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Abstract. In this paper, we introduce the finite neighboring type and the finite chain length
conditions for a connected self-similar set K. We show that with these two conditions, K
is a finitely ramified graph directed (f.r.g.d.) fractal defined by Hambly and Nyberg[17].
We give some nontrivial examples and compute the harmonic structures on them explicitly.
Furthermore, for a f.r.g.d. self-similar set K, we provide an equivalent description, the
finitely ramified of finite type (f.r.f.t.) cell structure of K, and investigate the relationship
of harmonic structures associated with different f.r.f.t. cell structures of K.

1. Introduction

The construction of Laplacians is a core topic in analysis on fractals. One of the most
important approaches is Kigami’s construction on p.c.f. self-similar sets[18, 19], using graph
approximations. See books [20, 34] for details, and [21, 23] for deep discussions on closely
related concepts such as resistance forms and harmonic structures. Beyond Kigami’s con-
struction, the only other approaches to obtaining Laplacians are indirect and nonconstructive
by probability techniques, see [8, 9, 10, 11, 15].

It is desirable to enlarge the class of self-similar sets on which Kigami’s spirit works.
Hambly and Nyberg[17] introduced a class of fractals, named finitely ramified graph directed
(f.r.g.d. for short) fractals, which generalized the class of p.c.f. self-similar sets and admit
very natural graph approximations. The technique of Kigami continues to work through
simple extensions. See [16, 27, 29] for a discussion on the existence of harmonic structures
and Laplacians on f.r.g.d. fractals.

The graph directed constructions provide a more general setting of fractals which are no
longer exactly self-similar but do inherit self-similar features. See [26] for a detailed anal-
ysis on geometry structures and dimension estimates of such fractals. The finitely ramified
assumption is essentially necessary for Kigami’s technique so as to provide suitable graph
approximations. One of the well known examples of f.r.g.d. fractals is the Hanoi attractor,
see Figure 1. The Laplacians and their properties on the Hanoi attractor have been well in-
vestigated in a sequence of papers [2, 3, 4, 5]. Besides Hambly and Nyberg’s extension, there
is another direction of extension of Kigami’s approach, see [6, 14, 32, 33] for the construction
of Laplacians on a class of Julia sets for quadratic or cubic polynomials, which are finitely
ramified.
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Figure 1. The Hanoi attractor.

In certain cases, a self-similar set can be an f.r.g.d. fractal(we always assume it to be
connected). Trivial examples are p.c.f. self-similar sets, which have f.r.g.d. constructions with
the directed-graphs being singletons. A more interesting example is the diamond fractal(see
Figure 2), on which the Laplacian was constructed and well studied[24, 28]. See [1] for
an investigation of the heat kernel on the diamond fractal. This sheds light on defining

Figure 2. The diamond fractal.

Laplacians in a direct and constructive way on certain non p.c.f. self-similar sets.
In this work, we will give conditions that guarantee a self-similar set K to be an f.r.g.d.

fractal. Intuitively, the graph directed requirement allows overlaps when the similitudes
are iterated, but it seems that the overlapping types among distinct comparable similar
copies of K should be finite. Basing on this observation, together with the finitely ramified
requirement, we present two conditions for K, called the finite neighboring type and finite
chain length conditions, denoted by (F1) and (F2), which do not imply each other. We will
prove that K is an f.r.g.d. fractal providing it satisfies both the two conditions.

The “finite type” assumption is quite useful for calculating the Hausdorff dimension of
certain self-similar sets which do not necessarily satisfy the open set condition. See [25, 30, 31]
for detail discussions on this topic. Our condition (F1) is a variation of their assumptions.
On the other hand, the consideration of chains of copies is also frequently used in analysis of
fractals, for example see [13, 22, 23] to find investigations on heat kernel estimates. In our
setting, we require the overlap to be infinite.

We will provide some interesting examples satisfying the above two conditions, see Figure
3. Harmonic structures on them will be computed in detail. Notice that there may exist
multiple f.r.g.d. constructions associated with one self-similar set. We will have a discussion
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on when harmonic structures on different f.r.g.d. constructions lead to a same resistance
form. In particular, we will introduce the concept of homogeneous harmonic structures.

Figure 3. Examples of f.r.g.d. self-similar sets.

However, we will point out that an f.r.g.d. self-similar set K does not necessarily admit the
conditions (F1) and (F2). We will use the idea of finitely ramified cell structures introduced
by Teplyaev [35] to get an equivalent condition for K to be f.r.g.d. To be more precise, we
will introduce a finitely ramified of finite type (f.r.f.t. for short) cell structure of K basing on
its f.r.g.d. construction. This structure provides some convenience when we are interested in
K itself rather than the f.r.g.d. fractal family including K. We will use this new setting to
study homogeneous harmonic structures.

At the end of this introduction, let’s look at the organization of the paper. In Section 2, we
will introduce (F1) and (F2), and show that they lead to f.r.g.d. constructions. In Section
3, we will show some f.r.g.d. constructions associated with the examples in Figure 3, and
will provide details on computing the harmonic structures. In Section 4, we will introduce
the concept of f.r.f.t. cell structures. In Section 5, we will deal with homogeneous harmonic
structures.

2. (F1), (F2) and f.r.g.d. constructions

We consider a connected self-similar set K in Rn, which is the attractor of an i.f.s. {Fi}Ni=1,
i.e.

K =
N⋃
i=1

FiK.

We denote ci the similarity ratio of Fi, 1 ≤ i ≤ N , and c∗ = min{c1, c2, · · · , cN}.
For n ≥ 1, denote Wn = {1, 2, · · · , N}n the set of words of length n. Together with W0 =

{∅}, we write W∗ =
⋃
n≥0Wn. For w = w1w2 · · ·wn ∈ W∗, write Fw = Fw1 ◦ Fw2 ◦ · · · ◦ Fwn

and cw = cw1cw2 · · · cwn for short, with the convention that c∅ = 1.

2.1. The conditions (F1) and (F2). First, the finite neighboring type condition is defined
as follows.

(F1). There are only finitely many similitudes h = F−1
w Fu with w, u ∈W∗ and FwK∩FuK 6=

∅, and with similarity ratio ch ∈ (c∗, 1/c∗).
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This condition, formulated in algebraic terms, was introduced in [7] by Bandt and Rao to
describe algorithms to verify the open set condition. It is also related with the finite type
concept as mentioned in the Introduction.

Next, we introduce the finite chain length condition. Before that, we first note that it
is possible that Fw = Fu with w 6= u ∈ W∗. By removing all but the smallest words
in the lexicographical order (or any fixed order), we obtain a word set W# ⊂ W∗ such that
{FwK}w∈W#

consists of distinct copies of K and {FwK}w∈W#
= {FwK}w∈W∗ . For 0 < λ < 1,

define
Wλ = {w = w1w2 · · ·wn ∈W# : cw ≤ λ < cw1cw2 · · · cwn−1},

and call it a partition with respect to λ. Note that the set Wλ is finite; for distinct words
w, u ∈Wλ, FwK and FuK can not contain each other; and λc∗ < cw ≤ λ, ∀w ∈Wλ.

Definition 2.1. (a). We call a finite collection of words in W#

γ = (w(1), w(2), · · · , w(n))

an overlapping chain if

#
(
Fw(i+1)K ∩ (

⋃
1≤j≤i

Fw(j)K)
)

=∞,∀1 ≤ i ≤ n− 1,

and Fw(i)K * Fw(j)K for distinct 1 ≤ i, j ≤ n, and call n the length of γ.

