
SPECTRAL ANALYSIS BEYOND `2 ON SIERPINSKI LATTICES

SHIPING CAO, YIQI HUANG, HUA QIU, ROBERT S. STRICHARTZ, AND XIAOHAN ZHU

Abstract. We study the spectrum of the Laplacian on the Sierpinski lattices. First,
we show that the spectrum of the Laplacian, as a subset of C, remains the same for
any `p spaces. Second, we characterize all the spectral points on the lattices with a
boundary point.

1. introduction

In this note, we study the spectrum of the Laplacian on the Sierpinski Lattice S̃G. This
problem was fully investigated by A. Teplyaev [9] in the `2 setting. We will continue his
study for the `p case, and the `1 and `∞ cases are of special interest.

Figure 1. The Sierpinski lattices.

The Sierpinski lattice is an infinite graph defined as follows. Let
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2 ), q1 = (0, 0), q2 = (1, 0) be the fixed points of Fi respectively. Given

an infinite word ω = ω1ω2 · · · ∈ {0, 1, 2}∞, the corresponding Sierpinski lattice S̃G is
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constructed as

S̃G =

∞⋃
m=1

F−1ω1
F−1ω2
· · ·F−1ωm

(Vm),

where V0 = {q0, q1, q2} and Vm =
⋃2
i=0 Fi(Vm−1) are defined iteratively. See Figure 1.

For x, y ∈ S̃G, we write x ∼ y if x, y ∈ F−1ω1
F−1ω2
· · ·F−1ωm

FlmFlm−1 · · ·Fl1(V0) for a sequence
l1, · · · , lm ∈ {0, 1, 2}. Call y a neighbouring vertex of x. All vertices in the Sierpinski
lattice have four neighbouring vertices, except at most one vertex called the boundary
vertex, which admits only two neighbouring vertices. The boundary vertex exists if and
only if there exists M ∈ N and i ∈ {0, 1, 2} such that ωm = i for all m ≥M , see [9].

The Laplacian ∆ on S̃G is defined as

∆f(x) =

{∑
y∼x f(y)− 4f(x), if x is not a boundary point,∑
y∼x 2f(y)− 4f(x), if x is a boundary point.

(1.1)

The celebrated result of A. Teplyaev [9] showed that the Lapalacian ∆, viewed as an

operator `2(S̃G)→ `2(S̃G) has pure point spectrum. What’s more, `2(S̃G) admits a basis
of localized eigenfunctions of the Laplacian, which can be generated using the spectral
decimation recipe [1, 5]. Read the book [6] for an introduction to the spectral decimation.
For the spectral analysis on other fractal graphs and related fractalfolds, see [3, 7, 8].

In this work, we will describe the spectrum of the Laplacian ∆ : `p(S̃G) → `p(S̃G).
In Section 2, we will show that the spectrum is a union of a Julia set and a discrete
set named 6-series eigenvalues. The spectrum remains the same for any 1 ≤ p ≤ ∞
and any lattice. On the other hand, in Section 3, we will see that for 1 < p < ∞, the
Laplacian has only point spectrum and continuous spectrum, while ∆ : `1 → `1 has all
three kinds of spectral points. This phenomenon is a consequence of the existence of the

4-eigenfunctions in `∞(S̃G), which does not live in other `p(S̃G) spaces. In addition, we
get a full description of the `1 spectrum for the lattices with one boundary vertex.

2. The spectrum of ∆ on S̃G

In this section, we compute the spectrum of the Laplacian ∆ : `p(S̃G)→ `p(S̃G), which
is stated in the following Theorem 2.2.

Definition 2.1. The Julia set corresponding to the polynomial R(λ) = λ(5−λ) is defined
as

J = {x ∈ C : {R◦k(x)}∞k=0 ∈ l∞}.

Remark. The Hausdorff dimension of J is the unique zero of the Bowen’s function

B(t) = lim
k→∞

1

k
ln

∑
w∈R−k(x)

|(R◦k)′(w)|−t,

where x is any chosen point in J . See Section 9.1 in the book [4].

