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Abstract. We introduce a graph-directed pair of planar self-similar sets that possess fully
symmetric Laplacians. For these two fractals, due to Shima’s celebrated criterion, we point
out that one admits the spectral decimation and the other does not. For the second fractal,
we adjust to choosing a new graph approximation guided by the directed graph, which still
admits spectral decimation. Then we make a full description of the Dirichlet and Neumann
eigenvalues and eigenfunctions of both of these two fractals.

1. Introduction

The Weyl’s problem and the spectrum of the Laplacian on fractals have been widely studied
since Kigami’s construction of Laplacians on p.c.f. self-similar sets [11, 12] ( see also the books
[13] and [18]). The method of spectral decimation, first described for the Sierpinski gasket
(SG) by Fukushima and Shima [8, 15] and later extended to certain p.c.f. self-similar sets
with strongly symmetric harmonic structure by Shima [16], describes a connection between
eigenfunctions and eigenvalues for successive levels of graph Laplacians that approximate
the fractal Laplacian. Using this connection, by extending graph eigenfunctions level by
level with multiple decimation choices, and taking limits, one can recover all eigenfunctions
of the fractal Laplacian. There is a large amount of literature dealing with the spectral
decimation on distinct fractals, such as [2, 3] for D3 symmetric p.c.f. self-similar sets, [7]
for a family of self-similar symmetric Laplacians on SG, [4, 22] for the Vicsek sets, [6] for
Hambly’s homogeneous hierarchical gaskets, and [17, 20, 21] for certain fractalfolds based on
SG. Note that there are many extremely symmetric fractal Laplacians not satisfying spectral
decimation, for example, see [1] for the case of pentagasket. Using spectral decimation, we
are able to deal with many interesting problems about the spectrum of the fractal Laplacians,
see [5, 10, 14, 19, 23] and the references therein.

In this paper, we will develop an exact spectral analysis on a pair of p.c.f. self-similar sets
T and S (see Figure 1.1) which admit fully symmetric fractal Laplacians. We investigate
T and S together since there is an obvious graph-directed construction relating them. See
[9] for a delicate investigation by Hambly and Nyberg of Laplacians on finitely ramified
graph-directed fractal families. Since T is D3 symmetric, there exists spectral decimation
for the Laplacian on T related to its canonic graph approximation. But it fails for S. Using
the spectral decimation for T , we are able to make a full description of the Dirichlet and
Neumann spectra on T . As for S, we will adjust to choosing a new sequence of graphs that
approximate S guided by the graph-directed construction. On this graph sequence, there
still exists spectral decimation which is almost the same as that of T . Basing on this, we can
still make a full description of the Dirichlet and Neumann spectra on S. Another interesting
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feature of the spectral decimation in this study is that there is a kind of graph eigenfunctions
born at each level but never decimating to eigenfunctions of the fractal Laplacians. To the
best of our knowledge, this does not happen on other well studied examples.

Figure 1.1. The fractal pair T and S.
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The paper is organized as follows. In Section 2, we will give details about the symmetric
Laplacians on the fractals T and S. In Section 3, we will describe the exact Dirichlet and
Neumann eigenvalues and eigenfunctions on T by using the spectral decimation method. In
Section 4, by using the graph-directed construction of S related to T , we will adapt the
techinique dealing with T to figure out the exact Dirichlet and Neumann eigenvalues and
eigenfunctions on S.

2. Laplacians on the fractal pair T and S

2.1. The fractal pair T and S.
The fractal pair T and S in Figure 1.1 are the invariant sets of a graph-directed iterated

function system.

Let Rθ(x) = (cos θx1− sin θx2, sin θx1 + cos θx2), which rotates x = (x1, x2) in R2 counter-
clockwise by an angle θ. Let {qk}3k=1 be the three vertices of a unit equilateral triangle, and
{pl}4l=1 be the four vertices of a unit square in R2. Define ψk, k = 1, 2, 3 and ϕl, l = 1, 2, 3, 4
to be seven contractive mappings as

ψk(x) =

√
6

6
R−π

4
+

2(k−1)
3

π
(x− p1) + qk,

ϕl(x) =

√
6−
√

2

2
Rπ

4
+

(l−1)
2

π
(x− q1) + pl.

Then T ,S are the pair of graph-directed self-similar sets generated by ψk’s and ϕl’s,

(2.1) T =
3⋃

k=1

ψkS, S =
4⋃
l=1

ϕlT .



SPECTRAL DECIMATION FOR A GRAPH-DIRECTED FRACTAL PAIR 3

Iterating (2.1) twice, we get

(2.2)

T =

3⋃
k=1

4⋃
l=1

ψklT , with ψkl := ψk ◦ ϕl.

S =

4⋃
l=1

3⋃
k=1

ϕlkS, with ϕlk := ϕl ◦ ψk.