(b). Moreover, for 0 < δ < 1, we call the chain γ a δ-overlapping chain if δ ≤ cw(i)c−1
w(j) ≤

δ−1 for any w(i) and w(j) in γ.
(c). Denote Lδ(K) the supremum of the lengths of δ-overlapping chains in K, ∀0 < δ < 1.

The finite chain length condition is defined as follows.

(F2). Lδ(K) <∞ for any 0 < δ < 1.

The following proposition shows that (F2) is equivalent to a seemingly weaker version.

(F̃2). Lδ(K) <∞ for some 0 < δ ≤ c∗.

Proposition 2.2. (F2) is equivalent to (F̃2).

Proof. It is enough to show that (F̃2) implies (F2). Fix a 0 < δ ≤ c∗ such that Lδ(K) <∞.
First, we can see that Lδ′(K) ≤ Lδ(K) < ∞ for any 1 > δ′ ≥ δ. This is due to the fact

that any δ′-overlapping chain is automatically a δ-overlapping chain.
Next, we show Lδ′(K) < ∞ for any 0 < δ′ < δ. Let γ be a δ′-overlapping chain with

γ = (w(1), w(2), · · · , w(n)). We denote by λ = max{cw(i) : 1 ≤ i ≤ n}, then for each 1 ≤ i ≤ n,

we could choose w̃(i) in Wλ such that Fw(i)K ⊂ Fw̃(i)K. It is clear that, after deleting the

repeated ones if necessary, (w̃(1), w̃(2), · · · , w̃(n)) forms a c∗-overlapping chain, we denote it
by γ̃. Since δ ≤ c∗, γ̃ is also a δ-overlapping chain, and hence the length of γ̃ is no more
than Lδ(K). Notice that the similarity ratio of elements in γ has a lower bound λδ′, and the
similarity ratio of elements in γ̃ has an upper bound λ. Then an easy calculation shows that
the length of γ is no more than #Wδ′Lδ(K). From the arbitrariness of γ, we have proved
that Lδ′(K) <∞. �

Remark. (F1) and (F2) can not imply each other, which can be illustrated by the following
two examples.
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Example 1.(Golden ratio Sierpinski gasket) Let {qi}3i=1 be the three vertices of an equilateral
triangle, and {Fi}3i=1 be the three contractive similitudes,

F1 : x→ρ2(x− q1) + q1,

F2 : x→ ρ(x− q2) + q2, F3 : x→ ρ(x− q3) + q3,

with ρ =
√

5−1
2 . The golden ratio Sierpinski gasket SGg is the invariant set of the i.f.s.

{Fi}3i=1, i.e., SGg =
⋃3
i=1 Fi(SG

g), see Figure 4 (a). It is a slight variant of Example 5.4 in
[30].

(a) (b)

Figure 4. The golden ratio Sierpinski gasket SGg (left) and an overlapping
chain (right).

Obviously, SGg satisfies (F1), see a detailed discussion in [30]. However, SGg does not
satisfy (F2). In fact, consider the collection of copies {FwSGg|w ∈ {2, 3}n}, n ≥ 1, located
along the bottom line of SGg. By ordering the words in lexicographical order, i.e., letting
w(1) = 22 · · · 2, w(2) = 22 · · · 23, · · · , w(2n) = 33 · · · 3, and removing the completely overlap-
ping ones, we can find that the collection γn = (w(1), w(2), · · · , w(2n)) provides a δ-overlapping
chain for any 0 < δ < 1. See Figure 4 (b) for such a chain with n = 3. Since n can be arbi-
trarily large, SGg does not satisfy (F2).

Example 2.(λ-gaskets with irrational moving sliders) Let λ ∈ [0, 1]. Define the following
i.f.s.{Fi}4i=0 in R2,

F0 : x→ 1

3
x, F1 : x→ 1

3
x+ (

1

3
, 0), F2 : x→ 1

3
x+ (

2

3
, 0),

F3 : x→ 1

3
x+ (

1

3
,

√
3

3
), F4 : x→ 1

3
x+ (

1

6
+
λ

3
,

√
3

6
).

Let Kλ be the invariant set of this i.f.s. See Figure 5 for an illustration.
Obviously, Kλ satisfies (F2). In fact, given any two copies FwKλ and FuKλ, either they

intersect each other by at most one point, or one contains the other. So any overlapping
chain has length at most 1.
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λ
3

F0 F1 F2

F3

F4

Figure 5. An illustration for Kλ.

On the other hand, Kλ does not satisfy (F1) when λ is an irrational number. In fact, write
the ternary expansion of λ,

λ =
∞∑
i=1

li3
−i,

with li ∈ {0, 1, 2},∀i ≥ 1. By shifting the coefficients in this expansion, we get a sequence of
irrational numbers

λk =
∞∑
i=1

li+k3
−i, k ≥ 1.

For the sake of uniformity, write λ0 = λ. It is not hard to see that for any k ≥ 0, F4F
k
3 Kλ ∩

F3F[l]kKλ 6= ∅, where [l]k = l1l2 · · · lk ∈ {0, 1, 2}k ⊂W∗. Moreover, a calculation yields that

(F3F[l]k)−1 ◦ F4F
k
3 : x→ x− (

1

2
,

√
3

2
) + (λk, 0).

Notice that λk 6= λk′ when k 6= k′ since λ is irrational, and thus Kλ does not satisfy (F1).
This example was introduced in [36](Example 3) for a different purpose. Some adjustment

is made in our setting.

2.2. Relation with f.r.g.d. constructions. Recall the concept of graph-directed con-
struction and f.r.g.d. fractals, which can be found in detail in [17, 26]. Let G = (S,E) be a
directed-graph, where S is the set of states(call vertices in this graph states to avoid confusion)
and E is the set of edges of the graph. Note that multiple edges and loops are allowed. For
an edge e ∈ E, denote by i(e) the initial state and f(e) the final state of e.

Definition 2.3. Let G = (S,E) be a directed-graph. Assign each e ∈ E a similitude ψe with
similarity ratio le, and each s ∈ S a compact connected set Js. Call G = (S,E, {ψe}e∈E) a
graph-directed construction if the following conditions are satisfied,

1. ∀s ∈ S, there is at least one edge e ∈ E, such that s = i(e);
2. ∀s ∈ S,

⋃
i(e)=s ψeJf(e) ⊂ Js;

3. For a cycle e1e2 · · · en, where cycle means f(ek) = i(ek+1),∀k = 1, 2, · · · , n − 1 and
f(en) = i(e1), we have

∏n
k=1 lek < 1.
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Condition 2 in Definition 2.3 means that ψe maps from Jf(e) into Ji(e). To see why we
need Condition 3, one can consider the case S = {1}, and then condition 3 means that each
similitude ψe is a contraction, so by standard theory, there exists a unique self-similar set
K1 ⊂ J1 such that K1 = ∪e∈Eψe(K1).

It is well-known that there is a unique vector of compact sets K = {Ks}s∈S such that for
each s ∈ S, Ks is contained in Js, and

Ks =
⋃

i(e)=s

ψeKf(e).

We call them the invariant sets of the graph-directed construction G. We will always assume
that each Ks is connected.

We define a shift space associated with G to address points in Ks, s ∈ S. A finite sequence
of edges in G, denoted by e = e1e2 · · · en, is called a walk if f(ek) = i(ek+1), ∀1 ≤ k ≤ n− 1.
We write |e| = n for the length of the walk. An infinite sequence of edges is called an infinite
walk, denoted by ε = ε1ε2 · · · , if for any n ≥ 1, the first n steps [ε]n = ε1ε2 · · · εn is a walk
of length n. Denote by E∗ the collection of finite walks in G, and E∞ the space of infinite
walks. For convenience, let i(e) = i(e1) or i(ε) = i(ε1) the initial state of a walk, and let
f(e) = f(e|e|) the final state of a walk. Then we define a projection π : E∞ →

⋃
s∈SKs by

{π(ε)} =
∞⋂
n=1

ψ[ε]nKf([ε]n),

where we use the notation ψe = ψe1 ◦ψe2 ◦· · ·◦ψen . Noticing that ψ[ε]nKf([ε]n) is a decreasing
sequence of subsets in Ki(ε), with diameter converging to 0 by Condition 3 in Definition 2.3,
the right side of the above identity determines a unique point π(ε) in Ki(ε).

