G(#(Mod R))** C .#(Mod R)=".
O

The following result shows that G(¢)* behaves well.

Theorem 3.3.
(1) G(€)** is closed under direct products, direct summands and extensions.
(2) G(€)** is projectively resolving in < .
(3) G(€)*r is injectively coresolving in < .

Proof. (1) It is trivial.
(2) By Example 3.1(1), Z(&/) C G(€)**. Let G € G(¢) and

0O0—-L—M-—>N-—=0

be an exact sequence in &/ with M, N € G(%)**. By Proposition 2.7(1), we have Extf{1 (G,M)=0=
Extf;(G, N). Then Extff (G,L) = 0. Because G € G(¥), we have an exact sequence

0-G—=C"=G'"—0
in & with C° € ¢ and G' € G(%). For C?, there exists an exact sequence

00t P 50
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in o with P € #(&/) and C~! € €. Consider the following pullback diagram

0 0
|
Y
C_IZZZC_I
|
Y
0-->G°- ->P'— -Gl - >0
| Il
|
Y Il
0 G c° G! 0
0 0.

By the above argument, we have Ext!,(G°, L) = Ext?,(G', L) = 0. Because the leftmost column splits
by Proposition 2.7(2), G is isomorphic to a direct summand of G° and Extl,(G, L) = 0, which shows
that L € G(€)11.

(3) It is trivial that % (/) C G(¥)*'. By Proposition 2.7, we have that G(%)** is closed under

cokernels of monomorphisms. Thus G(%)~*! is injectively coresolving. O
Before giving some applications of Theorem 3.3(2), consider the following example.

Example 3.4. Let @ be a quiver:
1
YN
2 .3
and I =< ajazas,asaiaz >. Let R = kQ/I with k a field. Then the Auslander-Reiten quiver I'(mod R)
of mod R is as follows.

I'(mod R) :

W

o, &

N 7N

1
2

N\
e

fo

By a direct computation, we have

G(#(modR)) : e G(Z(mod R))*™ @ @ /@

o DI

: 3
1 2 1, 1

where the terms marked by circles are indecomposable projective modules in mod R. Then we have

G(Z(mod R)) N G(L(mod R))11 = 2 (mod R).
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In general, we have the following

Corollary 3.5. If € is closed under direct summands, then for any n > 0, we have
G(6)="NG(E) = 6"

Proof. By Example 3.1(1), we have ¢=<" C G(€)=" N G(€)* .
Now let M € G(€)<" N G(¥)* *. By [11, Theorem 5.8], there exists an exact sequence

0=-K,—-Ch1—---—=Co—>M—=0

in & with all C; in ¢ and K,, € G(%). By Theorem 3.3(2), we have K,, € G(%)**. Because ¥ is closed
under direct summands by assumption, it follows easily from the definition of G(%€) that K,, € € and
M € ¢=". O

Proposition 3.6. For any M € o, the following statements are equivalent.

(1) M € G(%)*4.

(2) The functor Homg (—, M) is exact with respect to any short exact sequence in &/ ending with an

object in G(€).

(3) Every short exact sequence starting with M is Hom g (G(€), —)-exact.
If, moreover, R is a commutative ring, &/ = Mod R and € = Z(Mod R), then the above conditions are
equivalent to the following

(4) Hompg(Q, M) € G(Z(Mod R))** for any Q € #(Mod R).

Proof. (1) & (2) < (3) It is easy.
Now let R be a commutative ring.
(1) = (4) For any G € G(Z?(Mod R)), we have an exact sequence

0-KLPsG—0 (3.1)
in Mod R with P € #(Mod R). Let Q € #(Mod R). Then
1o®f
0-QerK — QrP—-Q®rG—0

is exact. It is easy to check that Q ®p G € G(Z(Mod R)). Then Exts(Q ®r G, M) = 0 by (1), and so
Homp (1o ® f, M) is epic. By the adjoint isomorphism, we have that Hompg(f, Homg(Q, M)) is also epic.
So applying the functor Hompg(—, Homg(Q, M)) to (3.1) we get Extk (G, Homg(Q, M)) = 0, and hence
Hompg(Q, M) € G(Z(Mod R))*1.

(4) = (1) It is trivial by setting @ = R. O

In the following result, we characterize categories over which all objects are in G(%)=**.

