
SOBOLEV SPACES ON P.C.F. SELF-SIMILAR SETS: BOUNDARY

BEHAVIOR AND INTERPOLATION THEOREMS

SHIPING CAO AND HUA QIU

Abstract. We study the Sobolev spaces Hσ(K) and Hσ
0 (K) on p.c.f. self-similar sets.

First, for σ ∈ R+, we make an exact description of the tangents of functions in Hσ(K)
at the boundary, and introduce a countable set of critical orders that arises naturally in
the boundary behavior of functions. These critical orders are just 1

2
+ Z+ in the Euclidean

case, but become complicated on fractals. Second, we characterize Hσ
0 (K) as the space of

functions in Hσ(K) with tangents of appropriate order, that depend on σ and critical orders,
being 0. Last, we extend Hσ(K) to σ ∈ R, and obtain various interpolation theorems with
σ ∈ R+ or σ ∈ R. The interpolation space presents a critical phenomenon when the resulted

order σθ is critical. Moreover, for the interpolation couple (Hσ
0 (K), Hσ′

0 (K)), more than the
classical theorem, our interpolation theorem fully covers the teratological case that {σ, σ′}
contains at least one critical order.
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1. Introduction

The boundary behavior of functions, as an important topic in analysis on fractals, has
been studied for years since the construction of the Laplacians on fractals. See [18, 19] for
Kigami’s construction of the Laplacians on p.c.f. self-similar sets, see [3, 4, 5, 14, 23, 24] for
the probabilistic approach, and see books [20, 36] for further developments. Many important
results are obtained, including tangents and gradients [21, 22, 29, 33, 34, 38, 10, 9, 12, 37].
See also [32, 33, 37] for related topics on the smooth bump functions, distributions and splines
on fractals.

In this paper, we will take a further step to study the boundary behavior of functions in
Sobolev spaces on p.c.f. self-similar sets, which are analogs of Hσ(Ω), σ ∈ R, in the Rn case.
This is a continuation of our previous work [11].

Recall that for a domain Ω in Rn with smooth boundary, for σ ∈ Z+, Hσ(Ω) is the space of
function f ’s on Ω such that f and its derivatives (in the sense of distributions) up to order σ
are in L2(Ω), and the definition of Hσ(Ω) can be generalized to all real σ via complex interpo-
lation or other numerous equivalent methods. There are rich fundamental results concerning
the boundary behavior of functions in Hσ(Ω), including the trace theorems, interpolation
theorems, which provide powerful tools in the study of non-homogeneous boundary value
problems and further topics on Ω. Among them, the characterization of Hσ

0 (Ω), σ ≥ 0,

Hσ
0 (Ω) =

{
f ∈ Hσ(Ω) :

∂jf

∂νj
= 0, ∀0 ≤ j < σ − 1

2

}
, (1.1)

which was first discovered in [26, 27, 28] by J.L. Lions and E. Magenes, plays a central and
delicate role. See monograph [25] for a systematic development and various applications.

We will reproduce the characterization (1.1) of Hσ
0 (Ω) in the fractal setting, and stem from

which, we aim to provide a throughout study on the interpolation of Hσ(Ω) on fractals. Due
to the complicity of the fractal feature, we need to take a quite different approach.

In the classical setting, for σ /∈ 1
2 +Z+, Hσ

0 (Rn+) consisting of Sobolev functions supported
in Rn+, can be embedded into Hσ(Rn) as a subspace, by extending functions by 0 outside
Rn+. What’s more, there exists a retraction mapping T : Hσ(Rn) → Hσ

0 (Rn+). The proof of
(1.1) and the interpolation result of Hσ(Ω) essentially rely on this extension, and the local
coordinate representation of Hσ(Ω) along the boundary. The values in 1

2 + Z+ are called
critical orders, since Hσ

0 (Ω) will present some critical phenomena when σ is such a value.
However, on the p.c.f. self-similar sets, there are “derivatives” other than Laplacians

and normal derivatives at the boundary, Although these new derivatives do not matter in the
matching conditions when extending a function to a larger fractal domain, they indeed reflect
the boundary behavior of functions [34]. As a consequence, for a p.c.f. fractal domain Ω with

boundary, Hσ
0 (Ω) is usually smaller than the space of functions in Hσ(Ω̃) with support in Ω,

where Ω̃ is a larger fractal domain, and the retraction mapping does not exist. In addition,
the occurrence of the new derivatives will create more “critical orders” in the fractal setting.

Instead of extending functions by 0 outside the fractal, we will extract the information of
the boundary behavior with a more straightforward method, by splitting the functions. See
Lemma 4.4, Theorem 4.7 and the remark after Definition 5.5. This method features our work,
and shows natural insight into the Sobolev spaces. Here we summary the decomposition of
spaces by splitting, but leave the explanation of notations in later context.
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Theorem 1. Let K be a p.c.f. self-similar set with boundary V0. Let k ≥ 1 be an integer,
and 0 ≤ σ ≤ 2k. We have

Hσ(K \ V0) = kerσ THk−1
⊕
(
⊕ω∈P RHk−1,ω

(
l2(Hk−1, Aw; rσ/2w µ(σ−1)/2

w )
))
,

Hσ
0 (K \ V0) = kerσ THk−1

⊕
(
⊕ω∈P RHk−1,ω

(
l2(Hk−1; r

σ/2
w µ

(σ−1)/2
w )

))
,

Hσ
00(K \ V0) = kerσ THk−1

⊕
(
⊕ω∈P RHk−1,ω

(
l2(Hk−1; rσ/2w µ(σ−1)/2

w )
))
.

A surprising consequence of the above decomposition result is that it provides privilege
when considering the interpolation couple (Hσ1

0 (K \ V0), Hσ2
0 (K \ V0)) for at least one of

σ1, σ2 being a critical order, while in the Rn case, Lions and Magenes’s method will meet
teratological difficulty, see [25] (Chapter 1, Section 18). For example, when K is chosen to
be the unit interval I = [0, 1], we will have no difficulty to generalize the interpolation result
for [Hσ1(0, 1), Hσ2(0, 1)]θ when σ1 or σ2 is in 1

2 + Z+.
Now we briefly introduce our main results. Let K be a p.c.f. self-similar set which possesses

a local regular Dirichlet form in the sense of Kigami. Let V0 be its boundary consisting of
finitely many points. For σ ∈ R, by a slight abuse of notation, we write Hσ(K) for the
Sobolev space on the domain K \ V0. A systematical introduction of Sobolev spaces can be
found in [35] on fractals by R.S. Strichartz and in [15] on more general metric measure spaces
by A. Grigor’yan. See also [11, 16, 17] for some equivalent Besov type characterizations of
Hσ(K), and [7, 8, 11, 13, 30] for related results on Besov spaces and interpolation properties.
Our work deals with the boundaries of fractal domains, and interested readers can find some
works on Euclidean domains with fractal boundaries [1, 31]. In this paper, we focus on the
following three aspects.

Firstly, we study tangents at boundary points for functions in Hσ(K) with σ ∈ R+.
In history, various different approaches are developed towards gradients and tangents for
functions on K. Typical ideas include defining the gradients by the energy measures [21, 22]
and defining the tangents as the multiharmonic functions that match the local behavior of
functions f at a generic point [38] or a vertex [34, 33] in K. We will introduce a simpler but
more efficient description based on the latter idea, and give a thorough study of tangents at
points in V0 for functions in Hσ(K). See Definition 3.3, Theorem 3.14 and Theorem 3.17.

Secondly, we study the Sobolev spaceHσ
0 (K) with σ ∈ R+, which is defined as the closure of

all compactly supported smooth functions with respect to the norm of Hσ(K). In particular,
analogously to (1.1), we will show that(Theorem 4.2),

Theorem 2. For σ ≥ 0, Hσ
0 (K) =

{
f ∈ Hσ(K) : T

(σ)
ω (f) = 0, ∀ω ∈ π−1(V0)

}
. In particular,

Hσ
0 (K) = Hσ(K) if σ ≤ dS

2 .

Here π is the canonical coding map associated with K, T
(σ)
ω (f)(Definition 3.3 and 3.13)

stands for the tangent of f at π(ω) with order that, roughly speaking, works best for Hσ(K),
and dS is the spectral dimension of K. Readers are suggested to compare this result with the
authors’ previous work on the characterization of Hσ

D(K) and Hσ
N (K) in [11]. As we have

mentioned, the proof of Theorem 2 essentially relies on the splitting method in Theorem 1,
and is very different from Lions and Magenes’s method for classical domains in [25]. We will
use the smooth bump functions developed by L.G. Rogers, R.S. Strichartz and A. Teplyaev
in [32] as an important tool.
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Lastly, we study the interpolation theorems concerning Hσ(K) and Hσ
0 (K). First, using

the results obtained in the previous parts, we are ready to deal with the case σ ∈ R+(Theorem
5.4,5.6 and 5.7),

Theorem 3.

[Hσ(K), Hσ′(K)]θ = H(1−θ)σ+θσ′(K), ∀σ > σ′ ≥ 0, θ ∈ [0, 1],

[Hσ
0 (K), Hσ′

0 (K)]θ = H
(1−θ)σ+θσ′

00 (K), ∀σ > σ′ ≥ 0, θ ∈ (0, 1),

where Hσ
00(K) ⊂ Hσ

0 (K) are analogs of the Lions-Magenes spaces. In particular,

[Hσ
00(K), Hσ′

00(K)]θ = H
(1−θ)σ+θσ′

00 (K), ∀σ > σ′ ≥ 0, θ ∈ [0, 1],

and Hσ
00(K) = Hσ

0 (K) except a countable set of critical orders of σ that arises naturally in
Theorem 3.14 dealing with tangents of functions in Hσ(K).

In particular, for H0 type Sobolev spaces, this theorem covers the teratological case that
σ or σ′ is a critical order.

Moreover, we then introduce the space Hσ(K) with σ < 0 as the dual of H−σ0 (K), and
extend the story of interpolation theorem to σ ∈ R. The difficulty in this part lies in the fact
that the domain of Laplacian is not generally closed under multiplication [6], and we develop
a projection technique that preserves regularity instead. It holds that(Theorem 6.2),

Theorem 4. For −∞ < σ′ < σ <∞ and 0 < θ < 1,

[Hσ(K), Hσ′(K)]θ =

{
Hσθ(K), if σθ = (1− θ)σ + θσ′ ≥ 0,(
H−σθ00 (K)

)′
, if σθ = (1− θ)σ + θσ′ < 0.

In particular, [Hσ(K), Hσ′(K)]θ = Hσθ(K) except σθ is in the countable set of critical orders.

We briefly introduce the structure of our writing. In Section 2, we provide backgrounds
and definitions that will be used later. Two conditions, (C1) and (C2), will be introduced for
convenience. In Section 3, we study the tangents (and pre-tangents) at the boundary points
for functions in Hσ(K) with σ ∈ R+. In Section 4, we characterize Hσ

0 (K) in terms of the
boundary behavior of functions in Hσ(K). In Section 5, we develop interpolation theorems
for Sobolev spaces Hσ(K), Hσ

0 (K) and Hσ
00(K) with σ ∈ R+. In Section 6, we extend the

interpolation theorem of Hσ(K) to σ ∈ R. In Section 7, we present some examples, along with
some equivalent narrations of our results. In the Appendix, we present a useful decomposition
lemma on certain weighted sequence spaces of functions with mixed norms, which plays a
key role throughout the paper, then provide a brief discussion on how to prove the previous
main theorems without assuming (C1).

2. Preliminaries

We introduce some backgrounds in this section, including the Dirichlet forms and Sobolev
spaces on p.c.f. self-similar sets.

Let {Fi}Ni=1 be a finite collection of contractions on a complete metric space (M, d). The
self-similar set associated with the iterated function system (i.f.s.) {Fi}Ni=1 is the unique

compact set K ⊂M satisfying K =
⋃N
i=1 FiK. For m ≥ 1, we define Wm = {1, · · · , N}m the

collection of words of length m, and for each w = w1w2 · · ·wm ∈Wm, denote

Fw = Fw1 ◦ Fw2 ◦ · · · ◦ Fwm .
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For uniformity, we set W0 = {∅}, with F∅ being the identity map. For convenience, let
W∗ =

⋃∞
m=0Wm be the collection of all finite words.