Analogous to p.c.f. self-similar sets, for each s ∈ S, we introduce the set of level 1 inter-
section Cs =

⋃
e6=e′∈i−1(s) ψeKf(e) ∩ ψe′Kf(e′), where e ∈ i−1(s) means i(e) = s, the critical

set CG =
⋃
s∈S π

−1(Cs), and the post-critical set PG =
⋃∞
n=1 σ

n(CG), where σ is the shift map
on E∞, i.e., σ(ε1ε2 · · · ) = ε2ε3 · · · . For each s ∈ S, we write Vs = {π(ε) : i(ε) = s, ε ∈ PG}.
We can see that

ψeKf(e) ∩ ψe′Kf(e′) = ψeVf(e) ∩ ψe′Vf(e′), if i(e) = i(e′).

In particular, if Vs is finite for each s ∈ S, each pair of cells ψeKf(e) and ψe′Kf(e′) intersect
at finitely many points. This leads to the definition of f.r.g.d. fractals [17].

Definition 2.4. A family K = {Ks}s∈S constructed by the graph-directed construction G =
(S,E, {ψe}e∈E) is called a finitely ramified graph-directed (f.r.g.d. for short) fractal family if
Vs is finite for each s ∈ S. Each member Ks ∈ K is called an f.r.g.d. fractal.

We will briefly recall the construction of resistance forms on f.r.g.d. fractals in Subsection
3.1. See [17] for more details.

In the rest of this section, we construct an f.r.g.d. construction for a self-similar set K
under the assumptions (F1) and (F2). The idea is to break K into a finite union of c∗-
overlapping chains of finite types. We need to overcome the difficulty of showing #Vs < ∞
for each state. We will achieve this idea by using maximal chains.
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Definition 2.5. (1). Say a c∗-overlapping chain γ = (w(1), w(2), · · · , w(n)) a maximal c∗-

overlapping chain if and only if there is no another w ∈W# such that γ̃ = (w(1), w(2), · · · , w(n), w)
is a c∗-overlapping chain.

(2). Denote Λ = {γ : γ is a maximal c∗-overlapping chain}, and write Kγ =
⋃
w∈γ FwK

for each γ ∈ Λ. In particular, Kθ = K, where θ := (∅) ∈ Λ is a trivial chain.
(3). For γ, η ∈ Λ, say γ ∼ η if there exists a similitude φγ,η such that ∀w ∈ γ and

w′ ∈ W∗ with Fw′K = FwK, there are u ∈ η and u′ ∈ W∗ with Fu′K = FuK, satisfying that
φγ,η ◦ Fw′ = Fu′, and a same condition holds conversely for φη,γ = φ−1

γ,η.

Clearly, φγ,η(Kγ) = Kη for γ ∼ η. Obviously, “∼” is an equivalent relationship on Λ.

Lemma 2.6. Assume (F1) and (F2). Then #(Λ/ ∼) <∞.

Proof. We enlarge Λ to be Λ′ = {γ : γ is a c∗-overlapping chain}, and define ∼ on Λ′ as in
Definition 2.5 (3). Write Λ′n = {γ : γ is a c∗-overlapping chain of length n} for n ≥ 1.

One can check that #(Λ′n/ ∼) < ∞, ∀n ≥ 1. This can be done by induction hypothesis.
First, #(Λ′1/ ∼) = 1. Next, assume #(Λ′n−1/ ∼) < ∞. By (F1), there are at most finitely
many ways to add a new word w ∈ W# to a fixed γ ∈ Λ′n−1. So each type in Λ′n−1/ ∼ will
only lead to finitely many different types in Λ′n/ ∼, which implies #(Λ′n/ ∼) <∞.

Lastly, by (F2), we have #(Λ/ ∼) ≤ #(Λ′/ ∼) =
∑Lc∗ (K)

n=1 #(Λ′n/ ∼) <∞. �

The following lemma shows how to get an f.r.g.d. construction of K by using maximal
c∗-overlapping chains.

Lemma 2.7. Assume (F1) and (F2). For γ ∈ Λ, there is a finite number of maximal
c∗-overlapping chains {γi}ki=1 with k > 1 satisfying the following properties:

1. Kγ =
⋃k
i=1Kγi;

2. #Kγi ∩Kγj <∞ for i 6= j;

3. For each γi = (w
(1)
i , w

(2)
i , · · ·w(n)

i ), and for any γ′ ∼ γ with a similitude φγ,γ′ as defined

in Definition 2.5 (3), write γ′i = (w
′(1)
i , · · · , w′(n)

i ) with F
w
′(j)
i

K = φγ,γ′(Fw(j)
i

K). Then γ′i is

still a maximal c∗-chain and γ′i ∼ γi.

Proof. Let cγ = minv∈γcv. Let 0 < λ ≤ c∗cγ , and write Wλ,γ = {w ∈ Wλ : #Kw ∩Kγ =
∞}.For any w ∈ Wλ,γ and w′ ∈ W∗ with Fw′K = FwK, there exist v ∈ γ and v′, u ∈ W∗,
such that Fv′K = FvK and Fw′ = Fv′Fu, since otherwise we can lengthen the chain γ with
a new word w̃ satisfying FwK ⊂ Fw̃K. In particular, we have FwK ⊂ Kγ .

For each w ∈ Wλ,γ , there exists a unique maximal c∗-overlapping chain γw containing w
such that γw ⊂Wλ,γ . In fact, we choose γw to be the largest c∗-overlapping chain consisting of
words in Wλ,γ that contains w. If γw is not maximal, then there exists a word u ∈W# \Wλ,γ

such that γw ∪ {u} is still a c∗-overlapping chain. Let’s consider two cases of cu:
1. cu ≤ λ. Then there is a word u′ ∈Wλ such that FuK ⊂ Fu′K, and thus #Fu′K∩Kγw =

∞. This gives that u′ ∈Wλ,γ , and thus Fu′K ⊂ Kγ . This contradicts the definition of γw.
2. cu > λ. Then we can choose a word u′ ∈ Wλ,γ such that Fu′K ⊂ FuK and #Fu′K ∩

Kγw =∞. A same contradiction as case 1 happens.
Thus, we have proved that γw is a maximal c∗-overlapping chain. Obviously, Kγ =⋃
w∈Wλ,γ

Kγw and #Kγw ∩ Kγu < ∞ if γw 6= γu. Moreover, due to (F2), by choosing λ

small enough, we can ensure the existence of at least two chains of this form.
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Conclusion 3 is easy to get by choosing λ′ = λ · cγ′cγ , and repeating the same operation on

Kγ′ as we did on Kγ , noticing the one to one correspondence between Wλ,γ and Wλ′,γ′ by
the discussion in the first paragraph. �

As a consequence of Lemma 2.7, we are able to define an f.r.g.d. construction of K with
state set S := Λ/ ∼. For each s ∈ S, we choose a representative maximal c∗-overlapping
chain γs in s, and denote Ks = Kγs . In particular, for the equivalent class of θ = (∅), we
denoted it by ϑ, and always choose γϑ = θ and Kϑ = K.

