Special Precovered Categories of Gorenstein $Categories^{*\dagger}$

Tiwei Zhao[‡] and Zhaoyong Huang[§]

Department of Mathematics, Nanjing University, Nanjing 210093, Jiangsu Province, P. R. China

Abstract

Let $\mathscr A$ be an abelian category and $\mathscr P(\mathscr A)$ the subcategory of $\mathscr A$ consisting of projective objects. Let $\mathscr C$ be a full, additive and self-orthogonal subcategory of $\mathscr A$ with $\mathscr P(\mathscr A)$ a generator, and let $\mathscr G(\mathscr C)$ be the Gorenstein subcategory of $\mathscr A$. Then the right 1-orthogonal category $\mathscr G(\mathscr C)^{\perp_1}$ of $\mathscr G(\mathscr C)$ is both projectively resolving and injectively coresolving in $\mathscr A$. We also get that the subcategory $\operatorname{SPC}(\mathscr G(\mathscr C))$ of $\mathscr A$ consisting of objects admitting special $\mathscr G(\mathscr C)$ -precovers is closed under extensions and $\mathscr C$ -stable direct summands (*). Furthermore, if $\mathscr C$ is a generator for $\mathscr G(\mathscr C)^{\perp_1}$, then we have that $\operatorname{SPC}(\mathscr G(\mathscr C))$ is the minimal subcategory of $\mathscr A$ containing $\mathscr G(\mathscr C)^{\perp_1} \cup \mathscr G(\mathscr C)$ with respect to the property (*), and that $\operatorname{SPC}(\mathscr G(\mathscr C))$ is $\mathscr C$ -resolving in $\mathscr A$ with a $\mathscr C$ -proper generator $\mathscr C$.

1 Introduction

As a generalization of finitely generated projective modules, Auslander and Bridger introduced in [3] the notion of finitely generated modules of Gorenstein dimension zero over commutative Noetherian rings. Then Enochs and Jenda generalized it in [7] to arbitrary modules over a general ring and introduced the notion of Gorenstein projective modules and its dual (that is, the notion of Gorenstein injective modules). Let \mathscr{A} be an abelian category and \mathscr{C} an additive and full subcategory of \mathscr{A} . Recently Sather-Wagstaff, Sharif and White introduced in [14] the notion of the Gorenstein subcategory $\mathscr{G}(\mathscr{C})$ of \mathscr{A} , which is a common generalization of the notions of modules of Gorenstein dimension zero [3], Gorenstein projective modules, Gorenstein injective modules [7], V-Gorenstein projective modules and V-Gorenstein injective modules [9], and so on.

Let R be an associative ring with identity, and let $\operatorname{Mod} R$ be the category of left R-modules and $\mathcal{G}(\mathscr{P}(\operatorname{Mod} R))$ the subcategory of $\operatorname{Mod} R$ consisting of Gorenstein projective modules. Let $\operatorname{PC}(\mathcal{G}(\mathscr{P}(\operatorname{Mod} R)))$ and $\operatorname{SPC}(\mathcal{G}(\mathscr{P}(\operatorname{Mod} R)))$ be the subcategories of $\operatorname{Mod} R$ consisting of modules admitting a $\mathcal{G}(\mathscr{P}(\operatorname{Mod} R))$ -precover and admitting a special $\mathcal{G}(\mathscr{P}(\operatorname{Mod} R))$ -precover respectively. The following question in relative homological algebra remains still open: does $\operatorname{PC}(\mathcal{G}(\mathscr{P}(\operatorname{Mod} R))) = \operatorname{Mod} R$ always hold true? Several authors have gave some partially positive answers to this question, see [2, 4, 5, 16]. Note that in these references, $\operatorname{PC}(\mathcal{G}(\mathscr{P}(\operatorname{Mod} R))) = \operatorname{SPC}(\mathcal{G}(\mathscr{P}(\operatorname{Mod} R)))$, see Example 4.8 below for details. In particular, any module in $\operatorname{Mod} R$ with finite Gorenstein projective dimension admits a $\mathcal{G}(\mathscr{P}(\operatorname{Mod} R))$ -precover which is

^{*2010} Mathematics Subject Classification: 18G25, 18E10.

[†]Keywords: Gorenstein categories, Right 1-orthogonal categories, Special precovers, Special precovered categories, Projectively resolving, Injectively coresolving.

[‡]E-mail address: tiweizhao@hotmail.com §E-mail address: huangzy@nju.edu.cn

also special ([10]). In fact, it is unknown whether $PC(\mathcal{G}(\mathscr{P}(\operatorname{Mod} R))) = SPC(\mathcal{G}(\mathscr{P}(\operatorname{Mod} R)))$ always holds true. Based on the above, it is necessary to study the properties of these two subcategories.

Let \mathscr{A} be an abelian category and \mathscr{C} an additive and full subcategory of \mathscr{A} . We use $SPC(\mathcal{G}(\mathscr{C}))$ to denote the subcategory of \mathscr{A} consisting of objects admitting special $\mathscr{G}(\mathscr{C})$ -precovers. The aim of this paper is to investigate the structure of $SPC(\mathscr{G}(\mathscr{C}))$ in terms of the properties of the right 1-orthogonal category $\mathscr{G}(\mathscr{C})^{\perp_1}$ of $\mathscr{G}(\mathscr{C})$. This paper is organized as follows.

In Section 2, we give some terminology and some preliminary results.

Assume that \mathscr{C} is self-orthogonal and the subcategory of \mathscr{A} consisting of projective objects is a generator for \mathscr{C} . In Section 3, we prove that $\mathcal{G}(\mathscr{C})^{\perp_1}$ is both projectively resolving and injectively coresolving in \mathscr{A} . We also characterize when all objects in \mathscr{A} are in $\mathcal{G}(\mathscr{C})^{\perp_1}$.

In Section 4, we prove that $SPC(\mathcal{G}(\mathscr{C}))$ is closed under extensions and \mathscr{C} -stable direct summands (*). Furthermore, if \mathscr{C} is a generator for $\mathcal{G}(\mathscr{C})^{\perp_1}$, then we get the following two results: (1) $SPC(\mathcal{G}(\mathscr{C}))$ is the minimal subcategory of \mathscr{A} containing $\mathcal{G}(\mathscr{C})^{\perp_1} \cup \mathcal{G}(\mathscr{C})$ with respect to the property (*); and (2) $SPC(\mathcal{G}(\mathscr{C}))$ is \mathscr{C} -resolving in \mathscr{A} with a \mathscr{C} -proper generator \mathscr{C} .

2 Preliminaries

Throughout this paper, \mathscr{A} is an abelian category and all subcategories of \mathscr{A} are full, additive and closed under isomorphisms. We use $\mathscr{P}(\mathscr{A})$ (resp. $\mathscr{I}(\mathscr{A})$) to denote the subcategory of \mathscr{A} consisting of projective (resp. injective) objects. For a subcategory \mathscr{C} of \mathscr{A} and an object A in \mathscr{A} , the \mathscr{C} -dimension \mathscr{C} -dim A of A is defined as $\inf\{n \geq 0 \mid \text{ there exists an exact sequence}\}$

$$0 \to C_n \to \cdots \to C_1 \to C_0 \to A \to 0$$

in \mathscr{A} with all C_i in \mathscr{C} }. Set \mathscr{C} -dim $A = \infty$ if no such integer exists (cf. [12]). For a non-negative integer n, we use $\mathscr{C}^{\leq n}$ (resp. $\mathscr{C}^{<\infty}$) to denote the subcategory of \mathscr{A} consisting of objects with \mathscr{C} -dimension at most n (resp. finite \mathscr{C} -dimension).