Theorem 2.2. Let σ(∆) = J ∪ Σ6, where Σ6 = {6} ∪ (
⋃∞
m=0R

◦−m{3}). The spectrum

of ∆ : `p(S̃G)→ `p(S̃G) is equal to σ(∆) for all 1 ≤ p ≤ ∞.



SPECTRAL ANALYSIS BEYOND `2 ON SIERPINSKI LATTICES 3

Remark. Theorem 2.2 is proved for the `2(S̃G) case in [9]. Here a different approach will

be used to deal with general `p cases. The theorem is also valid for ∆ : C0(S̃G)→ C0(S̃G).

We will prove Theorem 2.2 with several lemmas. For a fixed infinite word ω, we

consider a sequence of sparse lattices S̃G
(−k)

defined as

S̃G
(−k)

=
∞⋃
m=k

F−1ω1
F−1ω2
· · ·F−1ωm

Vm−k,

and we say x ∼−k y if x, y ∈ F−1ω1
F−1ω2
· · ·F−1ωm

Flm−k
Flm−k−1

· · ·Fl1(V0) for a sequence

l1, · · · , lm−k ∈ {0, 1, 2}. The Laplacian ∆(−k) on S̃G
(−k)

can be defined in a similar

manner as (1.1). The eigenvalues and eigenfunctions on S̃G
(−k)

for different k’s are
related by the spectral decimation method [1, 8, 9].

To understand the spectral decimation, we only need to focus on a small neighbourhood

of a point y0 in S̃G
(−k−1)

. For convenience, we only consider the case k = 0 and a point

y0 ∈ S̃G
(−1)

with four neighbouring vertices, noticing that the boundary vertices and
k ≥ 1 cases can be dealt with in an essentially same way. Let {xi}4i=1 be the neighbouring

vertices of y0 in S̃G
(−1)

, and let {yi}6i=1 be the vertices in S̃G bounded by {xi}4i=1. The

induced subgraph in S̃G is denoted by Γ in the following context, see Figure 2. Clearly,

the definition of ∆ and ∆(−1) on Γ are naturally inherited from those on the graphs S̃G

and S̃G
(−1)

as follows,

∆f(yi) =
∑
z∼yi

f(z)− 4f(yi), 0 ≤ i ≤ 6, (2.1)

∆(−1)f(y0) =
4∑
i=1

f(xi)− 4f(y0). (2.2)

x2x1

x4 x3

y0

y3

y2y1

y4y5 y6

Figure 2. The graph Γ.

Proposition 2.3 (Spectral Decimation). Let λ /∈ {2, 5, 6} and R(λ) = λ(5− λ). Let ∆
and ∆(−1) on Γ be defined in (2.1) and (2.2).

(a). Let f ∈ l(Γ) and −∆f(yi) = λf(yi),∀0 ≤ i ≤ 6. Then −∆(−1)f(y0) = R(λ)f(y0).
(b). Given any values f(xi), i = 1, 2, 3, 4 and f(y0) such that −∆(−1)f(y0) = R(λ)f(y0),

there is a unique extension f ∈ l(Γ) such that f satisfies the eigenvalue equations
−∆f(yi) = λf(yi), ∀0 ≤ i ≤ 6.
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Proof. This can be done by direct computation. See Section 3.2 in the book [6] for
details. �

Proposition 2.3 can be easily applied to the eigenvalue problems on the Sierpinski
lattices. However, to deal with the spectrum, we need somewhat stronger versions. We
will do this in the following two lemmas.

4

3

33

32 2

1

−1 −1

Figure 3. The 4-Dirichlet eigenfunction and 1-Dirichlet eigenfunction on
Γ (with only non-zero values marked).

Lemma 2.4. Consider the Dirichlet eigenvalue problem on Γ:{
f(xi) = 0, 1 ≤ i ≤ 4,

−∆f(yi) = λf(yi), 1 ≤ i ≤ 6.

All the Dirichlet eigenvalues are {1, 2, 4, 5, 6}.