Proposition 3.7. Assume that € is closed under direct summands. Consider the following conditions.
(1) G&) - = .
(2) G(%) € G(%)*.
(3) G(€)=%.

Then we have (1) = (2) = (3). If € is a projective generator for of , then all of them are equivalent.
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Proof. The implication (1) = (2) is trivial.
(2) = (3) Let G € G(%¥). Then there exists an exact sequence
0—-Gi—>Co—G—=0

in & with Cy € € and G; € G(¥). By (2), we have that G; € G(¥)1* and the above exact sequence
splits. Thus as a direct summand of Cy, G € € by assumption.
If € is a projective generator for 7, then the implication (3) = (1) follows directly. O

Let 2 be a subcategory of mod R containing &?(mod R). We use 2 to denote the stable category
of 2~ modulo & (mod R). We end this section by giving two examples about G(Z?(mod R))*+.

Example 3.8. Let Q1 and Q)2 be the following two quivers

[e5} Qg
A\ a3 A (a7 (e %)
Q: 1 2—>3 Qa: a b——c<—d,
~—— ~—
az o

and let I} =< agay, a1an, aqas,al > and I =< apg, aqay >. Let Ry = KQ1/I; and Ry = KQo/I5.
Note that R, is Gorenstein and R; is not Gorenstein. The Auslander-Reiten quivers of mod R; and

mod Ry are as follows.

I'(mod Ry) : 2
/®\ /

2 3
2
3

o

1

\
@/ -/
jogipE
/ \ , 7

c
c
d

(1) The objects marked in a cycle or a box are indecomposable objects in G(Z(mod R;))** (i = 1,2);

b
a
c

d

Then we have

in particular, the objects marked in a cycle are indecomposable objects in & (mod R;) (i = 1,2).

~ mod R ~ mod R
(2) modR, ~ modR; and G(P(mod B))TT = G(P(mod Fa)) 11 -

(3) G(Z(mod Ry))* 1= G(Z(mod Ry))** and G(Z(mod Ry))* ~ G(Z(mod Ry))* 1.
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Example 3.9. Let ()1 and ()2 be the following two quivers

aq ag Qg ap
Q: 1—2——> Qo: a<—b——c¢,

N N
4 d

and let I} =< agag, agag, asay > and Ir =< aeap, g, apag >. Let Ry = KQq/I1 and Ry = KQ3/I>.

Then the Auslander-Reiten quivers of mod Ry and mod Ry are as follows.

I'(mod Ry) : T
/\/ ®
®/ N N 4 TN 2

N

Then we have
(1) The objects marked in a cycle or a box are indecomposable objects in G(Z(mod R;))** (i = 1,2);

in particular, the objects marked in a cycle are indecomposable objects in & (mod R;) (i = 1,2).

mod Ry ~ mod Ry
(mod R1))t1 = G(£(mod R2))+1 "

(3) G(Z2(mod Ry))* 1 G(P(mod Ry))*t and G(Z(mod Ry))Ht ~ G(Z(mod Ry))*!.

(2) modR;» modRs and o

4 The special precovered category of G(%)

In this section, we introduce and investigate the special precovered category of G(%) in terms of the
properties of G(%)*1.

Proposition 4.1.
(1) Let M € G(€)** and f : C — M be an epimorphism in </ with C € €. Then Ker f € G(€)** and
f is a special G(€)-precover of M.
(2) Consider an exact sequence

0—-M —C—M-—D0. (4.1)

If M’ admits special G(€)-precover, then so is M. The converse is true if € is a generator for
G(€)* and (4.1) is Hom (€, —)-ezact.

Proof. (1) The assertion follows from Example 3.1(1) and Theorem 3.3(2).
(2) Assume that M’ admits a special G(%)-precover and

0>N—=-G—->M =0
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is an exact sequence in & with G € G(%) and N € G(%)*'. Combining it with the following Hom o (—, %)-

exact exact sequence
0G5 B G -0

in & with C° € ¢ and G! € G(¥), we get the following commutative diagram with exact columns and

TOWS
0
N
0 G000 Lot 0
| |
lg I'h
Y Y
0 M C M 0
0.

Adding the exact sequence 0 — 0 —C - C — 0 to the middle row, we obtain the following com-

mutative diagram with exact columns and rows

0
N
G ()
0—G—C"C—G C—=0
|
\L(galc) I'n
Y
0 M’ C M 0
0 0

)

which can be completed to a commutative diagram with exact columns and rows as follows.