For each s ∈ S, by Lemma 2.7, we can find finitely many maximal c∗-overlapping chains

γ
(s)
i , 1 ≤ i ≤ ns, such that Ks =

⋃ns
i=1Kγ

(s)
i

and #K
γ
(s)
i

∩K
γ
(s)
j

<∞ for any i 6= j. For each

γ
(s)
i , denote its equivalent class by si, and define an edge e such that i(e) = s and f(e) = si.

In addition, for this edge e, we assign a similitude ψe by

ψe = φ
γsi ,γ

(s)
i

.

Let E be the collection of edges defined above. We then get a graph-directed construction
(S,E, {ψe}e∈E). It remains to show that it is finitely ramified.

Theorem 2.8. Each self-similar set K satisfying (F1) and (F2) is a f.r.g.d. fractal.

Proof. Let (S,E, {ψe}e∈E) be defined as above. For s ∈ S, let Vs be the same as introduced
above Definition 2.4. We only need to prove that #Vs <∞, ∀s ∈ S.

In fact, for each x ∈ Vs, we can find a γ in s and a walk e so that Kγ = ψeKs and

ψex ∈ Kγ ∩ K \Kγ . In addition, assume x ∈ FwK where w ∈ γs, and let v ∈ γ so that
FvK = ψeFwK. By Definition 2.5(3), we can find v′ ∈W∗ with Fv′ = ψeFw and Fv′K = FvK.

Let λ = c∗minu∈γ cu. Then we can find u ∈ Wλ \Wλ,γ so that ψex ∈ FuK ∩ FvK. Since

γ is maximal, we have #FuK ∩ FvK < ∞. In other words, if we define h = F−1
v′ Fu, then

ψex ∈ Fv′hK ∩ Fv′K, which shows that x ∈ FwhK ∩ FwK.
The above discussions shows that for each x ∈ Vs, we can find a word w ∈ γs, a similitude h

of the form F−1
v Fu with c−1

v cu ∈ (c3
∗, 1) such that x ∈ FwhK∩FwK and #FwhK∩FwK <∞.

By (F1), we know that there are only finitely many different choices of h, so Vs is a finite
set. �

3. Examples

In this section, we will introduce some examples of self-similar sets which are not p.c.f.
but satisfying (F1) and (F2). We will provide f.r.g.d. constructions and construct resistance
forms for these examples.

3.1. Harmonic structures on f.r.g.d. fractals. First, let’s briefly recall the harmonic
structures on f.r.g.d. fractal families(Definition 2.4) introduced by Hambly and Nyberg[17].
The idea is based on Kigami’s compatible sequence of resistance networks[20, 21].

Let V be a finite set. A symmetric linear operator(matrix) H : l(V ) → l(V ) is called a
(discrete) Laplacian on V if H is non-positive definite, Hu = 0 if and only if u is a constant
on V , and Hxy ≥ 0 for all x 6= y ∈ V . The pair (V,H) is called a (finite) resistance network.
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Write x ∼ y if Hxy > 0. There is a symmetric bilinear form EH(·, ·) on l(V ), called the
(discrete) resistance form associated with H, written as

EH(u, v) =
∑
x∼y

cx,y
(
u(x)− u(y)

)(
v(x)− v(y)

)
, ∀u, v ∈ l(V ),

with cx,y = Hxy called the conductance between x, y. We write EH(u) = EH(u, u) for short.
Now, consider an f.r.g.d. construction G = (S,E, {ψe}e∈E). Let K = {Ks}s∈S be the

associated f.r.g.d. fractal family. Recall that for each s ∈ S, Vs is the boundary of Ks. For

n ≥ 0, let V
(n)
s =

⋃
|e|=n,i(e)=s ψeVf(e) be the level n vertices. Let D = {Ds}s∈S where Ds

is a Laplacian on Vs, and let r = {re}e∈E ∈ RE+. Inductively, we define a resistance form on

V
(n)
s by

E(n)
s (u, v) =

∑
|e|=n,i(e)=s

r−1
e EDf(e)(u ◦ ψ

−1
e , v ◦ ψ−1

e ), ∀u, v ∈ l(V (n)
s ),

where re = re1re2 · · · ren for e = e1e2 · · · en. In particular E(0)
s = EDs .

Write H
(n)
s the Laplacian corresponding to E(n)

s . For s ∈ S, we require the sequence

{(V (n)
s , H

(n)
s )}n≥0 to be compatible in the following sense.

Definition 3.1. If (V,H1) and (U,H2) are two pairs of resistance networks satisfying that
V ⊂ U and

EH1(v) = min{EH2(u) : u ∈ l(U), u|V = v}, ∀v ∈ l(V ), (3.1)

we say they are compatible and write (V,H1) ≤ (U,H2).

This was introduced by Kigami in the construction of harmonic structures and resistance
forms on p.c.f. self-similar sets [18, 19]. Note that if (V,H1) ≤ (U,H2), then for any v ∈ l(V ),
there exists a unique function u ∈ l(U) attaining the minimum in (3.1). Essentially using
the same idea, Hambly and Nyberg[17] extend the concept of harmonic structure to f.r.g.d.
fractal families in the following way.

Definition 3.2. (a). The pair (D, r), where D = {Ds}s∈S is a set of Laplacians on Vs and
r ∈ RE+, is called a harmonic structure if

(Vs, Ds) ≤ (V (1)
s , H(1)

s ), ∀s ∈ S. (3.2)

(b). Say (D, r) is a regular harmonic structure if re < 1 for each cycle e(e ∈ E∗ with
i(e) = f(e)).

Using a standard proof, for each s ∈ S, we see that

(Vs, Ds) ≤ (V (1)
s , H(1)

s ) ≤ (V (2)
s , H(2)

s ) ≤ · · · ,
which gives a compatible sequence of networks on approximation graphs of Ks. Furthermore,
if (D, r) is regular, then for any Borel measure µs on Ks, there is a limit form (Es,Fs), which
is a local regular Dirichlet form on Lµs(Ks).

Before ending this subsection, we will mention an interesting fact about cut-points in the
fractals that will simplify the calculation. Let K = {Ks}s∈S be an f.r.g.d. fractal family. For
s ∈ S, we call p a cut-point of Ks if Ks \{p} is disconnected. Note that since Ks is connected,
Ks \ {p} is a locally arcwise connected set.
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Proposition 3.3. Let G = (S,E, {ψe}e∈E) be an f.r.g.d. construction, and K = {Ks}s∈S be
the corresponding f.r.g.d. fractal family. For s ∈ S, let p be a cut-point of Ks, and {pk}mk=1
be a finite set in Ks \ {p}. Write the restriction of Es onto V = {p} ∪ {pk}mk=1 by

Es|V (u, v) =
∑

x6=y∈V
cx,y
(
u(x)− u(y)

)(
v(x)− v(y)

)
, ∀u, v ∈ l(V ),

then cpk,pl > 0 only if pk, pl belong to a same connected component of Ks \ {p}.

Proof. The proof is obvious and routine by a standard discussion of harmonic structures.
We omit it. �

3.2. Overlapping Vicsek set. Let {qi}4i=1 be the four vertices of a square, and q5 be the
center. The Overlapping Vicsek set(see Figure 6), denoted by OV, is the invariant set of the
i.f.s. {Fi}5i=1,

F1 : x→ 1

2
x+

1

2
q1, Fi : x→ 1

3
x+

2

3
qi, i = 2, 3, 4, 5.

q1 q2

q3q4

Figure 6. The set OV.

We can easily check that both (F1) and (F2) hold for OV, and thus by Theorem 2.8, OV
is an f.r.g.d. fractal. We provide an f.r.g.d. construction of OV as follows.