Proof. We can easily find one 2-eigenfunction, three 5-eigenfunctions and one 6-eigenfunction,
see Section 3.2, 3.3 in [6] for an illustration of such eigenfunctions. In addition, we find
one 4-eigenfunction and one 1-eigenfunction as shown in Figure 2. All the above give 7
linearly independent eigenfunctions. �

Lemma 2.5. Let λ /∈ {1, 2, 4, 5, 6}. There exist constants {ci,λ}6i=0 such that for any
f ∈ l(Γ) we have

(R(λ) + ∆(−1))f(y0) =
6∑
i=0

ci,λ(λ+ ∆)f(yi).

In addition, c0,λ 6= 0.

Proof. Let f ∈ l(Γ). By the assumption and using Lemma 2.4, we know that λ is not
a Dirichlet eigenvalue. So there is a unique solution to each of the following boundary
value problems. {

u(xi) = 0, 1 ≤ i ≤ 4,

(λ+ ∆)u(yi) = (λ+ ∆)f(yi), 0 ≤ i ≤ 6,
(2.3){

v(xi) = f(xi), 1 ≤ i ≤ 4

(λ+ ∆)v(yi) = 0, 0 ≤ i ≤ 6.
(2.4)

Clearly, we have
f = u+ v.

In addition, since v is an eigenfunction of ∆, we have

(R(λ) + ∆(−1))v(y0) = 0,
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by using Proposition 2.3. As a consequence, we get (R(λ) + ∆(−1))f(y0) = (R(λ) +
∆(−1))u(y0). On the other hand, since u is uniquely determined by the linear equations
(2.3), we conclude there are constants ci,λ such that

(R(λ) + ∆(−1))f(y0) = (R(λ) + ∆(−1))u(y0) =

6∑
i=0

ci,λ(λ+ ∆)f(yi).

Lastly, we prove c0,λ 6= 0 by contradiction. Assume c0,λ = 0, then we have

f(y0) =
(
R(λ)− 4

)−1(− 4∑
i=1

f(xi) +
6∑
i=1

ci,λ(λ+ ∆)f(yi)
)
.

In addition, it is easy to see that {f(yi)}6i=1 are uniquely determined by {f(xi)}4i=1, {(∆+
λ)f(yi)}6i=1 and f(y0). As a consequence, f is uniquely determined by the 10 numbers
{f(xi)}4i=1, {(∆ + λ)f(yi)}6i=1, which contradicts the fact that l(Γ) is 11 dimensional. �

Now, we return to investigate the Sierpinski lattice S̃G, applying the above two lemmas
locally.

Lemma 2.6. Let λ /∈ {1, 2, 4, 5, 6}, and consider ∆(−k) : `p(S̃G
(−k)

) → `p(S̃G
(−k)

),
1 ≤ p ≤ ∞. Then λ+ ∆(−k) is invertible if and only if R(λ) + ∆(−k−1) is invertible.

Proof. Without loss of generality, we consider the k = 0 case. Fix any point y0 ∈ S̃G
(−1)

,

and choose a neighbourhood of y0 in S̃G that is isomorphic to Γ. For each g ∈ l(S̃G), we
define

Tg(y0) =
6∑
i=0

ci,λg(yi),

where ci,λ is defined in Lemma 2.5. It is clear that T is bounded from `p(S̃G) to

`p(S̃G
(−1)

). In addition, since c0,λ 6= 0, T is surjective.

Then by using Lemma 2.5 at each point of S̃G
(−1)

, the following two systems of equa-

tions give the same solutions on S̃G,

(λ+ ∆)f(x) = g(x), on S̃G, (2.5)

and (λ+ ∆)f(x) = g(x), for x ∈ S̃G \ S̃G
(−1)

,

(R(λ) + ∆(−1))f(x) = Tg(x), for x ∈ S̃G
(−1)

,
(2.6)

where g ∈ `p(S̃G). But (2.6) has a unique solution in `p(S̃G) if and only if

(R(λ) + ∆(−1))f(x) = Tg(x), on S̃G
(−1)

, (2.7)

has a unique solution in `p(S̃G
(−1)

). The lemma follows immediately from the equiva-
lence of solvabilty and uniqueness of solutions to (2.5) and (2.7). �
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In fact, in Lemma 2.6, the only exceptions are λ = {2, 6}. The cases for λ = 1, 4, 5, 6
are easy to check, while the case λ = 2 needs a little more work. Luckily, by a same idea
as the proof of Lemma 2.4, 2.5 and 2.6. We will get the following lemma.