Let $\mathscr X$ be a subcategory of $\mathscr A$. Recall that a sequence in $\mathscr A$ is called $\operatorname{Hom}_{\mathscr A}(\mathscr X,-)$ -exact if it is exact after applying the functor $\operatorname{Hom}_{\mathscr A}(X,-)$ for any $X\in\mathscr X$. Dually, the notion of a $\operatorname{Hom}_{\mathscr A}(-,\mathscr X)$ -exact sequence is defined. Set

$$\begin{split} \mathscr{X}^{\perp} &:= \{ M \mid \operatorname{Ext}^{\geq 1}_{\mathscr{A}}(X, M) = 0 \text{ for any } X \in \mathscr{X} \}, \\ ^{\perp}\mathscr{X} &:= \{ M \mid \operatorname{Ext}^{\geq 1}_{\mathscr{A}}(M, X) = 0 \text{ for any } X \in \mathscr{X} \}, \end{split}$$

and

$$\begin{split} \mathscr{X}^{\perp_1} &:= \{ M \mid \operatorname{Ext}^1_\mathscr{A}(X,M) = 0 \text{ for any } X \in \mathscr{X} \}, \\ ^{\perp_1} \mathscr{X} &:= \{ M \mid \operatorname{Ext}^1_\mathscr{A}(M,X) = 0 \text{ for any } X \in \mathscr{X} \}. \end{split}$$

We call \mathscr{X}^{\perp_1} (resp. $^{\perp_1}\mathscr{X}$) the right (resp. left) 1-orthogonal category of \mathscr{X} . Let \mathscr{X} and \mathscr{Y} be subcategories of \mathscr{A} . We write $\mathscr{X} \perp \mathscr{Y}$ if $\operatorname{Ext}_{\mathscr{A}}^{\geq 1}(X,Y) = 0$ for any $X \in \mathscr{X}$ and $Y \in \mathscr{Y}$.

Definition 2.1. (cf. [6]) Let $\mathscr{X} \subseteq \mathscr{Y}$ be subcategories of \mathscr{A} . The morphism $f: X \to Y$ in \mathscr{A} with $X \in \mathscr{X}$ and $Y \in \mathscr{Y}$ is called an \mathscr{X} -precover of Y if $\operatorname{Hom}_{\mathscr{A}}(X', f)$ is epic for any $X' \in \mathscr{X}$. An \mathscr{X} -precover $f: X \to Y$ is called special if f is epic and $\operatorname{Ker} f \in \mathscr{X}^{\perp_1}$. \mathscr{X} is called special precovering in \mathscr{Y}

if any object in $\mathscr Y$ admits a special $\mathscr X$ -precover. Dually, the notions of a (special) $\mathscr X$ -(pre)envelope and a special preenveloping subcategory are defined.

Definition 2.2. (cf. [10]) A subcategory of \mathscr{A} is called *projectively resolving* if it contains $\mathscr{P}(\mathscr{A})$ and is closed under extensions and under kernels of epimorphisms. Dually, the notion of *injectively coresolving subcategories* is defined.

From now on, assume that \mathscr{C} is a given subcategory of \mathscr{A} .

Definition 2.3. (cf. [14]) The Gorenstein subcategory $\mathcal{G}(\mathscr{C})$ of \mathscr{A} is defined as $\mathcal{G}(\mathscr{C}) = \{M \text{ is an object in } \mathscr{A} \mid \text{there exists an exact sequence:} \}$

$$\cdots \to C_1 \to C_0 \to C^0 \to C^1 \to \cdots \tag{2.1}$$

in \mathscr{C} , which is both $\operatorname{Hom}_{\mathscr{A}}(\mathscr{C}, -)$ -exact and $\operatorname{Hom}_{\mathscr{A}}(-, \mathscr{C})$ -exact, such that $M \cong \operatorname{Im}(C_0 \to C^0)$; in this case, (2.1) is called a *complete* \mathscr{C} -resolution of M.

In what follows, R is an associative ring with identity, M is the category of left R-modules and M is the category of finitely generated left R-modules.

Remark 2.4.

- (1) Let R be a left and right Noetherian ring. Then $\mathcal{G}(\mathscr{P}(\text{mod }R))$ coincides with the subcategory of mod R consisting of modules with Gorenstein dimension zero ([3]).
- (2) $\mathcal{G}(\mathscr{P}(\operatorname{Mod} R))$ (resp. $\mathcal{G}(\mathscr{I}(\operatorname{Mod} R))$) coincides with the subcategory of Mod R consisting of Gorenstein projective (resp. injective) modules ([7]).
- (3) Let R be a left Noetherian ring, S a right Noetherian ring and ${}_RV_S$ a dualizing bimodule. Put $\mathscr{W} = \{V \bigotimes_S P \mid P \in \mathscr{P}(\operatorname{Mod}S)\}$ and $\mathscr{U} = \{\operatorname{Hom}_S(V, E) \mid E \in \mathscr{I}(\operatorname{Mod}S^{op})\}$. Then $\mathscr{G}(\mathscr{W})$ (resp. $\mathscr{G}(\mathscr{U})$) coincides with the subcategory of $\operatorname{Mod}R$ consisting of V-Gorenstein projective (resp. injective) modules ([9]).

Definition 2.5. (cf. [14]) Let $\mathscr{X} \subseteq \mathscr{T}$ be subcategories of \mathscr{A} . Then \mathscr{X} is called a *generator* (resp. cogenerator) for \mathscr{T} if for any $T \in \mathscr{T}$, there exists an exact sequence $0 \to T' \to X \to T \to 0$ (resp. $0 \to T \to X \to T' \to 0$) in \mathscr{T} with $X \in \mathscr{X}$; and \mathscr{X} is called a projective generator (resp. an injective cogenerator) for \mathscr{T} if \mathscr{X} is a generator (resp. cogenerator) for \mathscr{T} and $\mathscr{X} \perp \mathscr{T}$ (resp. $\mathscr{T} \perp \mathscr{X}$).

We have the following easy observation.

Lemma 2.6. Assume that $\mathscr{C} \perp \mathscr{C}$ and $\mathscr{P}(\mathscr{A})$ is a generator for \mathscr{C} . Then for any $G \in \mathscr{G}(\mathscr{C})$, there exists a $\operatorname{Hom}_{\mathscr{A}}(\mathscr{C}, -)$ -exact and $\operatorname{Hom}_{\mathscr{A}}(-, \mathscr{C})$ -exact exact sequence

$$0 \to G' \to P \to G \to 0$$

in \mathscr{A} with $P \in \mathscr{P}(\mathscr{A})$ and $G' \in \mathscr{G}(\mathscr{C})$.

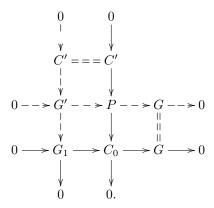
Proof. Let $G \in \mathcal{G}(\mathscr{C})$. Then there exists a $\operatorname{Hom}_{\mathscr{A}}(\mathscr{C}, -)$ -exact and $\operatorname{Hom}_{\mathscr{A}}(-, \mathscr{C})$ -exact exact sequence

$$0 \to G_1 \to C_0 \to G \to 0$$

in \mathscr{A} with $C_0 \in \mathscr{C}$ and $G_1 \in \mathscr{G}(\mathscr{C})$. Because $\mathscr{P}(\mathscr{A})$ is a generator for \mathscr{C} by assumption, there exists an exact sequence

$$0 \to C' \to P \to C_0 \to 0$$

in \mathscr{A} with $P \in \mathscr{P}(\mathscr{A})$ and $C' \in \mathscr{C}$. Consider the following pullback diagram



By [11, Lemma 2.5], the middle row is both $\operatorname{Hom}_{\mathscr{A}}(\mathscr{C}, -)$ -exact and $\operatorname{Hom}_{\mathscr{A}}(-, \mathscr{C})$ -exact, and hence $G' \in \mathcal{G}(\mathscr{C})$ by [11, Proposition 4.7], that is, the middle row is the desired sequence.

The following result is useful in the sequel.

Proposition 2.7. Assume that $\mathscr{C} \perp \mathscr{C}$ and $\mathscr{P}(\mathscr{A})$ is a generator for \mathscr{C} . Then

- (1) $\mathcal{G}(\mathscr{C})^{\perp_1} = \mathcal{G}(\mathscr{C})^{\perp}$.
- (2) $\mathcal{G}(\mathscr{C}) \subseteq {}^{\perp}\mathscr{C} \cap \mathscr{C}^{\perp}$.