Let K1 = OV and K2 =
⋃
i=1,2,4,5 FiOV, then{
K1 = K2 ∪ F3K1,

K2 = F1K2 ∪ F2K1 ∪ F4K1 ∪ F5K1.
(3.3)

Then {K1,K2} can be viewed as invariant sets of an f.r.g.d. construction G = (S,E,Γ) with
S = {1, 2} being the state set, E being the edge set consisting of 6 edges, and Γ being the
collection of similitudes associated with E, see Figure 7. In an obvious way, we could rewrite
(3.3) into {

K1 = ψ1K2 ∪ ψ2K1,

K2 = ψ3K2 ∪ ψ4K1 ∪ ψ5K1 ∪ ψ6K1.
(3.4)

The sets V1 = {q1, q2, q3, q4} and V2 = {q1, q2, q4, F3q1} are boundaries of K1 and K2

respectively as defined in the last section. Since q5 is a cut-point that divides both K1 and
K2 into pieces, and in view of Proposition 3.3, it is more convenient to look at the harmonic
structures involving q5. Let

Ṽ1 = {qi}5i=1, Ṽ2 = {q1, q2, q4, F3q1, q5},
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K1 K2ψ2

ψ1

ψ3

ψ4

ψ5

ψ6

Figure 7. An f.r.g.d. construction of OV.

and for s = 1, 2, n ≥ 0, write Ṽ
(n)
s =

⋃
|e|=n,i(e)=s ψeṼf(e). Given D̃ = {D̃s}s∈S and

r = {re}e∈E , we can define H̃
(n)
s on Ṽ

(n)
s in a same manner as that for the pair (D, r), which

is the restriction of (D̃, r) to {Vs}s∈S . The resulting resistance forms on OV are the same as
that of (D, r).

Using Proposition 3.3, we start from resistance networks on {Ṽ1, Ṽ2} as shown in Figure 8.

To simplify the notations, we write r
(i)
p,q = 1/(D̃i)pq the resistance between p, q in the network

(Ṽi, D̃i). Without loss of generality, we denote

r(1)
q1,q5 = 1, r(1)

q2,q5 = a, r(1)
q3,q5 = b, r(1)

q4,q5 = c,

and

r(2)
q1,q5 = 1, r(2)

q2,q5 = a′, r
(2)
F3q1,q5

= d, r(2)
q4,q5 = c′.

We write r1, r2, · · · , r6 for the renormalization factors, see Figure 9.

q1 q2

q4 q3

q5

1 a

bc

q1 q2

q4

F3q1

q5

1 a′

c′

d

Figure 8. The resistance network (Ṽi, D̃i), i = 1, 2.

By operating on resistors in series, the renormalization formulas (see (3.1) and (3.2)) are
equivalent to the following equations,

a = a′, c = c′, r1 = 1, r6b = d,

r2(1 + b) + d = b,

r3(1 + d) + r6 = 1,

r4(a+ c) + r6a = a,

r5(a+ c) + r6c = c.

(3.5)
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r1

r2

r3

r4

r6

r5

Figure 9. The renormalization factors r1, r2, · · · , r6.

It is easy to get that

r1 = 1, r2 =
b− d
1 + b

, r3 =
b− d
b+ bd

, r4 =
ab− ad
ab+ cb

, r5 =
cb− cd
ab+ cb

, r6 =
d

b
. (3.6)

To make the harmonic structure regular, we only need to assume a, b, c, d > 0 and b > d. The
solution depends on 4 parameters.

At the end of this example, we point out that the f.r.g.d. construction of OV is not unique.
For example, if we insist on using the maximal c∗-overlapping chains as illustrated in the proof
of Lemma 2.7 and Theorem 2.8, we can get another f.r.g.d. construction as shown in Figure
10. Furthermore, if we impose some good symmetry on the resulting resistance forms, we will
see that these two constructions provide the same resistance forms on OV. See discussions
in Section 5.

Figure 10. Another f.r.g.d. construction of OV.

3.3. Overlapping gasket. Let {qi}3i=1 be the vertices of an equilateral triangle, and {q4, q5}
be the midpoints of the line segments q1q2 and q1q3. The Overlapping gasket, denoted by
OG, is the invariant set of the i.f.s. {Fi}5i=1,

F2 : x→ 1

2
x+

1

2
q2, Fi : x→ 1

3
x+

2

3
qi, i = 1, 3, 4, 5,

see the left picture of Figure 11 for OG.
Let K1 = OG and K2 = (OG \ F2OG) ∪ {q4}, see Figure 11. We have{

K1 = F2K1 ∪K2,

K2 = F1K1 ∪ F3K1 ∪ F5K1 ∪ F4K2,
(3.7)
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q1

q2 q3

q4

q3

q1

q4

Figure 11. The set OG (left) and K2 (right).

and thus {K1,K2} can be viewed as invariant sets of an f.r.g.d. construction G = (S,E,Γ)
with S = {1, 2} being the state set, E being the edge set consisting of 6 edges, and Γ being
the collection of similitudes associated with E. In an obvious way, we rewrite (3.7) into{

K1 = ψ1K1 ∪ ψ2K2,

K2 = ψ3K1 ∪ ψ4K1 ∪ ψ5K1 ∪ ψ6K2.
(3.8)

See Figure 12 for an illustration.

ψ1K1

ψ2K2
ψ6K2

ψ4K1

ψ5K1

ψ3K1

Figure 12. An f.r.g.d. construction of OG.

Now, let’s compute the harmonic structures. For simplicity, take

r(1)
q1,q2 = a, r(1)

q1,q3 = b, r(1)
q2,q3 = c, r(2)

q1,q4 = d, r(2)
q1,q3 = e, r(2)

q3,q4 = f,

where r
(i)
p,q’s are the resistances in the resistance networks (Vi, Di), i = 1, 2, see Figure 13.

For the renormalization factors, we set r2 = 1 as ψ2 = id. Furthermore, to simplify the
computation, we demand that cells of same size have the same energy. To be precise, for any
two cells Ke1 , Ke2 with the same type and same size, we require re1 = re2 . We call (D, r)
a homogeneous regular harmonic structure if the above condition is satisfied. Then it is easy
to verify that we need to require r3 = r4 = r5 = r6, and we use the symbol s to denote them
hereafter.

It is convenient to use the ∆ − Y transformation for resistance networks here, see Figure
14 for an illustration of the ∆ − Y transformation. See Figure 15 for the transformations
between the first two level resistance networks.
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q2

q1

q3

a b

c

q4

q3

q1

d

e

f

Figure 13. The resistance networks (Vi, Di), i = 1, 2.

R12 R13

R23 R3

R2

R1

⇐⇒

Figure 14. An illustration of the ∆ − Y transformation, with Ri =
RijRik

R12+R23+R13
, {i, j, k} = {1, 2, 3}. All Ri’s and Rij ’s are resistances.

=⇒ =⇒

=⇒=⇒ =⇒

Figure 15. Transformations between the first two level resistance networks.

In view of Figure 15, it is more convenient to use the Y -shaped networks for the calculation,
then solve the ∆-shaped networks by doing the inverse ∆− Y transformation. See Figure 16
for the Y -shaped networks with resistances a′, b′, e′, d′, f ′ marked there.
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q1

q2 q3

1

b′a′

q1

q4

q3

f ′

e′

d′

Figure 16. The Y -shaped resistance network of (Vi, Di), i=1,2.