0 0 0
| |
\ \
0—-—>N—-———>C"— - =—>M'— -0
| |
| |
BRI
0—G——C"C—G ®»C—=0
\L(g)1C) ih/
0 M’ C M 0
0 0 0.

Note that G' @ C € G(%). Moreover, since N € G(€)**, we have M” € G(%)** by Theorem 3.3(3).

Thus the rightmost column in the above diagram is a special G(%)-precover of M.
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Now let € be a generator for G(%)** and (4.1) be Hom, (%, —)-exact. Assume that M admits a
special G(%)-precover and

0=-L—>G—>M=—Q0,

0L -C'—-L—=0

are exact sequences in & with G € G(%), L € G(€)** and C’ € €. By [11, Lemma 3.1(1)], we get the

following commutative diagram with exact columns and rows

0 (l) 0
by !

0- =L - — >C|¥’——>M’— >0
oo

0- >C”—>C”€IBC— ~C~- >0
by

0 L CITY M 0
by
0 0 0.

By Proposition 2.7(2) and Theorem 3.3(2), we have L' € G(%)*! and the leftmost column is Hom (%', —)-
exact. So the middle column is also Homg (%, —)-exact. On the other hand, the middle column is
Hom (—, €)-exact by Proposition 2.7(2). So G’ € G(€) by [11, Proposition 4.7(5)], and hence the upper
row is a special G(%)-precover of M. O

We introduce the following

Definition 4.2. We call SPC(G(%)) = {4 € & | A admits a special G(%)-precover} the special
precovered category of G(F).

It is trivial that SPC(G(%)) is the largest subcategory of o/ such that G(%) is special precovering
in it. In particular, SPC(G(%)) = </ if and only if G(%) is special precovering in «7. For the sake of
convenience, we say that a subcategory 2 of & is closed under € -stable direct summands provided that
the condition X @& C € 2 with C € € implies X € 2 .

Theorem 4.3.
(1) SPC(G(%)) is closed under extensions.
(2) SPC(G(¥)) is closed under €-stable direct summands.

Proof. (1) Let
0—-L—>M-—>N-—=0

be an exact sequence in /. Assume that L and N admit special G(%)-precovers and
0—>L’—>GLi>L—>O,

0N =Gy 3N—=0
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are exact sequences in &/ with Gr,Gy € G(%) and L', N’ € G(€)**. Consider the following pullback
diagram

0— >L—-——>Q—-——->Gny——>0
I
I la \Lg
Il \i

0 L M N 0.

Since Ext%(Gx, L") = 0 by Proposition 2.7(1), we get an epimorphism Exts(Gy, f) : Exth(Gn, Gr) —
Extp(Gy, L). Tt induces the following commutative diagram with exact rows

0- >Gr—-——>Gy——>Gny——>0
| I
lf | 8 I
Y I

0 L Q Gn 0
|

0 L M N 0.

Set M’ := Ker af8. Then we get the following commutative diagram with exact columns and rows

0 Gr, Gu Gn 0
0 L M N 0
0 0 0.

Note that G € G(%) (by [14, Corollary 4.5]) and M’ € G(€)** (by Theorem 3.3(1)). Thus the middle

column in the above diagram is a special G(%)-precover of M. This proves that SPC(G(%)) is closed
under extensions.

(2) Let M € SPC(G(%)) and

0O—-—K—-G—>M-—=0

be an exact sequence in &/ with G € G(%) and K € G(€)*'. Assume that M = L & C with C € €, we
have an exact and split sequence

0—-C—-M-—=L—0
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in /. Consider the following pullback diagram

-<

0- K- L' -——>C—-->0
Il

\
[

Il Y

0 K G M 0

\
[
Y
L:::L
\
\
Y
0 0.

Since K,C € G(€)**, we have L' € G(€¢)** by Theorem 3.3(1). Thus the middle column in the above
diagram is a special G(%€)-precover of L. O

The following question seems to be interesting.
Question 4.4. Is SPC(G(¥)) closed under direct summands?

The following result shows that SPC(G(%)) possesses certain minimality, which generalizes [15, The-
orem 6.8(1)].

Theorem 4.5. Assume that € is a generator for G(€)*1. Then we have
(1) G(€)+ UG(E) C SPC(G(%)) and SPC(G(¥)) is closed under extensions and € -stable direct sum-

mands.
(2) SPC(G(¥)) is the minimal subcategory with respect to the property (1) as above.

