FUNCTION SPACES ON P.C.F. SELF-SIMILAR SETS III: EMBEDDING

AND INTERPOLATION THEOREMS

SHIPING CAO AND HUA QIU

ABSTRACT. We study the Sobolev spaces H () and Besov spaces B2?(Q) with o € R and
1 < p,q < o0, on products of p.c.f. self-similar sets in terms of the boundary behavior of
functions. First, we establish a general embedding theorem which says that these function
spaces are the restrictions of function spaces of the same type on a larger fractal domain
without boundary. Towards this, we develop a throughout study on the relationship be-
tween various Sobolev and Besov type spaces, including H, H and B, B. In contrast to the
Euclidean case, one of the main differences comes from the appearance of many more crit-
ical orders of o created by “derivatives” at boundary such that H and B present a critical
phenomenon if ¢ is critical, and as a consequence H, B and H , B will be different spaces
for any large order o. Second, we provide a complete diagram of the interpolations of these
function spaces in different situations. In particular, we allow spaces in the interpolation
couple to involve the critical orders, and the resulted interpolation space, when it is of a
critical order, will vary in different situations.
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1. INTRODUCTION

The theory of function spaces has been a longlasting topic in analysis, and has been playing
a prominent role in the development of partial differential equations. In the general setting
of metric measure spaces, there have been fruitful works [8], 9], 14 [16] 17, 18, 22] recently,
involving various potential spaces and Lipschitz type spaces.

This work is devoted to the Sobolev spaces and Besov spaces on fractals, especially on
products of fractals. It is well-known that on the post critically finite(p.c.f.) self-similar sets
the analytic theory was developed by J. Kigami [24] 25], following several pioneering works
on certain fractals by probabilistic methods [3], 4}, 5], [15] 28], 29], which constructed Brownian
motions, thus obtained the Laplacians indirectly as the generators. Since then, the theory of
local self-similar Dirichlet forms on fractals has been widely studied and sub-Gaussian heat
kernel estimates of the associate semigroups have been obtained [20} 27]. The initial study of
function spaces on fractals in the general p.c.f. setting was launched by R.S. Strichartz [34],
as well as the extension to products of fractals [35]. In these works, the p.c.f. self-similar sets
are viewed as bounded domains with finite boundary points, while products of them are not
p-c.f. but are more analogous to Euclidean spaces constructed as products of lines.

We are particularly interested in the function spaces on fractal domains with boundary.
The boundaries of fractals or fractal boundaries bring many striking features for the boundary
behavior of functions that never appear in Euclidean case. To reasonably establish the theory
of function spaces on fractal domains, in particular, the Sobolev spaces and Besov spaces, the
boundary condition of functions need to be dealt with in a more involved manner. In [35],
Strichartz took an explorative study on the L? type of Sobolev spaces on products of p.c.f.
self-similar sets. Because the boundary creates difficulties, the strategy is to work instead
on a proper cover space of a product fractal that has no boundary, and then the study is
transferred into the trace theorems or extension theorems of function spaces by embedding
the product fractal into this cover space. In the p.c.f. setting, it is convenient to choose the
cover space as the product of the “double covers” of fractals, by taking two copies of the
fractals and identifying common boundary points. This pioneering work reveals the tip of
the iceberg, and leaves many unknown aspects to uncover.

One of our goals is to fulfill the story of Sobolev spaces and additionally their real interpola-
tions, the (heat) Besov spaces, on products of p.c.f. self-similar sets in the general L setting.
We will use K to denote a p.c.f. self-similar set and K its double cover. We will mainly
deal with the Sobolev spaces H5 () and Besov spaces BY?(Q2) with o € R, p,q € (1,00), and
Q=K?or f(f‘ﬁ = K x K%' a product fractal or its half. Readers are suggested to refer
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to the monographs [30), 38| for the classical theorems of function spaces on domains with or
without boundary in Euclidean case.

Firstly, we will study the trace theorem for function spaces on f(i on the boundary, with
o > 0 (see Theorem and prove an embedding theorem relating function spaces on K¢
and K i. Mainly we devote to extend the results to real orders o € R, especially the following
embedding theorem (see Theorem :

Theorem 1. Let p,q € (1,0), p' = %,q’ = q%l and o € R. We have

HY(RY) = HY(KY) s and BRI(KY) = BRI(R?) g

if and only if o ¢ {‘;—?, 2 — %S} — 2N, where dg is spectral dimension of the Laplacian on K,
and the restriction is in the sense of distribution.

In the above theorem, we define Hg(f(i) as the dual of ﬁﬂ,(i{i), and Bg’q(f(i) as the dual

of BY (’,q/(f(i) for negative orders o, where the H and B spaces are the closures of C’é’o(f(i)
in corresponding spaces following J.L. Lions and E. Magenes [30]. In Euclidean case, for
example, see book [38], the definition for spaces with negative orders o may be alternately
given directly by using this restriction. The theorem, analogous to the Euclidean case, shows
that the two definitions agree, with countably many exceptional orders of o, which comes
from {4£,2 — 45} 4 27, by dual,

Although Theorem [I]is analogous to the Euclidean case, there exist major differences in the
proof. In the fractal setting, as illustrated in [33], the tangents of functions at the boundary,
defined in terms of multiharmonic functions in contrast to the classical Taylor approximation,
contain much more information that do not take part in the matching conditions in extending
functions from f(i to K% across the boundary. This will bring many technical difficulties
and involve many more critical orders of o than {d?s, 2— %?} +27Z4. An intuitive explanation
of the (countable infinitely many) critical orders is that they are the o’s such that higher
order tangents may appear for functions at boundary in H. g/(K'fﬁ) with ¢’ > o compared to
those in HY(K9)\ H?,(K%), see for the exact definition. However, in Euclidean case,
the critical orders are exactly % + Z4 in extending functions from Ri to R?, and no more
appears for the tangents.

The interpolation property of Sobolev spaces and Besov spaces on f(ﬁ is the next main
interest of this paper. We are particularly interested in the case that the interpolation
couple involves critical orders of o, which is also a difficult problem in Euclidean case. See
Chapter 1, Section 18 in the monograph [30] by J.L. Lions and E. Magenes for the original
problem. In order to include the consideration of interpolations between different p’s (or
evenly ¢’s) in (1,00), it is convenient to consider the critical set of couples (o, %), denoted as
Co, = {(o, %) : 0 is critical in the LP setting}.

Since the function spaces of o < 0 are defined as duals of H and B spaces, the critical set of
the forthcoming interpolation theorem is reflected in a reasonable sense to be Cp = {(o, %) :
(—o,1 — ]%) € Co, }, as illustrated in Figure |1, which consists of countably many parallel
lines with slope % between the two horizontal lines % =0 and 1. For pg, p1,pp € (1,00) and
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0 € (0,1) with % = pi + =% we need to consider the following three cases separately due
to the critical set Cp, as shown in Figure

(01). (Jg,p ) ¢ Co;
(02). (00, ;), (01, ;) and (00, 5
(03). otherwise.

) lie on a same critical line in Cp;

Using [+, -]g, (+,")g,q to stand for the complex and real interpolations respectively, we will
prove(see Theorem [5.20)):

F1GURE 1. An illustration for Co and the three cases of interpolations.

Theorem 2. Let 0g,01,0 € R, po,p1,90,q1,p,9 € (1,00), and put g = 0op + (1 — 0)oq,

p%—*-\-pfl, and 1 :——l—lf . We also wfztep’—ﬁ q qql,pazpé’”l and

qy = ﬁ. Then the mterpolatwn results for Hg(Ki) and B5Y( f‘f_) are given by the follow-

ing table:

(01) (02) (03)
[Hbo (KY), Hoy (K9)], Hiy (K¢) = (Hgf/yg( KD)" | Hog(K9) (ngge )N

(HZ (K1), Hy' (KY)),., HY (K%)= (H" (K%))" / (" ( Kd )"
(Hs, (K9), HE (KY)),., By (KY) = (B3 (K{))" / (B—as (£9)”
(B (&), B (R, Bry ™ (RE) = (BT (R | BRy(R) | (BT (RE))"

(B (L), B (RD),, (1 po = a0) | BE™(RY) = (B (RA)" | By (R | (B0 (Re))*
(By™ (K1), BS™ (Kd)) 0.0 B (Kd) = (BY(K9))" | B (K1) /

where the H spaces with ¢ > 0 are contained in H spaces and analogous to the Lions-Magenes
spaces in Fuclidean case, satisfying H = H if and only if (o, %) ¢ Co, , and similarly for B

spaces; the notation «’ means the dual space; also ‘/’ means there exists only the trivial case.

We should mention that there is a large literature on the topic of function spaces on more
general metric measure spaces from other different points of view, see [8], 9, [14L 16, [17) 18], 22]
and the references therein. See also [I], 2, 10, 1T, 21] and the references therein for recent
works on function spaces on fractals.

In addition, the techniques and results from the books [7, [I3] [19], the paper on pseudo
differential operators [23] and the paper on smooth bump functions [31] are important for
our developments.
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Now we briefly introduce the organization of this paper. In the remaining of this intro-
duction, we will briefly review some basic concepts, including the p.c.f. self-similar sets, the
construction of Dirichlet forms and Laplacians, and the Sobolev spaces Hg(f( d) and Besov
spaces BYY(K) defined on K¢.

In Section 2, we will develop the main tool of this paper, the relations of various function
sequence spaces. In fact, we will extract the boundary information of a function into several
sequences of rescaling functions on cells approaching to the boundary. We will only deal with
a simple case, and leave a further discussion to Appendix A.

In Section 3, we deal with Sobolev spaces H5 () for o > 0 on general fractal domains Q2 :=
K'x K% with 0 < | < d which include K d. K i as special cases. We will prove an embedding
result(Theorem that H2(Q) = HY(K%)|q, as well as a decomposition(Theorem of a
Sobolev space H5(2) into the union of a “kernel” part and a “sequence” part, based on the
sequence spaces we studied in Section 2.

We will focus on Q = f(ﬁ'ﬁ in the next two sections for simplicity, though quite a large
portion of the results can be extended to more general 2’s with boundary.

In Section 4, first we present a trace theorem for values and normal derivatives (of Lapla-
cians) of functions in Hg(f(i) or BYY(K%) at boundary(Theorem . Then we introduce
two classes of Sobolev type spaces ﬁg(f(i), Hg(f(i) and two classes of Besov type spaces
BYY(K4), B2Y(K?) contained in the H and B spaces, and provide an exact characterization
of these spaces in terms of the boundary behavior of functions(traces for H, B spaces, and
tangents for H, B spaces, see Theorem and . At last, we will use the above results
to prove Theorem or , the first main result in this paper.

Finally in Section 5, we will devote to prove the second main result in this paper, Theorem
(or. We will first derive an interpolation theorem for H and B spaces with ¢ > 0, then
extends this to the real order case based on a dual approach. The main difficulty arises in
this fractal setting due to the appearance of tangents that do not take part in the matching
conditions of functions at boundary. We will provide a long proof to overcome it.

In addition to the main story, we will present three appendixes. Appendix A is a sup-
plement to Section 2, and will be crucial in Section 4 and 5. Appendix B includes a short
discussion about the definition of Sobolev spaces in the sense of distributions. Appendix C
collects several useful facts and important concepts which will be used throughout the paper.

Throughout this paper, we always write f < g to mean that f < Cg for some constant
C >0, and write f < g if both f < g and g < f hold.

1.1. The p.c.f. self-similar sets. The main objects we study in this paper are the p.c.f.
self-similar sets. Let {F;}Y, be an iterated function system (i.f.s.), a finite collection of
contractions, on a complete metric space (M, d). The associated self-similar set is the unique
compact set K C M satisfying K = UZ]\LI F,K. For m > 1, we define Wy, = {1,--- , N} the
collection of words of length m, and for each w = wiws - - - w,, € Wy, denote

Fy=Fy, oFy0---0F,, .