Lemma 2.7. Let λ /∈ {1, 3, 4, 5, 6} ∪ R◦−1{1, 2, 5}, and consider ∆(−k) : `p(S̃G
(−k)

) →

`p(S̃G
(−k)

),1 ≤ p ≤ ∞. Then (λ + ∆(−k))
−1 is invertible if and only if (R◦2(λ) +

∆(−k−2))
−1 is invertible.

In particular, (2 + ∆(−k))
−1 is invertible if and only if (−6 + ∆(−k−2))

−1 is invertible.

We end this section with the proof of Theorem 2.2.

Proof of Theorem 2.2. Clearly, Σ6 = {6} ∪ (
⋃∞
m=0R

◦−m{3}) ⊂ σ(∆). See [9] for the
eigenfunctions for λ ∈ Σ6. Thus, it is easy to see that

J ∪ Σ6 = Σ6 ⊂ σ(∆).

It remains to show that σ(∆) ⊂ J ∪ Σ6. It suffices to show that if λ /∈ J ∪ Σ6, then
λ+ ∆ is invertible. We consider two cases below.

First, consider λ /∈ J ∪ Σ6 ∪ (
⋃∞
m=0R

◦−m{2}). It is easy to see that

‖∆(−k)‖op ≤ 8.

On the other hand, by the definition of J , there exists k ≥ 0 such that

|R◦k(λ)| > 8 ≥ ‖∆(−k)‖op,

which implies that R◦k(λ) + ∆(−k) is invertible. By using Lemma 2.6 repeatedly, we see
that λ+ ∆ is invertible.

Second, if λ ∈
⋃∞
m=0R

◦−m{2}, by using Lemma 2.6 and 2.7, and a same argument as
the first case, we can show that λ+ ∆ is also invertible. �

3. A spectral analysis on lattices with one boundary

In this section, we focus on characterizing each point in the spectrum. We will point
out that the `p, 1 < p < ∞ cases and `1 case are very different. A full description of
the spectral points in the `p, 1 < p < ∞ cases is easy with the method developed by A.
Teplyaev [9], while the `1 case is much complicated and we only give a full answer for
the lattices with a boundary point.

As preparation, we define the inner product of real functions on S̃G as follows,

< f, g >=
∑
x∈S̃G

µxf(x)g(x),

where µx =

{
1, if x is not a boundary point,

1/2, if x is a boundary point.

Lemma 3.1. Let f ∈ `p(S̃G) and g ∈ `q(S̃G) with 1
p + 1

q = 1, 1 ≤ p <∞, then we have

< ∆f, g >=< f,∆g >.
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Proof. It is easy to see that the summation below converges absolutely, so we can rear-
range the order, ∑

x∈S̃G

∑
y:y∼x

g(x)f(y) =
∑
x∈S̃G

∑
y:y∼x

f(x)g(y).

As a result,

< ∆f, g > =
∑
x∈S̃G

µxg(x)
∑
y:y∼x

1

µx

(
f(y)− f(x)

)
= −4 < f, g > +

∑
x∈S̃G

∑
y:y∼x

g(x)f(y)

= −4 < f, g > +
∑
x∈S̃G

∑
y:y∼x

f(x)g(y) =< f,∆g > . �

In the following, we use σc(∆) to denote the continuous spectrum of the Laplacian,
and σp(∆) for the point spectrum, σr(∆) for the residue spectrum. As a consequence of
Lemma 3.1, we have the following criterion for λ to be a residue spectral point.

Lemma 3.2. Let 1 ≤ p <∞, 1
p+ 1

q = 1, and assume λ /∈ σp(∆) for ∆ : `p(S̃G)→ `p(S̃G).

Then λ ∈ σr(∆) for ∆ : `p(S̃G) → `p(S̃G) if and only if λ ∈ σp(∆) for ∆ : `q(S̃G) →
`q(S̃G).