To prove this theorem, we need the following

Lemma 4.6. Let
0O K—-G—>M-—=0

be an ezact sequence in </ with K € G(€)** and G € G(€¢). Then there exists an exact sequence
0-G->MaC—K -0
in o with K' € G(€)** and C € €.

Proof. Let
0 K—-G—>M-—=0

be an exact sequence in & with K € G(%)* and G € G(%). Since G € G(%), there exists a Hom, (€, —)-

exact exact sequence

0-G—-C—=G =0
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in o with C € € and G’ € G(€¢). Consider the following pushout diagram

0 0
|
\
0 K G M 0
Il |
Il
I \
0- s> K-——>C—-—->K'——>0
|
|
\
|
|
\
0 0.

Since K,C € G(%)**, we have K’ € G(€)** by Theorem 3.3(3).
Consider the following pullback diagram

Since the middle column in the first diagram is Hom (%, —)-exact, so is the rightmost column in this
diagram. Then the middle row in the second diagram is also Homg (%, —)-exact by [11, Lemma 2.4(1)],
and in particular, it splits. Thus @ = M & C' and the middle column in the second diagram is the desired

exact sequence. O

Proof of Theorem 4.5. (1) It follows from Proposition 4.1(1) and Theorem 4.3.
(2) Let 2 be a subcategory of & such that G(¢)1* UG(¥) C 2 and 2 is closed under extensions
and @-stable direct summands. Let M € SPC(G(%)). Then by Lemma 4.6, we have an exact sequence

0—-G—-MopC—-K —0

in o7 with K’ € G(¢)**, G € G(¥) and C € €. Because G, K’ € 2, we have that M & C € 2 and
M e Z'. Tt follows that SPC(G(%¥)) C Z.

As an immediate consequence of Theorem 4.5, we get the following
Corollary 4.7. Assume that G(Z(Mod R)) is special precovering in Mod R and Z is a subcategory of

Mod R. If G(Z(Mod R))** UG(Z(ModR)) C 2 and 2 is closed under extensions and & (Mod R)-
stable direct summands, then 2 = Mod R.
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Proof. By assumption, we have SPC(G(#(Mod R))) = Mod R. Now the assertion follows from Theorem
4.5. O

We collect some known classes of rings R satisfying that G(&?(Mod R)) is special precovering in Mod R

as follows.

Example 4.8. For any one of the following rings R, G(£?(Mod R)) is special precovering in Mod R.
(1) Commutative Noetherian rings of finite Krull dimension ([5, Remark 5.8]).
(2) Rings in which all projective left R-modules have finite injective dimension ([16, Corollary 4.3]);
especially, Gorenstein rings (that is, n-Gorenstein rings for some n > 0).
(3) Right coherent rings in which all flat R-modules have finite projective dimension (]2, Theorem 3.5]
and [4, Proposition 8.10]); especially, right coherent and left perfect rings, and right Artinian rings.

We recall the following definition from [12].

Definition 4.9. Let ¢, .7 and & be subcategories of &7 with € C 7.
(1) € is called an &-proper generator (resp. &-coproper cogenerator) for 7 if for any object T in .7,

there exists a Hom g (&, —) (resp. Homg (—, &))-exact exact sequence 0 - T" — C' — T — 0 (resp.
0—-T—C—T —0)in & such that C is an object in € and T’ is an object in 7.

(2) 7 is called &-preresolving in & if the following conditions are satisfied.
(i)  admits an &-proper generator.
(ii) 7 is closed under &-proper extensions, that is, for any Hom, (&, —)-exact exact sequence
0— A; - Ay —» A3 — 0 in &7, if both A; and A3 are objects in .77, then A, is also an object in
.
An &-preresolving subcategory 7 of & is called & -resolving if the following condition is satisfied.
(i) 7 is closed under kernels of &-proper epimorphisms, that is, for any Hom g (&£, —)-exact exact
sequence 0 — A; — Ay — A3 — 0 in 7, if both A; and A3 are objects in .77, then A; is also an
object in 7.