Proof. (1) It suffices to prove that $\mathcal{G}(\mathscr{C})^{\perp_1} \subseteq \mathcal{G}(\mathscr{C})^{\perp}$. Let $M \in \mathcal{G}(\mathscr{C})^{\perp_1}$ and $G \in \mathcal{G}(\mathscr{C})$. By Lemma 2.6, we have an exact sequence

$$0 \to G' \to P \to G \to 0$$

in \mathscr{A} with $P \in \mathscr{P}(\mathscr{A})$ and $G' \in \mathscr{G}(\mathscr{C})$. It induces $\operatorname{Ext}^2_{\mathscr{A}}(G,M) \cong \operatorname{Ext}^1_{\mathscr{A}}(G',M) = 0$, and hence $\operatorname{Ext}^2_{\mathscr{A}}(G',M) = 0$ and $\operatorname{Ext}^3_{\mathscr{A}}(G,M) \cong \operatorname{Ext}^2_{\mathscr{A}}(G',M) = 0$. Repeating this process, we get $\operatorname{Ext}^{\geq 1}_{\mathscr{A}}(G,M) = 0$.

(2) See
$$[11, Lemma 5.7]$$
.

We remark that if \mathscr{A} has enough projective objects, and if $\mathscr{P}(\mathscr{A}) \subseteq \mathscr{C}$ and \mathscr{C} is closed under kernels of epimorphisms, then $\mathscr{P}(\mathscr{A})$ is a generator for \mathscr{C} .

3 The right 1-orthogonal category of $\mathcal{G}(\mathscr{C})$

In the rest of this paper, assume that the subcategory \mathscr{C} is self-orthogonal (that is, $\mathscr{C} \perp \mathscr{C}$) and $\mathscr{P}(\mathscr{A})$ is a generator for \mathscr{C} . In this section, we mainly investigate the homological properties of $\mathcal{G}(\mathscr{C})^{\perp_1}$. We begin with some examples of $\mathcal{G}(\mathscr{C})^{\perp_1}$.

Example 3.1.

- (1) By Proposition 2.7 and [11, Theorem 5.8], we have $\mathscr{P}(\mathscr{A}) \subseteq \mathscr{C} \subseteq \mathscr{C}^{<\infty} \subseteq \mathscr{G}(\mathscr{C})^{\perp_1}$.
- (2) $\mathscr{P}(\mathscr{A})^{<\infty} \cup \mathscr{I}(\mathscr{A})^{<\infty} \subseteq \mathscr{G}(\mathscr{C})^{\perp_1}$.

- (3) If the global dimension of R is finite, then $\mathcal{G}(\mathscr{P}(\operatorname{Mod} R))^{\perp_1} = \operatorname{Mod} R$.
- (4) By [8, Theorem 11.5.1] and [1, Theorem 31.9], we have that R is quasi-Frobenius if and only if $\mathcal{G}(\mathscr{P}(\operatorname{Mod} R))^{\perp_1} = \mathscr{P}(\operatorname{Mod} R)$, and if and only if $\mathcal{G}(\mathscr{P}(\operatorname{Mod} R))^{\perp_1} = \mathscr{P}(\operatorname{Mod} R) = \mathscr{I}(\operatorname{Mod} R)$.

For a non-negative integer n, recall that a left and right noetherian ring R is called n-Gorenstein if the left and right self-injective dimensions of R are at most n. The following result is a generalization of Example 3.1(4).

Example 3.2. If R is n-Gorenstein, then

$$\mathcal{G}(\mathscr{P}(\operatorname{Mod} R))^{\perp_1} = \mathscr{P}(\operatorname{Mod} R)^{\leq n} = \mathscr{P}(\operatorname{Mod} R)^{<\infty} = \mathscr{I}(\operatorname{Mod} R)^{\leq n} = \mathscr{I}(\operatorname{Mod} R)^{<\infty}.$$

Proof. By [13, Theorem 2] and Example 3.1(2), we have

$$\mathscr{P}(\operatorname{Mod} R)^{\leq n} = \mathscr{P}(\operatorname{Mod} R)^{<\infty} = \mathscr{I}(\operatorname{Mod} R)^{\leq n} = \mathscr{I}(\operatorname{Mod} R)^{<\infty} \subseteq \mathscr{G}(\mathscr{P}(\operatorname{Mod} R))^{\perp_1}.$$

Now let $M \in \mathcal{G}(\mathscr{P}(\operatorname{Mod} R))^{\perp_1}$ and $N \in \operatorname{Mod} R$. Since R is n-Gorenstein, there exists an exact sequence

$$0 \to G_n \to P_{n-1} \to \cdots \to P_0 \to M \to 0$$

in Mod R with all P_i in $\mathscr{P}(\operatorname{Mod} R)$ and $G_n \in \mathscr{G}(\mathscr{P}(\operatorname{Mod} R))$ by [8, Theorem 11.5.1]. Then we have $\operatorname{Ext}_R^{n+1}(N,M) \cong \operatorname{Ext}_R^1(G_n,M) = 0$ and $M \in \mathscr{I}(\operatorname{Mod} R)^{\leq n}$, and thus $\mathscr{G}(\mathscr{P}(\operatorname{Mod} R))^{\perp_1} \subseteq \mathscr{I}(\operatorname{Mod} R)^{\leq n}$.

The following result shows that $\mathcal{G}(\mathscr{C})^{\perp_1}$ behaves well.

Theorem 3.3.

- (1) $\mathcal{G}(\mathscr{C})^{\perp_1}$ is closed under direct products, direct summands and extensions.
- (2) $\mathcal{G}(\mathscr{C})^{\perp_1}$ is projectively resolving in \mathscr{A} .
- (3) $\mathcal{G}(\mathscr{C})^{\perp_1}$ is injectively coresolving in \mathscr{A} .

Proof. (1) It is trivial.

(2) By Example 3.1(1), $\mathscr{P}(\mathscr{A}) \subseteq \mathcal{G}(\mathscr{C})^{\perp_1}$. Let $G \in \mathcal{G}(\mathscr{C})$ and

$$0 \to L \to M \to N \to 0$$

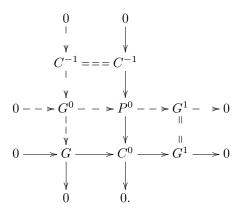
be an exact sequence in \mathscr{A} with $M, N \in \mathcal{G}(\mathscr{C})^{\perp_1}$. By Proposition 2.7(1), we have $\operatorname{Ext}_{\mathscr{A}}^{\geq 1}(G, M) = 0 = \operatorname{Ext}_{\mathscr{A}}^{\geq 1}(G, N)$. Then $\operatorname{Ext}_{\mathscr{A}}^{\geq 2}(G, L) = 0$. Because $G \in \mathcal{G}(\mathscr{C})$, we have an exact sequence

$$0 \to G \to C^0 \to G^1 \to 0$$

in $\mathscr A$ with $C^0\in\mathscr C$ and $G^1\in\mathcal G(\mathscr C)$. For C^0 , there exists an exact sequence

$$0 \to C^{-1} \to P^0 \to C^0 \to 0$$

in \mathscr{A} with $P^0 \in \mathscr{P}(\mathscr{A})$ and $C^{-1} \in \mathscr{C}$. Consider the following pullback diagram



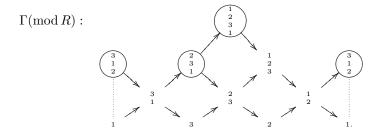
By the above argument, we have $\operatorname{Ext}^1_{\mathscr A}(G^0,L)\cong \operatorname{Ext}^2_{\mathscr A}(G^1,L)=0$. Because the leftmost column splits by Proposition 2.7(2), G is isomorphic to a direct summand of G^0 and $\operatorname{Ext}^1_{\mathscr A}(G,L)=0$, which shows that $L\in \mathcal G(\mathscr C)^{\perp_1}$.