Put the resistances and renormalization factors into the transformations shown in Figure
15. We get

f ′ = 1, d′ = b′, e′ + r1 + r1a
′ = a′, (3.9)

by the transformation on V
(1)

1 , and
s+ s(1+a′)(1+b′)

2(1+a′+b′) = 1,

se′ + s(1+a′)(a′+b′)
2(1+a′+b′) = e′,

2sb′ + s+ s(1+b′)(a′+b′)
2(1+a′+b′) = b′,

by the transformation on V
(1)

2 , using equations in (3.9). Solving these equations, we get{
b′ = d′ = 2+3a′

a′−2 , e
′ = 1

2a′ + 1
4 + a′

4 , f
′ = 1,

s = 2+a′

4+3a′ , r1 = −2−a′+3(a′)2

4a′+4(a′)2 .
(3.10)

The solution depends on the parameter a′ and gives us the homogeneous regular harmonic
structures when a′ > 2.

3.4. Vicsek windmill. Let {qi}4i=1 be the vertices of a square in R2, say {(0, 0), (1, 0), (1, 1), (0, 1)}
for convenience. The Vicsek windmill, denoted by VW, is the invariant set of the i.f.s. {Fi}8i=1,

Fi(x) =
1

4
x+

3

4
qi, i = 1, 2, 3, 4,

F5(x) =
1

4
x+ (

1

4
, 0), F6(x) =

1

4
x+ (

1

2
,
1

4
),

F7(x) =
1

4
x+ (

1

4
,
1

2
), F8(x) =

1

4
x+ (

1

2
,
3

4
),

see Figure 17 for VW.
There is an f.r.g.d. construction of VW which has three states S = {1, 2, 3}, with

K1 = VW, K2 = F1VW ∪ F5VW, K3 = F1F8VW ∪ F1F3VW ∪ F5F4VW.

As the f.r.g.d. construction of {K1,K2,K3} involves long equations, we omit the exact
expressions. But readers can get all the information from Figure 17.

The set VW possesses an obvious rotational symmetry. It is reasonable to require the
harmonic structures to possess the same symmetry as well as to be homogeneous and regular.
At the first glance, to determine a homogeneous regular harmonic structure (D, r), we need
8 parameters for the renormalization factors. For i, j ∈ {1, 2, 3}, we use rij to denote the
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q1 q2

q4 q3

Figure 17. The Vicsek windmill VW (up left), K2 (up right) and K3 (down).

r11 r12 r21 r23 r22

r31 r32r33

Figure 18. The f.r.g.d. construction and the renormalization factors for VW.

renormalization factor associated with the edge in E from i to j, see Figure 18. Note that
there is no r13 since no such edge exists in E.

Noticing that the homogeneity requirement of (D, r) implies that

n∏
k=1

rik−1ik = rn11,

for any finite head-to-tail sequences of factors ri0i1 , ri1i2 , · · · , rin−1in with i0 = in = 1. We
can see that r11 = r22 = r33 by the equations r12r21r11 = r12r22r21 and r12r23r31r11 =
r12r23r33r31. In a similar way, we can get that r12r21 = r2

11, r12r23r31 = r3
11 and r23r32 =

r2
22 = r2

11. So there are only three free parameters r11, r21, r31. Furthermore, if (D, r) is a
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homogeneous regular harmonic structure with r = {rij} as above, then by letting D′1 = D1,
D′2 = r11

r21
D2, D′3 = r11

r31
D3, and r′ the vector of constant r11, it is easy to check that (D′, r′)

is also a homogeneous regular harmonic structure, which yields the same resistance form
induced by (D, r).

Basing on the above discussion, we only need to consider the homogeneous regular harmonic
structures (D, r) with r being a constant vector. To simplify the notations, we denote the
common factor by r.

On the other hand, unlike the previous examples, it is easy to observe that for each
cell, its boundary is not fully involved when intersecting with other cells. Thus, regarding
the rotational symmetry, we only need to consider certain restricted resistance networks of
(Vi, Di)’s. Firstly, we choose a Y -shaped restricted network on {q2, q3, q4} of (V1, D1), and
denote the resistances to be a, b, c, see Figure 19 (a). In addition, the restricted network on
{q1, q2, q4} is given by symmetry, see Figure 19 (b). By simple series connection, the effective
resistance between q2 and q4 is always a+ c. Secondly, for (V2, D2), we restrict the network
onto {q1, F5q3}, two of the diagonal vertices in V2, and set the resistance between them to be
d, see Figure 19 (c). Lastly, for (V3, D3), we restrict the network onto {F1F8q1, F5F4q2} or
{F1F8q4, F5F4q3}, two of the four vertices in V3 lying on a long side, and denote the resistance
by e, which are same by the rotational symmetry, see Figure 19 (d).

(a) (b)

(c) (d)

q4 q3

q2

a b

c

q4

q2q1

ab

c

q1

d

F5q3

F1F8q1
e

F5F4q2

Figure 19. The three types of restricted resistance networks in (Vi, Di)’s.

Now we come to the calculations.
First, look at the level-1 resistance network corresponding to (V1, D1), generated by the

above level-0 restricted networks, see Figure 20. By comparing the effective resistances be-
tween qi, qj with that of (V1, D1) for distinct (i, j)’s, using series connection, we have

r(2a+ b+ c+ d) = a+ b,

r(4a+ 4c) = a+ c,

r(2a+ b+ 3c+ d) = b+ c.
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Solving the equations, we get

r =
1

4
, c = 2a, d = 3b. (3.11)

q4 q3

q2q1

Figure 20. The Level-1 resistance network corresponding to (V1, D1).

Next, we look at the level-1 resistance network corresponding to (V2, D2), shown in Figure
21. We just need to compare the effective resistance between q1 and F5q3 with that of (V2, D2).
Using series and parallel connection of resistors, we get

d = r
(
2b+ 2d+

1

2
(a+ b+ 2c+ e)

)
.

Substituting (3.11) into the above equation, we get

e = 7b− 5a. (3.12)

F1q4 F5q3

F5q2q1

Figure 21. The Level-1 resistance network corresponding to (V2, D2).

Finally, we look at the level-1 resistance network corresponding to (V3, D3), shown in
Figure 22. By using series connection operation, we simplify the network into what Figure
23 presents.

Then by using the symmetry of the above network, we can easily calculate the effective
resistance between F1F8q1 and F5F4q2, which gives that

r(2a+ b+ c+ d+
2

(a+ b+ 2c+ e)−1 + (a+ b+ e)−1
) = e.

Substituting (3.11) and (3.12) into the above equation, we get

b =
13 +

√
73

16
a, c = 2a, d =

3(13 +
√

73)

16
a, e =

11 + 7
√

73

16
a, r =

1

4
. (3.13)
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F1F8q4 F5F4q3

F5F4q2F1F8q1

Figure 22. The Level-1 resistance network corresponding to (V3, D3).

F5F4q2F1F8q1

r(b+ d) r(a+ b+ e) r(a+ b+ e)

r(a+ b+ 2c+ e) r(a+ b+ 2c+ e)

2rc

r(2a+ c)

Figure 23. A simplification of the resistance network in Figure 22.

Thus we get a unique rotational symmetric homogeneous regular harmonic structure up to
scalar constants.

4. f.r.f.t. structures

It looks like both (F1) and (F2) are convenient to be formulated and checked for a self-
similar set K. But unfortunately they are not necessary for K to possess an f.r.g.d. con-
struction. For example, let r ∈ (0, 1) be an irrational number, let’s consider the unit segment
I = [0, 1], which can be regarded as an invariant set of the i.f.s.,

F1 : x→ rx, F2 : x→ (1− r)x+ r. (4.1)

It is easy to see that (F1) can not hold by looking at the small copies of I around the point
x = r. But of cause there is a canonical f.r.g.d. construction of I associated with the i.f.s.,
whose state set is a singleton. In this section, we will introduce a more general setting, called
finitely ramified of finite type (f.r.f.t. for short) cell structure for a self-similar set K, which
is necessary and sufficient for K to be an f.r.g.d. fractal.