For uniformity, we set Wy = {0}, with Fj being the identity map. For convenience, let
W = Up._o Wi be the collection of all finite words.
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Let ¥ = {1,2,--- , N} be the shift space endowed with the natural product topology.
There is a continuous surjection 7 : ¥ — K defined by

T(w) = ﬂ ., K,

m>1
where for w = wiwy - -+ in ¥ we write (W], = wiwy - - wy € Wy, for each m > 1. Let
Cx=|JRKnFK, C=r"'Ck), P=|Jo"c,
i#] m>1
where o is the shift map define as o(wjwy--+) = wows -+, P is called the post critical set.

Call K a p.c.f. self-similar set if #P < oco. In what follows, we always assume that K is a
connected p.c.f. self-similar set.

1.2. Dirichlet forms. Let Vj = 7(P) and call it the boundary of K. For m > 1, we
always have F,,K N Fy K C F,Vo N F,Vy for any w # w' € W,,. For m > 1, denote
Vin = Uypew,, FuVo and let [(Vi,) = {f : f maps V;,, into C}. Write Vi = U,,,50 Vin-

Let H = (Hyy)zyev, be a symmetric linear operator(matrix) on [(Vp). H is called a
(discrete) Laplacian on Vy if H is non-positive definite; Hu = 0 if and only if u is constant
on Vp; and Hyy, > 0 for any « # y € Vp. Given a Laplacian H on Vj and a vector r = {ri}fil
with r; >0, 1 <i < N, define the (discrete) Dirichlet form (€,1(Vp)) on Vy by

gO(fa g) = _(f7 Hg)a
for f,g € I(Vp), and inductively (Sm, Z(Vm)) on V,, by

N
gm(fag):Zri_lgm—l(fthgoFi)a mZL

i=1
for f,g € (Vi) Write &, (f) :== En(f, f) for short.
Say (H,r) is a harmonic structure if for any f € I[(Vp),
Eo(f) = min{&1(g) : g € I(V1), 9w, = [}

In addition, call (H,r) a regular harmonic structure if 0 < r; < 1, V1 <4 < N. In this paper,
we will always assume that there exists a regular harmonic structure associated with K.

Now for each f € C(K), the sequence {&,(f)}m>0 is nondecreasing, so the following
definition makes sense. Let dom& = {f € C(K) : n}gnoo Em(f) < o0}, and

E(f,9) = ILm En(f,g) for f,g € domé.

We write E(f) := E(f, f) for short, and call £(f) the energy of f. Note that the form
(€, dom&) satisfies the self-similar property,

E(f,9)= Y 1,'E(foF,goF), VYm=>1,fgéedoméE,
wEWm

with 7y 1= Ty, Twy * * * Tw,, - 1t is known that (£, dom&) turns out to be a local regular Dirichlet
form on L?(K, i) for any Radon measure ; on K.

There is a natural metric on K related with the energy form (£, domé&), called the effective
resistance metric, which is defined as

R(z,y) = (min{&(f) : f € dom& and f(z) =1, f(y) = O})_l, Vo #ye K.
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It is easy to see that the HandOI‘ff dimension of K with respect to R(-,-) is the unique positive
number dy satisfying ZZ 170 = 1. In this paper, we always choose a proper self-similar
measure 4 on K that matches with R(-,-). To be more precise, we fix a weight vector {u; }¥,
such that p; = ’I“?H , and let p be the unique probability measure supported on K such that

= pip(F'A), VACK.

One can easily check that pu(FiyyK) = py := flwy *  * faw,, » for each w € Wp,.
For f € domé&, say Af = u if

() = — /K whdp

holds for any ¢ € domo&, with domo€ = {¢ € dom€ : |y, = 0}. In particular, we define
domppr(g)A = {f € dom& : Af € LP(K)} for 1 < p < oo, where and from now on, we
abbreviate LP(K, u) to LP(K).
We are also interested in the double cover K, which consists of two copies of K identified
at all boundary points. For convenience, we sometimes denote the two copies K, and K_.
One can simply define an energy form (&, domé& ) on K by

E(f,9) = E(flryrglr,) +E-(Flx_ gk ),

with dom€ = {f € C(K) : flx, € dom&; and f|x_ € domE_}, where (£4,dom&y) and
(E—,dom&_) are the natural energy forms on K, K_ respectively. Furthermore, we take [
to be the measure on K which coincides with p on each copy K+, and define the Laplacian
A on K as before (there is no boundary in this case).
In fact for the double cover K, we can alternately define A with the Bessel potential
fo e tP,dt, where {Pt}tZO is the associated heat semigroup on K. This definition
is shown to be consistent with the former definition in [23], and D(A) = dom,, ( R)A in the
LP setting.

1.3. Function spaces on fractal domains. We will study Sobolev spaces and Besov spaces
on products of fractals Q = K'x K%t where d € Nand 0 <[ < d. There is a natural product
measure, still denoted by u by a bit abuse of notation, and we can define A = AM ... A(@)
as the Laplacian on K% where A® is the Laplacian on the i-th “direction”. (We will not
distinguish between A and A for convenience.) Detailed discussions on the definition of
Laplacians will be given in Section 3.

For a special case K%, using theorems about the Calderén-Zygmund operators on fractals
[23], we can see that Laplacian A defined above is the generator of the heat semigroup
{Ut}4>0 on LP (K%, where Uy is the product of corresponding heat operators in all directions.
In particular, the Bessel potential (1 — A)~9/2 = I'(¢/2)~ f t°/2¢ 71U dt is well-defined.
We define Sobolev spaces as follows.

Definition 1.1. Forp € (1,00), o > 0, define the Sobolev space
HE(K?) = (1—A)7PLP(KY),

with norm |l geay = [[(1 = A)72F| -
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Using the heat semigroup {e'®}+>0, we define the Besov spaces BY(K?) as follows.

Definition 1.2. For p,q € (1,00) and o > 0, define the heat Besov space
BRA(R?) = {f e IP(KY) (/ (2| (EAY" '™ £ o)t /t) < o0},
0

with k € NN(0/2, 00), and norm || gpaieay = 11 pociear + (S (EA) ™ () | gy 7t /2) 7,

Note that in the above definition, different choices of k will provide equivalent norms
|| - HBg,q(Rvd), see [8, 9, 19, 22]. In addition, the Besov spaces BY(K?) are real interpolations

of Sobolev spaces HY(K?), see book [19].
Lemma 1.3. For p,q € (1,00), 0 >0 and 6 € (0,1), we have
(HE(RY), HE(R™),, = BR(RY).

For subdomains Q = K! x K%' ¢ K¢, we will provide a definition of Sobolev spaces and
Besov spaces for integer orders first, then extend to positive real orders using interpolation
(Definition and . In addition, we will show that these function spaces on () are just
the restrictions of corresponding type spaces on K% t0 Q (Theorem Proposition .

Moreover, in Section 4, we will extend the definitions of these spaces to negative orders.

2. BASIC STRUCTURES OF SEQUENCE SPACES

In this section, we study sequence spaces with values in a Banach space X. These sequence
spaces will play essential roles in reflecting the boundary behavior of functlons in Sobolev or
Besov spaces on p.c. f. self- sunllar sets. S §

We begin Wlth a simple case.

Definition 2.1. Let 1 <p<oo,a>0andyeC\{0}.

(a). Define I5(X) = {s = {sntn>0 : {a7"snllx}n>0 € lp}, with norm |[|s[|px) =
o llsnllx ;-

(b). Define I5(X,v) = {s ={sn}tn>0: {Sn+t1 — YSn}n>0 € lg(X)}, with norm ||3||l§(X,7) =
Y {sn41 = ¥sntnzollp ) + lsollx-

(c). Define I5(X) " the closure of I5(X) in I5(X,~).

We will compare the spaces defined above. It is convenient to introduce the following
operators.

Definition 2.2. Let a > 0 and v € C\ {0}.
(a). For each s € X, define I(s) = {s,s,-++}, which is a sequence of constant value.
(b). Define A(7y) : X% — X%+ such that A(v)({sn}n>0) = {7"sn }n>0.

Throughout this paper, we write X = @] ; X}, for Banach spaces X and X;,1 < k < m,
if
1. Xp c X and ||-||x, < |x, for each 1 <k < m;
2. For each x € X, there is a unique representation z = > " |z, with 2 € X, 1 <k <m.
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Lemma 2.3. Let a > 0 and v € C\ {0}.
(a). For 1 < p < 0o, we have that A(y~!) is an isometry from I5(X,v) to ZZI"/I*(X’ 1).
(b). For1 < p < oo, we have

la(X) if > |7l
P — , > 17,
X) {zg<X>’ B AMIX), Ha<hl 2
In addition,
B(X) =1(X) if and only if a # |7 (2.2)

Proof. (a) is easy. For (b), it is enough to consider the case v =1 by (a).
Let s = {sp}n>0 € (A(X,1). Define t = {t,,}n>0 with to = sp and t,, = s, — sp—1 for n > 1.
We discuss three cases separately as follows.

Case 1: o < 1. In this case, we have t € I5(X) so that soo = lim s, = Y o0 1, is well
n—oo

defined. In addition, by the Minkowski inequality, we have the estimate

oo
I8 = T(s00) i (x) =l llsn = soollx |1 = @71 ol ]
a(X)
m=n+1
o o
< HOé " Z ||tm||XHlp = H Zama " mHthrnHXHlp
m=n-+1 m=1

(o]
< (Z " MNtlm x) S Isllizxq)-
m=1

As a consequence, we have (s—f(soo))—l—f(soo) e B(X)eI(X). Thus, B(X,1) c B(X)a1(X).
The other direction is easy. So both (2.1]) and (2.2)) follows in this case.

- 1
Case 2: o = 1. Let’s first show that 1(X) C I5(X) . For any s € X and m > 1, we define
a sequence Uy, = {Umnsn>o as follows,

R i <om,
Umn = .
0, if n>m.

. - 1
It is easy to see that [|vn, — 1(s)[lp(x1) = m~H1/P||s||x. So we have I(X) C I5(X) .
- 1 1
Next, fix o < 1, clearly we have 1(X) C I5(X) and I,(X) C I5(X) . As a consequence,

we have I,(X,1) C lg(X)1 by Case 1. Then |D follows noticing that *,(X,1) is dense in

1%(X,1). In addition, we clearly have 1(X) C lg(X)1 \ &(X), and so 1} follows.
Case 3: a > 1. In this case, we have the estimate that

n n
HSng(X) = Ha—n” Z tm”XHlp < Ha—n Z ||tnfm||XHlp

n 0
= 1> a ™ M tnemlx]p < O a ™tz S Isllzx,-
m=0 m=0

As a consequence, we have [5(X, 1) = [5(X), and (2.1)), (2.2)) follows. O
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2.1. The spaces [}, ;(Xo, X1) and [}, 5(Xo, X1,7).
Definition 2.4. Let (Xg, X;) be an interpolation couple of Banach spaces and o, 3 > 0.
(a). For1l < p < oo, define
ZZ,,B(XO’Xl) = ZZB(XO) N lg(Xl),
with norm |8l xq x1) = I8l (xo) + 181z (x,)-
(b). For 1 <p< oo andy € C\ {0}, define
(X0, X1,7) = I 5(Xo,7) N (X1, 7),

with norm {|sllip xq x1,7) = I8l (xo.) + 18115 x1,7) -
(¢). Define W the closure oflzﬁ(Xo,Xl) in liﬁ(Xo,Xl,v).
In this paper, we are most interested in the coefficients
€(0,1), Be(l,00), |v|€(0,1]. (2.3)
Also, in our applications, we will always have X; C Xg. The following lemma, same as

Lemma (a), provides some convenience by reducing the coefficient v to be 1.

Lemma 2.5. Let a,3 >0, v € C\ {0} and 1 < p < 0o, we have that A(y™!) is an isometry
from 1275()(0, X1,7) to liwgm—l (Xo, X1,1).

Our aim is to recover a decomposition of liﬁ(Xg,Xl,y) as [5(X,~) in Lemma (b).
We will deal with this in a more concrete setting in the rest subsections. In this subsection,
let’s first see what is the limit of a sequence in 1 B(XO’ X1,7). This is easy for readers who
are familiar with the real interpolation of function spaces, but we still provide a short proof
below.

For convenience, let’s briefly review the J-method of real interpolation.