So both T and S are self-similar sets of iterated function systems consisting of 12 mappings.
It is easy to check that they are all p.c.f. self-similar sets. We introduce two collections of
finite words associated with T and S, respectively. Let m ∈ Z+. Write

W Tm
2

=

{{
kl|k ∈ {1, 2, 3}, l ∈ {1, 2, 3, 4}

}m
2 , if m is even,{

kl|k ∈ {1, 2, 3}, l ∈ {1, 2, 3, 4}
}m−1

2 × {1, 2, 3}, if m is odd,

and

WSm
2

=

{{
lk|l ∈ {1, 2, 3, 4}, k ∈ {1, 2, 3}

}m
2 , if m is even,{

lk|l ∈ {1, 2, 3, 4}, k ∈ {1, 2, 3}
}m−1

2 × {1, 2, 3, 4}, if m is odd.

For a word w = w1w2 · · ·wn ∈
⋃
m≥0W

T
m
2

, we denote ψw = ψw1ϕw2ψw3 · · ·ϕwn for even n,

and ψw = ψw1ϕw2ψw3 · · ·ψwn for odd n, and similarly ϕw for w ∈
⋃
m≥0W

S
m
2

.

Let

V0 = {q1, q2, q3} and U0 = {p1, p2, p3, p4}
be the boundaries of T and S, respectively. For m ∈ N, we iteratively define

Vm
2

=

3⋃
k=1

ψkUm−1
2

and Um
2

=

4⋃
l=1

ϕlVm−1
2
.

Clearly,

Vm
2

=


⋃
w∈WTm

2

ψwV0, if m is even,⋃
w∈WTm

2

ψwU0, if m is odd,
and Um

2
=


⋃
w∈WSm

2

ϕwU0, if m is even,⋃
w∈WSm

2

ϕwV0, if m is odd.

Write x ∼m
2
y for x, y in Vm

2
if there exists a word w in W Tm

2
such that x, y ∈ ψwV0

when m is even, or x, y ∈ ψwU0 when is m odd. Do the same for x, y in Um
2

. Obviously,

{Γm
2
}m≥0 := {(Vm

2
,∼m

2
)}m≥0 and {Λm

2
}m≥0 := {(Um

2
,∼m

2
)}m≥0 are two sequences of graphs

that approximate T and S, respectively. See Figure 2.1 for Γ0,Γ 1
2
,Γ1, and Figure 2.2 for

Λ0,Λ 1
2
,Λ1.

Note that when we restrict to look at even integer m in Z+, we have

Vn =
⋃

w∈WT1

ψwVn−1 =

3⋃
k=1

4⋃
l=1

ψklVn−1,

Un =
⋃

w∈WS1

ϕwUn−1 =

4⋃
l=1

3⋃
k=1

ϕlkUn−1,
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Figure 2.1. Γ0, Γ 1
2
, Γ1.

Figure 2.2. Λ0, Λ 1
2
, Λ1.

for n ∈ N, which are consistent with the ordinary notations of p.c.f. self-similar sets(for
example, see[13, 18]). Write V∗ =

⋃
n≥0 Vn and U∗ =

⋃
n≥0 Un. Obviously, V∗ =

⋃
m≥0 Vm2 ,

U∗ =
⋃
m≥0 Um

2
, and they are dense in T and S, respectively.

2.2. The Laplacians ∆T , ∆S on T , S.
We begin with the (fully symmetric) self-similar energy forms on T and S. For a finite set

V , let l(V ) denote the space of all real-valued functions on V . We define the graph energies
on Γ0 and Λ0 by{

ET0 (u) =
∑3

k=1

(
u(qk)− u(qk+1)

)2
, for u ∈ l(V0),

ES0 (u) =
∑4

l=1

(
u(pl)− u(pl+1)

)2
+ 1

2

∑2
l=1

(
u(pl)− u(pl+2)

)2
, for u ∈ l(U0),

where we use the cyclic index. Note that there are two kinds of conductances on Λ0, the
edges and diagonals, see Figure 2.3 for an illustration.

For n ∈ Z+, define the graph energies on Γn and Λn by{
ETn (u) = 22n

∑
w∈WTn E

T
0 (u ◦ ψw), for u ∈ l(Vn),

ESn (u) = 22n
∑

w∈WSn E
S
0 (u ◦ ϕw), for u ∈ l(Un).

Clearly, we may rewrite the above energies in the following way,{
ETn (u) =

∑
x∼ny c

T
n (x, y)

(
u(x)− u(y)

)2
,

ESn (u) =
∑

x∼ny c
S
n(x, y)

(
u(x)− u(y)

)2
,
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Figure 2.3. The conductances on Λ0.

1

1

1 1
1
2

1
2

where

cTn (x, y) = 22n, cSn(x, y) =

{
22n, if x = ϕwpl, y = ϕwpl+1 for 1 ≤ l ≤ 4, w ∈WSn ,
22n−1, if x = ϕwpl, y = ϕwpl+2 for 1 ≤ l ≤ 4, w ∈WSn

are the level-n conductances. Using the polarization identity, defining

E(u, v) =
1

4

(
E(u+ v)− E(u− v)

)
,

we get the associated graph energy forms ETn (u, v), ESn (u, v) accordingly.

By using the standard electric network theory(for example, see [18]), one can easily verify
that the sequences {ETn }n≥0 and {ESn }n≥0 are compatible, respectively. That is, ∀n ∈ Z+, we
have

ETn (u) = min{ETn+1(v) : v|Vn = u}, ESn (u) = min{ESn+1(v) : v|Un = u}.