Definition 4.1. Let K be a connected self-similar set and {Kα}α∈Λ be a countable collection
of distinct compact connected subsets in K, containing no singleton, satisfying that

1. there is an index ϑ ∈ Λ, called the root of Λ, such that K = Kϑ;
2. for any α ∈ Λ, there is a finite set Λα ⊂ Λ with #Λα ≥ 2, such that Kα =

⋃
β∈Λα

Kβ,
call α the parent of β, and β the child of α;

3. any α ∈ Λ \ {ϑ} is an offspring of ϑ.
Call {Kα,Λα}α∈Λ a cell structure of K, and Λ its index set.

Definition 4.2. (a). For α, β ∈ Λ, write α ∼ β if there exists a similitude φα,β such that
φα,β(Kα) = Kβ. Denote Λ/ ∼ the collection of equivalent classes in Λ with respect to “∼”.

(b). Fix the similitude φα,β so that φα,α = id and φγ,β ◦ φα,γ = φα,β,∀α ∼ β, β ∼ γ.



RESISTANCE FORMS ON SELF-SIMILAR SETS WITH FINITE RAMIFICATION OF FINITE TYPE 21

Remark. To achieve Definition 4.2 (b), we choose one α for each equivalent class and
fix a φα,β for each β ∼ α. Then we define φβ,α = φ−1

α,β, and define φβ,γ = φα,γφβ,α for any

β ∼ α, γ ∼ α. �

Now, we introduce the following conditions for a cell structure {Kα,Λα}α∈Λ.
(A1). Assume #(Λ/ ∼) <∞.
(A2). For α ∼ α′, there is a one to one correspondence between Λα and Λα′ such that

∀β ∈ Λα, there exists a unique β′ ∈ Λα′ satisfying β ∼ β′ and φβ,β′ = φα,α′.
(A3). For each α, there exists a finite set Vα ⊂ Kα such that ∀α, β ∈ Λ, if Kα,Kβ are

not contained in each other, then it holds that Kα ∩Kβ = Vα ∩ Vβ; and if in addition α ∼ β,
then φα,βVα = Vβ.

Definition 4.3. We say a cell structure {Kα,Λα}α∈Λ is finitely ramified of finite type (f.r.f.t.
for short) if (A1), (A2) and (A3) are satisfied, and call K an f.r.f.t. self-similar set.

We can construct an f.r.g.d. construction from a given f.r.f.t. cell structure. We write
Λ/ ∼:= {T1, T2, · · · , TM}. For each α ∈ Λ, write t(α) so that α ∈ Tt(α), and call Tt(α) the
type of α. Choose an element αs in Ts for 1 ≤ s ≤ M (for convenience, we require Kαs has
the largest diameter in cells of type Ts, and obviously α1 = ϑ). Then we have

Kαs =
⋃

β∈Λαs

Kβ =
⋃

β∈Λαs

φαt(β),β(Kαt(β)), ∀1 ≤ s ≤M. (4.2)

Thus we have a directed-graph G = (S,E) with state set S and edge set E defined by

S = {1, 2, · · · ,M}, E = {(s, t(β)) : 1 ≤ s ≤M,β ∈ Λαs}, (4.3)

and K is an f.r.g.d. fractal as a member of the f.r.g.d. family {Kαs}Ms=1.
Let G = (S,E, {ψe}e∈E) be the associated f.r.g.d. construction. There is a one to one

correspondence between Λ and walks in E∗ starting from state 1. We write e(ϑ, α) for the
unique walk associated with α ∈ Λ, then clearly ψe = φαt(α),α.

Conversely, if we have an f.r.g.d. construction (S,E, {ψe}e∈E) with K = Ks for some s ∈ S,
then we can construct an f.r.f.t. cell structure {Ke,Λe}e∈Λ, with Λ = {e ∈ E∗ : i(e) = s}
and Λe = {ee : i(e) = f(e), e ∈ E}.

We conclude the above discussion with the following theorem.

Theorem 4.4. A connected self-similar set possesses an f.r.f.t. cell structure if and only if
it is an f.r.g.d. fractal.

See [35] for a more general discussion on finitely ramified cell structures.

5. homogeneous regular harmonic structures

Throughout this section, we assume K to be an f.r.f.t. self-similar set. Let {Kα,Λα}α∈Λ be
an f.r.f.t. cell structure of K and G = (S,E, {ψe}e∈E) be the associated f.r.g.d. construction.
We say (D, r) a harmonic structure of {Kα,Λα}α∈Λ, if it is a harmonic structure of G =
(S,E, {ψe}e∈E). We will focus on homogeneous regular harmonic structures. As indicated in
previous examples, there may exist multiple f.r.g.d. constructions, or equivalently, multiple
f.r.f.t. cell structures of K. It is of interest to ask whether they lead to same resistance forms.
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Definition 5.1. Let (D, r) be a harmonic structure of an f.r.f.t. cell structure {Kα,Λα}α∈Λ.
We say (D, r) is homogeneous if for any two cells Kα, Kβ with the same type and same size,
re(ϑ,α) = re(ϑ,β).

In the case that the associated directed-graph G = (S,E) is strongly connected, i.e., for
any two states s, t in S, there is a walk e such that i(e) = s, f(e) = t, we have the following
proposition. Note that the examples in Section 3 are all in this case.

Proposition 5.2. Let (D, r) be a homogeneous harmonic structure of an f.r.f.t. cell structure
{Kα,Λα}α∈Λ. Suppose the associated directed-graph G = (S,E) is strongly connected. Then
for any 1 ≤ s ≤ M , for any α, β ∈ Ts, the ratio re(ϑ,α)/re(ϑ,β) depends only on the ratio

diam(Kα)/diam(Kβ), i.e., there exists a function c(·) : R+ → R+ such that re(ϑ,α)/re(ϑ,β) =

c
(
diam(Kα)/diam(Kβ)

)
.

Proof. Let α̃, β̃ ∈ Tt be another pair of indices such that diam(Kα)
diam(Kβ) = diam(Kα̃)

diam(Kβ̃) . Since

G is strongly connected, we can always find a walk e such that i(e) = s and f(e) = 1.

Connecting the walks e(ϑ, α) and e(ϑ, β̃) by e, we get a walk e1 = e(ϑ, α)ee(ϑ, β̃), and
similarly e2 = e(ϑ, β)ee(ϑ, α̃). Note that both e1 and e2 are walks from 1 to t. Obviously,
ψe1 and ψe2 have the same similarity ratio, which gives that

re1 = re2 ,

since (D, r) is homogeneous. As a result, re(ϑ,α)re(ϑ,β̃) = re(ϑ,β)re(ϑ,α̃). Thus the ratio

re(ϑ,α)/re(ϑ,β) only depends on diam(Kα)/diam(Kβ). �

Now for the f.r.f.t. self-similar set K, let S := {Kα,Λα}α∈Λ, S ′ := {Kα′ ,Λ
′
α′}α′∈Λ′ be its

two distinct f.r.f.t. cell structures. We use G = (S,E) and G′ = (S′, E′) to denote their
associated directed-graphs respectively.