J-method. Let X = (Xp, X1) be an interpolation couple. Define (X) = Xy + X7 and
A(X) = Xo N X;. We have a family of equivalent norms J(t, s) = max {||s||x,, ts||x, } on
A(X) with t > 0. Tt is easy to see that J(t, s) is increasing, continuous, and convex of t.

For a measurable positive function ¢ on Ry and 6 € (0,1), p € [1, 0], we write ®g ,(p(t)) =
<f0 ( )pdt/t) " with usual modification when p = oc.

Then for 6e€(0,1),pel, oo] we have

(X0, X1)gp = {s€X(X):s= [ u(t)dt/t for some measurable function
u: ]R+ — A(X) and Py, (J(t, u(t)) < oo}
with norm ||s HX = inf, ®g,(J (¢, u(t))). In the above identity, u(t) is strongly measurable
in A(X), and the integral is taken in X(X). See the book [7] for unexplained details.
Lemma 2.6. Assume X1 C Xg continuously, and assume . Then, for af < |v|, the
following operator I'y : lgﬁ(Xo, X1,7) = Xo is well-defined:

n

F'y({Sn}nEO) = nh—{go Y USn.

Moreover, T, lZ,B(XO,Xl,v) — (X0, X1)a,p s bounded and surjective for § =1+ %.
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Proof. By Lemma we only need consider the case v = 1, noticing that ', = 1 A(y71).
In this case, a8 < 1, and we have I 5(Xo, X1,1) = I£5(Xo,1) N I5(X1,1) C If5(Xo,1).
Then, by the discussion in Lemma (b), we know the limit exists of each sequence in
ZZ’B(XO,Xl, 1), and so I'y is well-defined.
Next, we need to show that T'; : lgﬁ(X(],Xl, 1) = (Xo,X1)s,p is bounded and surjective.
Let s = [, u(t)dt/t € £(X) = X with a strongly measurable function u : Ry — A(X) =

Xi. For n € Z, define u,, = f;‘:il u(t)dt/t. Then we have s =5 >° _ wu, and

n=—oo

( 3 (a_"ej(a”,un))p)l/ < @y, (It u(t))). (2.4)

n=—oo

For n <0, it is clear that a ™" J(a™, uy,) = o™ max {||un || x,, @"|Junl x, } =< a1 =07 |l x, -
Let so = Zgz_mun, we then have

0 0

Js) = lsols 3 Tl S (30 a7 (3 (s u)?)?, (25

n=—oo n=—0oo n=—0oo

where p' = -E7. For n > 1 denote Sn = U, and define @ = (—log )1 Y07 (1 (4n gn-1]8n.
Then by using estimates ) and ., we have

By, (J(t,a(t)) < (Z (a0 J(a", sn))p)l/p < Pop(J(t ult)))-

n=0

0

On the other hand, since o = a8 and a?~! = 3, we can easily check

) . n 1/p
(Z(a HJ(a,Sn))p> XH{S"}”ZOHZZ,B(XO’X”'

n=0

It follows by J-method that s € (Xo, X1)p,, if and only if there is s = {Sn}n>0 € lp (XO, X1)
such that s =3 >/ s,. In addition, ||s||y9’p =< inf {||{sn}n20||lz 5(X0,X1) P sn =s}.

Obviously, this is equivalent to say that s € (Xo, X1)g,, if and only if s = I';(s) for some
s € ZZB(XO,Xl, 1), and ”S”Ye,p = inf {HSHli,ﬁ(Xo,Xl,l) 15 = Fl(s)}. O

2.2. The interpolation couple D(L?) = (X,D(L?)). From now on, we restrict our con-
sideration to a more concrete setting. In particular, in this subsection, we will derive a
decomposition result analogous to Lemma (b)

In the rest of this section, we will assume that X is a Banach space with a sectorial operator
L. In addition, we may assume the following.

(L1). L is sectorial of angle w € [0, ).
(L2). {(1 + L)"}4er is a Co-group.

Readers can find a systematic discussion on sectorial operators in [|, see also Appendix C.

In particular, there is a one to one correspondence between (single valued) sectorial operators

L of angle w € [0, %) and bounded (injective) holomorphic semigroups {e=*£};>(.
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For o > 0, we denote D(L?) the domain of L7 with norm |[[s|[p(ro) = [|s||x + [|L?s]|x. For

short, we will write D(L?) := (X, D(L?)). Our interest is the following sequence spaces,

loe 5(D(L?)) : = I 5(X, D(L)),
lid,g (D(Lo)a')/) L= ZZ",,B (X,D(LU),’)/)’
7
P, 5(D(L7) =1, ,(X,D(L7)),

P ——
where o > 0 and a € (0,1),8 € (1,00),7v € (0,1] as in 1} Here, we denote 1, B(D(LO))

the closure of If,, 5(D(L?)) in I}, 5(D(L7),7).
We need the following proposition from the book [19] (Chapter 6, Section 6.2.3).

Proposition 2.7 ([19]). Assume (L1). For o > 0,1 < p < oo and any fixred o’ > o, let
(o)
Xop={se€X: (/ tP||(tL)° e_tL(s)Hg(dt/t)l/p < 0o}
0

Then Xqp = (X,D(L”'))ep with 0 < 0 = o/o’ < 1, and norm ||s||x,, equivalent to

o]
_ r_ 1
sl + ([ many et Fede) .
As a consequence of the above proposition, we can derive the following lemma.

Lemma 2.8. Assume (L1). Let k € N, ¢ € C.(0,1) satisfying fol o(t)dt =1 and

1
/ tHot)dt=0 for j=1,2,--- k- 1.
0

For0<a<1,se X, we define S5%(s) = {Sé"p(s)n}nzo by

SE#(s)n = a‘”/ ola™"t)e L (s)dt, ¥n >0.
0

Then, for 6 > 0 and 0 < o < k, we have S5% : Xop — ZZH,,’Q,,,(D(LU”)J) and
Iy (ng"p(s)) =s5,Vs € Xop.

Proof. Let s € X, ,. First, we immediately have

a™

L7 08B (sl S ([ P e ) /) 7, (26)

ca™

where we assume ¢ supports on [c, 1] with ¢ > 0.
Next, using the assumption on ¢, we have

a™

k
SE# (S = 5Ly = (1) [ ke Gre o)
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where &(t) f0<t1<t2< <tp<t (o tp(a™tt1) — (t1))dty - - - dty. In fact,  is characterized as

the unique function supported in [ca, 1] such that ) (t) = a~1p(a~'t) — p(t). So we have

a” Y dk B 1

[SE2(s)o = SEP(shally S ( [ et e o) e )
car (2.7)

no —0 - 1

([ eene ) e /t) .

Combining estimates (12.6|), , and using Proposition we then have

SE¥(s) € bo (X, 1) NI, (D(L7HY)).
Noticing that a=? > 1, we have SL’“"(S) € Z£a+97a—e (D(L"*"), 1) by Lemma Lastly, since
fO o(t)dt = 1, we have lim,_, SL’(’D(S),L = s in X, and thus I'; (S’é’“’(s)) =sin Xg ). O

Combining Lemma [2.6] and we are able to derive the following decomposition of the
spaces 1, 5(D(L7),7).

Proposition 2.9. Assume (L1) and . Let 1 < p < oo, k>1, and define p and SLe
as in Lemma . Then for 0 < o < k — log Sy e have,

log
R TR, sszn
’ la“,B(D(LU)) O A(7)Sa 7 (X +%7p), if a8 < .
In particular, we have
W = lgoﬁ(m) if and only if a°B # 7. (2.9)

Proof. We consider three cases separately.

Case 1: @7 > 7. In this case, we can see that I, 5(X) = I, 5(X, ) and I5(D(L7)) =
I5(D(L7),7) by Lemma Both and (2.9) follows.

Case 2: a8 = 7. U51 emma [2 we Can see that

A(ﬂ/)f(D(L"))Cla[,B( (L9),7) = I, 5 (D(L9))  C lh, 5(D(L7))

Observe that for any s # 0 in D(L?), A(y)I(s) ¢ r, B( (L ")) We have li proved.

In addition, we see that
{{7"s}nz0:s € D(L)} U {{bnms}n>0: s € D(L7) and m > 0}
spans a dense subspace of ZZ(,7 5(D(L7), ’yL) So 1' follows.
Case 3: a8 < . First, we have Sa’go(XHlogmq p) c By (D(L7),1) by applying

loga
Lemma 2.8 So we have

liaﬁ(D(LU)) @A(V)Séj’@(XUJrlogﬁw 1 ) - loﬂﬁ( (LU) )

log a P

applying Lemma [2.5]



14 SHIPING CAO AND HUA QIU

On the other hand, let s € lggﬁ (D(L?),7). We have sy = I'y(s) € XU+logB771 ) by

loga
Lemma Define 8’ = s — A(’y)Sﬁ"P(soo). Then we have

€ 1, 5 (D(L7)) = I505(X) N1 (D(L7))

a’ B
by Lemma noticing that s. = lim,, 07 "s], = 0 in X. Thus, we have

lor 5(D(L7),7) € loe 5(D(L7)) ® AN ST (X, tosr-1 ).

log a P

So (2.8) and (2.9)) follow immediately. O

2.3. The spaces I} ;(D(L?)) and I} ;(D(L?),~). In this last subsection, we will develop
some interpolation properties of the sequence spaces. The following result from the book [],
Chapter 6 is useful.

Proposition 2.10 ([19]). Assume (L2). Then for o >0, 6 € (0,1), we have
D(LY) = [X,D(L7)]s,

where [-, ]9 denotes the complex interpolation space.
Lemma 2.11. Assume (L2) and (2.3). Then for p € (1,00), 01,02 > 0 and 6 € (0,1), we
have

[0, 5(D(LT)) 120y 5(D(L7))] ) = Loy 5(D(L7?)), with op = (1 0)o + b

Proof. First, we consider the interpolation couple (lp (X), ZZ o oo (D(LU ))) By a little abuse
of the notations, we write A(a)L : IP(X) — IP(X) as
AMa)L({sn}nz0) = {a"L(sn)},5-

One can show that A(«)L is sectorial. In fact, for each A > 0, we have
-1 noN—
AA+A@L) ({sntnz0) = {MA+a"L) l(sn)}nzo.

Thus A(X + A(a)L)_1 is uniformly bounded by supy~g.~q||[A(A 4+ eL)7!||. The fact that
A(a)L is sectorial follows from Proposition 2.1.1 (a) and (f) in book ]. '

Next, we can check that {(1 —I—A(a)L)n}tGR is a Cp-group. First, we have (1 +A(o¢)L)Zt €
L(1P(X)). In fact, (1 +A(Q)L)”({5n}n20) = {(1+o/lL)i7t(.sn)}n207 and we have the following
estimate for each term

(1 + L) = || (@™ + (1 — a™)(1 + L)1) (1 + L)

<l fnan +A+D) YY) [0+ D) < e+ L)

)

where C' is clearly independent of n by Proposition 3.5.5 (¢) in []. Second, we can see that

D(1+A(a)L) NR(1+ A(a)L) is dense in IP(X), since D(L) is dense in X and {pms}n>0 €

D(1 4 A(a)L) NR(1 + A(e)L) for any s € D(L) and m > 0, where D(1 + A(a)L) and

R(l + A(a)L) are the domain and range of the operator 1+ A(a))L respectively. Combining

the above two claims, by Corollary 3.5.7 in ], we have {(1 + A(a)l))lt}tER is a Cy-group.
Thus, we can apply Proposition to conclude that

[P(X), 1P (D(L9))], = [(X), D((A()L)")], = D((A()L)") = 1P (D(Lb)).

a’,a”7 a@oya—eo
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By a standard argument of complex interpolation, we then conclude that

[lg(X), lgoﬁ (D(LU))] 0 — lzeo”g (D(LHU)) .
The lemma follows by using the reiteration theorem. O

Now we have a class of sequence spaces that are stable under complex interpolation, by
the reiteration theorem of real interpolations.

Definition 2.12. Assume (L2) and (2.3), and let p,q € (1,00). Define

1t 5 (PUE) = (X, 100, (PE)) 2,

ol

1 5 (DT, 7) = (7). 5 (PIE),2)

4’
/
for some o/ > o > 0.

We have the following decomposition concerning the spaces.