Proof. The lemma is an easy application of Lemma 3.1. In fact, if (λ + ∆)(`p(S̃G)) is

not dense in `p(S̃G), there exists a non-zero fλ ∈ `q(S̃G) such that < f, (λ+ ∆)fλ >=<

(λ+ ∆)f, fλ >= 0 for any f ∈ `p(S̃G). This shows that (λ+ ∆)fλ = 0. Conversely, it is

clear that if λ is an eigenvalue of ∆ : `q(S̃G)→ `q(S̃G) with a corresponding eigenfunction

fλ ∈ `q(S̃G), then < (λ+ ∆)f, fλ >= 0 for any f ∈ `p(S̃G). �

3.1. Lattices with a boundary point. In this part, we will characterize each spectral

point for ∆ : `p(S̃G)→ `p(S̃G), given the condition that S̃G is a lattice with a boundary
point. The result is stated as follows.

Theorem 3.3. Write

Σ4 =

∞⋃
m=0

R◦−m{4}, Σ5 =
∞⋃
m=0

R◦−m{5} and Σ6 = {6}
⋃( ∞⋃

m=0

R◦−m{3}
)
.

(a). For ∆ : `p(S̃G) → `p(S̃G) with 1 < p < ∞, we have σp(∆) = Σ5 ∪ Σ6 and
σc(∆) = J \ Σ5. There is no residue spectral point.

(b). For ∆ : `1(S̃G)→ `1(S̃G), we have all three types of spectral points as follows,

σp(∆) = Σ5 ∪ Σ6, σc(∆) = J \ (Σ4 ∪ Σ5 ∪ {0}), σr(∆) = {0} ∪ Σ4.

By Lemma 3.2, Theorem 3.3 is an immediate consequence of the following proposition.

Proposition 3.4. For ∆ : `∞(S̃G)→ `∞(S̃G), we have σp(∆) = {0} ∪ Σ4 ∪ Σ5 ∪ Σ6.
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Proof. Without loss of generality, we take ω = 0000 · · · and S̃G =
⋃∞
m=0 F

−m
0 Vm, since

any two lattices with a boundary point are isomorphic to each other [9]. The following
proof relies on Lemma 3.5 and Lemma 3.6, which will be stated later.

The existence of 5-series and 6-series eigenfunctions is a well-known result of the spec-
tral decimation, see [9]. See Appendix for the existence of the 4-series eigenfunctions. So
it suffices to show that there are no other `∞ eigenvalues.

Take λ ∈ J \
(
{0}∪Σ4∪Σ5

)
, and let f be a λ-eigenfunction. For convenience, we write

q
(−m)
i = F−m0 qi, i = 0, 1, 2. By direct computation, and using the decimation method,

we getf(q0)
f(q1)
f(q2)

 =

 1 0 0
4−λ

(2−λ)(5−λ)
4−λ

(2−λ)(5−λ)
2

(2−λ)(5−λ)
4−λ

(2−λ)(5−λ)
2

(2−λ)(5−λ)
4−λ

(2−λ)(5−λ)


 f(q0)

f(q
(−1)
1 )

f(q
(−1)
2 )


= f(q0)

 1

1− λ
4

1− λ
4

+
λ
(
f(q

(−1)
1 )− f(q

(−1)
2 )

)
2R(λ)

 0
1
−1


+
(f(q

(−1)
1 ) + f(q

(−1)
2 )

2
− (1− R(λ)

4
)f(q0)

) 6− λ
(2− λ)(5− λ)

0
1
1

 ,

(3.1)

as f is an R(λ)-eigenfunction on S̃G
(−1)

. In addition,

f(q
(−m)
1 ) + f(q

(−m)
2 )− (2− R◦m(λ)

2
)f(q0) = 0,∀m ≥ 0. (3.2)

By using (3.1) and (3.2) repeatedly and using symmetry, we getf(q0)
f(q1)
f(q2)

 = f(q0)

 1

1− λ
4

1− λ
4

+
λ
(
f(q

(−m)
1 )− f(q

(−m)
2 )

)
2R◦m(λ)

 0
1
−1

 , (3.3)

and f(F−m0 Fm1 q0)

f(q
(−m)
1 )

f(F−m0 Fm1 q2)

 = f(q
(−m)
1 )

1− λ
4

1

1− λ
4

+
λ
(
f(q0)− f(q

(−m)
2 )

)
2R◦m(λ)

 1
0
−1


+
(f(q0) + f(q

(−m)
2 )

2
− (1− R◦m(λ)

4
)f(q

(−m)
1 )

)m−1∏
l=0

6−R◦l(λ)

(2−R◦l(λ))(5−R◦l(λ))

1
0
1

 .

