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Abstract. In this paper, we focus on Strichartz’s derivatives, a family of
derivatives including the normal derivative, on p.c.f. (post critically finite)
fractals, which are defined at vertices in the graphs that approximate the frac-
tal. We obtain a weak continuity property of the derivatives for functions in
the domain of the Laplacian. For a function with zero normal derivative at any
fixed vertex, the derivatives, including the normal derivatives, of the neighbor-
ing vertices will decay to zero. The rates of approximations are described and
several non-trivial examples are provided to illustrate that our estimates are
optimal. We also study the boundedness property of derivatives for functions
in the domain of the Laplacian. A necessary condition for a function having
a weak tangent of order one at a vertex is provided. Furthermore, we give a
counter-example of a conjecture of Strichartz on the existence of higher order
weak tangents.

1. Introduction

The theory of analysis on fractals, analogous to that on manifolds, has been
being well developed. The pioneering work is the analytic construction of the
Laplacians, for a class of self-similar fractals that include the Sierpinski gasket as a
typical example, developed by Kigami [15-20], in which the Laplacians are defined
as renormalized limits of graph Laplacians. There are a lot of works in exploring
some properties of these fractal Laplacians that are natural analogs of those of the
usual Laplacian. See [1, 2, 7, 9, 13, 23-26, 28-36, 38] and the references therein.
Especially, there were several works in developing a calculus on fractals [3, 8, 22,
27, 34, 39].

Since the fractal Laplacian acts as a differential operator with order greater than
one, in analogy with the usual Laplacians on manifolds which are of second order
(see [35, 37] for explanations), it is natural to make clear what is the first order
derivative or gradient. Basically, there are two approaches. One is to regard the
Dirichlet form as an integral of the inner product of gradients, see [4-6, 10-12, 14,
17, 22] for some works on this approach. Please see [11] for a survey on recent
developments and more references therein. It seems that this could not provide any
direct information for a pointwise gradient. The other is to define the pointwise
gradient directly. Teplyaev [39] has made a satisfactory definition of the gradient at
general points in fractals and obtained some properties. For the vertices (boundary
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points of cells) in fractals, starting from the normal derivative, Strichartz [34] has
introduced a family of derivatives at any vertex x, and using which, he has made up
a (local) gradient df(x). See [39] to find a description of the relations between these
different definitions and the results of Kigami, Kusuoka, Teplyaev and Strichartz.

In this paper, we continue to study the properties of Strichartz’s derivatives at
vertices in fractals.

We begin by assuming that a fractal K is an invariant set of a finite iterated
function system (i.f.s.) of contractive similarities in some Euclidean space Rd, which
means K is the unique nonempty compact set satisfying

K =

N⋃
i=1

FiK,

where we denote the mappings by {Fi}i=1,··· ,N . We define Wn = {1, · · · , N}n, the
set of words of length n, and write Fw = Fw1 ◦ · · · ◦Fwn for a word w = w1 · · ·wn ∈
Wn. We call FwK a cell of level n.

We use Strichartz’s definition of the p.c.f. self-similar sets [37], which is simpler
than Kigami’s one [16], although all our results could be derived in his context.
K is a post critically finite (p.c.f.) self-similar set if K is connected, and there is
a finite set V0 ⊂ K called the boundary, such that for any two different words w
and w′ of the same length, the intersection of FwK and Fw′K is contained in the
intersection of their boundaries, i.e., FwK ∩ Fw′K ⊂ FwV0 ∩ Fw′V0.

Denote by Vn =
⋃
w∈Wn

FwV0 and V∗ =
⋃
n≥0 Vn. A point x ∈ V∗ is called a

junction vertex if there are at least two different w,w′ ∈ Wn for some n such that
x ∈ FwK ∩ Fw′K. Otherwise we call x a nonjunction vertex.

We assume that there is a regular harmonic structure on the p.c.f. self-similar
set K. Thus there exists a self-similar Dirichlet form E on K such that for functions
f : K → R, one has

E(f) =

N∑
j=1

r−1j E(f ◦ Fj)

for some choice of renormalization factors r1, · · · , rN ∈ (0, 1). This quadratic form
is obtained as the limit of Em(f) := Em(f, f) on the m-level approximating graphs,
where the m-level bilinear form Em(·, ·) is defined as

Em(f, g) =
∑
|w|=m

r−1w E0(f ◦ Fw, g ◦ Fw),

with
E0(f, g) =

∑
1≤i<j≤N0

cij(f(vi)− f(vj))(g(vi)− g(vj)),

for some positive conductances cij . Here we write rw = rw1
· · · rwm

for w =
w1 · · ·wm.

Let H0 denote the space of harmonic functions on K that minimize Em at all
levels for given boundary values on V0. Let S(H0, Vm) denote the space of contin-
uous functions whose restrictions to each cell FwK of level m are harmonic (i.e.,
h ◦ Fw is harmonic for any w ∈Wm).

Readers may refer to the books [21] and [37] for exact definitions and any unex-
plained notations.

In this paper, two additional assumptions are made, as Strichartz did in [34].
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Hypothesis 1.1. (a) Each point vj , j = 1, · · · , N0 in the boundary set V0 is the
fixed point of a unique mapping in the i.f.s., which we denote Fj. Also, we assume
that for any Fi and Fj in the i.f.s., i 6= j, the intersection FiK ∩ FjK consists of
at most one point x with x = Fivm = Fjvn for some vertices vm and vn in V0.

(b) For each vj ∈ V0, let Mj denote the N0 × N0 matrix that transforms the
values h|V0

to h|FjV0
for harmonic functions h, i.e.,

h(Fjvk) =

N0∑
l=1

(Mj)klh(vl).

We assume that each Mj has a complete set of real left eigenvectors βjk with real
nonzero eigenvalues λjk, i.e.,

βjkMj = λjkβjk,

where for each j the eigenvalues λjk are labeled in decreasing order of absolute
value.

We will list some basic properties of the eigenvalues and eigenvectors of the
matrixes Mj in the next section. Here we only mention that the largest eigenvalue
ofMj is λj1 = 1, the second largest eigenvalue is λj2 = rj , the j-th renormalization
factor of the harmonic structure, and |λjk| < λj2 for k ≥ 3.

The following is the definition of Strichartz’s derivatives at the boundary vertices.
Definition 1.2. Let f be a continuous function defined in a neighborhood of

vj ∈ V0. The derivatives djkf(vj) for 2 ≤ k ≤ N0 are defined as the following
limits, if they exist,

djkf(vj) = lim
m→∞

λ−mjk βjkf |Fm
j V0

where βjkf |Fm
j V0

is
N0∑
l=1

(βjk)lf(Fmj vl).

The derivative dj2f(vj) is just the normal derivative of f at vj with suitable
choice of βj2, and djkf(vj), k ≥ 3 could be viewed as derivatives of somewhat “higher
order”. If h is harmonic in a neighborhood of vj , then all derivatives djkh(vj) exist
and may be evaluated without taking the limit. See Lemma 3.3 in [34].