Let Σ = {1, 2, · · · , N}N be the shift space endowed with the natural product topology.
There is a continuous surjection π : Σ→ K defined by

π(ω) =
⋂
m≥1

F[ω]mK,

where for ω = ω1ω2 · · · in Σ we write [ω]m = ω1ω2 · · ·ωm ∈Wm for each m ≥ 1. Let

CK =
⋃
i 6=j

FiK ∩ FjK, C = π−1(CK), P =
⋃
m≥1

σmC,

where σ is the shift map define as σ(ω1ω2 · · · ) = ω2ω3 · · · . P is called the post critical set.
Call K a p.c.f. self-similar set if #P < ∞. In what follows, we always assume that K is a
connected p.c.f. self-similar set. Let V0 = π(P) and call it the boundary of K. For m ≥ 1,
we always have FwK ∩ Fw′K ⊂ FwV0 ∩ Fw′V0 for any w 6= w′ ∈Wm.

We recall the fact that each ω ∈ P takes the form ω = τẇ, with τ, w ∈W∗. For uniformity,
we will use the same representation ω = τẇ for each ω ∈ W∗. In particular, we set τ = ∅ if
ω ∈ P is periodic.

2.1. Dirichlet forms on p.c.f. self-similar sets. Let’s briefly recall the construction of
Dirichlet forms on p.c.f. self-similar sets. Readers are suggested to refer to books [20] and
[36] for any unexplained details and notations.

For m ≥ 1, denote Vm =
⋃
w∈Wm

FwV0 and let l(Vm) = {f : f maps Vm into R}. Write
V∗ =

⋃
m≥0 Vm.

Let H = (Hpq)p,q∈V0 be a symmetric linear operator (matrix) on l(V0). H is called a
(discrete) Laplacian on V0 if H is non-positive definite; Hu = 0 if and only if u is constant
on V0; and Hpq ≥ 0 for any p 6= q ∈ V0. Given a Laplacian H on V0 and a vector r = {ri}Ni=1
with ri > 0, 1 ≤ i ≤ N , define the (discrete) Dirichlet form on V0 by

E0(f, g) = −(f,Hg),

for f, g ∈ l(V0), and inductively on Vm by

Em(f, g) =

N∑
i=1

r−1
i Em−1(f ◦ Fi, g ◦ Fi),m ≥ 1,

for f, g ∈ l(Vm). Write Em(f) := Em(f, f) for short.
Say (H, r) is a harmonic structure if for any f ∈ l(V0),

E0(f) = min{E1(g) : g ∈ l(V1), g|V0 = f}.
In addition, call (H, r) a regular harmonic structure, if 0 < ri < 1, ∀1 ≤ i ≤ N . In this paper,
we will always assume that there exists a regular harmonic structure associated with K.

Now for each f ∈ C(K), the sequence {Em(f)}m≥0 is nondecreasing, so the following
definitions make sense. Let domE = {f ∈ C(K) : lim

m→∞
Em(f) <∞}, and

E(f, g) = lim
m→∞

Em(f, g) for f, g ∈ domE .

We write E(f) := E(f, f) for short, and call E(f) the energy of f . It is known that (E , domE)
turns out to be a local regular Dirichlet form on L2(K,µ) for any Radon measure µ on K.
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An important feature of the form (E , domE) is the following self-similar identity,

E(f, g) =

N∑
i=1

r−1
i E(f ◦ Fi, g ◦ Fi), ∀f, g ∈ domE . (2.1)

Denote rw = rw1rw2 · · · rwm for each w ∈Wm,m ≥ 0. Then for m ≥ 1, we have

Em(f, g) =
∑

w∈Wm

r−1
w E0(f ◦ Fw, g ◦ Fw), E(f, g) =

∑
w∈Wm

r−1
w E(f ◦ Fw, g ◦ Fw).

Lastly, we need to mention that there is a natural metric on K related with the energy
form (E , domE), called the effective resistance metric, which is defined as

R(x, y) =
(

min{E(f) : f ∈ domE and f(x) = 1, f(y = 0)}
)−1

, ∀x 6= y ∈ K.

2.2. The Laplacians and Sobolev spaces. Now we come to the basic concepts of the
Laplacians and Sobolev spaces on K. Readers may find detailed backgrounds and further
discussions in various contexts, for example [11, 20, 35, 36].

We always choose µ to be a self-similar measure on K in this paper. To be more precise,
we fix a weight vector {µi}Ni=1, and let µ be the unique probability measure supported on K
such that

µ(A) =
N∑
i=1

µiµ(F−1
i A), ∀A ⊂ K.

One can easily check that µ(FwK) = µw := µw1 · · ·µwm , for each w ∈Wm.
For f ∈ domE , say ∆µf = u if

E(f, ϕ) = −
∫
K
uϕdµ

holds for any ϕ ∈ dom0E , with dom0E = {ϕ ∈ domE : ϕ|V0 = 0}.
Write ∆µ = ∆ and L2(K,µ) = L2(K) for short.

Definition 2.1. For k ∈ Z+, define the Sobolev space H2k(K) as

H2k(K) = {f ∈ L2(K) : ∆jf ∈ L2(K) for all 0 ≤ j ≤ k}
with the norm ‖f‖H2k(K) of f given by

‖f‖2H2k(K) =

k∑
j=0

‖∆jf‖2L2(K) � ‖f‖
2
L2(K) + ‖∆kf‖2L2(K).

For 0 < θ < 1, k ∈ Z+, define H2k+2θ(K) to be the complex interpolation space

H2(k+θ)(K) = [H2k(K), H2k+2(K)]θ.

Analogously, by additionally requiring that each ∆jf satisfies the Dirichlet boundary con-
dition for j < k in the above definition when k ∈ Z+, we get a subspace, denoted by H2k

D (K),

of H2k(K). The definition can be extended to any σ ≥ 0 by using Bessel type potentials. For

σ ≥ 0, we have Hσ
D(K) = (id−∆D)−σ/2L2(K), with norm ‖(id−∆D)σ/2f‖L2(K), where ∆D

is the Dirichlet Laplacian. In particular, for k ∈ Z+ and f ∈ H2k
D (K), we have

‖f‖H2k(K) � ‖f‖H2k
D (K) � ‖∆

kf‖L2(K).
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Similarly, we can define Hσ
N (K) = (id−∆N )−σ/2L2(K) with ∆N being the Neumann Lapla-

cian. See [35] by Strichartz for more details.

Before the end of this section, we mention two conditions that we will assume throughout
the main part of this paper (Section 3 to Section 6).
(C1): For any p ∈ V0, we assume #π−1(p) = 1.

(C2): There exists dH > 0 such that µi = rdHi , ∀1 ≤ i ≤ N .
The condition (C1) is a geometric condition, which is naturally satisfied for nested fractals,

see [20, 24]. When (C1) holds, we only have one outward “direction” for each boundary
vertex, so we can avoid the tedious treatments of the “matching condition” on the boundary.
However, all the main theorems in this paper, including Theorem 3.14, 3.17, 4.2, 5.4, 5.6,
5.7 and 6.2, are valid even if (C1) is not satisfied, as long as we assume (C2). See Appendix
B for a further discussion on (C1).

The condition (C2) means that the self-similar measure µ is dH -regular with respect to
the effective resistance metric R. With (C2) assumed, we have some clear descriptions of
Sobolev spaces of lower orders σ, see [11, 17]. In particular, most theorems in this paper will
fail for lower σ without (C2).

Throughout the paper, we always write f . g if f ≤ Cg for some constant C > 0, and
write f � g if both f . g and g . f . In addition, we write X = ⊕nk=1Xk for Banach spaces
X and Xk, 1 ≤ k ≤ n, if
1. Xk ⊂ X and ‖ · ‖Xk � ‖ · ‖X , for each 1 ≤ k ≤ n;
2. for each x ∈ X, there is a unique representation x =

∑n
k=1 xk, with xk ∈ Xk, 1 ≤ k ≤ n.

3. Boundary behaviors of Hσ(K)

In this section, we study the boundary behavior of functions in Sobolev spaces Hσ(K),
σ ≥ 0. We focus on the tangents of functions at the boundary V0, and introduce the concept
of pre-tangents, which will serve as an important tool in further development throughout
Section 4-6, including the characterization theorem of Hσ

0 (K), and interpolation theorems of
various Sobolev spaces. We assume the condition (C2) in this section.

3.1. Tangents and pre-tangents. For a function f on R, we have the Taylor series expan-
sion

f(x) = f(x0) + f ′(x)(x− x0) +
1

2
f ′′(x0)(x− x0)2 + · · · .

The polynomial f(x0) + f ′(x)(x− x0) + 1
2f
′′(x0)(x− x0)2 + · · ·+ 1

n!f
(n)(x0)(x− x0)n which

serves as a tangent of f at x0, reflects the local behavior of f , and includes all its information
of derivatives with orders no more than n at x0. Analogously, it is natural to define tangents
of functions on K at a point as elements of multiharmonic functions (Definition 3.1). We
will focus on boundary vertices in this paper, and our definition of tangents (Definition 3.3)
is modified from that of Rogers and Strichartz [33, 34]. Readers can also find theorems on
tangents at generic points in [38].

Definition 3.1. For k ≥ 0, let Hk = {f ∈ H2k+2(K) : ∆k+1f = 0} be the space of (k + 1)-
multiharmonic functions on K. Let H• =

⋃∞
k=0Hk.

We consider a sequence of cells that shrink to a boundary vertex, and order multiharmonic
functions according to the convergence rate, analogous to (x− x0)n in the classical cases.
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Definition 3.2. Fix w ∈W∗.
(a). Define Aw by Awf(x) = f(Fwx) for any function f on K.
(b). Let {λl,w}∞l=0 be the set of nonzero eigenvalues of Aw : H• → H•, which is ordered

in decreasing order of absolute values, i.e. 1 = |λ0,w| ≥ |λ1,w| ≥ |λ2,w| ≥ · · · . Let El,w =⋃∞
n=1 ker(Aw − λl,w)n ⊂ H• be the generalized eigenspace of Aw corresponding to λl,w.

(c). Define Ẽl,w = ⊕l′′i=0Ei,w and Êl,w = ⊕l′′i=l′Ei,w, where

l′ = min{i ≥ 0 : |λi,w| = |λl,w|}, l′′ = max{i ≥ 0 : |λi,w| = |λl,w|}.

Remark. (a). It is well known that liml→∞ |λl,w| = 0, and El,w is of finite dimension for

each l. In addition, we have λ0,w = 1 and E0,w = Ê0,w = Ẽ0,w = constants.

(b). If |λl1,w| = |λl2,w|, then Ẽl1,w = Ẽl2,w and Êl1,w = Êl2,w. In other words, the definition

of Ẽl,w and Êl,w only depends on the absolute value of λl,w.

Now, we define the tangent of a function f at a boundary vertex p ∈ V0.

Definition 3.3. Let f ∈ C(K), ω = τẇ ∈ P with ẇ = ww · · · , and l ≥ 0. A multiharmonic

function h ∈ Ẽl,w is called a l-tangent of f at π(ω) if

‖Aτf − h‖L∞(FnwK) = o(λnl,w),

and we denote Tl,ωf := h. In particular, ‖f − Tl,ωf‖L∞(FnwK) = o(λnl,w) if τ = ∅.

Intuitively, each ω ∈ P represents a boundary point p ∈ V0 and a “direction” that ap-
proaches p. We can view the collection of tangents Tl,ω, ω ∈ π−1(p) as the “tangent” at the
boundary point p ∈ V0.

On the other hand, for further development in Section 4-6, we need more delicate descrip-
tions of the boundary behavior of f . For this purpose, we record some important information
in a sequence of multiharmonic functions that reflects the “average” of f on each cell.

Notation. Let X be a closed subspace of L2(K), and w ∈W∗.
(a). Define Aw,X = Aw ◦ PX , where PX is the orthogonal projection from L2(K) onto X.
(b). Define Aw(f) = {Anwf}n≥0 for each f ∈ L2(K).
(c). With little abuse of notations, we write PXAw(f) = {PXAnwf}n≥0.