Proposition 2.13. Assume , (L1) and (L2). Let p,q € (1,00), k > 1, ¢ and SLe as
i Lemma . Then for 0 <o <k — M, we have

log o
D(T0)\ y g
vt o0 — [P CERT
g ) =R pa =1 s .
a?,p lZ’fﬁ’ (D(L7)) @ A('y)SCLy’QO(XUJrlOgMA q), if %8 < 7.

loga ?

e
Here, we denote lz’f,ﬂ (D(L?)) the closure of lZ’fﬁ (D(L7)) in lg’fﬁ (D(L?),~). In particular,
we have

EEE——1 J—
153 5 (D(L7)) = 157 5 (D(L?)) if and only if o B # . (2.11)
Proof. We consider three cases separately.
—1
Case 1: a?8 > ~. In this case, we choose ¢’ such that —% > o' > o, then

7 5 (D(L7)) = (15(X), 10,0 ,(D(L7))) 5, , = (XA, 100 f(DIL7), 7)) 5, , = 1o 5(D(L7), )
by Lemma and Proposition Both and hold in this case.
Case 2: a’3 = ~. In this case, we take o/ > o, and notice that
{zg (D(L)) < 1Y), {zg (D), 7) < B(X.)
ZZUIB (D(LU )) C li"/,ﬂ (D(Lo’ )), lia/ﬂ (D(LU ), ’y) C ZZU',B (D(LU ), ’7)

As a consequence, we have by using real interpolation (see Theorem 5.6.1 in the book []),

1,5(D(L7)) 22 ,(D(L7)), 1L, 45(DL7),7) C 122 4(D(L?),7). (2.12)
Then, we can see that
—f)l v p— /
{7"s}nz0 € 30 5(D(L7)) C 107 5(D(L7)) for any s € D(L) (2.13)

. . 7 d o .
by using Lemma Now, using (2.13)), we have lZo/,,B (D(L7'),v) C lﬁ’fﬁ(D(LU)) . Since

1 (D(Lf"), 7) is dense in lg’g 5 (D(LU), 7) by the property of real interpolation, we see that

ao_”/B
—
lg’fﬁ (D(LU),'y) C lg’fﬁ (D(LU)) , and thus (2.10)) follows immediately.
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P E——
It remains to show (2.11)), i.e. I 5(D(L?)) # 7 5(D(L?)) in this case. Obviously, we
have ZZU’,B (D(L7")) C ZZU’,B(X) and as a consequence

17 3(D(L7)) C UL, 5(X). (2.14)
Thus, for s € D(L?') and s # 0, we can see that {y"s},>0 € 153 5 (D(L7),~) \ 157 5 (D(L9))
by and . Thus follows.
Case 3: a?f < . For this case, we choose —
Proposition |2.9
loo: 5(D(L7),7) = lha, 5(D(L7)) @ A(fy)Sé?”(XJ#M ),i=1,2.

logax 7

log gy~ !

oga~ < 01 <0 < 03, we notice that by

Then by the reiteration theorem of real and complex interpolations, and the fact that (A; &
B, AP B2)9’q = (Al, Ag)qu D (Bl, Bg)gﬁq if (Al + Ag) N (Bl + Bl) = {0}, we conclude that

24 5(D(L7),7) = 182 5 (D7) & A KA (X st )-

log

So (2.10]) and (2.11)) follows immediately. O

3. A DECOMPOSITION OF SOBOLEV SPACES

From now on, we return to the study of function spaces on fractals. We will always use
K to denote a connected p.c.f. self-similar set equipped with a regular harmonic structure
(H,r), and a self-similar measure p with weight u; = rzd A as introduced in Section 1.

In this section, we will establish some useful characterizations of Sobolev spaces on products
of fractals. We split this section into three parts. In the first part, we will give a brief
discussion on the Laplacians on product spaces, and will provide a useful characterization of
the Sobolev spaces. In the second part, we will study the relation between Sobolev spaces and
the sequence spaces we described in Section 2. In particular, we will decompose a Sobolev
space into the union of a kernel part and a sequence part. In the third part, we will fulfill
the unprovided proofs in the last two parts.

3.1. The Laplacian. First, we introduce some notations.

Notation. Let Sy,59,---,5g be some metric measure spaces, and let 1 = S1 X Sy X -+ x Sy
be the product space with product topology and measure.

(a). Let f; be a measurable function on S; fori=1,2,--- ,d. We define the tensor product
@l & fi:Q—C by

i@ fa@ @ fa(x) = filz1) fala2) - falza), Vo= (x1,22, -, 2a) €L

(b). For eachx = (x1,x2,- -+ ,24) € Q and 1 <i < d, write 2N = (21, i1, Tig 1, 5 Td)-
Denote QN = {2 : x € Q}.

(c). For1 <i<d, z=(z1,22 -+ ,2q) € Qand f:Q — C, write

fii\)z(xz) — f(xly' oy Li—1,Tjy i1, " " ,IEd).

In this way, for each y € QN we view fél)() as a function S; — C, and write f.(l) for the
corresponding map from Q" to functions on S;.

On the other hand, for each z € S;, we view f.(l)(z) as a function QN — C, and write
f(i)(-) for the corresponding map from S; to functions on Q.
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(d). Following the notations of (c), for p € (1,00), for a function space D(S;) on S;, we
define

LP(QM,D(S;)) = {f. is strongly measurable from Q" to D(S;), and ||f. Ip(sy) € LP(QM) };

for a function space D(QM) on QN we define

LP(S;, D(Q)) == {f(") is strongly measurable from S; to D(Q"), and || f@(-)|| piariy € LP(S)}-

(e). Let U : LP(S;) — LP(S;) be a closed operator. Define U® : LP(Q) — LP(Q) as
the closed operator with D(UW) = LP(QN, D(U)), and UDf(x) = Ufoni(zi) (in almost
everywhere sense).

Remark 1. If p(U) # 0, we can show (c — U(i))_l = ((c— U)_l)(l) for ¢ € p(U), and thus

DUW) = {felLr(): fy(i) e D(U) for almost every y € Q, and U f,ri(e;) € LP(Q))}.

Remark 2. In the case that Sl =...=5; =25, we will usually omit the index of S;, but
still keep the superscript in Q" to highlight i. See Proposition for example.

Let’s consider the particular case Q = K! x K% !, With the above notations, the A®
with 1 < 4 < d are the Laplacians acting on certain “directions”. For short, we write
@ = driz i with each 1 <ij < d, and A®) = AUAUm—) - AW Write C™(Q) for the
space of “smooth” functions f such that A®) f € C(Q) for any i.

Remark 3. On Q = K! x K9, for | < i < d, by Remark 1, we can equivalently define —A()

as the generator of the semigroup {P }t>0 on LP(Q), where {P,};>¢ is the heat semigroup
of —A on LP(K).

Remark 4. On Q = K! x K91, for 1 < i <1, we have f = —ADGO f where G is the
Green’s operator on K. Clearly, G = [ G(xi,y QSA)q( )d,u( ), where G € C(K x K)

is the Green’s function. See [26] or [36] for detailed constructlons of the Green’s function G.

The definition of A on K% is a little more complicated. The heat operator on K% is

naturally defined as the product U; = Pt(l) e Pt(d). The —A on K%, viewed as the generator
of {U}+>0, is determined by the corresponding Bessel potential

(1—-A)"! :/ e tUdL.
0

It is well-known that Hambly and Kumagai in [20], Kumagai and Sturm in [27], showed
that the p.c.f. fractals under consideration satisfy the sub-Gaussian heat kernel estimates.
As an application, Ionescu, Rogers and Strichartz [23] studied Calderén-Zygmund operators
on product of p.c.f. fractals. Below is an immediate consequence of Corollary 5.5 in [23].

Proposition 3.1 ([23]). The operators AW (1 — A)~1 is bounded from LP(K?) to LP(K?).
Lemma 3.2. For1 <p < oo and Q = K%, we have A = Zd:1 A,

Proof. Flrst we ShOW ZZ JAD C AL Tet f € ﬂl ,D(AD). By Remark 3, we have
(P( f AW fdt’ using the fundamental identity for semigroups (Proposition
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A.8.2 in the book []). As a consequence, we have

d d ' ' d . d
i=1 =i+l i=1 Y0 =11

Furthermore, using the fact that {P(i)}t>0 is a bounded strongly continuous semigroup for
any 1 < i < d, we can conclude that hm F(Uif—f)= Z?Zl AW £ This shows f € D(A) and

Af =YL ADf
Next, A C Zgzl A follows from Proposition O

Before ending this subsection, we return to Sobolev spaces. As an immediate consequence

of Lemma [3.2) we have the following characterization of Hé’k(f( 4) (Definition .
Proposition 3.3. Forp e (1,00), k € Z+ and fixred 1 <1i <d,
HY (K = {f € IP(KY) : f € D(AW), Vi with |i| < k}
= {feP(K%) : (AVY f e IP(K, HE,_,;(K™)),j =0,1,--  k}.

Proof. The first identify is an immediate consequence of Lemma In addition, using this,
for any k' < k, we can see

{feLP(K?): feLP(K, HE (K}
={f e LP(K?) : f € D(AW),Vi = iyig - i, with m < k" and i; # 4,1 < j <m}.
The second identity follows. g

Proposition is referred as the definition of Sobolev spaces in many contexts. Thus, it
is reasonable to define Sobolev spaces on Q = K! x K% as follows.

Definition 3.4. Let Q = K' x K% for some 1 <1<d, and 1 < p < .
(a). For k € Zy, we define

HY.(Q) = {f € LP(Q) : f € D(AD), Vi with |i| < k}

with norm || fllz @) = Xjaj<r 1AD fllo@)-
(b). Fork € Zy, 0<0 <1, define Hy_,,,(Q) = [Hy (), H5, ()],

Clearly, we still have the characterization
HE (@) = {f € LP(Q) : f € D((AW)Y), (AVY f € LP(K, HY (M), 5=0,1,---,k},

We will revisit Proposition and Definition in Appendix B, where we enlarge the
domain of Laplacians to distributions, and see what happens.

One of our goals in this section is to prove the following theorem, which is also referred as
an equivalent definition of the Sobolev spaces. See the book [].

Theorem 3.5. Let Q = K! x K41 for some 1 <1 <d. Then, we have

(a). HE(Q) = HE(K%)|q, for 1 < p < oo and o > 0.

(b). [Hg{(Q),Hgg(Q)]e = HY(Q), where ﬁ = lp;f) + p%, op = (1 — 0)o1 + Oog, for
1 <p1,p2 <00, 01,00 >0and0<6<1.
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We will show that H2(Q) is a retract of HE(K%), with the same extension map E and the
natural restriction map R for 0 < o < 2k with k € Z,. See Definition [C.7] for the concept of
retract. ~

It is easy to observe that HE(K%)|q C HE(Q) by complex interpolation. The other half
can be directly proved in the case when K is the unit interval, where various cut-off and
reflection techniques are available. However, for the fractal case, multiplication of functions
do not preserve smoothness (see [6]), things will be difficult. We will come back to the proof
in the last part of this section, as a first application of the following decomposition theorem.

3.2. A decomposition theorem. As the main part of this section, for Q = K! x K% with
1 <1 < d, we will provide a decomposition theorem of HY (Q) with o > 0. First, we introduce
some notations.

Definition 3.6. (a). For k € Z, and on K, let Hy_1 = {f € D(AF) : Akf = 0} be the
space of k-multiharmonic functions on K.

(b). Let @ = K' x K% with 1 <1 < d. Fork € Zy, denote Hy—1(K,D(Q)) :=
Hi—1 @ D(QM) for some function space (Banach space) D(QMY) on QM.

Note that the dimension of Hy_1 is k#Vp, H_1 = {0} and Hy is the space of harmonic
functions on K. In addition, ’Hk_l(K, D(Q/\l)) can be understood as “the space of multi-

harmonic functions on K taking values in D(Q")”.
The following notations concern the contraction maps of K.

Definition 3.7. Fiz w € W,.
(a). Define A, by Ay f(x) = f(Fyax) for any function f on K.
(b). Let Q = K! x K4 for some 1 <1 <d, and let 1 < i < 1. We define Fg) as the
contraction map
F,Ls}i)(fl,'l,l'Q, T ,ﬂ?d) = (:Clava c L, Ti—1, Fw$i,$i+1, e axd)a

and define Aﬁ) by Ag)f(:p) = f(FS)x) for any function [ on Q.