The above definition could be extended to all vertices in V∗. For a nonjunction
vertex x ∈ Vn \ Vn−1, there is a unique word w of length n such that x = Fwvj
for some 1 ≤ j ≤ N0. We write Um(x) = FwF

m
j K, and call {Um(x)}m≥0 a

standard system of neighborhoods of x. For a junction vertex x ∈ Vn \ Vn−1, by
Hypotheses 1.1(a), it is just an image under a mapping Fw of a junction vertex
in V1, where w is a word of length n − 1. Let J(x) denote the set of indices j
such that there exist 1 ≤ j′ ≤ N0 with x = FwFjvj′ . Obviously, ]J(x) ≥ 2.
We write Um(x) =

⋃
j∈J(x) FwFjF

m
j′ K, and call {Um(x)}m≥0 a standard system of

neighborhoods of x.
Definition 1.3. Let f be a continuous function defined in a neighborhood of a

vertex x ∈ Vn \ Vn−1.
(a) If x = Fwvj is a nonjunction vertex, then the derivatives djkf(x) for 2 ≤

k ≤ N0 are defined as the following limits, if they exist,

(1.1) djkf(x) = lim
m→∞

r−1w λ−mjk βjkf |FwFm
j V0

.
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(b) If x is a junction vertex, then the derivatives dj′kf(x) for j ∈ J(x) and
2 ≤ k ≤ N0 are defined as the following limits, if they exist,

dj′kf(x) = lim
m→∞

r−1w r−1j λ−mj′k βj′kf |FwFjFm
j′ V0

.

Furthermore, the normal derivatives of f at x are said to satisfy the compatibility
condition if ∑

j∈J(x)

dj′2f(x) = 0.

We write df(x) for the collection of derivatives at x, and refer to it as the gradient
of f at x. f is called differentiable at the vertex x if all the derivatives at x exist
and the compatibility condition holds if x is a junction vertex. For example, if h is
harmonic in a neighborhood of x, then h is differentiable at x and all the derivatives
may be evaluated without taking the limit. See Lemma 3.6 in [34].

Let µ be a self-similar measure on K with weights (µ1, · · · , µN ). It is known that
for any function f in dom(∆µ), the normal derivatives dj2f(x) or dj′2f(x) always
exist at any vertex x and satisfy the compatibility condition if x is a junction vertex,
where the notation dom(∆µ) denotes the domain of the Laplacian with respect to
the measure µ. However, for other derivatives, in general, we need the assumption

(1.2) rjµj < |λjN0 |,∀1 ≤ j ≤ N0

to guarantee the existence of djkf(x) or dj′kf(x), k ≥ 3. For fractals without
symmetry, the condition is necessary. See Theorem 4.1 in [34] for details.

Remark 1.4. For “higher order” derivatives djk or dj′k(3 ≤ k ≤ N0), there are
two different scalings. Let x = Fwvj be a nonjunction vertex. Then for any word
u, we have

djk(f ◦ F−1u )(Fux) = r−1u djkf(x),

and for any m ≥ 0, we have

djk(f ◦ FwFmj F−1w )(x) = λmjkdjkf(x).

The case of junction vertices is very similar. We omit it.
It was proved in [34] that for a function f ∈ dom(∆µ), the normal derivatives

dj2f(x) and dj′2f(x) are uniformly bounded as x varies over all vertices. And
for a harmonic function h with zero normal derivative at a vertex x, the normal
derivatives of its neighboring vertices will decay to zero, which can be interpreted
as a weak continuity property of the normal derivatives. See Theorem 4.3 in [34].

For general functions in dom(∆µ), it is natural to expect the same properties.
In fact, an easy observation is that if we assume (1.2) and dj2f(vj) = 0 for some
vertex vj ∈ V0, by Lemma 6.4 of [29], we have

‖f − h‖L∞(Fm
j K) ≤ C1m(rjµj)

m‖∆µf‖∞,

where h is the unique harmonic function defined on Fmj K satisfying dh(vj) = df(vj)
and h(vj) = f(vj). Also, we have ‖h‖L∞(Fm

j K) ≤ C2|λj3|m. Then using the local
Gauss-Green’s formula, letting φ be the unique harmonic function on Fmj K with
value 1 at Fmj vi and 0 at other vertices in Fmj V0 for some i 6= j, we have

|di2f(Fmj vi)| ≤ |
∫
Fm

j K

(∆µf)φdµ|+
N0∑
l=1

|dl2φ(Fmj vl)| · |f(Fmj vl)|

≤ µmj ‖∆µf‖∞ + Cr−mj ‖f‖L∞(Fm
j K) = O((λj3r

−1
j )m).
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The above discussion is rough but shows that the expected weak continuity property
is reasonable.

In this paper we will drop the assumption (1.2), and show that the normal
derivative is continuous at any vertex x with vanished normal derivative, which
means that the normal derivatives at all vertices in Um(x)(not only in ∂Um(x))
will go to zero as m goes to infinity. Nevertheless, for “higher order” derivatives,
we will still obtain the boundedness property, and similar weak continuity property
for functions in dom(∆µ). For “higher order” derivatives, the assumption (1.2) is
necessary, since it guarantees the existence of the derivatives. We will provide the
optimal estimates for the rates of the all the above approximations.

We will prove the following three theorems. These results answer the question
post by Strichartz in [34] positively.

Theorem 1.5. Let f ∈ dom(∆µ). Then the normal derivative of f(x) is bounded
by a multiple of ‖f‖∞+‖∆µf‖∞ as x varies over all vertices. Furthermore, for any
fixed nonjunction vertex x = Fwvj (or junction vertex x = FwFjvj′), if dj2f(x) = 0
(or dj′2f(x) = 0), we have the optimal estimate

di2f(y)(or (di′2f(y)) =


O(µmj ), if rjµj > |λj3|,
O(mµmj ), if rjµj = |λj3|,
O((λj3r

−1
j )m), if rjµj < |λj3|,

for all vertices y ∈ Um(x).
Theorem 1.6. (a) Let h be a harmonic function. Then all the derivatives of

h(x) are uniformly bounded as x varies over all vertices.
(b) Assume (1.2). Let f ∈ dom(∆µ), then f is differentiable at all vertices and

all the derivatives of f are uniformly bounded by a multiple of ‖f‖∞ + ‖∆µf‖∞.
Theorem 1.7. (a) Let h be a harmonic function, x = Fwvj be a nonjunction

vertex (or x = FwFjvj′ be a junction vertex) with zero normal derivative. Then for
any vertices y ∈ Um(x) \ {x}, we have the optimal estimate

dikh(y)(or di′kh(y)) = O((λj3r
−1
j )m),∀k ≥ 3.

(b) Assume (1.2). Let f ∈ dom(∆µ), and x be a vertex with zero normal derivative,
then the above estimate still holds, with f replaced by h.

Several non-trivial examples will be provided to illustrate that our estimates
are optimal. There are some typical fractals, including the Sierpinski gasket, for
which the condition (1.2) does not hold. However, for these fractals, the results
in Theorem 1.6 and 1.7 are still valid, provided that ∆µf satisfies an appropriate
Hölder condition.

These results will be given in Section 3 and Section 4. We remark here that
when we consider the energy Laplacian ∆ν in replace of ∆µ, where ν is the Kusuoka
measure [22], we will have very similar results. The only difference is that for each
1 ≤ j ≤ N0, the order of ν(Fmj K) should be rmj in replace of µmj in the discussion.

We also study tangents in this paper. As in [34], for a function f differentiable
at a vertex x, a weak tangent of order one, denoted as T x1 (f) at x, is defined as a
harmonic function on U0(x), which assumes the same value and gradient at x as
those of f .

For any function f which is differentiable at a vertex x, let hm denote the har-
monic function that assumes the same values as f at the boundary points of Um(x),
extended to be harmonic on U0(x). In Theorem 3.11 in [34], it is proved that hm
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converges uniformly to T x1 (f) on U0(x) as m → ∞. However, we will prove that
it is not true in general, unless we assume some additional reasonable assumptions
on the harmonic structure and the self-similar measure.