By the standard argument, we define the energy forms on T and S as{
ET (u, v) = limn→∞ ETn (u, v),

ES(u, v) = limn→∞ ESn (u, v).

A function h on T or S is called harmonic if it minimizes the energy ET (h) or ES(h), for
given boundary value h|V0 or h|U0 . Similarly, for n ∈ N, a function is called level-n piecewise
harmonic if it minimizes its energy for given initial value on Vn or Un. In particular, for

x ∈ Vn \ V0 or Un \ U0, we denote Ψ
(x)
n a tent function, which is level-n piecewise harmonic

and takes value on Vn or Un by Ψ
(x)
n (y) = δxy.

Let µ and ν be the normalized Hausdorff measures on T and S respectively. An easy

calculation yields that
∫
T Ψ

(x)
n dµ = 1

6
1

12n deg(x) for x ∈ Vn \V0, and
∫
S Ψ

(x)
n dν = 1

12n+1 deg(x)
for x ∈ Un \ U0, where deg(x) is the number of level-n edges attached to x.

As usual, the (symmetric) Laplacians on T or S, denoted by ∆T or ∆S , can be defined by
the uniform limits of

(2.3)

 ∆̃Tn u(x) = 1∫
T Ψ

(x)
n dµ

∑
y∼nx c

T
n (x, y)

(
u(y)− u(x)

)
, for x ∈ Vn \ V0,

∆̃Snu(x) = 1∫
S Ψ

(x)
n dν

∑
y∼nx c

S
n(x, y)

(
u(y)− u(x)

)
, for x ∈ Un \ U0.
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We can easily calculate that{
∆̃Tn u(x) = 6 · 12n22n ·∆Tn u(x),

∆̃Snu(x) = 10 · 12n22n ·∆Snu(x),

with {
∆Tn u(x) = 1

deg(x)

∑
y∼nx u(y)− u(x)

∆Snu(x) = 6
5

1
deg(x)

(∑
y∼nx u(y) + 1

2

∑
y∼′nx u(y)

)
− u(x),

where for ∆Sn , we use y ∼′n x to specify the case that cSn(x, y) = 22n−1 and use y ∼n x for
cSn(x, y) = 22n.

2.3. The Laplacians ∆T , ∆S in graph-directed manner.

The energy forms and the Laplacians introduced above can be alternatively constructed
in a graph directed manner.

For the energy forms, we only need to fill up the energy sequence {ETn }n≥0 or {ESn }n≥0 to
be {ETm

2
}m≥0 or {ESm

2
}n≥0 so that the new sequence is still compatible. For n ∈ Z+, let

ET
n+ 1

2

(u) = 2
∑3

k=1 ESn (u ◦ ψk) = 22n+1
∑

w∈WT
n+1

2

ES0 (u ◦ ψw), for u ∈ l(Vn+ 1
2
),

ES
n+ 1

2

(u) = 2
∑4

l=1 ETn (u ◦ ϕl) = 22n+1
∑

w∈WS
n+1

2

ET0 (u ◦ ϕw), for u ∈ l(Un+ 1
2
).

As before, we may rewrite them intoE
T
n+ 1

2

(u) =
∑

x∼
n+1

2
y c
T
n+ 1

2

(x, y)
(
u(x)− u(y)

)2
,

ES
n+ 1

2

(u) =
∑

x∼
n+1

2
y c
S
n+ 1

2

(x, y)
(
u(x)− u(y)

)2
,

where

cS
n+ 1

2

(x, y) = 22n+1, cT
n+ 1

2

(x, y) =

22n+1, if x = ψwpl, y = ψwpl+1 for 1 ≤ l ≤ 4, w ∈W T
n+ 1

2

,

22n, if x = ψwpl, y = ψwpl+2 for 1 ≤ l ≤ 4, w ∈W T
n+ 1

2

are the level-(n+ 1
2) conductances.

It is easy to check that

ET0 (u) = min{ET1
2

(v) : v|V0 = u}, ES0 (u) = min{ES1
2

(v) : v|V0 = u},

so that the sequences {ETm
2
}m≥0 and {ESm

2
}m≥0 are compatible. In addition, we have

ETm+1
2

(u) = 2
∑

w∈WT1
2

ESm
2

(u ◦ ψw), ESm+1
2

(u) = 2
∑
w∈WS1

2

ETm
2

(u ◦ ϕw), ∀m ∈ Z+.

Similar to (2.3), by an easy calculation, the Laplacians ∆T and ∆S are the uniform limits
of 

∆̃T
n+ 1

2

u(x) = 3n+24n+122n+1
(

6
5 ·

1
deg(x)

(∑
y∼nx u(y)

+1
2

∑
y∼′nx u(y)

)
− u(x)

)
, for x ∈ Vn+ 1

2
\ V0,

∆̃S
n+ 1

2

u(x) = 2 · 3n+14n+1 · 22n+1
(

1
deg(x)

∑
y∼

n+1
2
x u(y)− u(x)

)
, for x ∈ Un+ 1

2
\ U0,
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where for ∆̃T
n+ 1

2

, we use y ∼′
n+ 1

2

x to specify the case that cT
n+ 1

2

(x, y) = 22n and use y ∼n+ 1
2
x

for cT
n+ 1

2

(x, y) = 22n+1.