It is also helpful to extend some notations in Section 2 in this section, by replacing the
: (1)
number v with the operator Ay’ .

Definition 3.8. Let 1 < p < 00, a,8 > 0, @ = K' x K% for some 1 < | < d and
D(Q), D1(2), D2(2) be some function spaces (Banach spaces) on Q.
(a). Define

B(D(Q),AD) = {s={sn}n20 : {sns1 — AP sn}nz0 € B(D(Q))},
. _ (1)
with norm HSHlZ(D(Q)AS)) = H{Sn+1 — Ay Sn}nZOHZg(D(Q)) + |Isollp(y-
(b). In addition, define
6 5(D1(Q), Do(), AY)) = 125 (D1(2), AY)) N 15 (D(2), AY)),

with norm |1sllp 1, 0),py(@,40) = 18l (0, (@),40) 181z, 0),40)

See Appendix A for a further discussion on these spaces under certain setting.

From now on, we aim to a decomposition of the Sobolev spaces H5(2). We will first deal
with the half space Kf‘ﬁ = K x K% and the full space K%, and construct a restriction
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map and an extension map for Hg([?jl_) and HE(K%) respectively in the following. For
convenience, throughout the rest of this paper, we always assume

(C1). For any x € Vi, we have #n1(z) = 1.

For each x € Vp, we fix to denote its address by 7,w, with 7,,w, € W, i.e. x = m(m,w,),
and require that
F.KNF, K=0, VYx#vyce. (3.1)

Yy
Remark. The condition (C1) is not necessary, but will bring simplification for the proof.
See [IT](Section 8) for a brief discussion on this condition and an example that (C1) fails.

1. The restriction map.

Since Hy_1 with k € Z, is a finite dimensional subspace in L*(K), for 1 < p < oo,
the orthogonal projection Py, , : L?(K) — Hj_1 extends to be a bounded map Py, , :

LP(K) — Hy—1. As usual, we denote P7(-11;3_1 the operator on Lp(f(i) as before.

Definition 3.9. (~a) Let w e W, \ {0}, k € Z. Define Ry, 1f = {ngil(Ag))"f}nZO for a
function f in LP(K?).
(b). For xz € Vi with address Ty, define Ry i f = wa’kAS-i)f for a function f in Lp(f(i).
(c). For x € Vy with address Ty, 1 < p < oo, denote o, = rdeH)/g,ﬂgc = Bz(p) =
T;IdH/p.
Noticing that Hg([?d)]ki C HY(K?), for a function f € HY(K?), we simplify Rx,kf\f(i to
R, 1. f without causing confusion.
We will show the following proposition.

Proposition 3.10. Letk € Z,,0< 0 <2k, 1 <p < oo, z € Vy and Q = K. Then R, is
bounded from HE5(Q) (also Hg(f(d)) to lggﬂz (’Hk_l(K, LP(OMYY), Hp—1 (K, Hg(Q/\l)),ASI).

The proof relies on the following two lemmas.

Lemma 3.11. Let k > j > 0, 1 < p < 00, w € Wi \ {0} and Q = K%. There exists a
function gyx;j € L®(K x K) such that for any f € D((AM)), we have

P ADHO = AV 1O = [ gunserm (AP (o).

Proof. For j = 0, the lemma is obvious since Py, , is realized with an integration kernel.

Now, assume j > 1. Let G be the Green’s operator on K, and G(!) its associated op-
erator on K9 as before. See Remark 4 in the last subsection. Let f € D((AM)7), then
we have g = f — (GW)Y (=AY f € D((AM)7) with (AM)ig = 0. As a consequence,
g € ijl (K, LP(Q/\l)). Thus,

D((AMY) = H; 1 (K, LP(QM)) & (G (2P (). (32)
It is easy to see that (P7({1,3,1A8) — Ag)ﬂ({lk)il)|Hji1(K,Lp(QA1)) = 0. So by 1D it suffices
to prove the lemma for the function (G(M)7(—AM)7 f. We only need to take

Gu (&) = (—1) /Kjl(PHj_lAw_AwPHk1)Gm (&G (n1,m2) - - - G(nj—1,m5)dp(m) - - - du(nj-1),
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where G, (§) = G(&,n) is the Green’s function. O

Lemma 3.12. Let 1 <p < oo, f € LP(K) and g € L*°(K). Define

s = {unP /K AR F(©)9(€)dp(€) 1,

then we have

sl < 1 lee oy gl oo (k)

Proof. Let Z = K \ FyK. Then || f||1r(x) = HHun/pAZfHLp(Z)Hlp by scaling, and

[ s©ate)dn =13 2 [ ATHOATg(du(o)

Z w | Aw fllzey gl Loe ()

m=0

where we use the fact u(Z) < 1. So using Minkowski inequality, we get

sl < llgll o)l Z Kl P AT Fll o2

< gl zee () Z #wiFHfHLp(K)
m=0

Since i, < 1, we get the lemma. O

Now we return to the proof of Proposition [3.10}

Proof of Proposition [3.10} It suffices to consider R, for any w € W, \ {0}. We write

a= rS+dH)/2 and 3 = p@l/p = r;dH/p for short.

First, we show that R, j is a bounded map from H5(Q) to 1§ (Hk (K, HE (M ,AS )
First, we consider the case 0 = 2j with j € Z; and 0 < j < k. Let f € HSJ(Q)CLP( %(QM))
By applying Lemma [3.11] we see that

(Rukfns1 = AD (Ruf)n) ) = (Pl AD = ADPY) )(aD)r) ()
= [ guaterm (D) 1) & ()it

The claim then follows from Lemma since gy 0 € L>(K x K). For general 0 < o <
2k, the claim follows from the fact that HZ(QM) = HEP(K? ') is stable under complex
interpolation, so is Hy_1 (K, H5(QM)).

Next, we need to show that R, x is a bounded map from H% () to liaﬁ (Hp—1(LP(Q"Y)), Az(j)).
As the last paragraph, we only need to consider the case ¢ = 25 with j € Z;, and 0 < j < k.
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We apply Lemma [3.11| again, and see that
(Rukfhnsr = AD (Rurf)n) (€)= (P, AD = aADPY) )(aD)"£) (€)

= [ gunsterm(QOYAD)Y 1)L ()dnto)

= V" [ 1A AVY 1)L ()dto)

The claim then follows from Lemma since (AM)If ¢ LP(Q) = LP(K, LP(QM)) and
Gukj € LOO(K X K) O

2. The extension map.

Now for €} = .f(i, zeVy,l<p<oo, keZyand 0 <o <2k, we will construct a bounded
map E,j (or E’x’k) from lg",ﬁw (kal(K, LP(OMY), He 1 (K, Hg(Q/\l)),A&Z) to Hg(f(ﬁlr) (or
HY(KY)).

Let w € W, \ {0}, without loss of generality, we assume that F,, K is bounded away from
Vo \ {m(w)}. We introduce some maps that will be used.

1). For each h € Hj_1, clearly there is a smooth function h € C*°(K) such that

v

Aw;L = h, PHk—lh’ =0

and h vanishes in a neighbourhood of Vj \ {m(w)}. By choosing h properly, h — h becomes
a linear map from Hjy_;1 to C®°(K).

In addition, for any f = Y""", h; ® f; with m € N, h; € Hi_1 and f; defined on QM| we
write

f: Zill ® fi-
i=1

2). For each h € Hj,_1, still clearly there is a smooth function h € C°°(K) such that
Awh = Ayh, Py, h=nh
and h vanishes in a neighbourhood of Vg \ {m(w)}. By choosing h properly, h — h becomes
a linear map from Hj;_1 to C°(K).

In addition, for any f = Y.1", h; ® fi with m € N, h; € Hi_1, and f; defined on QM| we
write

F=> hiofi
i=1

Now, we define the extension map E, j, for HY(K%).

Definition 3.13. (a). Let w € W, \ {0} and assume that F,, K NV = {m(w)}NVy. For each

sequence of 8 = {sp}tn>0 € (Hr—1(K, LP(Q/\l)))Z+, we define formally

[e.e]
Ey 8 = 50 + Z 5 o (FLDy=n+1,
n=1

(1)

1
where s, = 8, — Aw’ Sp—1-
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(b). Let x € Viy and 1w, be the address of x as we discussed after (C1). Define
Ey 18 = (Ey, x8) 0 F_ 1.
Proposition 3.14. Let k € Z, 0 < 0 < 2k, 1 < p < o0, x € Vy and Q) = f(ﬁ. Then
E, 1 is bounded from lp 5, (7'[1671([(, LP(QMY), Hi1 (K, Hg(QM)),A&B) to HY(QY), with o, =
r$x+dH)/27ﬁm _ ,,,wdH/p
In addition, we have Ey s supported in Fr K x f(dfl, and Ry 1 Ey = Id.

Proof. 1t suffices to consider E,,j by assuming F,,K NVy = {m(w)} N Vh. We write a =

rS+dH)/2 and 3 = uwl/p dH/p for short.
First, for any j € Z4 w1th 0<j<kand® >0, we show that E,,; is bounded from

P (Hk (K, HY(QM)), A(l)) to the function space

ZJﬁ
{f e D((AW)) : (AWY f e LP(K, HY(QM))}.
Let s € lpg]ﬁ(”;'-[;C (K, HY( ) ,AEUI)) Write s/, = s, — AS)sn_l for n > 1, and for
convenience, write fo = 59 and f,, = 8, o (F, (1)) nt1 for short. Then we see that
Al
H{ ) f”}n>0H1P (Loo(K,HE (QM)))
Sllsollpg, - agiary + [Honsr = AL 3n}n>0HzP S (Hie 1 (K HE (M)
XHSHZP (Hk 1(KHP(Q/\1)) A(l))

Write Z = K \ F,, K. Then we have

1> AN fonll| o rpaannyy
m=0

n+1 n+1
=l PN D AN falll oz, @0y | S /P> IADY foall oo (2,100 || 1o
m=0 m=0

o)
=12 tnzmy TN ADY ol o zmrgny i S T fadnzolli o ey

m=—1

Now, noticing that

05 (e (K, HY (), AD)) € 1 (M (K, LP(Q)), AD),

we clearly have E,, ;s € LP(2) by applying the above two estimates (take j = 0,6 = 0). In
addition, the claim also follows from above.

Next, for j € Z4 with 0 < j < k, we observe that

J
l (Hk I(K LP(Q/\I))erk—l(Kv ng(Q/\l))qu(j)) = ﬂ ZZQJ‘//B(H]C—].(K7 Hg(j_j/)(Q/\l))aA£ul>)7

j'=0

a?i,B

using the fact that the Sobolev space HY (.f( d_l) is stable under complex interpolation.
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Then by using the fact that

= {fe7(Q): feD((AMY), (AWY'f € IX(K, Hy (@), §'=0,1,--- 5},

we find that E,, j is a bounded map from 5, ,(Hp—1 (K, LP(Q™M)), Hi—1 (K, Hé’j(Q/\l)), AS))

o2
to Hy;(Q), by combining the above two partsﬁ

On the other hand, it is easy to verify that R, 1 E, r = Id on lg (Hk_l(K, LP(QNY), Ag)),
and thus it holds on subspaces.

Till now, we have proved the proposition for o = 2j with 0 < j < k. Since {(1 — A)®},cr
is a Cy-group as a consequence of Proposition?? in [|, where A is the Laplacian on K41 by
applying Lemma to —A, noticing that HY(K9') = D(A?/?) for ¢ > 0, the result for
general 0 < g < 2k then follows by using complex interpolation. O

Next, we construct the extension map E’m,k for HY(K?). The only thing we need to do is

to extend each function 5y and &, to K9 To make things clear, we introduce the following
notations.

3). For each h € Hj_1 and = = 7(1,w,) € Vp, there is clearly a function M,(h) € Hi_1
such that

AN M, (h)(x) = A h(z), A My(h)(z) = —0,Ah(z), YO<j<k-—1.