If we assume that ]V0 = 3 and all structures have the full D3 symmetry, we
could extend the definition of order one tangent to higher order. Here D3 symmetry
means that all the structures are invariant under any homeomorphism of K. In this
case, all r′s and µ′s should be the same. Denote ρ the value of rjµj and λ3 the
value of λj3 for j = 1, 2, 3 since they are the same, respectively. Then for a vertex
x and a function f defined in a neighborhood of x, an n-harmonic function h is
called a weak tangent of order n of f at x if

(1.3) (f − h)|∂Um(x) = o((ρn−1r)m),

and
(f − h− (f − h) ◦ gx)|∂Um(x) = o((ρn−1λ3)m),

where n-harmonic functions means those functions satisfying the equation ∆n
µh =

0, and gx is a local point symmetry at x with reasonable understanding(we omit
the exact definition).

In [34], there is a conjecture, Conjecture 6.7, saying that for a function f ∈
dom(∆n−1

µ ), f has a weak tangent of order n at x if and only if d∆k
µf(x) exists

with compatibility conditions holding at x for each k ≤ n− 1. It is true for n = 1
since it is exact the definition of order one tangent. However, it is not true for
n ≥ 2. We will give a counter-example.

The results about tangents will be given in Section 5.
This paper can be regarded as a supplement of [34]. Before the end of this section,

we mention a very useful result which could be obtained by an easy combination
of the results in the appendix of [34] and the results in the appendix of [39], saying
that, any function f in dom(∆µ) satisfies a Hölder estimate that

(1.4) |f(x)− f(y)| ≤ crw(‖f‖∞ + ‖∆µf‖∞)

for any x, y ∈ FwK and any word w, where c is a positive constant.

2. Basic results of the eigenvectors of Mj

In this section, we will give some basic properties of the eigenvalues and eigen-
vectors of the transformation matrixMj . Let {λjk}1≤k≤N0

be the set of eigenvalues
labeled in decreasing order of absolute value. For each λjk, we denote βjk and αjk
the left and right eigenvectors of λjk respectively. Additionally, we normalize that
βjkαjk = 1.

Proposition 2.1. (a) The largest eigenvalue of Mj is λj1 = 1. It has a right
eigenvector αj1 = (1, · · · , 1)t, and a left eigenvector βj1 with (βj1)l = δjl.

(b) The second largest eigenvalue is λj2 = rj < 1, the j-th renormalization factor
of the harmonic structure. It has a left eigenvector βj2 with (βj2)j =

∑
i cij and

(βj2)l = −clj for l 6= j.
(c) The eigenspace of λj2 is of one dimension and |λjk| < λj2 for k ≥ 3.

(d) βjkαjl = δkl for 1 ≤ k, l ≤ N0, where βjkαjl is
∑N0

s=1(βjk)s(αjl)s.
(e) For k ≥ 2,

∑N0

l=1(βjk)l = 0 and (αjk)j = 0.
Proof. One could find the proofs of (a), (b), (c) from [34]. (d) is obvious. (e)

follows from the combining of (a) and (d). �
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Let {hjk}1≤k≤N0
be a collection of harmonic functions on K, where each hjk

assumes values αjk on V0, i.e., hjk(vl) = (αjk)l for each l. Obviously, hj1 assumes
constant value 1 on K.

Proposition 2.2. (a) hjk|FjV0
= λjkhjk|V0

, djkhjl(vj) = δkl.
(b) hjk(vj) = 0 for k ≥ 2.
(c) {hjk}1≤k≤N0

spans the space of harmonic functions on K. For any harmonic
function h, it could be written as a linear combination that

h(·) = h(vj) +

N0∑
k=2

djkh(vj)hjk(·).

Proof. (a) follows from the definition of αjk and βjk. (b) follows from Proposition
2.1(e). (c) is a corollary of (a) and (b). �

In the rest of this section, we will give some necessary and sufficient conditions
for (βjk)j = 0 for all k ≥ 3, which means that in this case the calculation of “higher
order” derivatives of a function f at vj will not involve the value f(vj). This will
be useful in Section 5.

Proposition 2.3. The following three conditions are equivalent.
(a) (βjk)j = 0 for all k ≥ 3.
(b) (αj2)l = c(1− δjl) for all l, where c is a nonzero constant.
(c) The j-th column of Mj assumes the values that (Mj)lj = 1− λj2 + λj2δjl.
Proof. (a)⇒(b) Combining (a) and Proposition 2.1(e), we have that βjk, k ≥ 3

expand the linear space of dimension N0− 2 orthogonal to the constant vector and
δjl. Since βjkαj2 = 0, k ≥ 3, we conclude that

(αj2)l = s+ tδjl, l ≥ 1,

for some constants s and t. Moreover, by Proposition 2.1(e), (αj2)j = 0. This
determines that s = −t, which immediately yields (b).

(b)⇒(c) Taking αj2 into the characteristic equation, we have

Mjαj2 = λj2αj2,

which yields that ∑
k 6=j

(Mj)lk = λj2, for all l 6= j.

Noticing that all row sums of Mj are one and the j-th row of Mj is δkj , we then
have

(Mj)lj = 1− λj2 for l 6= j, and (Mj)jj = 1,

which is what (c) says.
(c)⇒(a) For each k ≥ 3, since βjkMj = λjkβjk, by considering the j-th column

of Mj , we have ∑
l 6=j

(1− λj2)(βjk)l + (βjk)j = λjk(βjk)j .

Combining the above formula with Proposition 2.1(e), we obtain that (βjk)j = 0.
Thus (a) holds. �

Remark 2.4. In the D3 symmetry case, condition (c) automatically holds. Thus
(βj3)j = 0, which means that the tangential derivative of a function f at vj does
not involve the value f(vj).

Finally, we give an example which does not satisfy the conditions in Proposition
2.3.
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Example 2.5. Let v1, v2, v3 be the vertices of an equilateral triangle and let
Fi(x) = 1

2 (x + vi), i=1,2,3. The Sierpinski gasket, SG, is the unique compact set
such that SG =

⋃3
i=1 FiSG. Then V0 = {v1, v2, v3}.

Consider a family of self-similar Dirichlet forms on SG, that has a single bilateral
symmetry. So we require r2 = r3 and

E0(f) = (f(v1)− f(v2))2 + (f(v1)− f(v3))2 + c(f(v2)− f(v3))2

for some c > 0. We denote the conductances of E0 and r2E1 on the edges of the
graphs Γ0 and Γ1 in Figure 1, where s = r2/r1 is a constant to be determined.

v2 v3

v1

1 1

c
v2 v3

v1

s s

sc

1 1

c

1 1

c

Figure 1. The conductances of E0 and r2E1.

The renormalization equation requires s and c has the relationship

3s2c2 + 2s2c− 2sc2 − 2c− 1 = 0.

A detailed calculation could be found in Chapter 4 of [37].
Let h be a harmonic function on SG with respect to the above Dirichlet form.

The mean value property of h at vertices F2v3, F1v3 and F2v1 give that
(2 + 2c)h(F2v3)− h(F1v3)− h(F2v1)− ch(v2)− ch(v3) = 0,

(2 + s+ sc)h(F1v3)− h(F2v3)− sch(F2v1)− sh(v1)− h(v3) = 0,

(2 + s+ sc)h(F2v1)− h(F2v3)− sch(F1v3)− sh(v1)− h(v2) = 0.

This yieldsh(F2v3)
h(F1v3)
h(F2v1)

 =

 1− 2η η η
1+s−2η

2+s
η

2+s + sc
(2+s)(2+s+2sc)

η
2+s + 2+s+sc

(2+s)(2+s+2sc)
1+s−2η

2+s
η

2+s + 2+s+sc
(2+s)(2+s+2sc)

η
2+s + sc

(2+s)(2+s+2sc)


h(v1)
h(v2)
h(v3)

 ,

where η = 2c+sc+1
2sc+2s+4c+2 .