3. Spectral decimation on the fractal T

We have constructed a D3-symmetric Laplacian ∆T on T . By Shima’s criterion[16], there
is a spectral decimation recipe on T which yields a complete description of Dirichlet and
Neumann spectra of the minus Laplacian −∆T . Note that the Neumann spectrum may be
defined in terms of normal derivatives, but it is more convenient to consider the double cover

T̃ , extending functions on T by even reflection and imposing the pointwise eigenfunction
equation at the boundary points in V0.

In this section, we will present the explicit details of eigenfunctions and eigenvalues of

−∆T , which are limits of eigenfunctions and eigenvalues of −∆̃Tn . For the sake of simplicity,
we will omit the renormalization factor 6 ·12n22n and instead to consider the unrenormalized
Laplacian ∆Tn , and will rescale the eigenvalues later.

3.1. The spectral decimation recipe.

Given an eigenfunction un on Vn of −∆Tn with an eigenvalue λn, we want to extend it to
an eigenfunction un+1 on Vn+1 of ∆Tn+1 with an eigenvalue λn+1, that is:

(3.1) −∆Tn+1un+1(x) = λn+1un+1(x), ∀x ∈ Vn+1 \ V0,

with un+1|Vn = un.

Consider any n-cell with boundary vertices s1, s2, s3. We denote un(sk) = xk respec-
tively, and write the values of un+1 at new points in Vn+1 \ Vn contained in this cell by
ak, a

′
k, bk, b

′
k, ck, c

′
k and d for k = 1, 2, 3, see Figure 3.1.

Figure 3.1. The values of un+1 on an n-cell.

x1

x2 x3

c1 c′1

b1 b′1

a1 a′1

d

b′2

b2

a′2

a2

c′2

c2

b3

b′3

a3

a′3

c3

c′3
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Evaluating (3.1) on points in Vn+1 \ Vn contained in this cell yields 19 equations, which
will give values of ak, a

′
k, bk, b

′
k, ck, c

′
k as functions of x1, x2, x3, λn+1 by

(3.2)



d = −(x1+x2+x3)
3(16λ3n+1−32λ2n+1+16λn+1−1)

,

ak = a′k =
−(5xk+3d−14λn+1xk−2λn+1d+8λ2n+1xk)

8(4λ3n+1−10λ2n+1+7λn+1−1)
,

ck = c′k =
−(5d+3xk−14λn+1d−2λn+1xk+8λ2n+1d)

8(4λ3n+1−10λ2n+1+7λn+1−1)
,

bk = b′k = ak+ck
2(1−λn+1) .

More precisely, we have the following extension algorithm.

Lemma 3.1. Let αi’s be the two positive roots of 4λ2−6λ+1, βi’s be the three positive roots
of 16λ3 − 32λ2 + 16λ− 1. Then for λn+1 /∈ {1

2 , 1,
3
2 , α1, α2, β1, β2, β3} and

(3.3) λn = −48λn+1(λn+1 − 1)2(2λn+1 − 1)(4λ2
n+1 − 6λn+1 + 1),

un is a λn-eigenfunction of −∆Tn if and only if un+1 is a λn+1-eigenfunction of −∆Tn+1 with
un+1|Vn = un and values of un+1 at points in Vn+1 \ Vn specified by formula (3.2).

Proof. First, denote by a =
∑3

k=1(ak + a′k), b =
∑3

k=1(bk + b′k), c =
∑3

k=1(ck + c′k), x =∑3
k=1 xk for convenience. An easy combination of equations at points in Vn+1 \ Vn evaluated

from (3.1) gives that

(3.4)


(1− λn+1)a = 1

4(a+ b+ c+ 6d),

(1− λn+1)b = 1
2(a+ c),

(1− λn+1)c = 1
4(a+ b+ c+ 2x),

(1− λn+1)d = 1
6a.

Eliminating a, b, c, we get

(3− 2λn+1)(1− λn+1)
(
3(16λ3

n+1 − 32λ2
n+1 + 16λn+1 − 1)d+ x

)
= 0.

This gives that if λn+1 6= 1, 3
2 , β1, β2, β3, then

d =
−x

3(16λ3
n+1 − 32λ2

n+1 + 16λn+1 − 1)
.

Next, by denoting ãk = ak + a′k, b̃k = bk + b′k, c̃k = ck + c′k, another easy combination of
equations at points in Vn+1 \ Vn gives that

(3.5)


(1− λn+1)ãk = 1

4(ãk + b̃k + c̃k + 2d),

(1− λn+1)b̃k = 1
2(ãk + c̃k),

(1− λn+1)c̃k = 1
4(ãk + b̃k + c̃k + 2xk),

and

(3.6)


(1− λn+1)ak = 1

4(ãk − ak + bk + ck + d),

(1− λn+1)bk = 1
2(ak + ck),

(1− λn+1)ck = 1
4(ak + bk + c̃k − ck + xk).
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To ensure the above equations have a solution, we need that∣∣∣∣∣∣
(3

4 − λn+1) −1
4 −1

4
−1

2 (1− λn+1) −1
2

−1
4 −1

4 (3
4 − λn+1)

∣∣∣∣∣∣ =
1

8
(4λ2

n+1 − 6λn+1 + 1)(1− λn+1) 6= 0,

and ∣∣∣∣∣∣
(5

4 − λn+1) −1
4 −1

4
−1

2 (1− λn+1) −1
2

−1
4 −1

4 (5
4 − λn+1)

∣∣∣∣∣∣ =
1

8
(1− 2λn+1)(2λn+1 − 3)2 6= 0.