By choosing M (h) properly, h — M,(h) becomes a linear map from Hy_1 to Hp_1.
For convenience, we write M, (h® f) = M,(h)® f and thus M, extends to be a linear map
My« Hy—1 (K, LP(Q) — Hyoy (K, LP(QM)).

With this map, we define E%k as follows.

Definition 3.15. Let x = m(7,u5) € Vo and s = {sp}n>0 € (Hi-1(K, LP(Q/\l)))Z+. Define
s_ = {My(sn)}n>0, and we formally define E, s on K¢ as

E:c,k3|f(tjr = Ex,k37 Eﬂ?akslf(ﬂ = E%ks,.
Using a same argument as Proposition we have

Proposition 3.16. Letk € Z4,0< 0 <2k, 1<p<oo,x€Vy. Then Ex,k is bounded from
5, (Foemt (B, LP(QM)), Hyooy (K HE(M)), AY) to HE(K?), with o = rh. 2,6, =

—dH P
Twy /

In addition, we have EN’x,ks supported in FT(i)K'ﬁlr U FT(E)K@, and Rx,kE:r,k: = Id.

3. The decomposition.

Still assume 1 < p < oo, k € Z4 and 0 < o < 2k. Notice that the maps R, , E, and
E,}, for 2 € Vp can be defined naturally on K x Q' for Q' = K! x K*~=1 (also on K x Q).
For simplicity, we introduce some notations.

Notations.

(a). Let @ = K' x K" with 0 <1 < d. We define K% () = {f € H}(Q) : Rusf =

0,Vx € VO}.
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(b). Let Q = K' x K% with 1 <1< d. We define
T2 = {f € HYQ): f =) Evpsa, with

zeVp
80 €10y 5 (M1 (K, LP(QM), Hy o (K, HE(QM)), AD)), Ve € V.

Also define
TP(KY) ={f e HYK?) : f =) Eppsa, with

zeVp
80 €10y 5 (Hea (K, LP(KY)), Hy o (K, HY(KY), AQ)), Ve € Vo)

As an easy consequence of the Proposition[3.10] [3.14] and [3.16] We conclude this subsection
with the following theorem.

Theorem 3~.17. Let 1 <p < o0, k € Zy and 0 < o < 2k. We have
(a). Hg(ffd) = ’Cﬁ,k(ffd) ® Tf,k(K:d)-
(b). HE(RY) = Kb ((RY) @ T2 (KY).
(c). for Q=K' x K with 2 <1 <d, H}(Q) =K? () & TF, ().
Proof. Noticing the requirement (3.1)), part (a) is a consequence of Proposition and

part (b) is a consequence of Proposition and We will prove (c¢) in the next
subsection. 0

3.3. Proof of Theorem and (c). In the last part of this section, we will prove
Theorem [3.5, and also fullfill the proof of the decomposition theorem. Let’s start from the
simple case where 2 = Kﬁlr.

Lemma 3.18. For each f on K%, we define O(f) to be the function on K® such that
f@), ifzeKd,

0, if v e K9,

Then © is bounded from ICZk(IN(jl_) to ICZ,C(IN(d). As a consequence, IC§7k(I~(d)|[~(i = ICik(f(jl_).

Proof. First, for j = 0,1,2,--- ,k, we can easily see that © is bounded from Ingk(f(i) to
Ing,k(f(d). Next, by Theorem (a) and (b), Lemma and the fact that

d d d d d d
[ng(K )7H§j+2(K )]9 = H§j+20(K ) [ng(K+)vH§j+2(K+)]e = H§j+29(K+)a

we conclude

[ng,k(Kd)vngJrzk(Kd)]a - K§j+20,k(l~{d)v [IC:;M(Ki), ]ng+2,k(—f{i)]e - ’ng+29,k(f{i)v
for j =0,1,--- ,k—1and 6 € (0,1). Thus, © is bounded from K%, (K{) to KI , (K?) for all
0 < o < 2k by using complex interpolation. 4
Lemma 3.19. For 1 < p < 00 and ¢ > 0, we have HY(K¢) = Hg(f(dﬂf{i. In fact, HY(K)
is a retract of HE(K?).
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Proof. Obviously, we have HY(K®)| ke C HY (f(i) On the other hand, define the extension
map Ay from LP(K?) to LP(K?) as

Ap=0(01= > EupRop)+ Y EopBok.

zeV) eV
Using Proposition and and Lemma [3.18, we can see that A is bounded from
HE(K®) to HE(K?). The lemma follows. O

For the special case = K%, Theorem follows immediately from Lemma Now
we prove Theorem [3.5] for the general case.

Proof of Theorem and Theorem (¢). For d = 1, Theorem is true by Lemma
and there is nothing to prove for Theorem (c).

For d > 2, we prove by induction. We assume that both results are true for d —1, and thus
could be applied to @ = K! x K4 =1 ¢ K91 As a consequence, for 1,09 > 0, we have

[HE (), HE, ()], = HE, (), with og = (1 —0)o1 + o and 0 € (0,1).

Let Q = K x @ c K% We can use a same proof as Proposition to see that R, is

bounded from HE(Q) (also HE(K x ) to 12, 5 (Hy—1(K, LP(SY)), Hy_1 (K, HE(SY)), AL)).
Moreover, we have If, 5 (Hp—1 (K, LP(Y)), Hpp—1 (K, Hg(Q’)),AgB) is a retract of

P

In fact, there is an extension map F (independent of o) from H(Q) to HE(K%1) and let R
be the restriction map from K% ! to €', such that RE = Id. The extension map F naturally
extends to the sequence spaces.

As a consequence 7, 5, (Hp—1 (K, LP(Y)), Hyp—1 (K, HE (), Aﬁulz)) is stable under complex
interpolation. Thus, we can use a same proof as Proposition (or [3.16)) to see that
E, (or E, ) is bounded from e 5, (M1 (K, LP(Q)), Hi—1 (K, H5 (), Aq(ul)) to H5(Q) (or

(Hk_l(K, Lp(f(dfl)), Hi—1(K, HZZ(K”Z*I))» A&Z)

T

HE2(K x €)). As an immediate consequence, we have Theorem (c) proved for €.

In addition, following the same proof of Lemma and Lemma we have HJ (K x Q')
is a retract of HY (f( x Q). Now, we apply the claim to different Q' and different directions,
we have

HP(KY ~ HP(K x K9 ~ ... A HP(K9! x K) ~ HP(K9),
which are realized by the extension map Ay and the restricition map in different directions.

As a consequence, we have HY(K?) ~ H2(Q). Theorem is proved for d. The proof is
completed by induction. ([l

4. EMBEDDING THEOREMS AND BOUNDARY BEHAVIOR

In this section, we study the embedding theorems of function spaces on product of fractals.
Recall that in Theorem We have shown that the Sobolev spaces H(€) on Q = K@ K¢
with 0 > 0 are stable under complex interpolation. We can then define the Besov spaces
B51(Q) by real interpolation as follows.
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Definition 4.1. Let Q = K! x K9 p.q e (1,00) and o > 0, we define
BRI(Q) = (LP(Q), H3,(Q)) o with o’ > 0.

Note that the definition is independent of the choice of o'. In addition,NBg’q(Q) is a retract
of By?(K?), noticing that the couple (LP(Q), HZ,(€2)) is a retract of (LP(K?), H?,(K?)). One
can equivalently define BS(Q) on Q as the restriction of By (K%) on K.

Proposition 4.2. Let Q = K' x K%, p g € (1,00) and 0 > 0. We have BYY(Q) =
Bg’q(Kd)‘Q.

In this section, we will introduce some related spaces, HE(2), B2(Q), HE(Q), B2(2) and
some others, which will play important roles in the next section. At the end of this section,
we will extend the embedding theorems, Theorem and Proposition to real orders. For
convenience, we will mostly focus on 2 = ffjl_ in this section and the next section, though
quite a large portion of the theorems can be extended to the general case.

4.1. A trace theorem. We begin this section with a trace theorem of HE(Q) and B57(Q)
on the boundary 09 of Q = K! x K. In this part, for simplicity, we only take care of a
face of 99, which is identified with K~ x K-,

It is well-known that on K, we have H5(K) C C(K) if and only if o > p(lziféH) = %S’
where dg := 124:?}1 is the spectral dimension on K, see [] for a proof. Similarly, we also have

that 9, f(z),Vz € Vy is well-defined for any f € H5(K) if and only if 0 > 2 — C]lj—?. Readers
can compare the following theorem with the classical trace theorem in monographs [] and [].

Theorem 4.3. Let Q = K!' x K4 with 1 <1<d, 1<p<oo,p’=1% and x € Vj.
(a). For 2k — ‘;—? <o <2k+ %S with k € Z4., the trace map

TV F = (flimxants s (AN floaon, 08 flogwant, -+ O (AM)ET fl on)

is bounded and surjective from H2(Q) to []F=,) Bgf%ids/p(ﬁ/\l) x 152, Bg’f%f%ds/p,(ﬁ/\l),
@),

and is bounded and surjective from B5(Q2) to Hf:_ol Bg’quifds/p(Q/\l) ><]_[f:_01 Bgi]2i72+ds/p/

(b). For 2k + %S <o<2k+2- ‘fj—? with k € Z4., the trace map

TEDf = (flagysants - s (A fleniqnt, O flaayxant, - O (AW [a ga)

is bounded and surjective from HE(Q) to Hf:o Bg’f%ids/p(ﬂ/\l) X Hf:_ol B§f2i72+ds/p/(ﬁ/\1),

and is bounded and surjective from BY*(Q) to Hf:o BngFds/p(Q/\l) fo:_Ol B§f2i72+ds/p,(QA1).

Remark. It is known that BZ*(K?) = H2(K?) by the standard interpolation theory, so that
B2*(Q) = H2(Q) for any Q = K! x K%L,

To prove Theorem it suffices to show that for i < k, 2i + d?s <o <2kand2i+2— %,9 <
o' < 2k, and for any f € H7(Q), f' € H?,(Q), v = n(tw) € Vp and a.e. £ € QM| we always
have

(ADY F(2,€) = Tim (o) () (A (R (P72, 6),

. . 4 . (4.1)
O (AW f(x,€) = lim 1y () T (Pupta) O (AN (R i ) (Fy a0, 6),
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where R, , is defined in Definition Then Theorem [4.3]follows immediately from Theorem
and Proposition [2.9|for H7(Q2) case, and from Proposition [2.13|for B5?(Q) case by using
real interpolation. Indeed, the identities in follow from the following lemma, noticing
that HY(Q) C (1 — AW)=9/2(LP(Q)) and (1 — AW)=9/2(LP(Q)) C L=(K, LP(QM)) for
o> %S

Lemma 4.4. Let Q = K' x K4 k€ Z,, 0 < 0 < 2k and = n(t) € Vy. For each
f € HY(Q), we have

Jim (i)~ 7[| (AL A S = (R f)u =0;

D 1))0—/2)
For each f € Bp’q(Q), we have

lim ( —on/2 n/pH nA l)f cckf H =0.
n—00

o/(2k),q

Proof. Write (o) = {s = {sn}nz0 € I™(D ((A( NT/2)Y 2 limy, o Sn = 0} for short, and
denote l = {3 = {sn}tn>0 : {a "sptn>0 € l } with « > 0. One can easily check that
the map f — { A f— (Rypf)nt .y is bounded from LP(R) to [5(0), and is bounded

from HY () to la2k5(2k), where o = (yfie)/? and f = ,u@l/p as in the last section.
In addition, using Theorem (b), one can easily check that

[15(0), lo2x5(2R)] oy = laes(0), Vo € (0,2k).

The identity for H2(€2) case then follows by using complex interpolation.

The identity for BE?(Q) follows by the real interpolation of the couple (lﬁ (0), 12 5(2k)).
]

((AM)0),D(AM)H))

Remark. We can get better estimates if we use the norm L*>° (K , LP(QM)) for the remainder
term in Lemma for o large enough. See the authors’ previous work [] for a discussion on
Q = K in the L* setting.

4.2. The spaces HZ(Q) and B?%(Q). In this part, we focus on HZ(Q) and BY9(Q) for
Q = K! x K% with 1 <[ < d, which are viewed as functions in H2(K%) and BY?(K?) with
support in Q. The notations H2(Q) and B2(Q) follow from Tribel .