Thus the transformation matrix M2 is

M2 =

 1+s−2η
2+s

η
2+s + 2+s+sc

(2+s)(2+s+2sc)
η

2+s + sc
(2+s)(2+s+2sc)

0 1 0
1− 2η η η

 .

One can check that M2 satisfies Hypothesis 1.1(b) when |s−1| is sufficiently small.
In fact, when s = 1, M2 is diagonalizable with three different eigenvalues and all
entries of M2 are continuous functions of s.
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Comparing (M2)12 and (M2)32, we can find they are not equal, since otherwise
it leads to a different identity

2s2c2 + cs2 + cs− 2c− s− 1 = 0

of s and c.
Hence M2 does not satisfy the condition(c) in Proposition 2.3, at least for those

s very close, but not equal to 1, which means (β23)2 6= 0.

3. Boundedness and weak continuity of normal derivatives

We prove Theorem 1.5 in this section, and provide some examples to show that
our results are optimal.

Lemma 3.1. Let f ∈ dom(∆µ). Then the normal derivative of f over vertices
of K is bounded by a multiple of ‖f‖∞ + ‖∆µf‖∞.

This result is proved in [34], by using Gauss-Green’s formula. For the convenience
of readers, we still provide a proof. But our proof is somewhat different to that in
[34], and could be extended to other derivatives.

Proof. Notice that from Proposition 2.1(e), for 1 ≤ j ≤ N0, we have
∑N0

l=1(βj2)l =
0. Combining it with formula (1.4), the Hölder estimate of f , we obtain an estimate
that

|r−1w βj2f |FwV0
| ≤ c(‖f‖∞ + ‖∆µf‖∞)

for any word w and any j, with some constant c > 0. Since we have the existences
of normal derivatives at all vertices, we get that for any x = Fwvj ∈ V∗,

|dj2f(x)| = | lim
m→∞

r−1w r−mj βj2f |FwFm
j V0
| ≤ c(‖f‖∞ + ‖∆µf‖∞). �

Now we devote to prove the weak continuity property. For convenience, we only
give the proof in the case of x = vj ∈ V0 for some 1 ≤ j ≤ N0, since for other
vertices we just need to use scaling. First, we give some lemmas.

Lemma 3.2. Let 1 ≤ j ≤ N0, 2 ≤ k ≤ N0, m ≥ 0. For any y ∈ Fmj K, we have

di2hjk(y)(or di′2hjk(y)) = O((λjkr
−1
j )m).

Proof. By using Proposition 2.2(a) and Lemma 3.1, we get

|di2hjk(y)| = |r−mj di2(hjk ◦ Fmj )(F−mj y)|
= |(r−1j λjk)mdi2hjk(F−mj y)| ≤ c(r−1j |λjk|)

m,

for any nonjunction vertices y ∈ Fmj K, where c is a positive constant. The same
estimate holds for junction vertices. �

Lemma 3.3. Let f ∈ dom(∆µ). Then for 1 ≤ j ≤ N0 and m ≥ 0, we have

(3.1) dj2f(vj) =

∫
Fm

j K

Hj(F
−m
j z)∆µf(z)dµ(z) + r−mj βj2f |Fm

j V0
,

where Hj is the harmonic function on K with boundary values Hj(vl) = δjl, 1 ≤
l ≤ N0.

Proof. First let m = 0. Applying the Gauss-Green’s formula on K, we get

dj2f(vj) =

∫
K

Hj∆µfdµ+

N0∑
l=1

f(vl)dl2Hj(vl).
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Replacing f by a harmonic function h in the above equality, we have

dj2h(vj) =

N0∑
l=1

h(vl)dl2Hj(vl),

which implies that dl2Hj(vl) = (βj2)l by the arbitrariness of h. Thus we have
proved (3.1) in the case of m = 0.

For m > 0, we only need to apply the local Gauss-Green’s formula on Fmj K,
and notice that dl2(Hj ◦ F−mj )(Fmj vl) = r−mj (βj2)l by using scaling. �

We will need the Green’s function G(y, z) which solves the Dirichlet problem for
the Poisson equations on K. Recall that G(y, z) can be expressed as

G(y, z) =
∑
|w|≥0

rwΨ(F−1w y, F−1w z),

where the summation is taken over all words, and Ψ is a linear combination of
products ψp(y)ψq(z) where ψp, ψq are tent functions in S(H0, V1), taking value 1
at p (or q) in V1 \ V0 and 0 at other vertices in V1. For each term Ψ(F−1w y, F−1w z),
the understanding is that it assumes value 0 unless y and z both belong to the cell
FwK. See detailed explanations in [21] and [34].

For 1 ≤ j ≤ N0, 2 ≤ k ≤ N0, by the definition of the function Ψ, there exists a
piecewise harmonic function ajk ∈ S(H0, V1) satisfying

ajk(z) = djkΨ(·, z)(vj).
Obviously, ajk|V0 = 0 and ajk 6= 0.

Lemma 3.4. Let f ∈ dom(∆µ). Then for 1 ≤ j ≤ N0, 2 ≤ k ≤ N0, m ≥ 0,

(3.2) λ−mjk βjkf |Fm
j V0

= βjkf |V0
−
m−1∑
n=0

rnj λ
−n
jk

∫
Fn

j K

ajk(F−nj z)∆µf(z)dµ(z).

Proof. Let h be a harmonic function which assumes the same values as f on V0.
Then

f = −
∫
K

G(·, z)∆µf(z)dµ(z) + h.

Taking the above formula into the left side of (3.2), we obtain that it equals to

λ−mjk βjkh|Fm
j V0
− λ−mjk

∫
K

βjkG(·, z)|Fm
j V0∆µf(z)dµ(z)

= βjkf |V0 −
m−1∑
n=0

rnj

∫
Fn

j K

λ−mjk βjkΨ(F−nj ·, F
−n
j z)|Fm

j V0∆µf(z)dµ(z)

= βjkf |V0
−
m−1∑
n=0

rnj λ
−n
jk

∫
Fn

j K

λ
−(m−n)
jk βjkΨ(·, F−nj z)|Fm−n

j V0
∆µf(z)dµ(z)

= βjkf |V0
−
m−1∑
n=0

rnj λ
−n
jk

∫
Fn

j K

ajk(F−nj z)∆µf(z)dµ(z),

where we use the fact that h is harmonic, h|V0
= f |V0

and Ψ(·, ·) is piecewise har-
monic with respect to the first variable. �
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Proof of Theorem 1.5. The boundedness for the normal derivative of f has been
shown in Lemma 3.1. So we only need to prove the weak continuity property.

As stated before, we only give the proof in the case of x = vj . Split f on Fmj K
into two functions,

f = f1 + f2,

where f1 is the harmonic function on Fmj K assuming the same boundary values as
f on Fmj V0. We will estimate the normal derivative of f1 and f2 in Fmj K separately.

First we look at f1. By using Proposition 2.2(c) and Lemma 3.2, for any y ∈
Fmj K, we have

(3.3) |di2f1(y)| =
∣∣ N0∑
k=2

djkf1(vj) · di2hjk(y)
∣∣ ≤ N0∑

k=2

c(r−1j |λjk|)
m|djkf1(vj)|

for some positive constant c.
For k = 2, using Lemma 3.3, noticing that dj2f(vj) = 0, we have

(3.4) dj2f1(vj) = r−mj βj2f |Fm
j V0

= −
∫
Fm

j K

Hj(F
−m
j z)∆µf(z)dµ(z) = O(µmj ).