Then if λn+1 /∈ {1
2 , 1,

3
2 , α1, α2, β1, β2, β3}, by solving (3.5) and (3.6), and substituting the

value of d, we get the expressions in (3.2).

The formula (3.2) ensures that (3.1) holds for points in Vn+1 \ Vn. We still need to look
at the points in Vn \ V0. Suppose sk is a nonjunction vertex (the case that sk is a junction
vertex with deg(sk) = 4 or 6 is essentially the same), we then have

(1− λn)xk =
1

2
(xk−1 + xk+1),

which is an eigenvalue equation of −∆Tn at sk. By applying (3.1) at sk, we also have

(1− λn+1)xk =
1

2
(ck + c′k).

Using formula (3.2) and substituting xk−1 + xk+1 = 2(1− λn)xk into it, after an easy calcu-
lation, we get (3.3). �

Remark. We call F := {1
2 , 1,

3
2 , α1, α2, β1, β2, β3} forbidden eigenvalues, and the polynomial

R(λ) := −48λ(λ− 1)2(2λ− 1)(4λ2 − 6λ+ 1)

appeared in (3.3) decimation function. See Figure 3.2 for the graph of R(λ).

Figure 3.2. The graph of R(λ).

R(λ)

λα1 α2

β1 β2 β3

1
2

1 3
2

3
2

1

1
2

0

Lemma 3.2. If λn ∈ (0, 3
2), there are 6 different values of λn+1 satisfying (3.3), in addition,

they all belong to (0, 3
2) \ F ; if λn = 3

2 , the exact values λn+1 satisfying (3.3) are β1, β2, β3.

Proof. It is straightforward by looking at Figure 3.2. �



10 SHIPING CAO, HUA QIU, HAORAN TIAN, AND LIJIAN YANG

3.2. The Dirichlet and Neumann spectra.

By Lemma 3.1, if un ∈ l(Vn) is a λn-eigenfunction of −∆Tn , it will extend to a λn+1-
eigenfunction un+1 ∈ l(Vn+1) of −∆Tn+1, providing that λn = R(λn+1) and λn+1 /∈ F . Every
eigenfunction u on T has a generation of birth n0, and a sequence {λn}n≥n0 (related as above)
such that u|Vn is a λn-eigenfunction of −∆Tn for n ≥ n0, and λn /∈ F for n > n0. Call λn0 an
initial eigenvalue and λn a continued eigenvalue for n > n0. Let φ be the smallest inverse of
R (it has 6 inverses). In order for the limit

λ = lim
n→∞

6 · 12n22nλn

to exist, which gives λ to be the eigenvalue of −∆T , it is necessary that λn → 0, and thus
λn+1 = φ(λn) for all but a finite number of n’s.

By the above discussion, to describe the explicit Dirichlet and Neumann spectra of −∆T ,
we only need to describe the discrete corresponding spectra of −∆Tn for all n.

First, let’s look at the Neumann case. It is easy to check that the Neumann eigenvalues
of −∆T0 are 0 and 3

2 with multiplicity 1 and 2 respectively. For λ0 = 0, its corresponding

eigenfunction is a constant function on V0; for λ0 = 3
2 , we may choose two independent

eigenfunctions u with u(q1) = 0, u(q2) = 1, u(q3) = −1 or u(q1) = 0, u(q2) = −1, u(q3) = 1.
By Lemma 3.2, for n ≥ 1, all the Neumann eigenvalues of −∆Tn are contained in [0, 3

2 ], and
all initial eigenvalues are contained in F .

For n ≥ 1, to describe the exact Neumann spectrum of −∆Tn , we only need to calculate
the multiplicities of initial eigenvalues as well as their corresponding eigenfunctions. For this
purpose, we introduce some notations. Call each copy of Γ0 in Γn an n-cell, and a union of
4 n-cells as shown in Figure 3.3 an n-star. Call a circuit of n-stars around a “hole” in Γn an
n-starloop, as shown in Figure 3.4. Denote

(a). Pn = #Vn = 3 + 19
11(12n − 1);

(b). D
(2)
n = #{x ∈ Vn|deg(x) = 2} = 3 + 6

11(12n − 1);

(c). D
(4)
n = #{x ∈ Vn|deg(x) = 4} = 12

11(12n − 1);

(d). D
(6)
n = #{x ∈ Vn|deg(x) = 6} = 1

11(12n − 1);

(e). Cn = 12n the number of n-cells in Γn;

(f). Sn = 3 · 12n−1 the number of n-stars in Γn;

(g). Ln = 3
11(12n−1 − 1) the number of n-starloops in Γn.