(3) It is trivial that $\mathscr{I}(\mathscr{A}) \subseteq \mathscr{G}(\mathscr{C})^{\perp_1}$. By Proposition 2.7, we have that $\mathscr{G}(\mathscr{C})^{\perp_1}$ is closed under cokernels of monomorphisms. Thus $\mathscr{G}(\mathscr{C})^{\perp_1}$ is injectively coresolving.

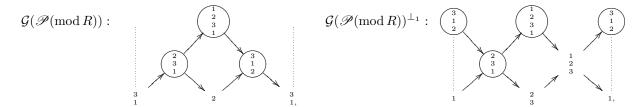
Before giving some applications of Theorem 3.3(2), consider the following example.

Example 3.4. Let Q be a quiver:

and $I = \langle a_1 a_3 a_2, a_2 a_1 a_3 \rangle$. Let R = kQ/I with k a field. Then the Auslander-Reiten quiver $\Gamma(\text{mod }R)$ of mod R is as follows.



By a direct computation, we have



where the terms marked by circles are indecomposable projective modules in mod R. Then we have $\mathcal{G}(\mathscr{P}(\operatorname{mod} R)) \cap \mathcal{G}(\mathscr{P}(\operatorname{mod} R))^{\perp_1} = \mathscr{P}(\operatorname{mod} R)$.

In general, we have the following

Corollary 3.5. If \mathscr{C} is closed under direct summands, then for any $n \geq 0$, we have

$$\mathcal{G}(\mathscr{C})^{\leq n} \cap \mathcal{G}(\mathscr{C})^{\perp_1} = \mathscr{C}^{\leq n}.$$

Proof. By Example 3.1(1), we have $\mathscr{C}^{\leq n} \subseteq \mathcal{G}(\mathscr{C})^{\leq n} \cap \mathcal{G}(\mathscr{C})^{\perp_1}$.

Now let $M \in \mathcal{G}(\mathscr{C})^{\leq n} \cap \mathcal{G}(\mathscr{C})^{\perp_1}$. By [11, Theorem 5.8], there exists an exact sequence

$$0 \to K_n \to C_{n-1} \to \cdots \to C_0 \to M \to 0$$

in \mathscr{A} with all C_i in \mathscr{C} and $K_n \in \mathcal{G}(\mathscr{C})$. By Theorem 3.3(2), we have $K_n \in \mathcal{G}(\mathscr{C})^{\perp_1}$. Because \mathscr{C} is closed under direct summands by assumption, it follows easily from the definition of $\mathcal{G}(\mathscr{C})$ that $K_n \in \mathscr{C}$ and $M \in \mathscr{C}^{\leq n}$.

Proposition 3.6. For any $M \in \mathcal{A}$, the following statements are equivalent.

- (1) $M \in \mathcal{G}(\mathscr{C})^{\perp_1}$.
- (2) The functor $\operatorname{Hom}_{\mathscr{A}}(-,M)$ is exact with respect to any short exact sequence in \mathscr{A} ending with an object in $\mathcal{G}(\mathscr{C})$.
- (3) Every short exact sequence starting with M is $\operatorname{Hom}_{\mathscr{A}}(\mathcal{G}(\mathscr{C}), -)$ -exact.

If, moreover, R is a commutative ring, $\mathscr{A} = \operatorname{Mod} R$ and $\mathscr{C} = \mathscr{P}(\operatorname{Mod} R)$, then the above conditions are equivalent to the following

(4) $\operatorname{Hom}_R(Q, M) \in \mathcal{G}(\mathscr{P}(\operatorname{Mod} R))^{\perp_1}$ for any $Q \in \mathscr{P}(\operatorname{Mod} R)$.

Proof. $(1) \Leftrightarrow (2) \Leftrightarrow (3)$ It is easy.

Now let R be a commutative ring.

 $(1) \Rightarrow (4)$ For any $G \in \mathcal{G}(\mathscr{P}(\operatorname{Mod} R))$, we have an exact sequence

$$0 \to K \xrightarrow{f} P \to G \to 0 \tag{3.1}$$

in Mod R with $P \in \mathcal{P}(\text{Mod } R)$. Let $Q \in \mathcal{P}(\text{Mod } R)$. Then

$$0 \to Q \otimes_R K \xrightarrow{1_Q \otimes f} Q \otimes_R P \to Q \otimes_R G \to 0$$

is exact. It is easy to check that $Q \otimes_R G \in \mathcal{G}(\mathscr{P}(\operatorname{Mod} R))$. Then $\operatorname{Ext}^1_R(Q \otimes_R G, M) = 0$ by (1), and so $\operatorname{Hom}_R(1_Q \otimes f, M)$ is epic. By the adjoint isomorphism, we have that $\operatorname{Hom}_R(f, \operatorname{Hom}_R(Q, M))$ is also epic. So applying the functor $\operatorname{Hom}_R(-, \operatorname{Hom}_R(Q, M))$ to (3.1) we get $\operatorname{Ext}^1_R(G, \operatorname{Hom}_R(Q, M)) = 0$, and hence $\operatorname{Hom}_R(Q, M) \in \mathcal{G}(\mathscr{P}(\operatorname{Mod} R))^{\perp_1}$.

$$(4) \Rightarrow (1)$$
 It is trivial by setting $Q = R$.

In the following result, we characterize categories over which all objects are in $\mathcal{G}(\mathscr{C})^{\perp_1}$.

Proposition 3.7. Assume that \mathscr{C} is closed under direct summands. Consider the following conditions.

- (1) $\mathcal{G}(\mathscr{C})^{\perp_1} = \mathscr{A}$.
- (2) $\mathcal{G}(\mathscr{C}) \subseteq \mathcal{G}(\mathscr{C})^{\perp_1}$.
- (3) $\mathcal{G}(\mathscr{C}) = \mathscr{C}$.

Then we have $(1) \Rightarrow (2) \Rightarrow (3)$. If \mathscr{C} is a projective generator for \mathscr{A} , then all of them are equivalent.

Proof. The implication $(1) \Rightarrow (2)$ is trivial.

 $(2) \Rightarrow (3)$ Let $G \in \mathcal{G}(\mathscr{C})$. Then there exists an exact sequence

$$0 \to G_1 \to C_0 \to G \to 0$$

in \mathscr{A} with $C_0 \in \mathscr{C}$ and $G_1 \in \mathscr{G}(\mathscr{C})$. By (2), we have that $G_1 \in \mathscr{G}(\mathscr{C})^{\perp_1}$ and the above exact sequence splits. Thus as a direct summand of C_0 , $G \in \mathscr{C}$ by assumption.

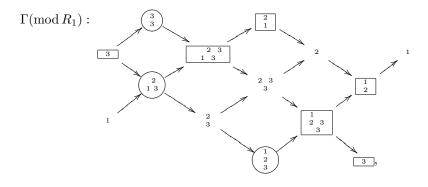
If \mathscr{C} is a projective generator for \mathscr{A} , then the implication $(3) \Rightarrow (1)$ follows directly.

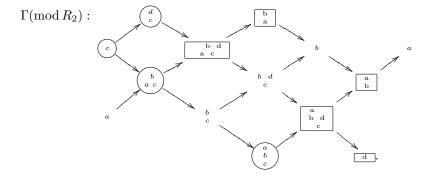
Let \mathscr{X} be a subcategory of mod R containing $\mathscr{P}(\operatorname{mod} R)$. We use $\underline{\mathscr{X}}$ to denote the stable category of \mathscr{X} modulo $\mathscr{P}(\operatorname{mod} R)$. We end this section by giving two examples about $\mathcal{G}(\mathscr{P}(\operatorname{mod} R))^{\perp_1}$.