(3.4)
As a consequence of (3.2) and (3.3), we get the estimate

max{|f(q0)|, |f(q1)|, |f(q2)|} ≤ C(1 ∨ λ

R◦m(λ)
) ·max{|f(q

(−m)
1 )|, |f(q

(−m)
2 )|}. (3.5)
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On the other hand, by using (3.2) and (3.4), we get the equation

f(F−m0 Fm1 q0) + f(F−m0 Fm1 q2) = (2− λ

2
)f(q

(−m)
1 )

+
(
(

2

4−R◦m(λ)
− 2 +

R◦m(λ)

2
)f(q

(−m)
1 ) + (

2

4−R◦m(λ)
+ 1)f(q

(−m)
2 )

)
Pm

= (2− λ

2
)f(q

(−m)
1 ) + Pm(λ)(amf(q

(−m)
1 ) + bmf(q

(−m)
2 )).

(3.6)
where

Pm(λ) =

m−1∏
l=0

6−R◦l(λ)

(2−R◦l(λ))(5−R◦l(λ)
, (3.7)

am = 2
4−R◦m(λ) − 2 + R◦m(λ)

2 and bm = 2
4−R◦m(λ) + 1. By symmetry, we also have

f(F−m0 Fm2 q0) + f(F−m0 Fm2 q1)

= (2− λ

2
)f(q

(−m)
2 ) + Pm(λ)(amf(q

(−m)
2 ) + bmf(q

(−m)
1 )).

(3.8)

It is easy to check that a2m 6= b2m if R◦m(λ) ∈ J \ {0, 4}. By using Lemma 3.5 below,
we can find an increasing sequence {mk}∞k=1 such that R◦mk(λ) is bounded away from 0
and 4. Thus, we have

max{|f(F−mk
0 Fmk

1 q0) + f(F−mk
0 Fmk

1 q2)|, |f(F−mk
0 Fmk

2 q0) + f(F−mk
0 Fmk

2 q1)|}

≥(2C|Pmk
(λ)| − |2− λ

2
|) max{|f(q

(−mk)
1 )|, |f(q

(−mk)
2 )|},

(3.9)

where C is independent of k. However, according to Lemma 3.6, we can see that
lim
k→∞

|Pmk
(λ)| = +∞. Combining the estimates (3.5) and (3.9), and letting k → ∞,

we see that f is unbounded. �

At the end of this subsection, we prove the lemmas that are used in the proof of
Proposition 3.4.

First, let’s recall some basic facts about the totally disconnected Julia set, which can

be found in many textbooks, see for example [2]. Denote ϕ−(x) = 5−
√
25−4x
2 and ϕ+(x) =

5+
√
25−4x
2 . There is a natural homeomorphism π from the Cantor set C = {−,+}N to J

defined as follows

π(η) =
∞⋂
m=1

ϕη1ϕη2 · · ·ϕηm(J ),

for η = η1η2 · · · ∈ C. In particular, π(−−− · · · ) = 0 and π(+ + + · · · ) = 4. In addition,
define the left shift operator ι : C → C by ι(η1η2η3 · · · ) = η2η3 · · · . Then

R ◦ π(η) = π ◦ ι(η), ∀η ∈ C.

Lemma 3.5. Let λ ∈ J \
(
{0} ∪ Σ4 ∪ Σ5

)
.

(a). There is a sequence m1 < m2 < · · · such that min{|R◦mk(λ)|, |R◦mk(λ)−4|} > C,
where C is a positive constant independent of λ.