For k ≥ 3, using Lemma 3.4, we have

(3.5)

djkf1(vj) = λ−mjk βjkf |Fm
j V0

= βjkf |V0
−
m−1∑
n=0

rnj λ
−n
jk

∫
Fn

j K

ajk(F−nj z)∆µf(z)dµ(z)

=


O(µmj r

m
j λ
−m
jk ), if rjµj > |λjk|,

O(m), if rjµj = |λjk|,
O(1), if rjµj < |λjk|.

Combining (3.3), (3.4) and (3.5), we have

(3.6) di2f1(y) =


O(µmj ), if rjµj > |λj3|,
O(mµmj ), if rjµj = |λj3|,
O((λj3r

−1
j )m), if rjµj < |λj3|,

for any y ∈ Fmj K.
Next, we estimate the normal derivatives of f2 on Fmj K. It is easy to check

that ∆µf |Fm
j K = ∆µf2|Fm

j K and f2|Fm
j V0

= 0. Then by using Lemma 3.1, for any
y ∈ Fmj K, we have

(3.7)

|di2f2(y)| = r−mj |di2(f2 ◦ Fmj )(F−mj y)|
≤ cr−mj (‖∆µ(f2 ◦ Fmj )‖∞ + ‖f2 ◦ Fmj ‖∞)

= cr−mj (‖∆µ(f2 ◦ Fmj )‖∞ + ‖
∫
K

G(·, z)∆µ(f2 ◦ Fmj )(z)dµ(z)‖∞)

≤ c′µmj ‖∆µf2‖L∞(Fm
j K) = c′µmj ‖∆µf‖L∞(Fm

j K),

for some positive constants c, c′.
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Combining (3.6) and (3.7), we have proved that

di2f(y) = di2f1(y) + di2f2(y) =


O(µmj ), if rjµj > |λj3|,
O(mµmj ), if rjµj = |λj3|,
O((λj3r

−1
j )m), if rjµj < |λj3|.

It remains to show that our estimates are optimal. For convenience, we introduce
the notation am � bm, which means that there exists a constant C > 0 such that
C−1bm ≤ am ≤ Cbm, ∀m ≥ 0, for two sequences of numbers am, bm.

For rjµj < |λj3|, consider the harmonic function hj3. Obviously dj2hj3(vj) = 0.
Choose a vertex y0 in K with nonzero normal derivative. Then by Proposition
2.2(a), we have

di2hj3(Fmj y0) = (λj3r
−1
j )mdi2hj3(y0),∀m ≥ 0,

which gives that
di2hj3(Fmj y0) � (λj3r

−1
j )m.

Thus the rate O((λj3r
−1
j )m) is the optimal estimate in this case.

For rjµj > |λj3|, we take a function f ∈ dom(∆µ), satisfying ∆µf ≡ 1 on K and
dj2f(vj) = 0. By using the Gauss-Green’s formula, we have∑

l 6=j

dl2f(Fmj vl) = µmj .

Thus there exists a sequence of {vlm}m≥0 such that

dlm2f(Fmj vlm) � µmj .

This shows that the rate O(µmj ) is the optimal estimate in this case.
As for rjµj = |λj3| case, to find an optimal decay rate, we need that

∫
K
aj3(z)dµ(z) 6=

0 and λj3 > 0. Obviously, this may happen. Still look at the function f satisfying
that ∆µf ≡ 1 on K and dj2f(vj) = 0, and choose y0 to be the vertice satisfying
di2hj3(y0) 6= 0. Then

di2f(Fmj y0) = di2f1(Fmj y0) + di2f2(Fmj y0)

= (dj3f1(vj))di2hj3(Fmj y0) +O(µmj )

= −
m−1∑
n=0

rnj λ
−n
j3 µ

n
j (

∫
K

aj3(z)dµ(z))di2hj3(Fmj y0) +O(µmj )

= −mr−mj λmj3(

∫
K

aj3(z)dµ(z))di2hj3(y0) +O(µmj )

� mµmj ,

since
∫
K
aj3(z)dµ(z) 6= 0, di2hj3(y0) 6= 0 and r−1j λj3 = µj . So the rate O(mµmj ) is

the optimal estimate in this case. �
Remark 3.5. For µjrj = |λj3|, if it occurs that λj3 < 0 or∫

K

aj3(z)dµ(z) = 0,

(This could happen, for example, see the Sierpinski gasket SG equipped with the
standard Dirichlet form.) then the decay rate of normal derivatives is o(mµmj ) in
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Theorem 1.5. In fact, we can rewrite the estimate in equality (3.5) for k = 3 in this
case that

dj3f1(vj) = λ−mj3 βj3f |Fm
j V0

= βj3f |V0 −
m−1∑
n=0

rnj λ
−n
j3

∫
Fn

j K

aj3(F−nj z)∆µf(z)dµ(z)

= O(1)−
m−1∑
n=0

rnj λ
−n
j3

∫
Fn

j K

aj3(F−nj z)(∆µf(z)−∆µf(vj))dµ(z)

= o(m)

since ∆µf is continuous at vj and rj |λj3|−1µj = 1. Then following the same
argument in the proof of Theorem 1.5, we get that

di2f(y) = o(mµmj )

for any y ∈ Fmj K. The following example provides the nearest decay rate to mµmj
that we could find.

Example 3.6. Let {cn}n≥0 be a sequence of positive numbers which converge to
0, and φ be a nonnegative continuous function on K \ {vj} with values

(3.8) φ|Fn
j V0

= cn|λj3|nr−nj ,∀n ≥ 0,

and being harmonic in remaining regions. Let g be a function on K, defined as

(3.9) g(x) = φ(x)

∞∑
n=0

rnj λ
−n
j3 aj3(F−nj x),

where we assume that aj3(F−nj x) = 0 for x /∈ Fnj K.
Obviously, g is continuous on K, and g(x)→ 0 as x→ vj , since ‖φ‖L∞(Fn

j K) =

o((λj3r
−1
j )n). Define

f(x) = −
∫
K

(G(x, z) + hj2(x)Hj(z))g(z)dµ(z).

It is easy to check that ∆µf = g and dj2f(vj) = 0, by Lemma 3.3.
Split f = f1 + f2 on Fmj K as we did in the proof of Theorem 1.5. Let y ∈

Fmj K. We then have di2f2(y) = O(µmj ). Expanding the harmonic function f1 by
Proposition 2.2(c), following the proof in Theorem 1.5, we write

f1 = −hj3
∫
K

m−1∑
n=0

rnj λ
−n
j3 aj3(F−nj z)g(z)dµ(z) +R,

such thatR is the summation of djkf1(vj)hjk for k 6= 3, satisfying di2R(y) = O(µmj ).
So it remains to estimate

di2hj3(y)

∫
K

m−1∑
n=0

rnj λ
−n
j3 aj3(F−nj z)g(z)dµ(z).

By Lemma 3.2, di2hj3(y) = O(µmj ) for y ∈ Fmj K. Moreover, for fixed vertex y0
with di2hj3(y0) 6= 0, we have di2hj3(Fmj y0) � µmj .
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As for I :=
∫
K

∑m−1
n=0 r

n
j λ
−n
j3 aj3(F−nj z)g(z)dµ(z), we write I = I1 + I2, where

I1 =

∫
Fm

j K

m−1∑
n=0

rnj λ
−n
j3 aj3(F−nj z)g(z)dµ(z)

and

I2 =

m−1∑
l=0

∫
F l

jK\F
l+1
j K

l∑
n=0

rnj λ
−n
j3 aj3(F−nj z)g(z)dµ(z).