Example 3.8. Let Q_1 and Q_2 be the following two quivers

$$Q_1: 1 \xrightarrow{\alpha_1} 2 \xrightarrow{\alpha_3} 3 \xrightarrow{\alpha_4} \qquad Q_2: a \xrightarrow{\alpha_a} b \xrightarrow{\alpha_c} c \xleftarrow{\alpha_d} d,$$

and let $I_1 = \langle \alpha_2 \alpha_1, \alpha_1 \alpha_2, \alpha_4 \alpha_3, \alpha_4^2 \rangle$ and $I_2 = \langle \alpha_b \alpha_a, \alpha_a \alpha_b \rangle$. Let $R_1 = KQ_1/I_1$ and $R_2 = KQ_2/I_2$. Note that R_2 is Gorenstein and R_1 is not Gorenstein. The Auslander-Reiten quivers of mod R_1 and mod R_2 are as follows.





Then we have

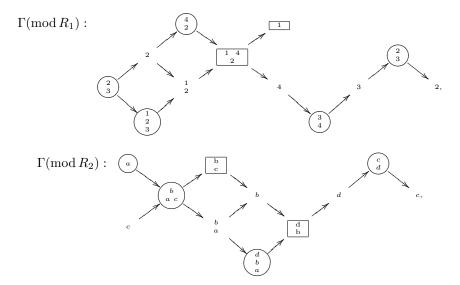
- (1) The objects marked in a cycle or a box are indecomposable objects in $\mathcal{G}(\mathscr{P}(\text{mod }R_i))^{\perp_1}$ (i=1,2); in particular, the objects marked in a cycle are indecomposable objects in $\mathscr{P}(\text{mod }R_i)$ (i=1,2).
- (2) $\underline{\operatorname{mod}} R_1 \simeq \underline{\operatorname{mod}} R_2$ and $\frac{\underline{\operatorname{mod}} R_1}{\mathcal{G}(\mathscr{P}(\operatorname{mod} R_1))^{\perp_1}} \simeq \frac{\underline{\operatorname{mod}} R_2}{\mathcal{G}(\mathscr{P}(\operatorname{mod} R_2))^{\perp_1}}.$
- $(3) \ \mathcal{G}(\mathscr{P}(\operatorname{mod} R_1))^{\perp_1} \underline{\sim} \ \mathcal{G}(\mathscr{P}(\operatorname{mod} R_2))^{\perp_1} \ \text{and} \ \mathcal{G}(\mathscr{P}(\operatorname{mod} R_1))^{\perp_1} \simeq \ \mathcal{G}(\mathscr{P}(\operatorname{mod} R_2))^{\perp_1}.$

Example 3.9. Let Q_1 and Q_2 be the following two quivers

$$Q_1: 1 \xrightarrow{\alpha_1} 2 \xrightarrow{\alpha_2} 3 \qquad Q_2: a \xleftarrow{\alpha_a} b \xrightarrow{\alpha_b} c,$$

$$\downarrow \alpha_3 \qquad \qquad \downarrow \alpha_c$$

and let $I_1 = \langle \alpha_3 \alpha_2, \alpha_4 \alpha_3, \alpha_2 \alpha_4 \rangle$ and $I_2 = \langle \alpha_c \alpha_b, \alpha_d \alpha_c, \alpha_b \alpha_d \rangle$. Let $R_1 = KQ_1/I_1$ and $R_2 = KQ_2/I_2$. Then the Auslander-Reiten quivers of mod R_1 and mod R_2 are as follows.



Then we have

- (1) The objects marked in a cycle or a box are indecomposable objects in $\mathcal{G}(\mathscr{P}(\text{mod }R_i))^{\perp_1}$ (i=1,2); in particular, the objects marked in a cycle are indecomposable objects in $\mathscr{P}(\text{mod }R_i)$ (i=1,2).
- (2) $\operatorname{\underline{mod}} R_1 \simeq \operatorname{\underline{mod}} R_2$ and $\operatorname{\underline{mod}} R_1 \simeq \operatorname{\underline{mod}} R_2 \simeq \operatorname{\underline{mod}} R_2$. (3) $\mathcal{G}(\mathscr{P}(\operatorname{mod} R_1))^{\perp_1} \simeq \mathcal{G}(\mathscr{P}(\operatorname{mod} R_2))^{\perp_1}$ and $\operatorname{\underline{G}}(\mathscr{P}(\operatorname{mod} R_1))^{\perp_1} \simeq \operatorname{\underline{G}}(\mathscr{P}(\operatorname{mod} R_2))^{\perp_1}$.

The special precovered category of $\mathcal{G}(\mathscr{C})$

In this section, we introduce and investigate the special precovered category of $\mathcal{G}(\mathscr{C})$ in terms of the properties of $\mathcal{G}(\mathscr{C})^{\perp_1}$.

Proposition 4.1.

- (1) Let $M \in \mathcal{G}(\mathscr{C})^{\perp_1}$ and $f: C \to M$ be an epimorphism in \mathscr{A} with $C \in \mathscr{C}$. Then $\operatorname{Ker} f \in \mathcal{G}(\mathscr{C})^{\perp_1}$ and f is a special $\mathcal{G}(\mathscr{C})$ -precover of M.
- (2) Consider an exact sequence

$$0 \to M' \to C \to M \to 0. \tag{4.1}$$

If M' admits special $\mathcal{G}(\mathscr{C})$ -precover, then so is M. The converse is true if \mathscr{C} is a generator for $\mathcal{G}(\mathscr{C})^{\perp_1}$ and (4.1) is $\operatorname{Hom}_{\mathscr{A}}(\mathscr{C}, -)$ -exact.

Proof. (1) The assertion follows from Example 3.1(1) and Theorem 3.3(2).

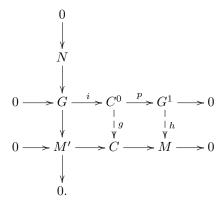
(2) Assume that M' admits a special $\mathcal{G}(\mathscr{C})$ -precover and

$$0 \to N \to G \to M' \to 0$$

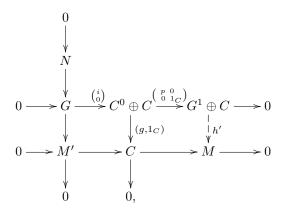
is an exact sequence in \mathscr{A} with $G \in \mathcal{G}(\mathscr{C})$ and $N \in \mathcal{G}(\mathscr{C})^{\perp_1}$. Combining it with the following $\operatorname{Hom}_{\mathscr{A}}(-,\mathscr{C})$ -exact exact sequence

$$0 \to G \xrightarrow{i} C^0 \xrightarrow{p} G^1 \to 0$$

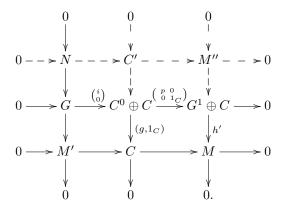
in \mathscr{A} with $C^0 \in \mathscr{C}$ and $G^1 \in \mathcal{G}(\mathscr{C})$, we get the following commutative diagram with exact columns and rows



Adding the exact sequence $0 \longrightarrow 0 \longrightarrow C \stackrel{1_C}{\longrightarrow} C \longrightarrow 0$ to the middle row, we obtain the following commutative diagram with exact columns and rows



which can be completed to a commutative diagram with exact columns and rows as follows.



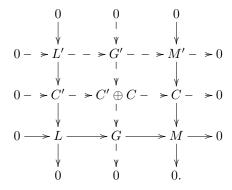
Note that $G^1 \oplus C \in \mathcal{G}(\mathscr{C})$. Moreover, since $N \in \mathcal{G}(\mathscr{C})^{\perp_1}$, we have $M'' \in \mathcal{G}(\mathscr{C})^{\perp_1}$ by Theorem 3.3(3). Thus the rightmost column in the above diagram is a special $\mathcal{G}(\mathscr{C})$ -precover of M.