For a Neumann λn-eigenvalue, we denote by MN
λn,n

its multiplicity.

Theorem 3.3.(Neumann spectrum) For n ≥ 1, the initial Neumann eigenvalues of −∆Tn
are exactly the elements in F , with the multiplicity:

(a). MN
1
2
,n

= 1 + Sn = 1 + 3 · 12n−1;

(b). MN
1,n = 1 + Ln = 1 + 3

11(12n−1 − 1);

(c). MN
3
2
,n

= 2 · Sn +D
(6)
n +D

(4)
n−1 +D

(2)
n−1 = 2 + 8

11(12n − 1);

(d). MN
αi,n = Ln = 3

11(12n−1 − 1), i = 1, 2;
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Figure 3.3. An n-star in Γn.

Figure 3.4. n-starloops in Γn.

(e). MN
βi,n

= 10 ·Cn−2−D(4)
n−2−2 ·D(6)

n−2 = 2+ 8
11(12n−1−1), n ≥ 2, i = 1, 2, 3. In addition,

MN
βi,1

= 2, i = 1, 2, 3.

Their corresponding eigenfunctions can be described explicitly.

Proof. We prove the theorem by a dimension counting argument. That is, we need to
count the numbers of initial eigenvalues and continued eigenvalues respectively, which sum
up to Pn, the dimension of l(Vn). Nevertheless, for each initial eigenvalue, we need to figure
out its exact eigenspace.

First, let’s look at the initial eigenvalues and eigenspaces. Since the only possible initial
eigenvalues belong to F , we make an analysis case by case. We omit the subscript n of λn
for simplicity.

For λ = 1
2 , observe that Figure 3.5(a) provides a 1

2 -eigenfunction supported in an n-star,
where we use a straight line to denote its symmetric axis. Note that it has two DN-boundary
vertices (the up and down vertices) and two N-boundary vertices (the left and right vertices),
where we use D or N to denote the Dirichlet or Neumann condition. Placing it into each of
the n-stars in Γn with suitable rotation so that the DN vertices connecting with the outside,
will give out Sn localized 1

2 -eigenfunctions. Furthermore, placing the copies of this function
at the central 3 n-stars in Γn, and spreading it out continuously still by using copies will give
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a globally supported eigenfunction, see Figure 3.5(b) for an illustration on Γ2. Obviously
these functions are linearly independent. So we get 1 + Sn

1
2 -eigenfunctions in total.

(a)

1

1

−1

−1

−2 2NN

DN

DN

(b)

Figure 3.5. The 1
2 -eigenfunctions with non-zero values marked.

For λ = 1, see Figure 3.6(a) for a 1-eigenfunction supported in an n-starloop in Γn. For
each n-starloop, do similarly by a similar “chain of stars” arrangement. This will give out Ln
localized eigenfunctions in Γn. Furthermore, there is still a globally supported eigenfunction
by spreading continuously the copies of the function shown in Figure 3.6(b) in the way
illustrated by Figure 3.5(b). So we get 1 + Ln independent 1-eigenfunctions in total.

For λ = 3
2 , we have 5 manners to get localized 3

2 -eigenfunctions. Figure 3.7 provides 5

distinct localized 3
2 -eigenfunctions with the DN or N boundary vertices marked. The (a),

(b) and (e) functions are supported in a n-star; the (c) function is supported in a union of
3 n-stars; the (d) function is supported in a union of 2 n-stars. Placing each copy of one of
these functions in suitable subgraphs of Γn by using DN vertices to connect with outside will

provide 5 types of independent localized eigenfunctions. This will give Sn, Sn, D
(6)
n , D

(4)
n−1,

D
(2)
n−1

3
2 -eigenfunctions of each type.

For λ = αi, i = 1, 2. see Figure 3.8 for an αi-eigenfunction supported in an n-starloop in
Γn. Simiar as the λ = 1 case, there are Ln independent localized αi-eigenfunctions associcated
with the n-starloops in Γn. The cases for i = 1, 2 are same.

For λ = βi, i = 1, 2, 3, things will be a little complicated, but the cases for distinct i
are still same. First let’s look at the eigenfunction as shown in Figure 3.9. Note that it
has 3 N-boundary vertices and 1 D-boundary vertices as marked. We use a straight line to
represent its symmetric axis. By linking copies of this function, we will figure out all the
βi-eigenfunctions in Γn. See Figure 3.10 for the manner of linking in two different cases.