For convenience, we write © : LP(Q) — LP(K?) the extension map by zero.

Definition 4.5. (a). For 1 <p < oo and o > 0. Define
or(Q)={f e H(Q) : 0f € HY(K")}.
(b). For1<p,q< oo and o > 0. Define
BPY(Q) = {feB(Q):0f € Bg’q(f(d)}.

In fact, by introducing the Dirichlet Laplacian Ap and the Neumann Laplacian Ay on €2,
using the same idea in Section 3.1, we have

HE(Q) = H} 1, () N H] () := (1= Ap) 72 (LP(Q)) N (1 — An) 7/ (LP ().

This can be shown easily using symmetric extension. Moreover, we have the following char-
acterizations.
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Theorem 4.6. Let 1 <p,q < oo, p' = % and o ¢ {ds 2— d?} +27Z4. Then
(a). HR(KL) = {f € HY(KY) : TSV f = 0,Vz € Vp}.
(b). BRUKD) = {f € BPUKL) : TV f =0,z € V).
Proof. Write Q2 = .f(i for simplicity.
(a). The statement is clearly true when o € 2Z, so we only need to extend the result to

general ¢ using interpolation.
Let’s fix £ € N. We show the following two claims.

Claim 1: The interpolation couple (ﬁg(Q),ﬁgk(Q)) is a retract of (Hg(f(d),Hgk(f(d)).

Proof of Claim 1. We have the extension map © already. We define the restriction
map R using the mappings Ay defined in Lemma Let f € LP(K 4), we define f' =
Ap(fIK?). Then, we define Rf = (f — f')|q. Clearly, we have R : (Hg(f(d),Hgk(Kd)) —
(HY(Q), H5, (Q)), and RO is the identity on HJ(1).

Claim 2: We have [H(Q), H(Q)], ), = {F € HYQ) : TEV f = 0,v2 € Vo).

Proof of Claim 2. Recall that in Theorem we have developed the decomposition
HE(Q) =KL, (Q) @ TF.(Q) for 0 < o < 2k. Note that

T2(Q) = {f € HE(Q): f = ) Eppss, with

zeVp
sz € Uy 5 (Hi-1(K, LP(QMY), My (K, HR(QM)), AQ), Ve € Vo },
we then define
T2(Q) = {f € HXQ): f = Y Eqyp8s, with
zeVy (4.2)
sz €y 5 (Ha 1 (K, LP(Q), Hy o (K, HE(QM)), AL)), Ve € Vo ),
with
Py ={sel(-): {(AD) s, (F 2, 0)}uxo € By 5 (LP(QM), HE(QM)),

. 4.3
{0 (AN s, (F s ) oo € 10y 5 (LP(QM), HE(QM)), V0 < i < k,z € Vo). (4.3)

We can check that ﬁk(Q) is stable under complex interpolation, i.e. [7?,C (Q), 7~'21,’C ()] o/ok =
72%(9), using Lemma (b) and Lemma Furthermore, by applying Proposition

we see that

T2(Q) = {f € TEL(Q) : TSV f =0,¥2 € Vo }, ifagé{— 2——}+2Z+

o,k

and 77, (2) = T2, (Q) if 0 < 4. Clearly, we have Hg(Q) = Kf () & T, (?) and Hg,(?) =
K5y, 1 () & T3, . (Q). Thus

[E5(Q), H ()] oy = K2 (Q) & T2,(Q) = {f € HYQ) : TV f = 0,92 € Vo).

o/2k

Now, using Claim 1, we conclude that H(f2) is stable under complex interpolation. Then
(a) follows from Claim 2.
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(b). It suffices to show that (HJ (1), I:ng(Q))g/zk,q ={f e By (Q): Téx’l)f =0,Vz € Vp}
by using Proposition [2.13] This follows from a same proof of Claim 2. O

Remark 1. We can use the above argument iteratively to show a same result for general
Q=K!'x K.

4.3. The spaces HZ(Q) and B2Y(Q). In this section, we introduce the function spaces
HE(S2) and B5?(2). We focus on Q = K¢ for simplicity.

Definition 4.7. (a). For 1 < p < oo and o > 0. Define HE(Q) as the closure of C2°(Q) in
HE(Q).
(b). For1<p,q< oo and o > 0. Define BE9(Q) as the closure of C2°(Q) in BYY(Q).

In classical analysis, on a smooth bounded domain Q C R%, we always have HZ(Q) =
HE(Q) for all orders o > 0 except for the critical orders {%S, 2 — C]lj—?} + 2Z. However, in
fractal setting, things will be different since the boundary behavior of functions will be more
complicated. In fact, other than the normal derivative, some other ‘higher order derivatives’
emerge, which do not play a role in the matching of pieces of functions at junction points,
but really reflect the boundary behavior of functions. See [11], B3] for example.

To be more precise, we need to introduce the so-called tangents of functions. Recall the
definition of multiharmonic functions in Definition (a) and the map A,, in Definition
(a). We introduce the following notations.

Notations. 1). Denote Hy = Upe; Hi—1.

2). Let X be a generalized eigenvalue of Ay on Hy, and write Uy ,, for the generalized
eigenspace, i.e. Uy = Upo_gker(Ay — )™,

3). Let 1 =70 > V1w > -+ > Yw > -+ be the absolute values of nonzero eigenvalues
of Ay : Hy — Hy, which is ordered in decreasing order.

4). Write Uy = Uini=vs.. Urw for each i > 0.
For convenience, for x = n(Tw) € Vo, we write Yiz = Yiw, Uz = Unw and Uiz = Ui 4.

These notations are analogous to those in the Appendix A, and we will use the results there.
Nevertheless, we recommend readers to consider a simple case that A, is diagonalizable at
this stage, so that all the sequence spaces that we will consider later are essentially direct
sums of sequence spaces illustrated in Section 2, and only the results in Section 2 are needed.

For x € V, 0 > 0, in contrast with the trace map Ta(w’l) in Theorem we introduce the
following tangent map Tan$™" on LP(Q) with Q = f(i. Readers may also read [12] 32} 33}, [37]
for some disucssions on the definition of tangents.

Definition 4.8. Let z = w(tw) € Vy, 1 < p < 00, 0 > 0, ap = (Fupw)/? and B, = M;l/p.
Let i > 0 be such that viy1, < @Bz < Viz. For f € LP(Q), we write Tcm((,x’l)f = s with
5 € Pl Uj @ LP(ON) if

lim 5, [ (ARD)" (A f = 9)[| e 1o (@2er)) = O-

n—o0

For convenience, we set Tan,(f’l)f =0 for0<o <dg/p (i.e. aZB, >1).

In fact, by applying Theorem Lemma and using Lemma (or Lemma [2.3|if A,,
is diagonalizable), we can easily see the existence of the tangents at x for functions in H5 ().
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Lemma 4.9. The tangent map Tan®V is bounded from H5(Q2) — 69%‘ v>a%f, Ujz@LP(QM).

Remark. If A, is diagonalizable, we can easily see a trace theorem for the tangent as
Theorem However, when A,, is not diagonalizable, the trace space is not so clear at
present. It is of interest to see whether it is related with some interpolation functor.

In this subsection, we will derive the following characterization of Sobolev spaces H? (f(ﬁlr)

and Besov spaces BYY(K?).
Theorem 4.10. Let 1 < p,q < o0.

(a). For o >0, we have Hg(f(i) = {f € Hg(f(d) Tamr 1)f =0,V € Vg}

(b). For o > 0, we have ég”(f(i) = {f e BYI(K%): Tan$® 1)f =0,Vz € Vo }.

We will prove this theorem in the remaining part of this subsection. First, let’s look at
some easy lemmas.
Lemma 4.11. Let 1 < p < oo and 0 < 0 < o' < 2k. The space ICZ,,C(f(i) is dense in

rd
IC’;’,C(K <).
Proof. Since H?, (K%) is dense in HY(K®), we have H?, (IN(jl_) is dense in HZ(K%) by Theorem
The lemma then follows by using Theorem (b). O
Lemma 4.12. Let z = w(tw) € Vo, 1 < p < oo and k € Zy. ?hen there exists a constant
C > 0 only depending on k and p, such that for any f € C“(Kﬂir), we can find a function
gE Cm(Ki) supported in FT(I)f(i satisfying
||9||H§k(f(1) < C||f||HZk(f<i)

and . 3
S R A =
(z, 1) (z,1) . (x 1) . (z,1) oy _
Pmof For convenience, we write Ty, (( f)o, (T fak—1), e (T f)i =

( )f|{} Kd1f0r0<z<k and( f) ( A )z kf\{x}xfgda for k < i < 2k.
Clearly, for 0 < i < 2k, we have

TS F)ill g (geary S WPl i) (4.4)

by using Theorem noticing that BYP(K9~1) ¢ H? (K 1).
(1)

First, we look for a smooth function g; supported in F;

Cle”sz(f(d) for some constant C7; > 0, and Tz(lf’l) =T ml)f For this, by applying

Proposition (due to L. Rogers, R.S. Strichartz and A. Teplyaev []), we choose hj1,hj2 €
C>®(K),j=0,1,--- |k — 1 supported in F;K and

Aihj 1(%’) = 5ija Aihj 2(.%) = 0, . .
’ ’ ’ Vi>0and 0 <j <k.
{anAlhj71($) = 0, 8nAlhj,2(£L') = 51"]', t= an =7

f(i satisfying ||91HHp (&) <

Then we take g1 = v hig @ (Té,f’l)f)i + 35 his ® (TQ(,f’l)f)Hk, which is obviously
supported in FT(l)K'jir and TQ(:’U g1 = TQ(,f’l) f. Using 1} one can easily see that

gl ez, ey < CollFllg (zays
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where C] only depends on k and p.
So it remains to consider higher order Laplacians and normal derivatives of f at x. Choose
hji,hjo € C®(K) for j > k, supported in FrK, such that

Ath; =0, Ath; =
51(¥) = diyy i2(@) =0, Vi>0and j > k.
8nAZhj71(x) = 07 anAZth(I) == 52'73‘,
We define ' '
92 =Y (Tt (Arhj1 0 Fy™ o 1) @ (AW) f(a,0)
>k
+ D (rwp)™ (Arhjp 0 Fu™ o F 1) @ 00 (AN f(x, 0),
jizk
with each n; € N to be determined. Obviously, for each j > k, by choosing n; sufficiently
large, we can make ||gaf| HE, (i) 85 small as possible. In addition, g» € C*°(K%) and is
supported in Fr (1)K 4. See [] for a discussion for the one dimensional case. The lemma is
proven with g = g1 —|— go. O

The following scaling property is obvious.
Lemma 4.13. For f € Hgk(qujl)f(i), we have
k,—1/p _ p e

Lemma 4.14. For z = n(tw) € Vy and f € Hgk(f(d), we have

h%m (Tawpts) ™ 2knu$/pH )nA(l)f ( :rAkf)nHka(ki) =0.
Proof. First, we can easily see that
. —4k
Jim (o)™ /P (A AR f = (Beai Il o iy = 0
In fact, it is helpful to consider the case K¢ = K. Next, we can directly check that
1 _
hm /,Ln/pH nA( )f ( a:,4k:f)nHH§k(j(i) =0,

since by Lemma [4.13
D\n 4(1 -n 1
H(Agu)) AS— )f - (Rx,4kf)”HH§k(Rd) ~ My /p”A (Rw,4k(A7(' )f ’ 1‘(39))"1?1))0HHgk((FS))"ki)
—n/p|| (1) = o(u="
S Moy pHAT fHHgk((FaE;l))nf(i) - O(Mw p)_
The lemma then follows by complex interpolation. O

Proof of Theorem . (a). For convenience, write = R’i. Fix k € Nand let 0 < o < 8k,
we let

HY(Q) = Ky () & 7.?,4/%(9)7
where
T2 5 (Q) = Y Eoally 5 (Hi (K, LX), Hyr (K, HE(QM))). (4.5)
zeV
See Definition [3.13] for the meaning of the symbols.
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Claim 1: HE, () C HE, ().