Definition 3.4. Fix l ≥ 0 such that for any distinct ω = τẇ and ω′ = τ ′ẇ′ in P, we
have FτF

l
wK ∩ Fτ ′F lw′K = ∅. Let k ∈ Z+, ω = τẇ ∈ P, f be a function on K. Define

THk−1,ωf = PHk−1
Aw(AlwAτf). Call THk−1,ωf the k-pre-tangent of f at π(ω).

Remark. In Definition 3.4, the requirement FτF
l
wK ∩ Fτ ′F lw′K = ∅ ensures that the pre-

tangents of different vertices will not interfere each other. This will provide some convenience
in Section 4 and 5.

Before ending this subsection of definitions, we would like to introduce some sequence
spaces which will frequently occur.

Definition 3.5. Let X be a Banach space, with norm ‖ · ‖X , and A : X → X be a compact
operator. Denote σ(A,X) the spectrum of A : X → X.

(a). For α > 0, define

l2(X;α) =
{
s = {sn}∞n=0 : {α−n‖sn‖X}∞n=0 ∈ l2},

with norm ‖s‖l2(X;α) =
∥∥α−n‖sn‖X∥∥l2.



SOBOLEV SPACES ON P.C.F. SELF-SIMILAR SETS: BOUNDARY BEHAVIOR AND INTERPOLATION THEOREMS9

(b). For α > 0, define

l2(X,A;α) =
{
s = {sn}∞n=0 : {sn+1 −Asn}∞n=0 ∈ l2(X;α)

}
,

with norm ‖s‖l2(X,A;α) = ‖sn+1 −Asn‖l2(X;α) + ‖s0‖X .
(c). For each s ∈ X, define SA(s) = {Ans}∞n=0, with norm ‖SA(·)‖SA(X) = ‖ · ‖X .

In applications, we usually take X to be certain subspaces of L2(K), and A to be Aw or
Aw,X .

We have a lemma (Lemma 3.6) connecting the above three classes of sequence spaces,
which will be used frequently in this paper. We take the same setting as in Definition 3.2.
Let {λl}l≥0 be the nonzero eigenvalues of A, which is ordered in decreasing order of absolute

values. Let El be the corresponding generalized eigenspaces. In addition, denote Ẽl = ⊕l′′i=0Ei
and Êl = ⊕l′′i=l′Ei, where l′ = min{i ≥ 0 : |λi| = |λl|}, l′′ = max{i ≥ 0 : |λi| = |λl|}.

Lemma 3.6. Let l2(X;α) be the closure of l2(X;α) in l2(X,A;α). Then l2(X;α) = l2(X;α)
if and only if α /∈ {|λl|}l≥0. In addition,

(a). For α ≥ |λ0| or σ(A,X) = {0}, we have l2(X,A;α) = l2(X;α).
(b). For |λl+1| ≤ α < |λl| or α < |λl| = min{|λk| : λk ∈ σ(A,X)}, we have

l2(X,A;α) = SA(Ẽl)⊕ l2(X;α).

Remark. We arrange the proof of this lemma in Appendix A. In the rest of this paper,
without further clarification, we will always take l2(X;α) to be the closure of l2(X;α) in
l2(X,A;α) as in the lemma.

3.2. Construction of tangents. In this subsection, we construct the tangents for functions
f ∈ Hσ(K) at points in V0. We treat the higher order case (σ ≥ 2) and the lower order case
(σ < 2) separately. For simplicity, we will fix an ω = ẇ ∈ P.

Higher order case. We start by studying functions in H2k(K), k ≥ 1.

Lemma 3.7. Let k ≥ 1. There exists gw,k ∈ C(K ×K) such that

Awf(x)−Aw,Hk−1
f(x) =

∫
K
gw,k(x, y)(−∆)kf(y)dµ(y)

for any f ∈ H2k(K).

Proof. It is easy to see that (Aw − Aw,Hk−1
)|Hk−1

= 0. So it suffices to prove the lemma

for f = Gk(−∆)kf , where G is the Green’s operator. We only need to take

gw,k(x, y) =

∫
Kk−1

(Aw −Aw,Hk−1
)Gy1(x)G(y1, y2) · · ·G(yk−1, y)dµ(y1) · · · dµ(yk−1),

where Gy(x) = G(x, y) is the Green’s function. �

Lemma 3.8. Let f ∈ L2(K) and g ∈ L∞(K). Define s = {µn/2w

∫
K A

n
wf(x)g(x)dµ(x)}∞n=0,

then we have

‖s‖l2 . ‖f‖L2(K)‖g‖L∞(K).
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Proof. Let Z = K \ FwK. Then ‖f‖L2(K) =
∥∥‖µn/2w Anwf‖L2(Z)

∥∥
l2

by scaling, and∣∣ ∫
K
f(x)g(x)dµ(x)

∣∣ =
∣∣ ∞∑
m=0

µmw

∫
Z
Amw f(x)Amw g(x)dµ(x)

∣∣
≤
∞∑
m=0

µmw ‖Amw f‖L2(Z)‖g‖L∞(K).

So using Minkowski inequality, we get

‖s‖l2 ≤ ‖g‖L∞(K)

∥∥ ∞∑
m=0

µn/2w µmw ‖An+m
w f‖L2(Z)

∥∥
l2

≤ ‖g‖L∞(K)

∞∑
m=0

µm/2w ‖f‖L2(K).

Since µw < 1, we get the lemma. �

Using Lemma 3.7 and 3.8, we get the following key observation.

Proposition 3.9. Aw ∈ L
(
Hσ(K), l2

(
L∞(K), Aw,Hk−1

; r
σ/2
w µ

(σ−1)/2
w

))
for σ ≥ 2 and k ≥

dσ/2e.

Proof. First, we consider the H2k(K), k ≥ 1 case. We have the estimate

‖An+1
w f −Aw,Hk−1

Anwf‖L∞(K) ≤
∣∣ ∫

K
‖gw,k(·, y)‖L∞(K)(−∆)k(Anwf)(y)dµ(y)

∣∣
=
∣∣rknw µknw

∫
K
‖gw,k(·, y)‖L∞(K)A

n
w

(
(−∆)kf

)
(y)dµ(y)

∣∣,
by using Lemma 3.7 and scaling. Since ‖∆kf‖L2(K) ≤ ‖f‖H2k(K), by using Lemma 3.8, we

have proved the assertion for the H2k(K) case.
For general case, we need to use the complex interpolation. For any k′ ≥ k, we see that

l2
(
L∞(K), Aw,Hk−1

; rkwµ
k−1/2
w

)
= l2

(
Hk−1, Aw,Hk−1

; rkwµ
k−1/2
w

)
+ l2(L∞(K); rkwµ

k−1/2
w )

= l2
(
Hk−1, Aw,Hk′ ; r

k
wµ

k−1/2
w

)
+ l2(L∞(K); rkwµ

k−1/2
w )

= l2
(
L∞(K), Aw,Hk′ ; r

k
wµ

k−1/2
w

)
,

where the first and last equalities are easy consequences of Lemma 3.6, using the fact that

Ẽl,w ⊂ Hk−1 for the largest l with |λl,w| ≥ rkwµ
k−1/2
w .

The proposition then follows from the fact that

[l2
(
X,A;α), l2

(
X,A;β)]θ = l2

(
X,A;α(1−θ)βθ),

and [H2k(K), H2k+2(K)]θ = H2k+2θ(K) with θ ∈ [0, 1]. �

Using Lemma 3.6, we get the existence of tangents for functions in Hσ(K) with higher
orders.

Lower order case. For this case, we need condition (C2), which guarantees that Hσ(K) ⊂
L∞(K) as long as σ > dS

2 , where dS = 2dH
1+dH

is the spectral dimension of K. When K is the
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unit interval, we have dS
2 = 1

2 , which is indeed the critical order in the Euclidean case (See
[25]).

For 0 < t ≤ 1, define

Λ(t) = {u ∈W∗ : ru ≤ t < ru∗},
where for u = u1u2 · · ·um, u∗ = u1u2 · · ·um−1. In particular, set r = minNi=1 ri, and let
Λm = Λ(rm) for m ≥ 0. For any u ∈ W∗, define the average of f on FuK by Avgu(f) =
µ−1
u

∫
FuK

fdµ. In particular, Avg∅(f) =
∫
K fdµ.

For m ≥ 1, define the space of m-Haar functions

J̃m = {f̃m =
∑
u∈Λm

cu1FuK : cu ∈ R, Avgu′(f̃m) = 0,∀u′ ∈ Λm−1},

where 1E is the characteristic function of a set E. Let J0 be the space of constant functions.
Let

Γ̃σ(K) =
{
f ∈ L2(K) : {PJ̃nf}

∞
n=0 ∈ l2(L2(K); rσ(1+dH)/2)

}
,

with norm ‖ · ‖Γ̃σ(K) = ‖{PJ̃n ·}
∞
n=0‖l2(L2(K);rσ(1+dH )/2). The following result comes from The-

orem 3.9 and 4.11 in [11].

Proposition 3.10. For dS
2 < σ < 1, we have Hσ(K) = Γ̃σ(K) ∩ C(K), with ‖f‖Hσ(K) �

‖f‖Γ̃σ(K).

Using Proposition 3.10, we get the following estimate.

Lemma 3.11. For each f ∈ Hσ(K) with dS
2 < σ < 1, let fn =

∑∞
m=n PJ̃mf . Then, we have

{fn}n≥0 ∈ l2(L∞(K); rσ/2r(σ−1)dH/2).

Proof. Noticing that ‖PJ̃nf‖L∞(K) . r
−ndH/2‖PJ̃nf‖L2(K), by using Minkowski inequality,

we have∥∥r−nσ/2rn(1−σ)dH/2‖fn‖L∞(K)

∥∥
l2
.
∥∥r−nσ/2rn(1−σ)dH/2

∞∑
m=0

r−(m+n)dH/2‖PJ̃m+n
f‖L2(K)

∥∥
l2

=
∥∥ ∞∑
m=0

rmσ/2rm(σ−1)dH/2r−(m+n)σ(1+dH)/2‖PJ̃m+n
f‖L2(K)

∥∥
l2

.
∞∑
m=0

rmσ/2rm(σ−1)dH/2‖f‖Hσ(K).

This finishes the proof. �

Using Lemma 3.11, we can easily get the following proposition.

Proposition 3.12. Aw ∈ L
(
Hσ(K), l2

(
L∞(K), Aw,Hk−1

; r
σ/2
w µ

(σ−1)/2
w

))
for σ > dS

2 and

k ≥ dσ/2e.

Proof. By Proposition 3.9, it suffices to prove the case σ < 2. For dS
2 < σ < 1, it is easy

to see that for f ∈ Hσ(K) and n ≥ 0, choosing l such that rl+1 < rnw ≤ rl, we have

‖An+1
w f −AwPJ̃0A

n
wf‖L∞(K) ≤ ‖Anwf − PJ̃0A

n
wf‖L∞(K) . ‖

∞∑
m=l+1

PJ̃mf‖L∞(K).
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It then follows from Lemma 3.11 that

{Anwf}n≥0 ∈ l2(L∞(K), AwPJ̃0 ; rσ/2w µ(σ−1)/2
w ).

Using the well-known fact that E0,w = J̃0, the fact that λ1,w = rw < r
σ/2
w µ

(σ−1)/2
w < 1 and

Lemma 3.6 (b), we see that

l2(L∞(K), AwPJ̃0 ; rσ/2w µ(σ−1)/2
w ) = l2(L∞(K), Aw,H0 ; rσ/2w µ(σ−1)/2

w ).

This implies that

Aw ∈ L
(
Hσ(K), l2

(
L∞(K), Aw,H0 ; rσ/2w µ(σ−1)/2

w

))
.

The rest of the proof follows from complex interpolation, and using Proposition 3.9. �

A theorem on tangents. Now, we conclude our results in the following theorem. For
convenience, in the rest of this paper, we use the following notations.

Definition 3.13. For σ > dS/2 and ω = τẇ ∈ P, let lω(σ) be the unique integer such that

|λlω(σ)+1,w| ≤ rσ/2w µ(σ−1)/2
w < |λlω(σ),w|.

For convenience, we write T
(σ)
ω = Tlω(σ),ω for short.

In particular, when σ ≤ dS/2, we let lω(σ) = −1 and Tlω(σ),ω = 0. Also, set H−1 = {0}
for convenience.