We start by looking at Γ2. See Figure 3.11 for 3 types of βi-eigenfunctions where we use
shadow to represent their supports. Note that the copies are linked in the manner as shown
in Figure 3.10. By using obvious symmetries, we get 10 independent βi-eigenfunctions in
Γ2. For higher level Γn, a straightforward way to figure out the eigenfunctions in Γn is to
place each of the functions shown in Figure 3.11 into each of the copies of Γ2 contained in
Γn. This can be well done for the (a)-type and (c)-type functions in Figure 3.11. But for the
(b)-type function we need to make a careful analysis on points in Vn−2. For x ∈ Vn−2 with
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(a)

−1

−1
1

−1

1

1
−1−1

1

1

1

−1

−1

1

1

−1

−11

1

−1

−1

1

1

−1

−1
1

1

−1

−1
1

1

−1

(b)

−1

−1

1 1NN

N

N

Figure 3.6. The 1-eigenfunctions.

deg(x) = 2, the copies of (b)-type function related to x will still give 2 βi-functions in Γn as
in Γ2; For x ∈ Vn−2 with deg(x) = 4 or 6, since x is a junction point of 2 or 3 copies of Γ2,
the related eigenspace will be changed into what Figure 3.12 and 3.13 present, and thus each
x ∈ Vn−2 with deg(x) = 4 or 6 will give 3 or 4 eigenfunctions respectively. Basing on the

above discussion, we have 10 ·Cn−2 −D(4)
n−2 − 2 ·D(6)

n−2 βi-eigenfunctions in Γn for i = 1, 2, 3.
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(a) (b) (c)

(d) (e)
1

−1

2NDN

−1

1

N

N

2

−1

−1−1

−1
1

1

1

1

DN

DN

DN DN

DN

DN

1

−11

−1 −1 1

1−1

2 −2NN

DN

DN

2
−1 −1

−1−1
−1−1

1
1

1
1

1 1

DN

DNDN

Figure 3.7. The 3
2 eigenfunctions.

Till now, the total number of independent initial eigenfunctions we have figured out is

(Sn + 1) + (Ln + 1) + (2 · Sn +D(6)
n +D

(4)
n−1 +D

(2)
n−1)

+2 · Ln + 3 · (10 · Cn−2 −D(4)
n−2 − 2 ·D(6)

n−2)

= 21 +
162

11
· (12n−1 − 1).

Next, let’s look at the continued eigenvalues and eigenfunctions. Using induction, the
Neumann spectrum of −∆Tn−1 consists of a 0-eigenfunction(constant) with multiplicity 1; 3

2 -

eigenfunctions with multiplicity MN
3
2
,n−1

; and Pn−1 − 1 −MN
3
2
,n−1

other eigenfunctions with

eigenvalues in (0, 3
2). By using Lemma 3.1 and Lemma 3.2, the total number of independent

continued eigenfunctions of −∆Tn will be

1 + 6 · (Pn−1 − 1−MN
3
2
,n−1

) = 1 + 6 · (12n−1 − 1).

An easy calculation yields that
(
21 + 162

11 · (12n−1− 1)
)

+
(
1 + 6 · (12n−1− 1)

)
= Pn, which

means that the eigenfunctions we found form a basis of l(Vn). Thus each initial λ-eigenvalue
with λ ∈ F has the exact dimension of its eigenspace as we have figured out. This finishes
the proof of the theorem. �
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1

−1 −ρi

−1

−ρi
−ρi
ρi

1

ρi

ρi
ρi

1

−ρi
−ρi

ρi

ρi

1
ρi

ρi

−ρi

−ρi
−ρi

−ρiρi

ρi1

ρi

ρi

−ρi
−1

−ρi
−1

−ρi

−ρi
ρi

ρi

1 ρi

ρi −1
−ρi

−ρi
−1 −ρi

1

1

−1

−1

Figure 3.8. The αi-eigenfunctions, with ρi = 1− αi, i=1,2.

(a)

ηi

ηi

1 DN

N

N

ζi

ζi

ξi

ξi

Figure 3.9. A βi-eigenfunction, with ξi = 1 − βi, ηi = 1 − 2βi, ζi = (1 −
βi)(1− 4βi), i = 1, 2, 3.

Next, we turn to the Dirichlet case. For a Dirichlet λn-eigenvalue, we denote by MD
λn,n

its
multiplicity.

Theorem 3.4.(Dirichlet spectrum) For n ≥ 1, the initial Dirichlet eigenvalues of −∆Tn
are exactly the elements in F , with the multiplicity:
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(a) (b)

1

ξiξi

ηiηi

ζiζi
−ζi−ηi

−ζi

−ηi

−ξi
−ξi

−ηi

−ζi

−ζi
ζiζi

ηi ηi

ξiξi

1

−1

−ξi

−ηi

−ξiζiζi
ηi ηi

ξiξi
1 ξi

ξiξi

ηiηi
ζi ζi

ξi

ηi ηi

ζiζi

Figure 3.10. The manner of linking copies of the function in Figure 3.9.

(a). MD
1
2
,n

= Sn = 3 · 12n−1;

(b). MD
1,n = 2 + Ln = 2 + 3

11(12n−1 − 1);

(c). MD
3
2
,n

= 2 · Sn +D
(6)
n +D

(4)
n−1 +D

(2)
n−1 − 3 = −1 + 8

11(12n − 1);

(d). MD
α1,n = 2 + Ln = 2 + 3

11(12n−1 − 1), i = 1, 2;

(e). MD
βi,n

= 10 · Cn−2 −D(4)
n−2 − 2 ·D(6)

n−2 − 3 = −1 + 8
11(12n−1 − 1), n ≥ 2, i = 1, 2, 3. In

addition, MD
βi,1

= 1, i = 1, 2, 3.

Their corresponding eigenfunctions can be described explicitly.