It is easy to verify that |I1| = o(rmj λ
−m
j3 µmj ) = o(1), since g(z)→ 0 as z → vj .

Taking the expression (3.9) of g into I2, we have

I2 =

m−1∑
l=0

∫
F l

jK\F
l+1
j K

(

l∑
n=0

rnj λ
−n
j3 aj3(F−nj z))2φ(z)dµ(z).

Since φ is bounded by the boundary values (3.8) on each F ljK \ F
l+1
j K, we get

I2 ≥
m−1∑
l=0

c(rlj |λj3|−l)2cl|λj3|lr−lj µlj = c

m−1∑
n=0

cn

for some constant c > 0.
Combining all the above estimates, we finally obtain that

|di2f(Fmj y0)| ≥ c(
m−1∑
n=0

cn)µmj

for some constant c > 0.
Looking at the choice of {cn}, we have that the decay rate of di2f(Fmj y0) could

be very close to the rate of mµmj , but it still equals to o(mµmj ).

1 1
4/5

12/25
3/5 3/5

9/259/25

0

Figure 2. The values of h = H2 +H3.

Remark 3.7. The condition dj2f(x) = 0 (or dj′2f(x) = 0) is necessary. Other-
wise, the continuity result in Theorem 1.5 is not true. For example, consider the
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harmonic function h = H2 +H3, which is a multiple of h12, on the Sierpinski gas-
ket, SG, equipped with the standard Dirichlet form (In this case, cij = 1, rj = 3/5
and λj3 = 1/5 for all i, j = 1, 2, 3.). It is easy to calculate that d12h(v1) 6= 0
and d32h(Fm1 F2v3) = 0 for all m ≥ 0. Thus d32h(Fm1 F2v3) does not converge to
d12h(v1), although Fm1 F2v3 converges to v1, as m→∞. See Figure 2 for the values
of h.

4. Boundness and weak continuity of other derivatives

In this section, we prove Theorem 1.6 and Theorem 1.7. Also, we provide some
remarks and examples under the proofs.

Proof of Theorem 1.6. (a) From Proposition 2.1(e), we have
∑N0

l=1(βjk)l =
0, k ≥ 2. Combining it with the fact that h satisfies the Hölder estimate that
|h(x)− h(y)| ≤ c‖h‖∞rw for any x, y ∈ FwK and any word w, with some constant
c > 0, we have

|djkh(x)| = |r−1w βjkh|FwV0
| ≤ c′‖h‖∞ for any nonjunction vertex x, and

|dj′kh(x)| = |r−1w r−1j βj′kh|FwFjV0
| ≤ c′‖h‖∞ for any junction vertex x,

where c′ > 0 be a constant.
(b) The differentiability of f at vertices in V∗ is provided by Theorem 4.1 in [34].

We now estimate the bound of the derivatives. Let x = Fwvj be a nonjunction
vertex. For k ≥ 2, we still use ajk to denote the piecewise harmonic function
defined by ajk(z) = djkΨ(vj , z) as that in Section 3. Taking m = 1 in Lemma 3.4,
we have

(4.1) −
∫
K

ajk(z)∆µf(z)dµ(z) = λ−1jk βjkf |FjV0
− βjkf |V0

.

Scaling (4.1) down to FwFnj K, n ≥ 0, we get

(4.2)
−
∫
FwFn

j K

rnj λ
−n
jk ajk ◦ F

−n
j ◦ F−1w (z)∆µf(z)dµ(z)

=r−1w λ
−(n+1)
jk βjkf |FwF

n+1
j V0

− r−1w λ−njk βjkf |FwFn
j V0

.

Summing (4.2) from n = 0 to m− 1, we have

(4.3)
−
m−1∑
n=0

∫
FwFn

j K

rnj λ
−n
jk ajk ◦ F

−n
j ◦ F−1w (z)∆µf(z)dµ(z) =

r−1w λ−mjk βjkf |FwFm
j V0
− r−1w βjkf |FwV0

.

Since f is differentiable at x, the limit of the left side of (4.3) exists as m→∞.
Moreover, by (1.2), the assumption that rjµj < |λjN0 |, it can be bounded by

(4.4)

|
∞∑
n=0

∫
FwFn

j K

rnj λ
−n
jk ajk ◦ F

−n
j ◦ F−1w (z)∆µf(z)dµ(z)|

≤ µw
∞∑
n=0

(|λjk|−1rjµj)n‖ajk‖∞‖∆µf‖∞ ≤ µwc1‖∆µf‖∞

with some constant c1 > 0 for all k ≥ 2.
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On the other hand, similar to the proof of (a) part, by using (1.4), the Hölder
estimate of f , we also have |r−1w βjkf |FwV0 | ≤ c2(‖f‖∞+‖∆µf‖∞) for some constant
c2 > 0.

Thus
(4.5)

djkf(x) = −
∞∑
n=0

∫
FwFn

j K

rnj λ
−n
jk ajk ◦ F

−n
j ◦ F−1w (z)∆µf(z)dµ(z) + r−1w βjkf |FwV0

is bounded by a multiple of ‖f‖∞ + ‖∆µf‖∞. For the junction vertices, the proof
is same. Thus, all derivatives of f are uniformly bounded by a multiple of ‖f‖∞ +
‖∆µf‖∞. �

Remark 4.1. This boundedness property of derivatives can also be derived from
Corollary 5.1 in [39], which says that under the same assumption (1.2), the gradient
(in a different meaning) at any point in K exists and is continuous in the symbol
space. In addition, the weak continuity property for “higher order” derivatives can
be derived from it, although it could not provide the decay rate directly.

Proof of Theorem 1.7. The proof is analogous to that of Lemma 3.2 and Theorem
1.5, with suitable modifications. We still assume x = vj , since for other vertices,
we could use scaling.

(a) For any harmonic function h, and any vertex y ∈ Fmj K \ {vj}, we have the
following equality using scaling,

dik(h ◦ Fmj )(F−mj y) = rmj dikh(y).

Since dikhjl is uniformly bounded by a constant c > 0 for all l ≥ 3, as guaranteed
by Theorem 1.6, we have

(4.6)

|dikhjl(y)| = |r−mj dik(hjl ◦ Fmj )(F−mj y)|
= |r−mj λmjldikhjl(F

−m
j y)|

≤ cr−mj |λjl|m ≤ c(|λj3|r−1j )m

for all y ∈ Fmj K \ {vj}, where we use Proposition 2.2(a) for the second equality.
On the other hand, since h assumes 0 normal derivative at vj , by using Propo-

sition 2.2(c), we could write

h = h(vj) +

N0∑
l=3

djlh(vj)hjl.

Combining this with (4.6), we have dikh(y) = O((λj3r
−1
j )m) for all y ∈ Fmj K \{vj}.

(b) Similar to the proof of Theorem 1.5, we write

f = f1 + f2 on Fmj K

with f1 and f2 defined in the same manner. A similar argument yields that

dikf1(y) = O((λj3r
−1
j )m)

and
dikf2(y) = O(µmj )

for y ∈ Fmj K \ {vj}, since now we could use (4.6) and Theorem 1.6. Combining
the above two estimates, noticing that µj < |λj3|r−1j from (1.2), we have proved
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that dikf(y) = O((λj3r
−1
j )m). In addition, this estimate is optimal due to the same

reason as in Theorem 1.5. �
Remark 4.2. Suppose ]V0 = 3 and all structures have the full D3 symmetry.