From Proposition 3.9, Proposition 3.12 and Lemma 3.6, we have

Theorem 3.14. Let ω = τẇ ∈ P and σ > dS/2, then AτT
(σ)
ω ∈ L(Hσ(K), Ẽlω(σ),w). In

addition,
∞∑
n=0

r−σnw µ(1−σ)n
w ‖Aτf − T (σ)

ω f‖2L∞(FnwK) . ‖f‖
2
Hσ(K),

if |λlω(σ)+1,w| < r
σ/2
w µ

(σ−1)/2
w < |λlω(σ),w|.

Remark 1. Theorem 3.14 is still true for σ ≥ 2 without condition (C2).
Remark 2. The estimate in Theorem 3.14 is sharp, which can be deduced from a stronger
result (Theorem 3.17).

3.3. A theorem on pre-tangents. In the rest of this section, we focus on pre-tangents.
For convenience, in the discussion below, we fix w ∈W∗ and consider PHk−1

Aw. The results
about pre-tangents can be easily deduced.

Lemma 3.15. For w ∈W∗, σ ≥ 0 and k ≥ dσ/2e, PHk−1
Aw ∈ L

(
Hσ(K), l2(Hk−1, Aw; r

σ/2
w µ

(σ−1)/2
w )

)
.

Proof. For σ = 0, it is easy to see the assertion by using Lemma 3.8. In fact, Hk−1(K) is
a finite dimensional subspace of C(K), so there is gk ∈ C(K × K) such that PHk−1

f(x) =∫
K gk(x, y)f(y)dµ(y). Then a similar argument as in the proof of Proposition 3.9 works.

For the σ ≥ 2 case, the lemma is a consequence of Proposition 3.9, noticing that

PHk−1
An+1
w f −AwPHk−1

Anwf = PHk−1

(
An+1
w f −Aw,Hk−1

Anwf
)
.

For 0 < σ < 2, the assertion can be proved by using complex interpolation. �
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Proposition 3.16. For ω = ẇ ∈ P, σ ≥ 0 and k ∈ Z+, there is a recovering map

Rk,w ∈ L
(
l2(Hk−1, Aw; rσ/2w µ(σ−1)/2

w ), Hσ(K)
)

such that PHk−1
AwRk,w = id. In addition, Rk,w(·) vanishes in a neighbourhood of V0\{π(ω)}.

Proof. First we assume that FwK is bounded away from V0 \ {π(ω)}. Then, for each
h ∈ Hk−1, obviously there is f ∈ dom∆∞ such that Awf = h, PHk−1

f = 0 and f vanishes
in a neighbourhood of V0 \ {π(ω)}. By a standard argument, there is a linear map Rk,w :
Hk−1 → dom∆∞ such that AwRk,w(h) = h, PHk−1

Rk,w(h) = 0 and Rk,w(h) vanishes in a
neighbourhood of V0 \ {π(ω)}.

By a same reason, there is a map R′k,w : Hk−1 → dom∆∞ such that AwR
′
k,w(h) = Awh,

PHk−1
R′k,w(h) = h and R′k,w(h) vanishes in a neighbourhood of V0 \ {π(ω)}.

Now for any h = {hn}n≥0 ∈ l2(Hk−1, Aw; r
σ/2
w µ

(σ−1)/2
w ), we define

Rk,w(h) = R′k,w(h0) +

∞∑
n=1

Rk,w(hn −Awhn−1) ◦ F−n+1
w .

We need to show that Rk,w is well defined and is in L
(
l2(Hk−1, Aw; r

σ/2
w µ

(σ−1)/2
w ), Hσ(K)

)
.

First, we consider σ = 2k′ < 2k. Write fn = Rk,w(hn − Awhn−1) ◦ F−n+1
w , n ≥ 1 and

f0 = R′k,w(h0) for short. Then we see that

‖{∆k′fn}n≥0‖l2(L∞(K);µ
−1/2
w )

. ‖h0‖Hk−1
+ ‖{hn −Awhn−1}n≥0‖l2(Hk−1;rk′w µ

k′−1/2
w )

= ‖h‖
l2(Hk−1,Aw;rk′w µ

k′−1/2
w )

.

Write Z = K \ FwK. Then we have∥∥ ∞∑
m=0

|∆k′fm|
∥∥
L2(K)

=
∥∥µn/2w ‖Anw

n+1∑
m=0

|∆k′fm|‖L2(Z)

∥∥
l2
.
∥∥µn/2w

n+1∑
m=0

‖∆k′fm‖L∞(K)

∥∥
l2

=
∥∥ ∞∑
m=−1

1n≥mµ
m/2
w µ(n−m)/2

w ‖∆k′fn−m‖L∞(K)

∥∥
l2
. ‖{∆k′fn}n≥0‖l2(L∞(K);µ

−1/2
w )

.

Thus,
∥∥∑∞

m=0 |∆k′fm|
∥∥
L2(K)

. ‖h‖
l2(Hk−1,Aw;rk′w µ

k′−1/2
w )

. By a same argument, we have

∥∥ ∞∑
m=0

|fm|
∥∥
L2(K)

. ‖h‖
l2(Hk−1,Aw;µ

−1/2
w )

≤ ‖h‖
l2(Hk−1,Aw;rk′w µ

k′−1/2
w )

. (3.1)

The above estimates show that Rk,w(h) =
∑∞

m=0 fm is well defined in H2k′(K), and Rk,w ∈
L
(
l2(Hk−1, Aw; rk

′
w µ

k′−1/2
w ), H2k′(K)

)
.

Next, we consider σ = 2k′ ≥ 2k. We can see that for any n ≥ 1, ∆k′fn is supported in

Fn−1
w Z with ‖∆k′fn‖L2(K) . r

−k′n
w µ

−(k′−1/2)n
w ‖hn −Awhn−1‖Hk−1

. This shows that

‖∆k′Rk,w(h)‖L2(K) . ‖h‖l2(Hk−1,Aw;rk′w µ
k′−1/2
w )

. (3.2)

Combining estimates (3.1) and (3.2), we still see thatRk,w ∈ L
(
l2(Hk−1, Aw; rk

′
w µ

k′−1/2
w ), H2k′(K)

)
.

Using complex interpolation, we see that for any σ ≥ 0, we have

Rk,w ∈ L
(
l2(Hk−1, Aw; rσ/2w µ(σ−1)/2

w ), Hσ(K)
)
.
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Lastly, it is easy to check that PHk−1
AwRk,w = id from the definition.

For the case FwK ∩
(
V0 \ {π(ω)}

)
6= ∅, we only need slightly modify the definition of Rk,w

and R′k,w. �

Now we are able to provide the exact space of pre-tangents for Hσ(K).

Theorem 3.17. Let σ ≥ 0, k ≥ dσ/2e and ω = τẇ ∈ P. Let l be the same integer as in
Definition 3.4.

(a). The k-pre-tangent mapping THk−1,ω is bounded and surjective from Hσ(K) to l2(Hk−1, Aw; r
σ/2
w µ

(σ−1)/2
w ).

(b). For h ∈ HZ+

k−1, write RHk−1,ω(h) = Rk,w(h)◦F−lw F−1
τ . Then RHk−1,ω is bounded from

l2(Hk−1, Aw; r
σ/2
w µ

(σ−1)/2
w ) to Hσ(K), and THk−1,ω ◦ RHk−1,ω = id.

(c). Assume f ∈ Hσ(K), σ > dS
2 and THk−1,ωf = 0. Then Aw(Aτf) ∈ l2(L∞(K); r

σ/2
w µ

(σ−1)/2
w ).

Proof. (a) and (b) are easy consequences of Lemma 3.15 and Proposition 3.16. (c) can be
observed from Proposition 3.9 and Proposition 3.12, noticing that Aw,Hk−1

Anw(Aτf) = 0, n ≥ l
from the assumption of (c). �

4. The Sobolev spaces Hσ
0 (K)

We now proceed to study the Sobolev spaces Hσ
0 (K). In this section, we will make a full

characterization of the relationship between Hσ
0 (K) and Hσ(K) in terms of the boundary

behavior of functions. We assume both the conditions (C1) and (C2) in this section.
Recall that our domain is Ω = K \ V0 with boundary V0. The space of smooth functions

with compact support is defined as

D(Ω) = {f ∈ Cc(Ω) : ∆kf ∈ Cc(Ω), ∀k ≥ 0},
where Cc(Ω) is the space of continuous functions with compact supports in Ω. See [33] for
basic properties of D(Ω) in the fractal settings. Naturally, D(Ω) is a subspace of Hσ(K),
∀σ ≥ 0.

Definition 4.1. For σ ≥ 0, define Hσ
0 (K) as the closure of D(Ω) in Hσ(K) with respect to

the norm ‖ · ‖Hσ(K).

Theorem 4.2. For σ ≥ 0, we have Hσ
0 (K) = {f ∈ Hσ(K) : T

(σ)
ω (f) = 0,∀ω ∈ P}. In

particular, Hσ
0 (K) = Hσ(K) if σ ≤ dS

2 .

Both Theorem 3.14 and 4.2 have elegant analogues for domains Ω ∈ Rn with good bound-
ary. Related development can be found in [25] (Chapter 1, Section 9 and 10).

In the rest of this section, we will focus on the proof of Theorem 4.2. Since T
(σ)
ω is

continuous by Theorem 3.14 and T
(σ)
ω |D(Ω) = 0, we can see that one direction of the theorem

holds, i.e.,

Hσ
0 (K) ⊂ {f ∈ Hσ(K) : T (σ)

ω (f) = 0, ∀ω ∈ P}.
For the other direction, we first develop two lemmas (Lemma 4.4 and Lemma 4.6).

The first lemma is an application of Theorem 3.17. Recall the definition of THk−1,ω and
RHk−1,ω in Definition 3.4 and Theorem 3.17.

Definition 4.3. For σ ≥ 0, k ≥ dσ/2e, define kerσTHk−1
= {f ∈ Hσ(K) : THk−1,ωf =

0,∀ω ∈ P}, with induced norm ‖ · ‖Hσ(K).
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Lemma 4.4. Let σ ≥ 0, k ≥ dσ/2e.
(a). For each ω = τẇ ∈ P and σ ≥ 0, we have

‖RHk−1,ω(h)‖Hσ(K) � ‖h‖l2(Hk−1,Aw;r
σ/2
w µ

(σ−1)/2
w )

.

(b). Hσ(K) = kerσ THk−1
⊕
(
⊕ω∈P RHk−1,ω

(
l2(Hk−1, Aw; r

σ/2
w µ

(σ−1)/2
w )

))
, ∀σ ≥ 0.

(c). Let σ′ > σ ≥ 0, then kerσ′THk−1
is a dense subspace of kerσTHk−1

.

Proof. (a) is an easy consequence of Theorem 3.17 (a), (b).
(b). Given any function f ∈ Hσ(K), we can easily see that

f −
∑
ω∈P
RHk−1,ω ◦ THk−1,ω(f) ∈ kerσ THk−1

.

The decomposition of f is obviously unique.
(c). For a subspace X ⊂ Hσ(K), we write X for the closure of X in Hσ(K) for short. For

convenience, we also write Xω,σ = RHk−1,ω

(
l2(Hk−1, Aw; r

σ/2
w µ

(σ−1)/2
w ) for short.

It is obvious that kerσ′ THk−1
⊂ kerσ THk−1

, and Xω,σ′ ⊂ Xω,σ, which leads to

Hσ′(K) = kerσ′ THk−1
⊕ (⊕ω∈PXω,σ′).

However, we know that Hσ′(K) = Hσ(K) by a standard argument. This implies that
kerσ′ THk−1

= kerσ THk−1
. �

The second lemma will focus on smooth functions. We will use smooth bump functions
developed by Rogers, Strichartz and Teplyaev in [32]. In particular, we need the following
easy consequence (See Theorem 4.3 and estimate (4.7) in [32]).

Proposition 4.5. Let k ≥ 1, p ∈ V0 and f ∈ dom∆∞. There is a function g ∈ dom∆∞ such
that {

‖g‖H2k(K) . ‖f‖H2k(K),

∆jg(q) = ∆jf(q), ∂n∆jg(q) = ∂n∆jf(q),∀j ≥ 0,∀q ∈ V0 \ {p},
and the support of g is away from p.

Using Proposition 4.5, we have the following lemma.