(b). There is an infinite sequence n1 < n2 < · · · such that R◦nk(λ) ∈ ϕ−(J ).
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Proof. (a). Clearly, we can find countably infinite different positive integers m such that
ι◦mπ−1(λ) are of the form +−· · · or −+· · · . This means R◦m(λ) ∈ ϕ−ϕ+(J )∪ϕ+ϕ−(J ),
and thus R◦m(λ) is bounded away from {0, 4}.

(b). Clearly, we can find countably infinite different integers n such that
(
ι◦nπ−1(λ)

)
1

=
−. �

Next, we give an estimate for Pm(λ) in (3.7).

Lemma 3.6. For λ ∈ J \ Σ4, we have

lim
m→∞

|Pm(λ)| = lim
m→∞

m−1∏
l=0

| 6−R◦l(λ)

(2−R◦l(λ))(5−R◦l(λ)
| =∞.

Proof. Using the fact that R(x) = x(5− x) and by direct computation, we can show

|Pm(λ)| =
∣∣ λ(6− λ)

R◦m(λ)
(
2−R◦m−1(λ)

)∣∣ · m−2∏
l=0

|3−R◦l(λ)|.

Thus it suffices to show lim
m→∞

∏m
l=0 |3−R◦l(λ)| =∞.

A B C
0 1.38 3.62 4 5

Figure 4. An illustration of the A,B,C areas and approximated values
of the end points.

Let A = ϕ−(J ), B = ϕ+(J ) ∩ (0, 4] and C = ϕ+(J ) ∩ (4, 5], so that J = A ∪B ∪ C.
See Figure 4 for an illustration. For x ∈ A, we have |3 − x| > 1.5; for x ∈ C, we have
|3−x| > 1; For x ∈ B, we have R(x) ∈ C and (3−x)

(
3−R(x)

)
> 1 by an easy estimate.

As a consequence, we have the estimates
m∏
l=0

|3−R◦l(λ)| ≥ c
( ∏
l∈Im,A

|3−R◦l(λ)|
)
·
( ∏
l∈Im,B

|(3−R◦l(λ)
)(

3−R◦l+1(λ)
)
|
)

≥ c(3

2
)#Im,A ,

where c = min{|x− 3| : x ∈ J }, Im,A = {0 ≤ l ≤ m : R◦l(λ) ∈ A} and Im,B = {0 ≤ l ≤
m− 1 : R◦l(λ) ∈ B}. The lemma follows immediately from Lemma 3.5 (b). �

3.2. Lattices with no boundary. In A. Teplyaev’s work [9], it was shown that the

localized eigenfunctions form a complete basis of the `2(S̃G) space. The basic idea is to

find a localized eigenfunction fλ such that < f, fλ >6= 0 for each nonzero f ∈ `2(S̃G).

This same proof can be easily extended to C0(S̃G) case, where C0(S̃G) = {f ∈ `∞(S̃G) :
limx→∞ f(x) = 0}. We state the result as follows.

Lemma 3.7. For any f ∈ C0(S̃G), there exists a localized eigenfunction fλ of ∆ such
that < fλ, f > 6= 0.

As an immediate consequence, there is no eigenvalue of ∆ on C0(S̃G) other than the
5 or 6 series.
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Proposition 3.8. Let ∆ : C0(S̃G)→ C0(S̃G), we have σp(∆) = Σ5 ∪ Σ6.

Proof. Assume there exists an eigenvalue λ /∈ Σ5 ∪ Σ6, and let fλ be the correspond-
ing eigenfunction. By Lemma 3.7, there is a localized eigenfunction fλ′ such that
< fλ, fλ′ >6= 0. On the other hand, λ 6= 0, and

λ−1 < −∆fλ, fλ′ >=< fλ, fλ′ >= λ′
−1

< fλ,−∆fλ′ > .

Then by Lemma 3.1, this implies that < fλ, fλ′ >= 0, a contradiction. �

Theorem 3.9. For 1 < p < ∞, ∆ : `p(S̃G) → `p(S̃G) has point spectrum σp(∆) =
Σ5 ∪ Σ6, and continuous spectrum σc(∆) = J \ Σ5. There is no residue spectrum.