In the following, we investigate when SPC(G(%)) is @-resolving. We need the following two lemmas.
Lemma 4.10. For any M € SPC(G(¥)), there exists a Hom (€, —)-exact exact sequence
0-K—=+C—-M-=—=0
in o/ with C € €.
Proof. Let M € SPC(G(%)). Then there exists a Hom (%, —)-exact exact sequence
0K -G—=-M=0
in .« with G € G(%¢) and K’ € G(€)**. For G, there exists a Hom (%, —)-exact exact sequence

0-G -C—-G—=0
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in o with C € € and G’ € G(€). Consider the following pullback diagram

i I
0 K’ G M 0
!
!
Y
0 0.
By [11, Lemma 2.5], the middle row is Hom (%, —)-exact, as desired. O

Lemma 4.11. Assume that € is a generator for G(€)*. Given a Hom (€, —)-exact ezact sequence
0—+L—+M-—=N=—=0

i </, we have
(1) If M,N € SPC(G(%¥)), then L € SPC(G(¥)).
(2) If L, M € SPC(G(¥)) and there exists a Hom (€, —)-exact exact sequence

0—-—K—=C—=N-=0

in o with C € €, then N € SPC(G(%)).

Proof. Let 0 » L — M — N — 0 be a Hom (%, —)-exact exact sequence in 7.
(1) Assume that M,N € SPC(G(¥)). By Lemma 4.10, there exists a Homg (%, —)-exact exact
sequence
0+-K—=C—-N=0

in & with C € ¥. Consider the following pullback diagram

By Proposition 4.1(2), K € SPC(G(¥)). Then it follows from Theorem 4.3(1) and the exactness of the
middle column that T' € SPC(G(%)). Notice that the middle row is Homg (%, —)-exact by [11, Lemma
2.4(1)], so it splits and T~ L & C. Thus L € SPC(G(%)) by Theorem 4.3(2).
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(2) Assume L, M € SPC(G(%¥)) and there exists a Hom,/ (%, —)-exact exact sequence
0—-K—=C—=N=0

in & with C € ¥. As in the above diagram, since L,C € SPC(G(¥)), we have T' € SPC(G(¥))
by Theorem 4.3(1). Moreover, the middle column is Hom (%, —)-exact by [11, Lemma 2.4(1)]. So
K € SPC(G(%)) by (1), and hence N € SPC(G(%)) by Proposition 4.1(2). O

Now we are ready to prove the following

Theorem 4.12. If ¢ is a generator for G(€)**, then SPC(G(¥)) is €-resolving in < with a € -proper

generator € .

Proof. Following Theorem 4.3(1) and Lemma 4.11(1), we know that SPC(G(%)) is closed under ¢-proper
extensions and kernels of €-proper epimorphisms. Now let M € SPC(G(%)). Then by Lemma 4.10, there

exists a Hom, (€, —)-exact exact sequence
0O—-K—-C—-M=—=0

in & with C € €. By Proposition 4.1(2), we have K € SPC(G(¥)). It follows that € is a @-proper
generator for SPC(G(%)) and SPC(G(¥)) is a €-resolving. O

As a consequence, we get the following

Corollary 4.13. If € is a projective generator for o, then SPC(G(€)) is projectively resolving and

injectively coresolving in < .

Proof. Let € be a projective generator for 7. Because G(%)1* is projectively resolving by Theorem
3.3(2), € is also a projective generator for G(%)*1. It follows from Theorem 4.12 that SPC(G(%)) is

projectively resolving. Now let I be an injective object in &/ and
0K-PLr150

an exact sequence in &/ with P € ¢. Then it is easy to see that K € G(¢)1* by Example 3.1(1) and
Theorem 3.3(2). So f is a special G(%)-precover of I and I € SPC(G(%)). On the other hand, by Lemma
4.11(2), we have that SPC(G(%)) is closed under cokernels of monomorphisms. Thus we conclude that
SPC(G(¥)) is injectively coresolving. O

The following corollary is an immediate consequence of Corollary 4.13, in which the second assertion

generalizes [15, Theorem 6.8(2)].

Corollary 4.14.
(1) SPC(G(Z(Mod R))) is projectively resolving and injectively coresolving in Mod R.
(2) If R is a left Noetherian ring, then SPC(G(Z(mod R))) is projectively resolving and injectively

coresolving in mod R.

17
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Let SPE(G(%)) be the subcategory of &7 consisting of objects admitting special G(%)-preenvelopes.
We point out that the dual versions on +1G(%) and SPE(G(%)) of all of the above results also hold true

by using completely dual arguments.
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