Lemma 4.6. Let k ≥ 1 and f ∈ H2k(K). If ∀ω = τẇ ∈ P, THk−1,ωf ∈ l2(Hk−1; rkwµ
k−1/2
w ),

then f ∈ H2k
0 (K).

Proof. For each ω = τẇ ∈ P, by an easy estimate, we can see that

‖AnwAτf − PHk−1
AnwAτf‖H2k(K) . r

kn
w µknw ‖AnwAτ∆kf‖L2(K) = o(rknw µ(k−1/2)n

w ).

In addition, it is obvious from the assumption that

‖PHk−1
AnwAτf‖H2k(K) � ‖PHk−1

AnwAτf‖Hk−1(K) = o(rknw µ(k−1/2)n
w ).

Thus we have ‖AnwAτf‖H2k(K) = o(rknw µ
(k−1/2)n
w ).

Now, we construct g ∈ D(Ω) that well approximates f in H2k(K). For any ε > 0, we can
do the following.

1. Choose a large n such that ‖AnwAτf‖H2k(K) ≤ εrknw µ
(k−1/2)n
w rkτµ

k−1/2
τ ,∀ω ∈ P.

2. Let Pt be the heat kernel generated by the Dirichlet Laplacian ∆D. Choose t small

enough so that ‖f − Ptf‖H2k(K) ≤ ε and ‖AnwAτ (f − Ptf)‖H2k(K) ≤ εrknw µ
(k−1/2)n
w rkτµ

k−1/2
τ .
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3. By Proposition 4.5, for each ω, we can find a gω supported in FnwFτ \ π(ω) such that

‖∆kgω‖L2(FnwFτK) ≤ r−knw µ−(k−1/2)n
w r−kτ µ−k+1/2

τ ‖AnwAτgω‖H2k(K)

≤ Cr−knw µ−(k−1/2)n
w r−kτ µ−k+1/2

τ ‖AnwAτPtf‖H2k(K) ≤ 2Cε,

and ∆jAnwAτgω(q) = ∆jAnwAτPtf(q), ∂n∆jAnwAτgω(q) = ∂n∆jAnwAτPtf(q), ∀j ≥ 0, q ∈ V0 \
{π(ω)}. Replace Ptf |FnwFτ (K) with gω for each ω, and name the induced function g. Clearly,
g ∈ D(Ω). One can then check that

‖f − g‖H2k(K) ≤ C ′‖∆kf −∆kg‖L2(K) ≤ C ′(1 + 2#P + 2C#P)ε,

noticing that both f, g are in H2k
D (K). The lemma is proved by choosing ε arbitrarily. �

Proof of Theorem 4.2. It suffices to show {f ∈ Hσ(K) : T
(σ)
ω (f) = 0, ∀ω ∈ P} ⊂ Hσ

0 (K).
Choose k large enough so that σ ≤ 2k. By Lemma 4.6, we have

ker2k THk−1
⊕
(
⊕ω∈P RHk−1,ω

(
l2(Hk−1; rkwµ

k−1/2
w )

))
⊂ H2k

0 (K) ⊂ Hσ
0 (K).

As a consequence, by using Lemma 4.4 (a) and (c), we get

kerσ THk−1
⊕
(
⊕ω∈P RHk−1,ω

(
l2(Hk−1; r

σ/2
w µ

(σ−1)/2
w )

))
⊂ Hσ

0 (K).

On the other hand, by Theorem 3.17 (b),(c) and Lemma 4.4 (b), and using Lemma 3.6, we
can see that

{f ∈ Hσ(K) : T (σ)
ω (f) = 0, ∀ω ∈ P} = kerσ THk−1

⊕
(
⊕ω∈PRHk−1,ω

(
l2(Hk−1; r

σ/2
w µ

(σ−1)/2
w )

))
.

The assertion follows immediately. �

As a consequence of Theorem 4.2, we have the following characterization of Hσ
0 (K).

Theorem 4.7. Let k ≥ 1 be an integer, and let 0 ≤ σ ≤ 2k. Then we have

Hσ
0 (K) = kerσ THk−1

⊕
(
⊕ω∈P RHk−1,ω

(
l2(Hk−1; r

σ/2
w µ

(σ−1)/2
w )

))
. (4.1)

5. Interpolation of Hσ(K): σ ≥ 0

Now we are ready to turn to the second topic, the interpolation theorems. In this section,
we prove some interpolation theorems for Sobolev spaces with non-negative orders, and we
will combine these results in a final theorem on Sobolev spaces with real orders in Section 6.
We assume both (C1) and (C2) in this section.

Lemma 5.1. Let (Z0, Z1) be an interpolation couple, which means Z0 and Z1 are continuously
embedded in a same Hausdorff topological vector space. Let Z0 = X0⊕ Y0 and Z1 = X1⊕ Y1,
and assume that (X0 +X1) ∩ (Y0 + Y1) = {0}. Then we have

(a). [Z0, Z1]θ = [X0, X1]θ ⊕ [Y0, Y1]θ;

(b). Assume that [Z0, Z1]θ = X̃ ⊕ Ỹ and X̃ ⊂ X0 +X1, Ỹ ⊂ Y0 + Y1, then X̃ = [X0, X1]θ
and Ỹ = [Y0, Y1]θ, with equivalent norms.

Proof. (a). Since Z0 +Z1 = (X0 +X1)+(Y0 +Y1) with (X0 +X1)∩ (Y0 +Y1) = {0}, we can
define the natural projection P : Z0 +Z1 → X0 +X1 such that (1− P ) : Z0 +Z1 → Y0 + Y1.
It is easy to check that P ∈ L([Z0, Z1]θ, [X0, X1]θ) and 1−P ∈ L([Z0, Z1]θ, [Y0, Y1]θ) by using
complex interpolation. So [Z0, Z1]θ = [X0, X1]θ + [Y0, Y1]θ with [X0, X1]θ ∩ [Y0, Y1]θ = {0}.
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It remains to check that ‖x‖[Z0,Z1]θ � ‖x‖[X0,X1]θ for any x ∈ [X0, X1]θ and ‖y‖[Z0,Z1]θ �
‖y‖[Y0,Y1]θ for any y ∈ [Y0, Y1]θ. Let iX be the embedding map from X0 + X1 → Z0 + Z1.
Then, by using complex interpolation, one can see that iX ∈ L([X0, X1]θ, [Z0, Z1]θ). As a
consequence, ‖x‖[X0,X1]θ = ‖Px‖[X0,X1]θ . ‖x‖[Z0,Z1]θ = ‖iXx‖[Z0,Z1]θ . ‖x‖[X0,X1]θ , where
we also use the fact that P ∈ L([Z0, Z1]θ, [X0, X1]θ). The proof for [Y0, Y1]θ is the same.

(b). Clearly [X0, X1]θ = P ([Z0, Z1]θ) = X̃, and [Y0, Y1]θ = (1 − P )([Z0, Z1]θ) = Ỹ . The
estimate of the norms is obvious. �

Lemma 5.2. kerσ THk−1
, σ ≥ 0 (defined in Definition 4.3) is stable under complex interpo-

lation, i.e., for 2k ≥ σ > σ′ ≥ 0, it holds that

[kerσ THk−1
, kerσ′ THk−1

]θ = ker(1−θ)σ+θσ′ THk−1
,∀θ ∈ [0, 1].

Proof. We need to use the fact that Hσ
D(K) is stable under complex interpolation, see

[35]. In other words, H
(1−θ)σ+θσ′

D (K) = [Hσ
D(K), Hσ′

D (K)]θ,∀θ ∈ [0, 1]. It is easy to see
that Hσ

D(K) = kerσ THk−1
⊕ Xσ, where we write Xσ = ⊕ω∈PRHk−1,ωTHk−1,ω(Hσ

D(K)) for

convenience. Also, one can see
(

kerσ THk−1
+kerσ′ THk−1

)
∩ (Xσ+Xσ′) = kerσ′ THk−1

∩Xσ′ =
{0}, ker(1−θ)σ+θσ′ THk−1

⊂ kerσ′ THk−1
and X(1−θ)σ+θσ′ ⊂ Xσ′ . The lemma follows from

Lemma 5.1 (b). �

Lemma 5.3. Let X be a Banach space and A be a compact operator in L(X,X). Denote

l2(X;α) the closure of l2(X;α) in l2(X,A;α). Then, we have

[l2(X;α), l2(X;β)]θ = l2(X;α(1−θ)βθ),

for any ∞ > α > β > 0 and 0 < θ < 1.

Proof. Let’s first make some observations of the special cases.

Claim 1: Let β = |λl|, then [l2(El;α), l2(El;β)]θ = l2(El;α
(1−θ)βθ).

In this case, by using Lemma 3.6, we see that

[l2(El;α), l2(El;β)]θ = [l2(El;α), l2(El, A;β)]θ = [l2(El, A;α), l2(El, A;β)]θ

= l2(El, A;α(1−θ)βθ) = l2(El;α
(1−θ)βθ),

where the last equality holds since α(1−θ)βθ > |λl|.
Claim 2: Let α = |λl|, then [l2(El;α), l2(El;β)]θ = l2(El;α

(1−θ)βθ).
First, choose θ1, θ2 ∈ (0, 1) such that θ1 + θ2 − θ1θ2 = θ, we can see

[l2(El;α), l2(El;β)]θ = [l2(El, A;α), l2(El;β)]θ

=
[
[l2(El, A;α), l2(El;β)]θ1 , l

2(El;β)
]
θ2

⊂ [l2(El, A;α(1−θ1)βθ1), l2(El;β)]θ2

= [l2(El;α
(1−θ1)βθ1)⊕ SA(El), l

2(El;β)⊕ {0}]θ2 = l2(El;α
(1−θ)βθ),

where we use Lemma 3.6 in the first and fourth lines, use the fact that l2(El;β) ⊂ l2(El, A;β)
in the third line, and use Lemma 5.1 in the last equality. On the other hand, we also have

l2(El;α
1−θβθ) = [l2(El;α), l2(El;β)]θ ⊂ [l2(El;α), l2(El;β)]θ.

Combining the above two embedding relationships, noticing that both of them are continuous,
we get the claim.
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Now we return to prove the lemma. We need to consider four different cases, based on
whether α, β ∈ {|λl|}∞l=0.

For the extreme case α = |λl|, β = |λl′ | for some l′ > l, we devide the space X into three

pieces X = Êl ⊕ Êl′ ⊕ Y , such that σ(A, Y ) = σ(A,X) \ |{z : |z| = |λl| or |λl′ |}. By using
Lemma 3.6, we see that{

l2(X;α) = l2(Êl;α)⊕ l2(Êl′ ;α)⊕ l2(Y ;α),

l2(X;β) = l2(Êl;β)⊕ l2(Êl′ ;β)⊕ l2(Y ;β).

The assertion then follows by using Lemma 5.1 (a) and the two claims. The other three
cases can be proved similarly. �

The following are main theorems of this section.

Theorem 5.4. The Sobolev spaces Hσ(K) are stable under complex interpolation.

Proof. For σ > σ′ ≥ 0, we can easily see that

[Hσ(K), Hσ′(K)]θ = H(1−θ)σ+θ′σ(K),∀θ ∈ [0, 1]

by using the Lemma 4.4 (b), Lemma 5.1 (a), Lemma 5.2 and the fact that l2(X,A;α) is
stable under complex interpolation. �

The interpolation result for Hσ
0 (K) is somewhat complicated. The result will coincide with

the Rn case. Interested readers may read [25] for an interpolation theorem for Hσ
0 (Ω) with

Ω ⊂ Rn.

Definition 5.5. For σ ≥ 0, define

Hσ
00(K) =

{
f ∈ Hσ(K) : f · ρ−σ ∈ L2(K)

}
,

where ρ(x) = R(x, V0)1/2+dH/2 on K with R(·, ·) being the effective resistance metric. For
each f ∈ Hσ

00(K), we assign the norm

‖f‖Hσ
00(K) = ‖f‖Hσ(K) + ‖fρ−σ‖L2(K).

Remark 1. Hσ
00(K) are natural analogs of the Lions-Magenes spaces, see [25].

Remark 2. One can easily see that for all 2k ≥ σ with k ∈ N, we have

Hσ
00(K) = kerσ THk−1

⊕
(
⊕ω∈P RHk−1,ω

(
l2(Hk−1; rσ/2w µ(σ−1)/2

w )
))
.