Proof. As a direct consequence of Proposition 3.8, σp(∆) = Σ5 ∪Σ6. In addition, we see
that there is no residue spectral point by Lemma 3.2. �

However, the `1 spectrum of the Laplacian is much complicated on the lattices without

boundary, and it seems possible that the eigenvalues for ∆ : `∞(S̃G)→ `∞(S̃G) depend
on the generating sequence ω of the lattice. Further researches are suggested in the
future.

4. Appendix

In this appendix, we construct the 4-eigenfunctions on S̃G. Note that this induces a
class of eigenvalues Σ4 =

⋃∞
m=0R

◦−m{4}.
We introduce the following orthogonal matrices

A1 =

1 0 0
0 0 −1
0 −1 0

 , A2 =

 0 0 −1
0 1 0
−1 0 0

 , A3 =

 0 −1 0
−1 0 0
0 0 1

 . (4.1)

Recall that if we fix an infinite word ω = ω1ω2 · · · , then there is a Sierpinski lattice

defined by S̃G =
⋃∞
m=0 F

−1
ω1
F−1ω2
· · ·F−1ωm

Vm. For convenience, we write

q
(−m)
i = F−1ω1

F−1ω2
· · ·F−1ωm

(qi), i = 0, 1, 2,

and we write

q
(−m)
li = F−1ω1

F−1ω2
· · ·F−1ωm

(Flqi), l ∈Wm = {0, 1, 2}m.

Clearly qi = q
(−m)
ωmωm−1···ω1i

.

Proposition 4.1. (a). If S̃G has no boundary, then there is a three dimensional `∞

eigenspace of ∆ corresponding to 4. (b). If S̃G has a boundary point, then there is a two
dimensional `∞ eigenspace of ∆ corresponding to 4.

Proof. (a). Let f(q0) = a, f(q1) = b, f(q2) = c, where a, b, c are arbitrary real number.
Define f(q

(−m)
0 )

f(q
(−m)
1 )

f(q
(−m)
2 )

 = A−1ωm
· · ·A−1ω2

A−1ω1

f(q0)
f(q1)
f(q2)

 , (4.2)
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and f(q
(−m)
l0 )

f(q
(−m)
l1 )

f(q
(−m)
l2 )

 = Al1Al2 · · ·Alm

f(q
(−m)
0 )

f(q
(−m)
1 )

f(q
(−m)
2 )

 , ∀l ∈Wm. (4.3)

See Figure 5 for an example of the extension of f . One can easily check that f is a

4-eigenfunction of ∆ on S̃G and f is bounded. By the above construction, we get a three
dimensional eigenspace to 4.

a

b c−a

−b

−c

b

−c

a

b

−c

a

−a b

c

−a

−b −cq0

q1 q2

Figure 5. An illustration for extending f to be a 4-eigenfunction.(We
take ω1 = 2, ω2 = 1 as shown in the left picture.)

On the other hand, noticing that 4 is not a forbidden eigenvalue, a 4-eigenfunction f
is unqiuely determined by f |V0 .

(b). The proof of (b) is essentially the same. The eigenspace is 2 dimensional as a
consequence of the eigenvalue equation at the boundary point. �
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SPECTRAL ANALYSIS BEYOND `2 ON SIERPINSKI LATTICES 13

Department of Mathematics, Cornell Univeristy, Ithaca 14853, USA
E-mail address: sc2873@cornell.edu

Department of Mathematics, The Chinese University of Hong Kong, SHATIN, N.T., Hong
Kong

E-mail address: 1155091910@link.cuhk.edu.hk

Department of Mathematics, Nanjing Univeristy, Nanjing 210093, China
E-mail address: huaqiu@nju.edu.cn

Department of Mathematics, Cornell Univeristy, Ithaca 14853, USA
E-mail address: str@cornell.math.edu

Department of Mathematics, The University of Wisconsin-Madison, Madison 53706, USA
E-mail address: xzhu274@wisc.edu


	1. introduction
	2. The spectrum of  on SG"0365SG
	3. A spectral analysis on lattices with one boundary
	3.1. Lattices with a boundary point
	3.2. Lattices with no boundary

	4. Appendix
	References