Theorem 1.6(b) and Theorem 1.7(b) are still valid without the hypothesis rjµj <
|λj3| (in this case, N0 = 3), if we additionally assume that g = ∆µf satisfies the
Hölder estimate that

(4.7) |g(x)− g(y)| ≤ cγm

for all x, y belonging to the same m-cells, where γ is a constant satisfying

(4.8) rjµjγ < |λj3|,
for all j.

The key observation is that aj3 is skew-symmetric with respect to the vertex vj ,
which yields that in (4.4), each term in the summation could be rewrote as,∫

FwFn
j K

rnj λ
−n
j3 aj3 ◦ F

−n
j ◦ F−1w (z)(∆µf(z)−∆µf(x))dµ(z),

and this is bounded by a multiple of µwrnj |λj3|−nµnj γn. Since rjµjγ < |λj3|, we
could still get the convergence of (4.4). In this setting, the existence of the deriva-
tives also holds, which was proved in [34], due to the same reason.

Example 4.3. (1) The Sierpinski gasket, which has all rj = 3/5, µj = 1/3,
λj3 = 1/5 in the D3 symmetry case. Hence rjµj = λj3 for all j.

(2) The hexagasket, which can be generated by 6 mappings with simultaneously
rotation and contraction by a ratio of 1/3 in the plane. In this case, we take all
rj = 3/7, µj = 1/6 and λj3 = 1/7, thus the condition rjµj < |λj3| holds. See
Figure 3 for the first two level graphs that approximate the hexagasket.

(3) The level 3 Sierpinski gasket, SG3, obtained by taking 6 contractive mappings
of ratios 1/3, as shown in Figure 4. All rj = 7/15, µj = 1/6 and λj3 = 1/15. Thus
the condition rjµj < |λj3| does not hold.

Please find the detail information of these examples in the book [37]. If ∆µf ∈
dom(∆µ) then (4.7) holds with γ = rj as shown in (1.4). Then an easy calculation
yields that the condition (4.8) holds for examples (1) and (3) above. Thus the
conclusions in Theorem 1.6 and 1.7 are valid for these fractals.

Figure 3. The first 2 graphs that approximate the hexagasket.
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Figure 4. The first graph that approximates SG3.

Remark 4.4. The condition dj2f(x) = 0 in Theorem 1.7 could not be replaced
by djkf(x) = 0, although it looks more “reasonable”. For example, look at the
Sierpinski gasket, SG, equipped with the standard Dirichlet form. We consider
the harmonic function h = H2 + H3, which is a multiple of h12. It is easy to
calculate that d12h(v1) = −2, d13h(v1) = 0, and d13h(Fm1 v2) = 1/3 for all m ≥ 1.
So d13h(Fm1 v2) does not converge to d13h(v1), although Fm1 v2 converges to v1, as
m→∞. See Figure 5 for the values of h.

1 1
4/5

12/25
3/5 3/5

9/259/25

0

Figure 5. The values of h.

Remark 4.5. As we know, the assumption (1.2) in Theorem 1.6(b) is only a
sufficient condition which guarantees the existence of all derivatives of f . It could
be relaxed as stated in Remark 4.2 in the D3 symmetry case. One may ask a
question that: Whether does Theorem 1.6(b) still hold as long as f ∈ dom(∆µ)
and f is differentiable at all vertices? We will give an example to illustrate that
this is not true.

Example 4.6. Consider the Sierpinski gasket, SG, equipped with the standard
Dirichlet form and the standard self-similar measure. So all ri = 3/5, µi = 1/3.
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First, we define a sequence of functions gl, l ≥ 0, satisfying

−∆µgl(x) =

l∑
n=0

a33(F−n3 x)

with the Dirichlet boundary condition, i.e., gl|V0
= 0. Here each term in the sum-

mation has the understanding that a33(F−n3 x) is zero unless x belongs to Fn3 SG.
It is easy to observe that ‖∆µgl‖∞ is uniformly bounded and

d33gl(v3) > (l + 1)c > 0,

for all l with some constant c > 0. In fact, by using (4.5), noticing that a33 is
skew-summery with respect to v3 and r3µ3 = λ33, we have
(4.9)

d33gl(v3) =−
∞∑
m=0

∫
Fm

3 SG
λ−m33 rm3 a33(F−m3 z)∆µgl(z)dµ(z)

=

l∑
n=0

∞∑
m=0

∫
Fm

3 SG
λ−m33 rm3 a33(F−m3 z)a33(F−n3 z)dµ(z)

≥
l∑

n=0

∞∑
m=n

∫
Fm

3 SG
λ−m33 rm3 a33(F−m3 z)a33(F−n3 z)dµ(z)

=

l∑
n=0

∞∑
m=n

∫
Fm−n

3 SG
λ−m33 rm3 µ

n
3a33(F−m+n

3 z)a33(z)dµ(z)

=

l∑
n=0

∞∑
m=0

∫
Fm

3 SG
λ−m33 rm3 a33(F−m3 z)a33(z)dµ(z) = (l + 1)d33g0(v3) > 0.

Now we define a function g, which is the solution of the following Dirichlet
problem, {

∆µg(x) =
∑∞
l=0 3−l∆µg33l(F

−1
1 F−l2 x),

g|V0
= 0.

See Figure 6 to find the support of ∆µg(x).
Next we estimate the tangential derivatives of g at the vertices F l2F1v3. By using

(4.5) and (4.9), we have

d33g(F l2F1v3) =−
∞∑
m=0

∫
F l

2F1Fm
3 SG

rm3 λ
−m
33 a33(F−m3 F−11 F−l2 z)∆µg(z)dµ(z)

+ r−l2 r−11 β33g|F l
2F1V0

=−
∞∑
m=0

∫
Fm

3 SG
3−lµl2µ1r

m
3 λ
−m
33 a33(F−m3 z)∆µg33l(z)dµ(z)

+ r−l2 r−11 β33g|F l
2F1V0

=− 3−2l−1
∞∑
m=0

∫
Fm

3 SG
rm3 λ

−m
33 a33(F−m3 z)∆µg33l(z)dµ(z) +O(1)

=3−2l−1d33g33l(v3) +O(1) ≥ c3−2l−1(33l + 1) +O(1).
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v2 v3

v1

Figure 6. The support of ∆µg(x).

Thus we have proved that {d33g(F l2F1v3)}l≥0 is unbounded, although we have
g ∈ dom(∆µ) and is differentiable at all vertices in V∗. (The only vertex we need
to check is v3, where ∆µg converges to 0 at an adequately large rate.)

We summarize this into the following theorem.
Theorem 4.7. Let f ∈ dom(∆µ) be differentiable at all vertices in V∗. The

derivatives of f may not be uniformly bounded if the condition (1.2) does not hold.

5. The weak tangent

Let f be a function which is differentiable at a vertex x. The weak tangent of
order one of f at x, denoted as T x1 (f), is the harmonic function on U0(x) with the
same value and the same gradient as f at x. Let hm be the harmonic function
assuming the same values as f at the boundary of Um(x), extended to be harmonic
on U0(x). Theorem 3.11 in [34] says that hm converges to T x1 (f) uniformly on U0(x)
as m goes to infinity. However, the following example will show that this is not
true.

Example 5.1. Consider the Sierpinski gasket SG, equipped with a self-similar
Dirichlet form which only has a single bilateral symmetry, as described in Example
2.5.

Define a function f on SG as following. We assume{
f(F2F

m
3 vj) = ηm(α32)j for j = 1, 2 and m ≥ 0,

f(v1) = 0, f(v3) = 0, f(F1v3) = 0,

where η is a constant such that |λ23| = |λ33| < η < λ22 = λ32. For the values of f
at other points, we take harmonic extension.

Choose x = F2v3, it is easy to check that

d22f(x) = d23f(x) = d32f(x) = d33f(x) = 0.