In addition, for f = f0 +
∑

ω∈P RHk−1,ω(hω) ∈ Hσ
00(K) with f0 ∈ kerσ THk−1

and hω ∈
l2(Hk−1; r

σ/2
w µ

(σ−1)/2
w ), we have

‖f‖Hσ
00(K) � ‖f0‖Hσ(K) +

∑
ω∈P
‖hω‖l2(Hk−1;r

σ/2
w µ

(σ−1)/2
w )

.

We have the following interpolation theorems.

Theorem 5.6. The spaces Hσ
00(K) are stable under complex interpolation.

Proof. The theorem is a consequence of the above Remark 2, by a same method as Theorem
5.4. �



SOBOLEV SPACES ON P.C.F. SELF-SIMILAR SETS: BOUNDARY BEHAVIOR AND INTERPOLATION THEOREMS19

Theorem 5.7. Let σ > σ′ ≥ 0, then [Hσ
0 (K), Hσ′

0 (K)]θ = H
(1−θ)σ+θσ′

00 (K),∀θ ∈ (0, 1). In

particular, [Hσ
0 (K), Hσ′

0 (K)]θ = H
(1−θ)σ+θσ′

0 (K) if and only if r
σθ/2
w µ

(σθ−1)/2
w /∈ {|λl,w|}∞l=0 for

any ω = τẇ ∈ P, with σθ = (1− θ)σ + θσ′.

Proof. The first assertion follows from Theorem 4.7, Lemma 5.1 and 5.3. The second
assertion is a consequence of Lemma 3.6. �

6. Interpolation of Hσ(K): σ ∈ R

In this section, we will extend the definition of Sobolev spaces Hσ(K) to negative orders,
and study the associated interpolation theorem. Readers may read Lions and Magenes’s
monograph [25] for classical theorems on bounded domains in Rn. Part of the idea in this
section is inspired by [25]. We will apply the theorems in Section 4 and 5, which are proven
with conditions (C1) and (C2).

Definition 6.1. For σ ≥ 0, we define H−σ(K) =
(
Hσ

0 (K)
)′

, with the identification H0(K) =

(H0(K))′ ⊂ H−σ(K), noticing that H0(K) = H0
0 (K) = L2(K).

Remark 1. In the above definition, we naturally embed the space H0(K) into H−σ(K).
More concretely, for each f ∈ H0(K), we can correspond it with a linear functional ϕf ∈(
Hσ

0 (K)
)′

by the formula ϕf (g) =
∫
K f(x)g(x)dµ(x) =< g, f >L2(K),∀g ∈ Hσ

0 (K). As a
consequence, we always have

Hσ(K) ⊂ Hσ′(K), ∀∞ > σ > σ′ > −∞.

Remark 2. We also embed H0(K) into
(
Hσ

00(K)
)′

in a same way. Notice that H−σ(K) =(
Hσ

00(K)
)′

if and only if r
σ/2
w µ

(σ−1)/2
w /∈ {|λl,w|}l≥0 for any ω = τẇ ∈ P.

The following interpolation theorem is the main result in this section, which is a perfect
analogue to the classical theorem.

Theorem 6.2. Let −∞ < σ′ < σ < +∞, 0 < θ < 1 and σθ = (1− θ)σ + θσ′. We have

[Hσ(K), Hσ′(K)]θ =

{
Hσθ(K), if σθ ≥ 0,(
H−σθ00 (K)

)′
, if σθ < 0.

In particular,

[Hσ(K), Hσ′(K)]θ = Hσθ(K)

if and only if r
−σθ/2
w µ

−(σθ+1)/2
w /∈ {|λl,w|}l≥0 for any ω = τẇ ∈ P.

In the rest of this section, we devote to prove Theorem 6.2.

6.1. Lemmas. We collect some lemmas first. For convenience, we let Z be a Hilbert space
with inner product < ·, · >Z . Let Z1 ⊂ Z be a Banach space which is dense and continuously
embedded in Z.

Define Z−1 as the dual space of Z1, and embed Z into Z−1 by

z → ϕz(·) =< ·, z >Z∈ Z−1. (6.1)

By this, we have the relation Z1 ⊂ Z ⊂ Z−1. In addition, we have the following lemma due
to Lions and Magenes [25] (Proposition 2.1).

Lemma 6.3. [Z−1, Z1]1/2 = Z.
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The next lemma will play a key role in the proof of Theorem 6.2.

Lemma 6.4. Let Z
(0)
1 ⊂ Z1 be a closed subspace of Z1 and suppose Z

(0)
1 is dense in Z. Define

Z
(0)
−1 in a same way as Z−1. If there is a map L ∈ L(Z,Z) ∩ L(Z1, Z1) such that{

L+ id ∈ L(Z,Z) ∩ L(Z1, Z
(0)
1 ),

L∗ − id ∈ L(Z,Z) ∩ L(Z1, Z
(0)
1 ),

where id is the identity map and L∗ is the adjoint operator of L with respect to Z, then

[Z
(0)
−1 , Z1]1/2 = Z.

Proof. Let Z̃ = Z × Z with inner product < z̃, z̃′ >Z̃=< z1, z
′
1 >Z + < z2, z

′
2 >Z , where

z̃ = (z1, z2) and z̃′ = (z′1, z
′
2). Define Z̃1 = {(z1, z2) ∈ Z1 × Z1 : z1 + z2 = Z

(0)
1 } with norm

‖(z1, z2)‖Z̃1
= ‖z1‖Z1 + ‖z2‖Z1 . Like we have done before, we define Z̃−1 with Z̃ naturally

embedded in Z̃−1, noticing here that Z̃1 is dense in Z̃ by the assumption on Z
(0)
1 .

Now we define the extension map E ∈ L(Z, Z̃) ∩ L(Z1, Z̃1) as follows

E(z) = (z, Lz), ∀z ∈ Z.

The map E can be naturally extended to be E ∈ L(Z
(0)
−1 , Z̃−1) with the formula

Eϕ(z̃) = ϕ(E∗z̃),

for any ϕ ∈ Z
(0)
−1 and z̃ ∈ Z̃1, noticing that E∗z̃ = E∗(z1, z2) = z1 + L∗z2 = z1 + z2 +

(L∗ − id)z2 ∈ Z
(0)
1 . Therefore, we get E ∈ L(Z

(0)
−1 , Z̃−1) ∩ L(Z1, Z̃1). As a consequence,

E ∈ L([Z
(0)
−1 , Z1]1/2, Z̃) by using complex interpolation and Lemma 6.3.

We also define a restriction map R : Z̃−1 → Z
(0)
−1 by the formula

(Rϕ̃)(z) = ϕ̃(z, 0), ∀ϕ̃ ∈ Z̃−1 and z ∈ Z(0)
1 .

It is then easy to see that RE is the identity map from Z
(0)
−1 to Z

(0)
−1 . In addition, we have

R(Z̃) = Z. Thus we get

[Z
(0)
−1 , Z1]1/2 = RE([Z

(0)
−1 , Z1]1/2) ⊂ R(Z̃) = Z.

On the other hand, we have Z = [Z
(0)
−1 , Z

(0)
1 ]1/2 ⊂ [Z

(0)
−1 , Z1]1/2 by using Lemma 6.3. This

finishes the proof. �

6.2. A decomposition by projection. Lemma 6.4 provides the strategy of the proof. Nev-
ertheless, we need to overcome the difficulty that multiplication does not preserve smoothness
in the fractal case [6]. In this part, for k ∈ N, we focus on constructing a subspace Sk,w in

L2(K), such that the projections of functions in H2k(K) on Sk,w maintain the smoothness,

which will give us a new decomposition of the space H2k(K). This will play the role of
multiplication by smooth bump functions.

Lemma 6.5. For ω = ẇ ∈ P, assuming FwK∩V0 = {π(ω)} without loss of generality, there is

a linear map R̃k,w : Hk−1 → dom∆∞ such that AwR̃k,w(h) = Awh, PR̃k,w(Hk−1)(h) = R̃k,w(h)

and R̃k,w(h) is supported away from V0 \ {π(ω)}.



SOBOLEV SPACES ON P.C.F. SELF-SIMILAR SETS: BOUNDARY BEHAVIOR AND INTERPOLATION THEOREMS21

Proof. To achieve this, we choose a basis {h1, h2, · · · , hn} of Hk−1, and denote

aij =< hi, hj >L2(FwK), 1 ≤ i, j ≤ n.

It is clear that we can find h̃i ∈ dom∆∞, 1 ≤ i ≤ n, such that Awh̃i = Awhi, the support of
h̃i is a small neighbourhood of FwK, and < h̃i, hj >L2(K)= aij . In addition, we can assume
that

< h̃i, h̃j >L2(K)= εij + aij , 1 ≤ i, j ≤ n
with ε = maxi,j{|εij |} small enough so that we can find fi ∈ dom∆∞ supported in some
compact subsets of K \ FwK away from the boundary, satisfying

< fi, h̃j >L2(K)= 0, ∀1 ≤ i, j ≤ n,
< fi, fj >L2(K)= δijε, ∀1 ≤ i, j ≤ n,
< fi, hj >L2(K)= εij + δijε, ∀1 ≤ i, j ≤ n.

Set R̃k,w(hi) = h̃i + fi, and extend R̃k,w to be the linear map Hk−1 → dom∆∞. One can
then check that

< hi, R̃k,w(hj) >L2(K)=< R̃k,w(hi), R̃k,w(hj) >L2(K)= aij + εij + δijε,

and thus PR̃k,w(Hk−1)(hi) = R̃k,w(hi) for any 1 ≤ i ≤ n. The lemma follows immediately. �

Definition 6.6. Let ω = ẇ ∈ P, k ≥ 1 be an integer.
(a). Write fw,h for R̃k,w(h) for short. We omit k since R̃k,w can be defined consistently

for different k’s.
(b). Let Sk,w be the subspace of L2(K) spanned by the functions {fw,h◦F−nw : h ∈ Hk−1, n ≥

0}.

We have the following theorem.

Theorem 6.7. Let k ≥ 1 be an integer, f ∈ H2k(K), and ω = τẇ ∈ P.

(a). If Aτf⊥Sk,w in L2(K), we have T
(2k)
ω f = 0.

(b). PSk,wAτf ∈ H2k(K), and f − µτA
∗
τPSk,wAτf ∈ H2k(K), where A∗τ is the adjoint

operator of Aτ in L2(K), which can be expressed by A∗τg = µ−1
τ g ◦ F−1

τ ,∀g ∈ L2(K).

Proof. (a). Let h = T
(2k)
ω f and f̃ = Aτf − h. Then we have

< fw,Anwh ◦ F
−n
w ◦ F−1

τ , f >L2(K) = µnwµτ < fw,Anwh, A
n
wAτf >L2(K)

= µnwµτ
(
< fw,Anwh, A

n
wh >L2(K) + < fw,Anwh, A

n
wf̃ >L2(K)

)
= µnwµτ

(
‖fw,Anwh‖

2
L2(K) + o(λnlw(2k),ω)‖fw,Anwh‖L2(K)

)
.

Thus the left side equals 0 for any n ≥ 0 only if T
(2k)
ω f = h = 0.

(b). Without loss of generality, we consider the case that ω = ẇ. For each f ∈ H2k(K),

we will construct a series
∑∞

n=0 f
(n) converging in H2k(K), where each f (n) takes the form

f (n) = fw,h ◦ F−nw for some h ∈ Hk−1, so that PSk,wf =
∑∞

n=0 f
(n).

First, we look at some special functions. Let f ∈ L2(K) such that Alwf ∈ Hk−1 for some

l ≥ 0. Denote S
(l)
k,w = {fw,h ◦ F−nw : h ∈ Hk−1, 0 ≤ n ≤ l}, and write P

S
(l)
k,w

f =
∑l

n=0 f
(n).

Clearly, g = f −
∑l−1

n=0 f
(n) is k-multiharmonic in F lwK, and so f (l) = fw,Alwg ◦F

−l
w by Lemma
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6.5. As a consequence, we have f−P
S
(l)
k,w

f = 0 on F l+1
w K, which shows that f−P

S
(l)
k,w

f⊥Sk,w.