Proof. The proof is very similar to the Neumann case, with only a few changes. �

3.3. Eigenvalue counting function and Weyl plot.

As a consequence of the previous discussion, we are able to estimate the asymptotic growth
rate for the eigenvalue counting function

N(x) = #{λ ∈ S|λ ≤ x},

where S denotes the Dirichlet or Neumann spectrum (counting multiplicity). As at level-n,
the Laplacian renormalization factor is 48n, and the number of of cells in Γn is 12n, we have
α = ln12

ln48 , and thus the Weyl ratio

W (x) =
N(x)

xα
,

which is bounded and bounded away from 0 by a routine discussion. We plot N(x) at level-4,
as well as W (x) on a log scale, see Figure 3.14.
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(a) (b)

(c)

Figure 3.11. The 3 types of βi-eigenfunctions in Γ2, i = 1, 2, 3.

4. The Dirichlet and Neumann spectra on the fractal S

In this section, we will turn to look at the fractal S. It is easy to check that there is no
spectral decimation recipe on S by using the graph approximation Λn by considering the
equations

−∆Snun(x) = λnun(x), ∀x ∈ Un \ U0

for consecutive two level graphs. But if we instead to consider the {Λn+ 1
2
}n≥0 graph sequence,

then luckly there is still a spectral decimation recipe which is essential the same as the case
of the fractal T .

So we need to look at the discrete spectra of −∆S
n+ 1

2

for n ≥ 0. Below we list some useful

notations.

(a). P̃n+ 1
2

= #Un+ 1
2

= 8 + 76
11(12n − 1);

(b). D̃
(2)

n+ 1
2

= #{x ∈ Un+ 1
2
|deg(x) = 2} = 4 + 24

11(12n − 1);
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(a) (b) (c)

Figure 3.12. The case for deg(x) = 4 with x ∈ Vn−2.

(a) (b)

Figure 3.13. The case for deg(x) = 6 with x ∈ Vn−2.

(c). D̃
(4)

n+ 1
2

= #{x ∈ Un+ 1
2
|deg(x) = 4} = 4 + 48

11(12n − 1);

(d). D̃
(6)

n+ 1
2

= #{x ∈ Un+ 1
2
|deg(x) = 6} = 4

11(12n − 1);

(e). C̃n+ 1
2

= 4 · 12n, the number of (n+ 1
2)-cells in Λn+ 1

2
;

(f). S̃n+ 1
2

= 12n, the number of (n+ 1
2)-stars in Λn+ 1

2
;

(g). L̃n+ 1
2

= 1
11(12n − 1), the number of (n+ 1

2)-starloops in Λn+ 1
2
.
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(a) N(x) (b) W (x)

Figure 3.14. The graphs of N(x) and W (x) at level-4.

x lnx

N(x) W (x)

For a Dirichlet or Neumann eigenvalue λ, we denote by M̃D
λ,n+ 1

2

or M̃N
λ,n+ 1

2

its multiplicity.

Similar to Theorem 3.3 and 3.4, with almost a same proof, we have

Theorem 4.1. For n ≥ 1, the initial eigenvalues of −∆Sn are exactly the elements in F
with the multiplicity:

(a). M̃N
1
2
,n+ 1

2

= S̃n+ 1
2

+ 1 = 1 + 12n;

(b). M̃N
1,n+ 1

2

= L̃n+ 1
2

+ 1 = 1 + 1
11(12n − 1);

(c). M̃N
3
2
,n+ 1

2

= 2S̃n+ 1
2

+ D̃
(6)

n+ 1
2

+ D̃
(4)

n− 1
2

+ D̃
(2)

n− 1
2

= 4 + 32
11(12n − 1);

(d). M̃N
αi,n+ 1

2

= L̃n+ 1
2

= 1
11(12n − 1), i = 1, 2;

(e). M̃N
βi,n+ 1

2

= 10C̃n− 3
2
− D̃(4)

n− 3
2

− 2D̃
(6)

n− 3
2

= 4 + 32
11(12n−1 − 1), n ≥ 2, i = 1, 2, 3;

(f). M̃D
1
2
,n+ 1

2

= S̃n+ 1
2

= 12n;

(g). M̃D
1,n+ 1

2

= L̃n+ 1
2

+ 3 = 3 + 1
11(12n − 1);

(h). M̃D
3
2
,n+ 1

2

= 2S̃n+ 1
2

+ D̃
(6)

n+ 1
2

+ D̃
(4)

n− 1
2

+ D̃
(2)

n− 1
2

− 4 = 32
11(12n − 1);

(i). M̃D
αi,n+ 1

2

= L̃n+ 1
2

+ 3 = 3 + 1
11(12n − 1), i = 1, 2;

(j). M̃D
βi,n+ 1

2

= 10C̃n− 3
2
− D̃(4)

n− 3
2

− 2D̃
(6)

n− 3
2

− 4 = 32
11(12n−1 − 1), n ≥ 2, i = 1, 2, 3.

Before ending this section, we point out that there is another way to consider the spectra
of −∆S on S motivated by the result for the T fractal, by observing that a Dirichlet eigen-
function on S extends oddly to a Dirichlet eigenfunction on T , and a Neumann eigenfunction
on S extends evenly to a Neumann eigenfunction on T .
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