Now let \mathscr{C} be a generator for $\mathcal{G}(\mathscr{C})^{\perp_1}$ and (4.1) be $\operatorname{Hom}_{\mathscr{A}}(\mathscr{C}, -)$ -exact. Assume that M admits a special $\mathcal{G}(\mathscr{C})$ -precover and

$$0 \to L \to G \to M \to 0$$
,

$$0 \to L' \to C' \to L \to 0$$

are exact sequences in \mathscr{A} with $G \in \mathcal{G}(\mathscr{C})$, $L \in \mathcal{G}(\mathscr{C})^{\perp_1}$ and $C' \in \mathscr{C}$. By [11, Lemma 3.1(1)], we get the following commutative diagram with exact columns and rows



By Proposition 2.7(2) and Theorem 3.3(2), we have $L' \in \mathcal{G}(\mathscr{C})^{\perp_1}$ and the leftmost column is $\operatorname{Hom}_{\mathscr{A}}(\mathscr{C}, -)$ -exact. So the middle column is also $\operatorname{Hom}_{\mathscr{A}}(\mathscr{C}, -)$ -exact. On the other hand, the middle column is $\operatorname{Hom}_{\mathscr{A}}(-,\mathscr{C})$ -exact by Proposition 2.7(2). So $G' \in \mathcal{G}(\mathscr{C})$ by [11, Proposition 4.7(5)], and hence the upper row is a special $\mathcal{G}(\mathscr{C})$ -precover of M'.

We introduce the following

Definition 4.2. We call $SPC(\mathcal{G}(\mathcal{C})) := \{A \in \mathcal{A} \mid A \text{ admits a special } \mathcal{G}(\mathcal{C})\text{-precover}\}$ the *special precovered category* of $\mathcal{G}(\mathcal{C})$.

It is trivial that $SPC(\mathcal{G}(\mathscr{C}))$ is the largest subcategory of \mathscr{A} such that $\mathcal{G}(\mathscr{C})$ is special precovering in it. In particular, $SPC(\mathcal{G}(\mathscr{C})) = \mathscr{A}$ if and only if $\mathcal{G}(\mathscr{C})$ is special precovering in \mathscr{A} . For the sake of convenience, we say that a subcategory \mathscr{X} of \mathscr{A} is closed under \mathscr{C} -stable direct summands provided that the condition $X \oplus C \in \mathscr{X}$ with $C \in \mathscr{C}$ implies $X \in \mathscr{X}$.

Theorem 4.3.

- (1) $SPC(\mathcal{G}(\mathscr{C}))$ is closed under extensions.
- (2) $SPC(\mathcal{G}(\mathscr{C}))$ is closed under \mathscr{C} -stable direct summands.

Proof. (1) Let

$$0 \to L \to M \to N \to 0$$

be an exact sequence in \mathscr{A} . Assume that L and N admit special $\mathcal{G}(\mathscr{C})$ -precovers and

$$0 \to L' \to G_L \xrightarrow{f} L \to 0$$
.

$$0 \to N' \to G_N \xrightarrow{g} N \to 0$$

are exact sequences in \mathscr{A} with $G_L, G_N \in \mathcal{G}(\mathscr{C})$ and $L', N' \in \mathcal{G}(\mathscr{C})^{\perp_1}$. Consider the following pullback diagram

Since $\operatorname{Ext}^2_R(G_N, L') = 0$ by Proposition 2.7(1), we get an epimorphism $\operatorname{Ext}^1_R(G_N, f) : \operatorname{Ext}^1_R(G_N, G_L) \to \operatorname{Ext}^1_R(G_N, L)$. It induces the following commutative diagram with exact rows

$$0 - \Rightarrow G_L - - \Rightarrow G_M - - \Rightarrow G_N - - \Rightarrow 0$$

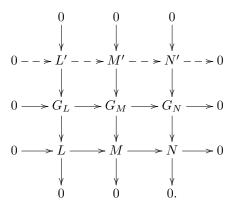
$$\downarrow^f \qquad \downarrow^\beta \qquad \qquad \parallel$$

$$0 \longrightarrow L \longrightarrow Q \longrightarrow G_N \longrightarrow 0$$

$$\downarrow^\alpha \qquad \downarrow^g$$

$$0 \longrightarrow L \longrightarrow M \longrightarrow N \longrightarrow 0.$$

Set $M' := \operatorname{Ker} \alpha \beta$. Then we get the following commutative diagram with exact columns and rows



Note that $G_M \in \mathcal{G}(\mathscr{C})$ (by [14, Corollary 4.5]) and $M' \in \mathcal{G}(\mathscr{C})^{\perp_1}$ (by Theorem 3.3(1)). Thus the middle column in the above diagram is a special $\mathcal{G}(\mathscr{C})$ -precover of M. This proves that $SPC(\mathcal{G}(\mathscr{C}))$ is closed under extensions.

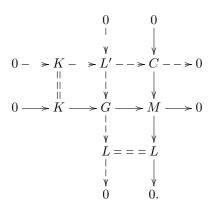
(2) Let $M \in SPC(\mathcal{G}(\mathscr{C}))$ and

$$0 \to K \to G \to M \to 0$$

be an exact sequence in $\mathscr A$ with $G \in \mathcal G(\mathscr C)$ and $K \in \mathcal G(\mathscr C)^{\perp_1}$. Assume that $M \cong L \oplus C$ with $C \in \mathscr C$, we have an exact and split sequence

$$0 \to C \to M \to L \to 0$$

in \mathcal{A} . Consider the following pullback diagram



Since $K, C \in \mathcal{G}(\mathscr{C})^{\perp_1}$, we have $L' \in \mathcal{G}(\mathscr{C})^{\perp_1}$ by Theorem 3.3(1). Thus the middle column in the above diagram is a special $\mathcal{G}(\mathscr{C})$ -precover of L.

The following question seems to be interesting.

Question 4.4. Is $SPC(\mathcal{G}(\mathscr{C}))$ closed under direct summands?

The following result shows that $SPC(\mathcal{G}(\mathscr{C}))$ possesses certain minimality, which generalizes [15, Theorem 6.8(1)].

Theorem 4.5. Assume that \mathscr{C} is a generator for $\mathcal{G}(\mathscr{C})^{\perp_1}$. Then we have

- (1) $\mathcal{G}(\mathscr{C})^{\perp_1} \cup \mathcal{G}(\mathscr{C}) \subseteq SPC(\mathcal{G}(\mathscr{C}))$ and $SPC(\mathcal{G}(\mathscr{C}))$ is closed under extensions and \mathscr{C} -stable direct summands.
- (2) $SPC(\mathcal{G}(\mathcal{C}))$ is the minimal subcategory with respect to the property (1) as above.

To prove this theorem, we need the following

Lemma 4.6. Let

$$0 \to K \to G \to M \to 0$$

be an exact sequence in $\mathscr A$ with $K \in \mathcal G(\mathscr C)^{\perp_1}$ and $G \in \mathcal G(\mathscr C)$. Then there exists an exact sequence

$$0 \to G \to M \oplus C \to K' \to 0$$

in \mathscr{A} with $K' \in \mathcal{G}(\mathscr{C})^{\perp_1}$ and $C \in \mathscr{C}$.

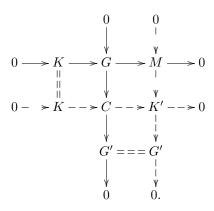
Proof. Let

$$0 \to K \to G \to M \to 0$$

be an exact sequence in \mathscr{A} with $K \in \mathcal{G}(\mathscr{C})^{\perp_1}$ and $G \in \mathcal{G}(\mathscr{C})$. Since $G \in \mathcal{G}(\mathscr{C})$, there exists a $\operatorname{Hom}_{\mathscr{A}}(\mathscr{C}, -)$ -exact exact sequence

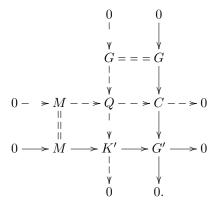
$$0 \to G \to C \to G' \to 0$$

in \mathscr{A} with $C \in \mathscr{C}$ and $G' \in \mathcal{G}(\mathscr{C})$. Consider the following pushout diagram



Since $K, C \in \mathcal{G}(\mathscr{C})^{\perp_1}$, we have $K' \in \mathcal{G}(\mathscr{C})^{\perp_1}$ by Theorem 3.3(3).