By this observation, we have the following construction.

Step 1: For any f ∈ L2(K) such that Alwf ∈ Hk−1 for some l ≥ 0, we can write PSk,wf =∑l
n=0 f

(n), where each f (n) takes the form f (n) = fw,h ◦ F−nw for some h ∈ Hk−1.

Step 2: For any f ∈ L2(K) such that Alwf ∈ Hk−1 for some l ≥ 0, we have by induction

‖f (n)‖L∞(K) . ‖
n∑

m=0

f (m)‖L2(FnwK\F
n+1
w K) +

n−1∑
m=0

‖f (m)‖L∞(K) . 2n‖f‖L2(K), for n ≥ 0.

Therefore we can continuously extend the definition of f (n), n ≥ 0 to general functions f in
L2(K).

We have some observations on the sequence {f (n)}n≥0.

Observation 1: For any f ∈ L2(K) and n ≥ 1, An−1
w f (n) = (An−1

w f)(1).
Proof of Observation 1. We only need to consider the case that Alwf ∈ Hk−1 for some

l ≥ 0. Let g = f −
∑n−2

m=0 f
(m). Then we have

An−1
w PSk,wg = An−1

w P
S
(n−1)+
k,w

g = PSk,w
(
An−1
w g

)
,

where S
(n−1)+
k,w = {fw,h ◦ F−mw : h ∈ Hk−1,m ≥ n − 1}. So we have An−1

w f (n) = An−1
w g(n) =

(An−1
w g)(1). On the other hand, we have (An−1

w f)(1) = (An−1
w g)(1) as An−1

w (f − g) ∈ Hk−1.

Observation 2: There a kernel ψ ∈ L∞(K ×K) such that

An−1
w f (n)(x) =

∫
K
ψ(x, y)∆k

(
An−1
w f(y)

)
dµ(y),

for any f ∈ H2k(K) and n ≥ 1.
Proof of Observation 2. We only need to choose

ψ(x, y) = (−1)k
∫
Kk−1

G(1)
y1 (x)G(y1, y2) · · ·G(yk−1, y)dµ(y1) · · · dµ(yk−1),

where Gy(x) = G(x, y) is the Green’s function. By Step 2, we immediately have ψ ∈ L∞(K×
K). Since h(1) = 0, ∀h ∈ Hk−1, we can easily see that f (1)(x) =

∫
K ψ(x, y)∆kf(y)dµ(y). For

n ≥ 2, we use Observation 1.

Now, by using Observation 2 and Lemma 3.8, we can see that {f (n)}n≥0 ∈ l2(L∞(K); rkwµ
k−1/2
w )

for any f ∈ H2k(K). Then, a same proof as in Proposition 3.16 shows that
∑∞

n=0 f
(n)

converges in H2k(K) with ‖
∑∞

n=0 f
(n)‖H2k(K) . ‖f‖H2k(K). On the other hand, we have

PSk,wf =
∑∞

n=0 f
(n), ∀f ∈ H2k(K) as desired. In fact, this is true if Alwf ∈ Hk−1 for some

l ≥ 0, and this kind of functions are dense in H2k(K). �

6.3. Proof of Theorem 6.2. We return to prove Theorem 6.2. As shown in Lemma 6.4,
the key is to construct the map “L”. Theorem 6.7 will play a crucial role.

Lemma 6.8. For each w ∈W∗ and l ≥ 0, there is a polynomial pw such that pw(Aw)+id = 0

and pw(µ−1
w A−1

w )− id = 0 on Ẽl,w.
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Proof. Since Ẽl,w is of finite dimension, there are polynomials p1 and p2 such that p1(Aw) =

0 and p2(µ−1
w A−1

w ) = 0 on Ẽl,w. The zeros of p1 and p2 can be disjoint, since they can be just
the eigenvalues of Aw and µ−1

w A−1
w respectively. Then p1 and p2 are coprime polynomials,

and thus there exist polynomials r1 and r2 such that r1p1 − r2p2 = 1. Then the polynomial
pw = r1p1 + r2p2 will satisfy the requirement of the lemma. �

Definition 6.9. (a). Let k ≥ 1, ω = τẇ ∈ P and l = lω(2k). Take pw as in Lemma 6.8.

Define L
(k)
ω = µτA

∗
τPSk,wpw(Aw)Aτ , where A∗τ is the adjoint operator of Aτ .

(b). Define L(k) =
∑

ω∈P L
(k)
ω .

We have the following Proposition.

Proposition 6.10. L(k) + id ∈ L
(
H0(K), H0(K)

)
∩L
(
H2k(K), H2k

0 (K)
)

and (L(k))∗− id ∈
L
(
H0(K), H0(K)

)
∩ L
(
H2k(K), H2k

0 (K)
)
, where id is the identity map.

Proof. Let ω = τẇ ∈ P. For any 0 ≤ s < ∞ and f ∈ H2k(K), by using Theorem 6.7, we
always have µτA

∗
τPSk,wA

s
wAτf ∈ H2k(K), has 0 tangent on P \ {π(ω)}, and

T (2k)
ω (µτA

∗
τPSk,wA

s
wAτf) = T (2k)

ω (µτA
∗
τA

s
wAτf) = Asw

(
T (2k)
ω (f)

)
.

As a consequence, we see that L
(k)
ω f has 0 tangent at P \ {π(ω)}, and T

(2k)
ω (L

(k)
ω f) =

pw(Aw)T
(2k)
ω (f). By Definition 6.9 and Lemma 6.8, we conclude that (L(k) + id)f ∈ H2k

0 (K)
by using the characterization of H2k

0 (K) in Theorem 4.2.
To show the other half, we need some observations.

1)
(
L

(k)
ω

)∗
= µτA

∗
τpw(A∗w)PSk,wAτ , and

(
L(k)

)∗
=
∑

ω∈P
(
L

(k)
ω

)∗
.

2) For f ∈ H2k(K), T
(2k)
ω (A∗wf) = µ−1

w A−1
w

(
T

(2k)
ω (f)

)
, noticing that A∗w(f) = µ−1

w f ◦ F−1
w .

The rest of the proof is similar to that of the first part. �

Proof of Theorem 6.2. By using Lemma 6.4 and Proposition 6.10, we see that

[H−2k(K), H2k(K)]1/2 = H0(K).

Thus for −∞ < σ1 < 0 < σ2 < +∞ and θ = σ1
σ1−σ2 , by using Theorem 5.4 and 5.7, we get[(

H−σ100 (K)
)′
, Hσ2(K)

]
θ

= H0(K).

As a consequence, we then have

[Hσ1(K), Hσ2(K)]θ = H0(K),

because

H0(K) = [Hσ1(K), Hσ2
0 (K)]θ ⊂ [Hσ1(K), Hσ2(K)]θ ⊂

[(
H−σ100 (K)

)′
, Hσ2(K)

]
θ

= H0(K).

Then the theorem follows immediately. �

7. Examples

In this section, we present some concrete examples.
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7.1. D3-symmetric fractals. Tangents on D3-symmetric p.c.f. self-similar sets have been
studied in detail in [34] on the domain of ∆k. Also see some related studies in [10, 9, 33].

More precisely, let’s look at a p.c.f. self-similar set K with exactly three boundary points
V0 = {p1, p2, p3} such that π−1(pi) = i̇. Assume that there exists a group G of homeo-
morphisms of K isomorphic to the D3-symmetric group that acts as permutations on V0,
and G preserves the harmonic structure and the self-similar measure of K. See Figure 1 for
examples.

Figure 1. Examples of D3-symmetric p.c.f. self-similar sets: the Sierpinski
gasket, the Hexagasket and the level-3 Sierpinski gasket.

For fixed i ∈ {1, 2, 3}, let hT be the antisymmetric harmonic function with the boundary
values hT (pi) = 0, hT (pi+1) = 1, hT (pi+2) = −1, where we use the cyclic notation p4 = p1.
Then it is easy to see that,

{λl,i}l≥0 = {rni µni , rn+1
i µni , ιir

n
i µ

n
i }n≥0,

where ιi is defined by the identity AihT = ιihT . This means that σ(Ai,H0) = {1, ri, ιi}.
In convention, we define normal derivatives and tangential derivatives of functions at pi

by the following pointwise formulas, if the limits exist,∂nf(pi) = lim
n→∞

r−ni
(
2f(pi)− f(Fni pi+1)− f(Fni pi+2)

)
,

∂T f(pi) = lim
n→∞

ι−ni
(
f(Fni pi+1)− f(Fni pi+2)

)
.

Assuming (C2), by using Theorem 3.14, we can easily see the following result.

Theorem 7.1. (a). For σ > 2n+ 2− dS
2 , n ∈ Z+, ∂n∆nf(pi) is well defined, ∀f ∈ Hσ(K).

(b). For σ > 2n+ 2 log ιi
(1+dH) log ri

+ dS
2 , n ∈ Z+, ∂T∆nf(pi) is well defined, ∀f ∈ Hσ(K).

The following is an equivalent narration of Theorem 4.2.

Theorem 7.2. For σ ≥ 0 and f ∈ Hσ(K), we have f ∈ Hσ
0 (K) if and only if

∆nf(pi) = 0, ∀0 ≤ n < σ
2 −

dS
4 and i = 1, 2, 3,

∂n∆nf(pi) = 0, ∀0 ≤ n < σ
2 + dS

4 − 1 and i = 1, 2, 3,

∂T∆nf(pi) = 0, ∀0 ≤ n < σ
2 −

dS
4 −

log ιi
(1+dH) log ri

and i = 1, 2, 3.
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Figure 2. The Vicsek set V.

7.2. The Vicsek set. Let {pi}4i=1 be the four vertices of a unit square, and p5 be the center
of the square. The Vicsek set V (see Figure 2) is the attractor of the i.f.s. {Fi}5i=1, where

Fix =
1

3
x+

2

3
pi, for i = 1, 2, 3, 4, 5.

The boundary set of V is V0 = {pi}4i=1 with π−1(pi) = i̇. There is a unique S4-symmetric
harmonic structure on V, with

ri =
1

3
, i = 1, 2, 3, 4, 5,

and
E0(f, g) =

∑
i 6=j

(
f(pi)− f(pj)

)(
g(pi)− g(pj)

)
, ∀f, g ∈ l(V0).

In addition, we take µ to be the canonical normalized Hausdorff measure on V.
The Vicsek set V is an interesting example in that {λl,i}l≥0 = {15−n, 3−1 · 15−n}n≥0, with

each λl,i has a one dimensional generalized eigenspace. We have the following narration of
Theorem 4.2.

Theorem 7.3. For σ ≥ 0 and f ∈ Hσ(V), we have f ∈ Hσ
0 (V) if and only if{

∆nf(pi) = 0, ∀0 ≤ n < σ
2 −

dS
4 and i = 1, 2, 3, 4,

∂n∆nf(pi) = 0, ∀0 ≤ n < σ
2 + dS

4 − 1 and i = 1, 2, 3, 4.

Furthermore, for σ ≥ 0, write Hσ
D(V) = (id − ∆D)−σ/2L2(V) and Hσ

N (V) = (id −
∆N )−σ/2L2(V), where ∆D and ∆N are the Dirichlet and Neumann Laplacians. See [11, 35]
for a detailed discussion on these spaces. Then we have

Theorem 7.4. For σ ≥ 0, Hσ
00(V) = Hσ

D(V)∩Hσ
N (V) with ‖f‖Hσ

00(V) � ‖f‖Hσ
D(V)+‖f‖Hσ

N (V).