Thus f is differentiable at x and T x1 (f) ≡ 0 on U0(x).
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On the other hand, using the bilateral symmetry, we could obtain that

hm(x) =

∑
y∼m+1x

cxyf(y)∑
y∼m+1x

cxy
= ηm

∑
y∼1x

cxyf(y)∑
y∼1x

cxy
= ηmh0(x),

which results that

d23hm(x) = r−13 λ−m23 (β23)2hm(x) = r−13 λ−m23 ηm(β23)2h0(x).

Thus d23hm(x) → ∞ as m → ∞ since |λ23| < η and (β23)2 6= 0 as shown in
Example 2.5. So we have

β23hm|F3V0 →∞ as m→∞,

which means ‖hm‖∞ → ∞ as m → ∞. Hence hm does not converge to T x1 (f) as
m→∞.

We need some extra assumption to make Theorem 3.11 in [34] holds.
Theorem 5.2. Suppose one of the condition in Proposition 2.3 holds. Then for

any f differentiable at x, hm converges to T x1 (f) uniformly.
Proof. The proof is essential the same as that of Theorem 3.11 in [34], where

the condition (βjk)j = 0 is misapplied. we omit it here. �
As pointed out below the proof of Proposition 2.3, in the D3 symmetry case, the

assumption in Theorem 5.2 holds automatically.
Theorem 5.3. Suppose

(5.1) rj max
1≤i≤N0

µi < |λjN0
|

for every j. Then for any f ∈ dom(∆µ), for any vertex x, hm converges to T x1 (f)
uniformly.

Proof. Condition (5.1) guarantees the differentiability of f at x by using Theorem
4.1 in [34].

For a nonjunction vertex x, ∀k ≥ 2, we have

djkf(x) = lim
m→∞

djkhm(x),

since on the right side of (1.1) we may replace f by hm and hm is harmonic on
U0(x). In particular, this also shows the limit exists. We have hm(x) = f(x) for all
m since x is a boundary point of Um(x). On the other hand, there is an estimate
for harmonic functions, |h(y)| ≤ c(|h(x)|+‖dh(x)‖) uniformly for y ∈ U0(x), which
is a result of Proposition 2.2(c). Using this estimate for hm−T x1 (f), we obtain that
hm converges uniformly on U0(x) to T x1 (f).

If x is a junction vertex, x = FwFjvj′ , ∀j ∈ J(x), x is no longer a boundary point
of Um(x). We have to estimate f(x) − hm(x). Using the compatibility condition
at x, we have f(x)− hm(x) = o(λmj′2) for all j′. Furthermore, with the assumption
(5.1), we can get a more precise estimate.

Let ψmx denote the piecewise harmonic function in S(H0, Vm) which takes value
1 at x and 0 at other vertices in Vm.
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From the pointwise formula for ∆µf at x, we have

(5.2)

∆µf(x) = lim
m→∞

∑
∼m

cxy(f(y)− f(x))∫
K
ψmx dµ

= − lim
m→∞

∑
j∈J(x) r

−1
w r−1j λ−mj′2 βj′2f |FwFjFm

j′ V0∫
K
ψ
m+|w|+1
x dµ

= lim
m→∞

∑
j∈J(x) r

−1
w r−1j λ−mj′2 (βj′2)j′(hm(x)− f(x))∫

K
ψ
m+|w|+1
x dµ

,

where for the third equality we use the compatibility condition∑
j∈J(x)

r−1w r−1j λ−mj′2 βj′2hm(x)|FwFjFm
j′ V0

= 0,

since hm is harmonic.
The integral

∫
K
ψ
m+|w|+1
x dµ in (5.2) can be calculated that∫
K

ψm+|w|+1
x dµ =

∑
j∈J(x)

µwµjµ
m
j′

∫
K

Hj′dµ

where Hj denotes the harmonic function taking 1 at vj and 0 at other vertices
in V0. Thus the integral converges to zero with the rate (µJ(x))

m, where µJ(x) =
maxj∈J(x) µj′ . Denote rJ(x) = minj∈J(x){rj′}, we then have

f(x)− hm(x) = O((rJ(x)µJ(x))
m)

from the convergence of (5.2).
Combining this estimate with the assumption (5.1), we get

f(x)− hm(x) = o(λj′k),

for all j′, ∀k ≥ 2. So we have

dj′kf(x) = lim
m→∞

r−1w r−1j λ−mj′k βj′khm|FwFjFm
j′ V0

+ lim
m→∞

r−1w r−1j λ−mj′k (βj′k)j′(f(x)− hm(x))

= lim
m→∞

dj′khm(x).

Using a similar argument as the nonjunction case, we still obtain that hm con-
verges uniformly on U0(x) to T x1 (f). �

At last, we will give an example which could serve as a counter-example of
Conjecture 6.7 in [34] on the existence of weak tangents of higher order.

Example 5.4. For the Sierpinski gasket SG, we assume all the structures satisfy
the D3 symmetry. In this case, all rj = 3/5, µj = 1/3. Denote by ρ = rjµj and r
the common value of rj . Define a function f ∈ dom(∆µ) which satisfies{

∆µf =
∑∞
m=0 η

mψm+1
Fm

1 F2v3
,

f(v1) = 0, df(v1) = 0,

where η is a constant, r < η < 1, ψmx is a piecewise harmonic function in S(H0, Vm)
satisfying ψmx (y) = δxy for y ∈ Vm. One can easily verify that d∆µf(v1) = 0. We
will show that f does not have a weak tangent at v1 of order 2.
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In fact, by using the Gauss-Green’s formula, we have

f(v2) + f(v3) =

∫
K

H1(x)∆µf(x)dµ(x),

where H1 is the harmonic function satisfying H1(vj) = δ1j . Using scaling, we then
have

(5.3)
f(Fm1 v2) + f(Fm1 v3) = ρm

∫
K

H1(x)(∆µf)(Fm1 x)dµ(x)

= ρmηm(f(v2) + f(v3)).

But from the proof of Lemma 6.2 in [34], for any 2-harmonic function h, there
exist constants a, b, c ∈ R such that

(5.4) h(Fm1 v2) + h(Fm1 v3) = arm + bρm + c(rρ)m.

Combining (5.3) and (5.4), we could claim that it is impossible to have any 2-
harmonic function h satisfying (1.3), where n is replaced with 2, since r < η < 1.
Thus f does not have a weak tangent of order 2 at v1.

Before the end of this section, we would like to pose a problem that should be con-
sidered. The Hypothesis 1.1 requires the harmonic structure to be nondegenerate,
i.e., all the transformation matrices to be nonsingular. This excludes some typical
fractals such as the Vicsek set. Consider a square with corners {v1, v2, v3, v4} and
center v5. For 1 ≤ j ≤ 5, let Fj be a contractive mapping with ratio 1/3 and fixed
point vj . The invariant set of this i.f.s. is called the Vicsek set, denoted by V. Then
N = 5, N0 = 4 and V0 = {v1, v2, v3, v4}. See Figure 7 for the second level graph
of V. This fractal has D4 symmetry. Equip V with the standard Dirichlet form
and standard measure. Then all rj = 1/3, µj = 1/5, and all the transformation
matrices Mj are permutations of

M1 =


1 0 0 0
3
4

1
12

1
12

1
12

1
2

1
6

1
6

1
6

3
4

1
12

1
12

1
12

 .

It is easy to calculate that λj2 = 1/3, λj3 = λj4 = 0. Thus this harmonic structure
of V is degenerate. Is there a satisfactory theory of derivatives or gradients on V?
Or even on other fractals in degenerate case?
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