Consider the following pullback diagram



Since the middle column in the first diagram is $\operatorname{Hom}_{\mathscr{A}}(\mathscr{C},-)$ -exact, so is the rightmost column in this diagram. Then the middle row in the second diagram is also $\operatorname{Hom}_{\mathscr{A}}(\mathscr{C},-)$ -exact by [11, Lemma 2.4(1)], and in particular, it splits. Thus $Q \cong M \oplus C$ and the middle column in the second diagram is the desired exact sequence.

Proof of Theorem 4.5. (1) It follows from Proposition 4.1(1) and Theorem 4.3.

(2) Let \mathscr{X} be a subcategory of \mathscr{A} such that $\mathcal{G}(\mathscr{C})^{\perp_1} \cup \mathcal{G}(\mathscr{C}) \subseteq \mathscr{X}$ and \mathscr{X} is closed under extensions and \mathscr{C} -stable direct summands. Let $M \in \mathrm{SPC}(\mathcal{G}(\mathscr{C}))$. Then by Lemma 4.6, we have an exact sequence

$$0 \to G \to M \oplus C \to K' \to 0$$

in \mathscr{A} with $K' \in \mathcal{G}(\mathscr{C})^{\perp_1}$, $G \in \mathcal{G}(\mathscr{C})$ and $C \in \mathscr{C}$. Because $G, K' \in \mathscr{X}$, we have that $M \oplus C \in \mathscr{X}$ and $M \in \mathscr{X}$. It follows that $SPC(\mathcal{G}(\mathscr{C})) \subseteq \mathscr{X}$.

As an immediate consequence of Theorem 4.5, we get the following

Corollary 4.7. Assume that $\mathcal{G}(\mathscr{P}(\operatorname{Mod} R))$ is special precovering in $\operatorname{Mod} R$ and \mathscr{X} is a subcategory of $\operatorname{Mod} R$. If $\mathcal{G}(\mathscr{P}(\operatorname{Mod} R))^{\perp_1} \cup \mathcal{G}(\mathscr{P}(\operatorname{Mod} R)) \subseteq \mathscr{X}$ and \mathscr{X} is closed under extensions and $\mathscr{P}(\operatorname{Mod} R)$ -stable direct summands, then $\mathscr{X} = \operatorname{Mod} R$.

Proof. By assumption, we have $SPC(\mathcal{G}(\mathcal{P}(Mod R))) = Mod R$. Now the assertion follows from Theorem 4.5.

We collect some known classes of rings R satisfying that $\mathcal{G}(\mathscr{P}(\operatorname{Mod} R))$ is special precovering in $\operatorname{Mod} R$ as follows.

Example 4.8. For any one of the following rings R, $\mathcal{G}(\mathscr{P}(\operatorname{Mod} R))$ is special precovering in $\operatorname{Mod} R$.

- (1) Commutative Noetherian rings of finite Krull dimension ([5, Remark 5.8]).
- (2) Rings in which all projective left R-modules have finite injective dimension ([16, Corollary 4.3]); especially, Gorenstein rings (that is, n-Gorenstein rings for some $n \geq 0$).
- (3) Right coherent rings in which all flat *R*-modules have finite projective dimension ([2, Theorem 3.5] and [4, Proposition 8.10]); especially, right coherent and left perfect rings, and right Artinian rings.

We recall the following definition from [12].

Definition 4.9. Let \mathscr{C} , \mathscr{T} and \mathscr{E} be subcategories of \mathscr{A} with $\mathscr{C} \subseteq \mathscr{T}$.

- (1) \mathscr{C} is called an \mathscr{E} -proper generator (resp. \mathscr{E} -coproper cogenerator) for \mathscr{T} if for any object T in \mathscr{T} , there exists a $\operatorname{Hom}_{\mathscr{A}}(\mathscr{E},-)$ (resp. $\operatorname{Hom}_{\mathscr{A}}(-,\mathscr{E})$)-exact exact sequence $0 \to T' \to C \to T \to 0$ (resp. $0 \to T \to C \to T' \to 0$) in \mathscr{A} such that C is an object in \mathscr{C} and T' is an object in \mathscr{T} .
- (2) \mathcal{T} is called \mathscr{E} -preresolving in \mathscr{A} if the following conditions are satisfied.
 - (i) \mathcal{T} admits an \mathcal{E} -proper generator.
 - (ii) \mathscr{T} is closed under \mathscr{E} -proper extensions, that is, for any $\operatorname{Hom}_{\mathscr{A}}(\mathscr{E}, -)$ -exact exact sequence $0 \to A_1 \to A_2 \to A_3 \to 0$ in \mathscr{A} , if both A_1 and A_3 are objects in \mathscr{T} , then A_2 is also an object in \mathscr{T} .

An \mathscr{E} -preresolving subcategory \mathscr{T} of \mathscr{A} is called \mathscr{E} -resolving if the following condition is satisfied. (iii) \mathscr{T} is closed under kernels of \mathscr{E} -proper epimorphisms, that is, for any $\operatorname{Hom}_{\mathscr{A}}(\mathscr{E}, -)$ -exact exact sequence $0 \to A_1 \to A_2 \to A_3 \to 0$ in \mathscr{A} , if both A_2 and A_3 are objects in \mathscr{T} , then A_1 is also an object in \mathscr{T} .

In the following, we investigate when $SPC(\mathcal{G}(\mathcal{C}))$ is \mathcal{C} -resolving. We need the following two lemmas.

Lemma 4.10. For any $M \in SPC(\mathcal{G}(\mathcal{C}))$, there exists a $Hom_{\mathscr{A}}(\mathcal{C}, -)$ -exact exact sequence

$$0 \to K \to C \to M \to 0$$

in \mathscr{A} with $C \in \mathscr{C}$.

Proof. Let $M \in SPC(\mathcal{G}(\mathscr{C}))$. Then there exists a $Hom_{\mathscr{A}}(\mathscr{C}, -)$ -exact exact sequence

$$0 \to K' \to G \to M \to 0$$

in \mathscr{A} with $G \in \mathcal{G}(\mathscr{C})$ and $K' \in \mathcal{G}(\mathscr{C})^{\perp_1}$. For G, there exists a $\operatorname{Hom}_{\mathscr{A}}(\mathscr{C}, -)$ -exact exact sequence

$$0 \to G' \to C \to G \to 0$$

in \mathscr{A} with $C \in \mathscr{C}$ and $G' \in \mathcal{G}(\mathscr{C})$. Consider the following pullback diagram

$$0 & 0 \\ \downarrow & \downarrow \\ G'' = = = G' \\ \downarrow & \downarrow \\ 0 --> K --> C --> M --> 0 \\ \downarrow & \parallel \\ \downarrow & \parallel \\ 0 \longrightarrow K' \longrightarrow G \longrightarrow M \longrightarrow 0$$

By [11, Lemma 2.5], the middle row is $\operatorname{Hom}_{\mathscr{A}}(\mathscr{C}, -)$ -exact, as desired.

Lemma 4.11. Assume that \mathscr{C} is a generator for $\mathcal{G}(\mathscr{C})^{\perp_1}$. Given a $\operatorname{Hom}_{\mathscr{A}}(\mathscr{C},-)$ -exact exact sequence

$$0 \to L \to M \to N \to 0$$

in \mathcal{A} , we have

- (1) If $M, N \in SPC(\mathcal{G}(\mathscr{C}))$, then $L \in SPC(\mathcal{G}(\mathscr{C}))$.
- (2) If $L, M \in SPC(\mathcal{G}(\mathscr{C}))$ and there exists a $Hom_{\mathscr{A}}(\mathscr{C}, -)$ -exact exact sequence

$$0 \to K \to C \to N \to 0$$

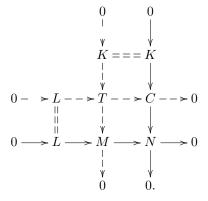
in \mathscr{A} with $C \in \mathscr{C}$, then $N \in SPC(\mathscr{G}(\mathscr{C}))$.

Proof. Let $0 \to L \to M \to N \to 0$ be a $\operatorname{Hom}_{\mathscr{A}}(\mathscr{C}, -)$ -exact exact sequence in \mathscr{A} .