For a cell Kα′ , α
′ ∈ Λ′, we can always find an at most countable set of indices Lα′ ⊂ Λ

such that

Kα′ \ Vα′ =
⋃

α∈Lα′

Kα, (5.1)

with

#Kα ∩Kβ <∞,∀α, β ∈ Lα′ . (5.2)

Definition 5.3. We say S ′ can be tiled by S, and write S ′ J S, if for any α′, β′ ∈ Λ′ with
α′ ∼ β′, there exist Lα′ , Lβ′ ⊂ Λ satisfying equations (5.1) and (5.2) such that there is a one
to one correspondence pα′,β′ : Lα′ → Lβ′ satisfying

α ∼ pα′,β′(α) and φα,pα′,β′ (α) = φα′,β′ , ∀α ∈ Lα′ .

Recall the two f.r.f.t. cell structures S,S ′ of OV, see Figure 7 and 10. This provides an
example that S J S ′ and S ′ J S.

The following theorem is the main result in this section.

Theorem 5.4. Let K be a self-similar set, with two distinct f.r.f.t. cell structures S =
{Kα,Λα}α∈Λ and S ′ = {Kα′ ,Λ

′
α′}α′∈Λ′. Suppose (D, r) is a homogeneous regular harmonic

structure of S, and (E ,F) is its induced resistance form. Assume S′ J S and G is strongly
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connected, where G = (S,E) is the associated directed-graph of S. Then there is a homoge-
neous regular harmonic structure (D′, r′) of S ′ inducing the same resistance form (E ,F).

Proof. For each function u ∈ F , we denote its associated energy measure by µE,u, then for
each α ∈ Ts with 1 ≤ s ≤M ,

µE,u(Kα) = r−1
e(ϑ,α)Eαs(u|Kα ◦ φαs,α).

The energy measure µE,u has no atom by a routine discussion, see [12] for example. So for
each α′ ∈ Λ′, we have

µE,u(Kα′) =
∑
α∈Lα′

µE,u(Kα),

where Lα′ ⊂ Λ is a countable set of indices satisfying (5.1) and (5.2).
For each α′ ∈ Λ′, let Fα′ := {u|Kα′ : u ∈ F}, and denote Eα′(f) := µE,u(Kα′) for each

f ∈ Fα′ with f = u|Kα′ . It is easy to check that the value of Eα′(f) is independent of the
choice of u. By using the polarization identity, we can get a bilinear form (Eα′ ,Fα′) defined
by

Eα′(f, g) :=
1

4

(
Eα′(f + g)− Eα′(f − g)

)
, ∀f, g ∈ Fα′ ,

and (Eα′ ,Fα′) turns out to be a resistance form on Kα′ . In fact, we can easily see that
Fα′ = F|Kα′ and there is a constant C such that for any f ∈ Fα′ , it holds that CE|Kα′ (f) ≤
Eα′(f) ≤ E|Kα′ (f). The Markov property easily follows from the definition of Eα′ .

We have the following claims.

Claim 1. Eα′(f) =
∑

β′∈Λ′
α′
Eβ′(f |Kβ′ ), ∀f ∈ Fα′ .

By definition, there exists u ∈ F so that f = u|Kα′ . Thus

Eα′(f) = µE,u(Kα′) =
∑

β′∈Λ′
α′

µE,u(Kβ′) =
∑

β′∈Λ′
α′

Eβ′(f |Kβ′ ). �

Claim 2. Let F̃α′ = {f ∈ Fα′ : f |Kα 6= const. for at most finitely many α ∈ Lα′}. Then

F̃α′ is dense in Fα′ with respect to the norm ‖ · ‖Fα′ := E1/2
α′ (·) + ‖ · ‖L∞(Kα′ )

.

Denote by A the set of accumulation points of
⋃
α∈Lα′

Vα. Let f ∈ Fα′ and q ∈ A. For

any ε > 0, there is a function fq ∈ Fα′ which is constant in a neighborhood of q, such
that ‖f − fq‖Fα′ < ε. In fact, from the definition of Fα′ , there is a function u ∈ F such
that f = u|Kα′ . Choose a neighborhood Uq of q, which is a finite union of cells Kβ with

β ∈ Λ, such that µ
1/2
E,u(Uq) + ‖u − u(q)‖L∞(Uq) <

ε
2 . In a routine way, it is easy to construct

uq ∈ Fα′ , such that uq = u on K \Uq and uq is constant in a smaller neighborhood of q, with

µ
1/2
E,uq(Uq) + ‖uq − u(q)‖L∞(Uq) <

ε
2 . Then fq = uq|Kα′ is the desired function.

Noticing that A consists of at most countably many points, we write A = {q1, q2, · · · }.
Using the above argument, for f ∈ Fα′ and ε > 0, we could inductively construct a Cauchy
sequence of functions {fn}n≥1 in Fα′ with f0 = f and ‖fn − fn−1‖Fα′ < ε/2n, such that

for n ≥ 1, fn is constant in a neighborhood of qk, ∀1 ≤ k ≤ n. The limit function f̃ takes
constant on a neighborhood of q for each q ∈ A, and clearly is in F̃α′ . Thus we have proved
Claim 2. �
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Claim 3. Suppose α′ ∈ T ′s , 1 ≤ s ≤ M ′, then f ∈ Fα′ if and only if f ◦ φα′s,α′ ∈ Fα′s. In
addition, for any f ∈ Fα′,

Eα′(f) = r−1
e(ϑ′,α′)Eα′s(f ◦ φα′s,α′),

where re(ϑ′,α′) := c
(diam(Kα′s

)

diam(Kα′ )

)−1
with c(·) being the function introduced in Proposition 5.2.

The difficulty is to show the one to one correspondence between Fα′ and Fα′s . This can

be overcome by Claim 2. In fact, it is easy to see that f → f ◦ φα′s,α′ is bijective from F̃α′ to

F̃α′s . In addition, for any f ∈ F̃α′ , by using Proposition 5.2 and the fact S′ J S, we have

Eα′(f) =

M∑
t=1

∑
α∈Lα′ ,α∈Tt

r−1
e(ϑ,α)Eαt(f |Kα ◦ φαt,α)

=
M∑
t=1

∑
α∈Lα′ ,α∈Tt

r−1
e(ϑ,α)Eαt

(
f |Kα ◦ φp(α),α ◦ φαt,p(α)

)
= c
(diam(Kα′s)

diam(Kα′)

) M∑
t=1

∑
α∈Lα′ ,α∈Tt

r−1

e
(
ϑ,p(α)

)Eαt((f ◦ φα′s,α′)|Kp(α) ◦ φαt,p(α)

)
= r−1

e(ϑ′,α′)Eα′s(f ◦ φα′s,α′),

where p : Lα′ → Lα′s is a one to one correspondence such that φα,p(α) = φα′,α′s , ∀α ∈ Lα′ .
Since F̃α′ and F̃α′s are dense in Fα′ and Fα′s respectively by Claim 2, we get Claim 3. �

For 1 ≤ s ≤ M ′, let Dα′s be the Laplacian induced by the trace of Eα′s on Vα′s . Then,

in view of Claim 1 and Claim 3, ({Dα′s}
M ′
s=1, r

′) is a homogenous regular harmonic structure

of the f.r.f.t. cell structure S ′ = {Kα′ ,Λ
′
α′}α′∈Λ′ with re(ϑ′,α′) = c

(diam(Kα′s
)

diam(Kα′ )

)−1
for any

α′ ∈ T ′s , 1 ≤ s ≤M ′. �
Remark. In the case that S ′ 6J S, the conclusion of Theorem 5.4 may fail to hold. Recall

the example we have mentioned at the beginning of Section 4. For r ∈ (0, 1), let Sr be the
canonical f.r.f.t. cell structure of the unit segment I = [0, 1] associated with the i.f.s.(4.1).
Suppose r is not an algebraic number, then any harmonic structure of Sr is homogeneous,
but there is only one of them inducing the same resistance form as that of the homogeneous
regular harmonic structure of S1/2.
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