Proof. Fix k ≥ dσ/2e, we break the spaces Hk−1 into two parts, Hk−1 = X(i) ⊕ Y (i) such

that σ(Ai, X
(i)) = {1, 15−1, · · · , 15−k+1} and σ(Ai, Y

(i)) = {3−1, 45−1, · · · , 3−1 · 15−k+1}.
Using the notations in Definition 3.4 and 4.3, one can check that

Hσ
D(V) = kerσ THk−1

⊕
(
⊕4
i=1 RHk−1,i̇

(
l2(X(i); r

σ/2
i µ

(σ−1)/2
i )

))
⊕
(
⊕4
i=1 RHk−1,i̇

(
l2(Y (i), Ai; r

σ/2
i µ

(σ−1)/2
i )

))
,

Hσ
N (V) = kerσ THk−1

⊕
(
⊕4
i=1 RHk−1,i̇

(
l2(X(i), Ai; r

σ/2
i µ

(σ−1)/2
i )

))
⊕
(
⊕4
i=1 RHk−1,i̇

(
l2(Y (i); r

σ/2
i µ

(σ−1)/2
i )

))
.
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The theorem follows immediately. �

Appendix A. The proof of Lemma 3.6

In this appendix, we prove Lemma 3.6. Recall that X is a Banach space with norm ‖ · ‖X ,
A : X → X is a compact operator, and σ(A,X) is the spectrum of A : X → X. We let
{λl}l≥0 be the nonzero eigenvalues of A, which is ordered in decreasing order of absolute

values. Let El be the corresponding generalized eigenspaces, and denote Ẽl = ⊕l′′i=0Ei and

Êl = ⊕l′′i=l′Ei, where l′ = min{i ≥ 0 : |λi| = |λl|}, l′′ = max{i ≥ 0 : |λi| = |λl|}.
Proof of Lemma 3.6. Let s ∈ l2(X,A;α), and denote t0 = s0 and tn = sn−Asn−1 for n ≥ 1.

Clearly, t := {tn}n≥0 ∈ l2(X;α) with ‖t‖l2(X;α) � ‖s‖l2(X,A;α), and also sn =
∑n

m=0A
n−mtm.

We consider three cases separately.

Case 1: α > |λ0| or σ(A,X) = {0}.
Using the Minkowski inequality, noticing that α is larger than the spectral radius of A :

X → X, we get

‖s‖l2(X;α) = ‖
n∑

m=0

An−mtm‖l2(X;α) ≤
∥∥ n∑
m=0

α−n‖Amtn−m‖X
∥∥
l2

≤
∥∥ ∞∑
m=0

1n≥mα
m−n‖α−mAmtn−m‖X

∥∥
l2
≤
∞∑
m=0

‖α−mAm‖X→X · ‖t‖l2(X;α)

. ‖s‖l2(X,A;α).

The other direction ‖s‖l2(X,A;α) . ‖s‖l2(X;α) is obvious. To conclude, in this case, we have

l2(X,A;α) = l2(X;α) = l2(X;α).

Case 2: |λl+1| < α < |λl| or α < |λl| = min{|λk| : λk ∈ σ(A,X)}.

First, we assume A is of finite rank and X = ⊕li=0Ei, so that A−1 is well defined. Clearly,
the following limit exists in X,

slim = lim
n→∞

A−nsn =
∞∑
m=0

A−mtm,

since α−1 is larger than the spectral radius of A−1. Thus

sn −Anslim = −
∞∑

m=n+1

An−mtm.

Now we define s′ = {sn −Anslim}n≥0. Using Minkowski inequality, we get

‖s′‖l2(X;α) =
∥∥α−n‖ ∞∑

m=n+1

An−mtm‖X
∥∥
l2

≤
∥∥ ∞∑
m=1

α−n−m‖αmA−mtn+m‖X
∥∥
l2
≤
∞∑
m=1

‖αmA−m‖X→X · ‖t‖l2(X;α)

. ‖s‖l2(X,A;α).
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This shows that s′ ∈ l2(X;α) with the estimate of the norm. So we have s = SA(slim) + s′,
with s′ ∈ l2(X;α). Clearly, both SA(X) and l2(X;α) are closed subspace of X, and SA(X)∩
l2(X;α) = {0}. So we have proved the decomposition

l2(X,A;α) = SA(Ẽl)⊕ l2(X;α).

For general case, since A admits a discrete spectrum, we can find a closed subspace Ẽ◦l
such that σ(A, Ẽ◦l ) = σ(A,X) \ {λi}li=0, and X = Ẽl ⊕ Ẽ◦l . Then we see that

l2(X,A;α) = l2(Ẽl, A;α)⊕ l2(Ẽ◦l , A;α)

= SA(Ẽl)⊕ l2(Ẽl;α)⊕ l2(Ẽ◦l ;α) = SA(Ẽl)⊕ l2(X;α),

where we use (a) and the finite rank case that we have proved. Obvious, this implies that

l2(X;α) = l2(X;α) in this case, and we have the desired decomposition in part (b) of the
lemma.

Case 3: α = |λl| for some l ≥ 0. (assume |λl| > |λl−1| if l ≥ 1)

We first show that SA(Êl) ⊂ l2(X;α). Let s = SA(s) for some s ∈ El. There is a d ≥ 0

such that (A − λl)ds 6= 0 and (A − λl)d+1s = 0. Write s(k) = (A − λl)ks, 0 ≤ k ≤ d. Fix

m0,m1, · · · ,md ∈ N and take Mk =
∑k

i=0mi (set M−1 = 0). Then we can design a sequence

s(m0,m1,··· ,md) = {s(m0,m1,··· ,md)
n }n≥0 in l2(X;α) as follows.

λ−nl s(m0,m1,··· ,md)
n =


s, if n = 0,

λ−nl As
(m0,m1,··· ,md)
n−1 −m−1

k aks
(k), if Mk−1 < n ≤Mk,

where λ
−Mk−1

l s
(m0,m1,··· ,md)
Mk−1

= aks
(k) + bk+1s

(k+1) + · · ·+ bds
(d),

0, if n > Md.

We can easily check that

lim
m0→∞

lim
m1→∞

· · · lim
md→∞

‖SA(s)− s(m0,m1,··· ,md)‖l2(X,A;α) = 0,

which gives that SA(El) ⊂ l2(X;α). Similarly, we have SA(Êl) ⊂ l2(X;α).

As a consequence, we have l2(X;α) 6= l2(X;α), since SA(Êl) ⊂ l2(X;α) \ l2(X;α). It

remains to prove the decomposition l2(X,A;α) = SA(Ẽl−1)⊕ l2(X;α). Using the decompo-
sition we already proved in Case 1 and 2, we can see

SA(Ẽl−1) + l2(X;α) ⊃ SA(Ẽl) + l2(X;α) ⊃ l2(X,A;α− ε),

for some small ε > 0, where we set Ẽ−1 = {0} for convenience. Since l2(X,A;α − ε) is a
dense subspace of l2(X,A;α), we have

SA(Ẽl−1) + l2(X;α) = SA(Ẽl−1) + l2(X;α) ⊃ l2(X,A;α). (A.1)

Lastly, we have

SA(Ẽl−1) ∩ l2(X;α) ⊂ SA(Ẽl−1) ∩ l2(X;α+ ε) = SA(Ẽl−1) ∩ l2(X;α+ ε) = {0}, (A.2)

for some small ε > 0. The decomposition l2(X,A;α) = SA(Ẽl−1)⊕ l2(X;α) follows immedi-
ately from (A.1) and (A.2). �
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Appendix B. On the condition (C1)

Although a large amount of p.c.f. fractals, including all the examples in Section 7, satisfy
(C1), there do exist counter examples.

Example. Let {p1, p2, p3} be the three vertices of a triangle, and p4 = 1
3

∑3
i=1 pi be the

center. We define an i.f.s. {Fi}4i=1 by

Fi(x) =
1

2
x+

1

2
pi, i = 1, 2, 3,

F4(x) =
1

4
x+

3

4
p4.

Call the unique compact set, denoted by SGf , satisfying SGf =
⋃4
i=1 Fi(SGf ), the filled

Sierpinski gasket [2]. See Figure 3.

Figure 3. The filled Sierpinski gasket SGf .

One can check that C = {12̇, 13̇, 21̇, 23̇, 31̇, 32̇, 41̇, 42̇, 43̇, 123̇, 132̇, 213̇, 231̇, 312̇, 321̇}, P =
{1̇, 2̇, 3̇, 12̇, 13̇, 21̇, 23̇, 31̇, 32̇} and V0 = {p1, p2, p3, F1p2, F2p3, F3p1}. One can see that

π−1(F1p2) = {12̇, 21̇}.

As a consequence, (C1) fails for SGf . �

Fortunately, all the main theorems in this paper, including Theorem 3.14, 3.17, 4.2, 5.4,
5.6, 5.7 and 6.2, are valid even if (C1) is not satisfied, as long as we assume (C2). Clearly,
we did not use (C1) in Section 3, but Section 4 and Section 5 are somewhat delicate, where
we need a precise description of the pre-tangents at the boundary. Below we briefly show the
necessary materials in proving Theorem 4.2, 5.4, 5.6, 5.7 and 6.2 without using (C1).

We need some new notations. Let ω = ẇ ∈ P and k ∈ N.
Notation 1: Denote Ãw : Ck → Ck by (x0, x1, · · · , xk−1)→ (x0, rwµwx1, · · · , (rwµw)k−1xk−1).

Notation 2: Denote H(w)
k−1 = {h ∈ Hk−1 : ∆lh(π(ẇ)) = 0, ∀0 ≤ l ≤ k − 1}.

With some effort, one can check the following claims.

Claim 1: There is a natural isomorphism Ck × H(w)
k−1 → Hk−1, which gives us natural

isomorphisms Iw : l2(Ck, Ãw;α)× l2(H(w)
k−1, Aw;α)→ l2(Hk−1, Aw;α).
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Claim 2: Let σ ≥ 0 and k ≥ dσ/2e, p ∈ V0, π−1(p) = {ω1, · · · , ωm} = {τ1ẇ1, · · · , τmẇm}
and

Xp,σ =
{(
{x(1)

n }n≥0, {x(2)
n }n≥0, · · · , {x(m)

n }n≥0

)
∈

m∏
i=1

l2(Ck, Ãwi ; r
σ/2
wi µ

(σ−1)/2
wi ) :

lim
n→∞

(rτiµτi)
−l(rwiµwi)

−nl(x(i)
n )l = lim

n→∞
(rτjµτj )

−l(rwjµwj )
−nl(x(j)

n )l, ∀i 6= j, 0 ≤ l ≤ k − 1
}
.

There is an isomorphism

Ip : Xp,σ → l2(Ck, Ãw1 ; rσ/2w1
µ(σ−1)/2
w1

)×
( m∏
i=2

l2(Ck; rσ/2wi µ
(σ−1)/2
wi )

)
,

defined consistently for all σ 6= 2l + dS
2 , 0 ≤ l ≤ k − 1.

The key steps of constructing Ip is: first we pick a nondecreasing sequence {`n}n≥0 such

that r`nw1
� rnwj , and hence by (C2) µ`nw1

� µnwj ; next we define a sequence {x̂(j)
n }n≥0 by

A−1
τj

(
Ã−n−1
wj x̂

(j)
n+1 − Ã

−n
wj x̂

(j)
n

)
= A−1

τ1

(
Ã−`n+1
w1

x
(1)
`n+1
− Ã−`nw1

x
(1)
`n

)
.

It is easy to check that {x̂(j)
n }n≥0 ∈ l2(Ck, Ãwj ; r

σ/2
wj µ

(σ−1)/2
wj ) and {x(j)

n −x̂(j)
n }n≥0 ∈ l2(Ck; rσ/2wj µ

(σ−1)/2
wj )

using Lemma 3.6 if
(
{x(1)

n }n≥0, {x(2)
n }n≥0, · · · , {x(m)

n }n≥0

)
∈ Xp,σ and σ 6= 2l + dS

2 , ∀l ≥ 0.
The rest of the construction is easy and left to the reader.

By applying the isomorphisms in Claim 1 and Claim 2, we finally are able to give a neat
description of pre-tangents for H2l(K), 0 ≤ l ≤ k. Theorem 5.4 is true since we can still
show that the space of pre-tangents is stable under complex interpolation. To show Theorem
4.2, a similar argument as Theorem 4.7 is enough, noticing that we did not use (C1) in
the proof of Lemma 4.6. The definition of Hσ

00(K) remains the same even if (C1) is not

satisfied, so Theorem 5.6 remains the same. We may take H̃σ
0 (K) as the right side of (4.1),

then we can see that Hσ
00(K) ⊂ Hσ

0 (K) ⊂ H̃σ
0 (K), and [H̃0

σ1(K), H̃0
σ2(K)]θ = Hσ

00(K) with
σ = (1 − θ)σ1 + θσ2. Theorem 5.7 then follows as well using Theorem 5.6. Lastly, since
Theorem 6.2 is a consequence of the above theorems, it remains valid.
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