(1) Assume that $M, N \in SPC(\mathcal{G}(\mathscr{C}))$. By Lemma 4.10, there exists a $Hom_{\mathscr{A}}(\mathscr{C}, -)$ -exact exact sequence

$$0 \to K \to C \to N \to 0$$

in $\mathscr A$ with $C\in\mathscr C.$ Consider the following pullback diagram



By Proposition 4.1(2), $K \in SPC(\mathcal{G}(\mathscr{C}))$. Then it follows from Theorem 4.3(1) and the exactness of the middle column that $T \in SPC(\mathcal{G}(\mathscr{C}))$. Notice that the middle row is $Hom_{\mathscr{A}}(\mathscr{C}, -)$ -exact by [11, Lemma 2.4(1)], so it splits and $T \cong L \oplus C$. Thus $L \in SPC(\mathcal{G}(\mathscr{C}))$ by Theorem 4.3(2).

(2) Assume $L, M \in SPC(\mathcal{G}(\mathscr{C}))$ and there exists a $Hom_{\mathscr{A}}(\mathscr{C}, -)$ -exact exact sequence

$$0 \to K \to C \to N \to 0$$

in \mathscr{A} with $C \in \mathscr{C}$. As in the above diagram, since $L, C \in SPC(\mathcal{G}(\mathscr{C}))$, we have $T \in SPC(\mathcal{G}(\mathscr{C}))$ by Theorem 4.3(1). Moreover, the middle column is $Hom_{\mathscr{A}}(\mathscr{C}, -)$ -exact by [11, Lemma 2.4(1)]. So $K \in SPC(\mathcal{G}(\mathscr{C}))$ by (1), and hence $N \in SPC(\mathcal{G}(\mathscr{C}))$ by Proposition 4.1(2).

Now we are ready to prove the following

Theorem 4.12. If \mathscr{C} is a generator for $\mathscr{G}(\mathscr{C})^{\perp_1}$, then $SPC(\mathscr{G}(\mathscr{C}))$ is \mathscr{C} -resolving in \mathscr{A} with a \mathscr{C} -proper generator \mathscr{C} .

Proof. Following Theorem 4.3(1) and Lemma 4.11(1), we know that $SPC(\mathcal{G}(\mathscr{C}))$ is closed under \mathscr{C} -proper extensions and kernels of \mathscr{C} -proper epimorphisms. Now let $M \in SPC(\mathcal{G}(\mathscr{C}))$. Then by Lemma 4.10, there exists a $Hom_{\mathscr{A}}(\mathscr{C}, -)$ -exact exact sequence

$$0 \to K \to C \to M \to 0$$

in \mathscr{A} with $C \in \mathscr{C}$. By Proposition 4.1(2), we have $K \in SPC(\mathcal{G}(\mathscr{C}))$. It follows that \mathscr{C} is a \mathscr{C} -proper generator for $SPC(\mathcal{G}(\mathscr{C}))$ and $SPC(\mathcal{G}(\mathscr{C}))$ is a \mathscr{C} -resolving.

As a consequence, we get the following

Corollary 4.13. If \mathscr{C} is a projective generator for \mathscr{A} , then $SPC(\mathscr{G}(\mathscr{C}))$ is projectively resolving and injectively coresolving in \mathscr{A} .

Proof. Let \mathscr{C} be a projective generator for \mathscr{A} . Because $\mathscr{G}(\mathscr{C})^{\perp_1}$ is projectively resolving by Theorem 3.3(2), \mathscr{C} is also a projective generator for $\mathscr{G}(\mathscr{C})^{\perp_1}$. It follows from Theorem 4.12 that $SPC(\mathscr{G}(\mathscr{C}))$ is projectively resolving. Now let I be an injective object in \mathscr{A} and

$$0 \to K \to P \xrightarrow{f} I \to 0$$

an exact sequence in \mathscr{A} with $P \in \mathscr{C}$. Then it is easy to see that $K \in \mathcal{G}(\mathscr{C})^{\perp_1}$ by Example 3.1(1) and Theorem 3.3(2). So f is a special $\mathcal{G}(\mathscr{C})$ -precover of I and $I \in SPC(\mathcal{G}(\mathscr{C}))$. On the other hand, by Lemma 4.11(2), we have that $SPC(\mathcal{G}(\mathscr{C}))$ is closed under cokernels of monomorphisms. Thus we conclude that $SPC(\mathcal{G}(\mathscr{C}))$ is injectively coresolving.

The following corollary is an immediate consequence of Corollary 4.13, in which the second assertion generalizes [15, Theorem 6.8(2)].

Corollary 4.14.

- (1) $SPC(\mathcal{G}(\mathcal{P}(Mod R)))$ is projectively resolving and injectively coresolving in Mod R.
- (2) If R is a left Noetherian ring, then $SPC(\mathcal{G}(\mathcal{P}(\text{mod }R)))$ is projectively resolving and injectively coresolving in mod R.

Let $SPE(\mathcal{G}(\mathscr{C}))$ be the subcategory of \mathscr{A} consisting of objects admitting special $\mathcal{G}(\mathscr{C})$ -preenvelopes. We point out that the dual versions on $^{\perp_1}\mathcal{G}(\mathscr{C})$ and $SPE(\mathcal{G}(\mathscr{C}))$ of all of the above results also hold true by using completely dual arguments.

Acknowledgements. This research was partially supported by NSFC (Grant No. 11571164), a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, the University Postgraduate Research and Innovation Project of Jiangsu Province 2016 (No. KYZZ16_0034), Nanjing University Innovation and Creative Program for PhD candidate (No. 2016011). The authors thank the referees for the useful suggestions.

References

- [1] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Secondard edition, Grad. Texts in Math. 13, Springer-Verlag, Berlin, 1992.
- [2] J. Asadollahi, T. Dehghanpour and P. Hafezi, On the existence of Gorenstein projective precovers, Rend. Sem. Mat. Univ. Padova 136 (2016), 257–264.
- [3] M. Auslander and M. Bridger, Stable module theory, Memoirs Amer. Math. Soc. 94, Amer. Math. Soc., Providence, RI, 1969.
- [4] D. Bravo, J. Gillespie and M. Hovey, *The stable module category of a general ring*, Preprint is available at arXiv: 1405.5768.
- [5] L. W. Christensen, H.-B. Foxby and H. Holm, Beyond totally reflexive modules and back: A survey on Gorenstein dimensions, Commutative algebra–Noetherian and Non-Noetherian Perspectives, Springer, New York, 2011, pp.101–143.
- [6] E. E. Enochs, Injective and flat covers, envelopes and resolvents, Israel J. Math. 39 (1981), 189–209.
- [7] E. E. Enochs and O. M. G. Jenda, Gorenstein injective and projective modules, Math. Z. 220 (1995), 611–633.
- [8] E. E. Enochs and O. M. G. Jenda: Relative Homological Algebra, de Gruyter Exp. Math. 30, Walter de Gruyter, Berlin, New York, 2000.
- [9] E. E. Enochs, O. M. G. Jenda and J. A. López-Ramos, Covers and envelopes by V-Gorenstein modules, Comm. Algebra 33 (2005), 4705–4717.
- [10] H. Holm, Gorenstein homological dimensions, J. Pure Appl. Algebra 189 (2004), 167–193.
- [11] Z. Y. Huang, Proper resolutions and Gorenstein categories, J. Algebra 393 (2013), 142–167.
- [12] Z. Y. Huang, Homological dimensions relative to preresolving subcategories, Kyoto J. Math. 54 (2014), 727–757.
- [13] Y. Iwanaga, On rings with finite self-injective dimension II, Tsukuba J. Math. 4 (1980), 107–113.

- [14] S. Sather-Wagstaff, T. Sharif and D. White, *Stability of Gorenstein categories*, J. London Math. Soc. **77** (2008), 481–502.
- [15] R. Takahashi, Remarks on modules approximated by G-projective modules, J. Algebra 301 (2006), 748–780.
- [16] J. Wang and L. Liang, A characterization of Gorenstein projective modules, Comm. Algebra 44 (2016), 1420–1432.