Proof of Claim 1. Let f € Hgk(Q) and fix © = w(7w) € V. By using Lemma we can
see that

lim (Twuw)f%"ﬂ?u/pH(AS))nAQ)fHka(Q) =0.

n—o0

For fixed € > 0, by choosing n, large enough, we have
1\ng 1 2kng ,,—ng
A AD o gy < )=/
By applying the Dirichlet heat kernel P, with ¢ sufficiently small, we have P, f € C°°(2) with
H(AS))HZAS'I)PtfHka(Q) < 28(Twﬂw)2knzu;n1/p'

By applying Lemma, noticing the requirement (3.1)), we can find a function g, € C*°()
supported outside a neighbourhood of the point F~!(z), satisfying the same boundary condi-
tions (values and normal derivatives of (A(1))¥’s) as (Ag))”mA(Tl)Ptf at (Vo \ {F12}) x QM
and

190l (o) S NADY ™ ADPF| g 0 S <lrimpn) 7 7.

Apply Lemma 4.13] we have

gz 0 (FL))™me o (F e,

Dy—1

) ‘‘Hgk(FT“)o(zaﬁ,”)nggQ)S
1P F 1l (0o ye gy < €
We replace P, f with g, 0 (Fé,l))_”z o (FT(I))_1 on the cell FT(I)(FS))”IQ for each = by using the
matching condition at (F, F=Vp\ {z}) x Q" and denote the result function as f.. Obviously,
fe € CX(Q) and || f— fEHHSk(Q) < e. The claim then follows since 2¢ can be chosen arbitrarily

small. 0
The following claim is an easy consequence of Claim 1 and Lemma [4.11

Claim 2: Define

o ASP
7?'1:416({2) = Z E:L’,4klggﬂz (,Hk—l(Ka LP(Q/\l))v,Hk—l(Kv Hg(QAl))) . (46)
zeV

A
(Here IP.(---) is the closure of I2.(---) in I2.(--- ,Ag)), see Appendiz A for details.) Then

for 0 < o < 2k, we have ’CgAk(Q) @ 7023,%(9) C HE(Q).

The following claim is a consequence of Claim 2 and Proposition in Appendix A (or
Proposition if A, is diagonalizable).

Claim 3: {f € HY(Q) : Tan§™) f = 0,Vx € Vo} € HE(Q).
Claim 3 implies half of part (a). The other direction of the containment is obvious by
Lemma [t.9]and the fact that C2°(Q) € {f € HE(Q) : Tan{™ f = 0,vx € Vp}.

(b). This follows by a similar proof as part (a), using real interpolation and Proposition
instead. U
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4.4. An embedding theorem with o € R. In this last subsection, we will extend the
Sobolev spaces and Besov spaces to o € R. Let’s first look at the full space K?. Formally, we
can extend Definition [I.1] and Definition [I.2] directly. To make things meaningful, we need to
use the distributions on K¢ (or equivalently the uniform extrapolation space of A, see [| for
details). See Definition in Appendix B for the definition and [] for a detailed discussion.

Definition 4.15. Let p,q € (1,00), 0 € R, and consider the A : D' (K%) — ' (K9).
(a). Define the Sobolev space

HY(K?) = (1—28)~72LP(KY),

with norm HfHH};(f(d) = H(l — A)U/QfHLp(Kd).
(b). Define the heat Besov space

R = {7 € N ([T 0A1 ¢ ) ) <

. /0 1
with k € NN(0/2,00), and norm HfHBg"I(f{d) = HfHLp(f(d)‘F(fo (t /2H(tA)ketA(f)HLp(j(d))th/t) e,
Since (1 — A) : LP(K%) — LP(K?) is invertible, we can apply Theorem ?? in book .

Proposition 4.16. Let p,q € (1,00) and o € R. Then (1 — A) is an isomorphism from
HE(KY) to H? ,(K?) and from BYY(KY) to BPY,(K?).

Thus, for a lot of properties, we only need to study the ¢ > 0 case. In particular, the
interpolation property, Lemma holds for o € R. Also, since LP(K?) is the dual space
of LV (K9) for % + ;% = 1, it is not hard to see the following dual property for H5(K?) and
BPY(K®), where for BYY(K%) we apply the property of real interpolation.

Proposition 4.17. Let p,q € (1,00) and o € R. Also, let p' = %,q’ = qiil. Then

(a). HY(K?) is the dual of Hfla(f(d).

(b). B2Y(K?) is the dual of BY (K9).

However, to define Sobolev spaces and Besov spaces with ¢ € R on a domain with bound-
ary is a more delicate question. In history, basically there are two methods for the Sobolev
spaces, by trace or by dual. See the monographs [30] and [38] for example. The two are
almost the same, except for delicate difference at some critical orders. In this paper, we will
admit the definition by dual due to J.L. Lions and E. Magenes [30].

For D(K¢) C LP(KY) a function space on K¢, we denote (D(Ki))* as the dual of D(K?),
embedded in ®'(K¢) with a natural meaning.

Definition 4.18. Let p,q € (1,00), p' = p%l,q’ = ;%1 and o € R.

(a). If o >0, we define HY(K$) = Hg(f?d)\@ and BYYI(K?) = Bgﬂ(f(d)yf(i as before.
(b). If 0 <0, we define HR(KL) = (H” (K4))" and BEI(K4) = (B” (K9))".
We end this section with an embedding theorem concerning the function spaces on f(i
and K.
Theorem 4.19. Let p,q € (1,00), p' = p%l,q' = q% and o € R. We have
HY(RY) = HY(K)|za  and BRU(RY) = BRI g
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if and only if o ¢ {Z—?, 2— %S} — 2N, where the restriction is in the sense of distribution.
Remark. For each f € ®'(K?), we restrict it to ®'(K%) with the equation

< flge, 0 >=<f,09 > ¥p € D(KY),
where © is the extension by zero map introduced in Lemma

Proof. 1t suffices to consider the o < 0 case, and we focus on Sobolev spaces. Since @(f(i)
is dense in HY (K%), each f € HY(K?) is uniquely determined by the distribution flo R4y
which we still denote by f for convenience. Thus, the Sobolev spaces H5 (Ki) is well defined
as a space of distributions, and the theorem makes sense. We consider two cases in the
following.

First, we consider o ¢ {%?, 2— %5} — 2N. In this case, combining Theorem {4.6{ and
we can see that

HY (K) C HY (K1),

As a consequence, we can identify H? (K ) with the closed subspace © H” (K 4) of H” (KD,
Thus, each f € HY(K%) = (Hf/U(K'd))* naturally restricts to be in Hy(K¢) = (Flfla(f?jir))*.
Also, each f € HY(K?) = (ﬁ[ﬁlo(Ki))* can be extended to HY(K®) = (Hglo(f(d))* by the
Hahn-Banach Theorem. This proves the non-critical order case.

Next, we consider the critical order case, i.e. o € {C]lg—?, 2 — %S} — 2N. For this case, we
notice that

HYG(RY) ¢ A2, (KY),
since 7?; LKD) ¢ 7’1’; L(K%) for k > —0 in N. As a consequence, let ﬁfla(f(i) be the closure
of ®(K%) in H{'U(Ki), one see that f[fla(f(jir) is a proper dense subspace of I:’Ifla(.f?jir) and
(flﬁlo(f(i))* = HY(K%)| 4 by a same argument as the first case. Thus, we conclude that
+

HY(K$) C H(K)| g

+

This finishes the proof. The proof for Besov spaces is essentially the same. O

Remark. There is a natural analog of Theorem in [38] Section 2.10. We remark here
that our method is essentially different from the classical case in the following senses.

1). Our proof is self-contained. In particular, our proof derives the observation that
functions in HY(K?) can extend by zero to HE(K?) (ie. HH(KY) = HY(K{)) for 0 <
o< d?s without further characterization of the spaces. (See Section 2.10 for the role of this

observation in the proof, and see papers [| and [| for a proof of this obvervation on R%).

2). The normal derivatives and the tangents are defined in a pointwise way on fractal
domains, compared with the classical domains. In addition, much information in the tangent
does not take part in the matching conditions. So there is not an easy restriction mapping
from the whole space to the half space, analogous to the reflection method in the classical
domains.
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5. INTERPOLATION THEOREMS

The interpolation theorems for Sobolev spaces and Besov spaces on domains in R? have
been extensively studied in a sequence of monographs [30],[7] and [3§].

It is of interest to derive the corresponding results in the fractal setting. In this section,
we will provide a full list of interpolation results of Sobolev spaces and Besov spaces on K¢
and R’i. We are particularly concern those involving critical orders of o, see Figure 77.

5.1. The full space K% case. We will first consider the interpolation property of HZ(K%)
and B2Y(K%) on K¢ with p,q € (1,00) and o € R. For p, ¢ fixed, of cause, the spaces are
both complex and real interpolation stable, by Lemma[I.3, Proposition [£.16] with a standard
reiteration argument of interpolations. So we are particular interested in the case that p,q
are not fixed. Readers please refer to the book [] for a classical theorem on RY.

Theorem 5.1. Let 0 < 0 < 1, 0,009,010 € R and 1 < pg,p1,9,q1 < o©. Put g9 € R,
1 < pg, qp < 0o sasifying

1 1-6 0 1 1-6 46
opg=(1—-60)og+ 0o, — = +— —= +—.
Py Po p1 de 40 Q1

Then we have

[H2(K?), HP (K], = HP(KY), (5.1)
(HE(K), HP (KY)), = HE(KY), (5.2)
[BEo©(KY), BbLa (K], = BRot(K7), (5.3)

(Bhy® (KT, Bt (KY)), = BRow(KY). (if po = o) (5.4)

Proof. The first two identities can be proven with a same argument as that for the R? case,
using the fact that {(1 - A)it} e 18 a Co-group, see [| for example.

We now prove and . The key idea follows from Peetre [|, by introducing a
retraction from the spaces of the form 12, (LP) to Besov spaces BYY(K®). We will realize a
similar retraction using heat kernel instead of Fourier transform here.

Let’s first recall Lemma [2.6] and 2.8 which together imply the following claim. For conve-
nience, we write L =1 — A : LP(K%) — LP(K%) in the proof.

Claim 1: Fizrk €e Nand 0 < a <1, and let 0 < 0 < 2k, p,q € (1,00). We have Bg’q(f(d)

is a retract of lik,av/%k (D(Lk), 1), with the restriction map being R = I'1, and extension map
being £ = SE® with suitable @. (See Lemma andfor the notations.)
To proceed, we need to use some properties of the Laplacian A.
Claim 2: For k € N and L : LP(K%) — LP(K%), we have
il;%) Ht(t + Lk)le < 00, igg HL’C (t + Lk)le < 00.
By Lemma in Appendix C, L =1 — A : LP(K%) — LP(K?) is sectorial of angle 0. So

we can apply Lemma to conclude that L* is also sectorial of angle 0. The claim follows
from the definition of sectorial operators and the equality L* (t + L"/’)_1 =1- t(t + Lk)_l.

As a consequence of Claim 2, we have
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Claim 8: The map I:1¢ ., (LP(KY)) — lik,ao/H (D(LF)) defined by

I({sn}n>0) = {(a™"" + Lk)_l(sn)}nzo

is an isomorphism for 0 < o < 2k.

By using Claim 1 and Claim 3, noticing that I, ., (D(LF),1) is in fact isomorphic to
likﬂa/sz (D(L*)), we conclude that BY?(K?) is a retract of 2o (LP(KY)). Hence 1'
and (5.4) follows using Lemma

Remark. It is possible to establish a Littlewood-Paley type decomposition of the Besov
spaces, basing on Theorem in [], which will also provide a suitable retract.

We end this part with some corollaries for spaces on f(i.

Definition 5.2. For k € N, 0 < 0 < 2k, 1 < p < o0, recall the definition of IC:gk(f(i)
and ’7;%(1?1) defined before Theore the space 7;%([?1) defined in equation , the
space 7fk(f(f‘f_) defined in equation , and the space ’fﬁk(f(i) defined in equations
and . For 1 < g < 0o, we define

Kyt (KS) = (Kg,k(Ki>’ng,k(Ki))a/(Qk),q’ T (KY) = (73?1@([?1)7m,k(f{i))g/(%),qv
TR = (ﬁflc(Ki)vm,k(Kﬁlr))g/(zk),w Tl (KY) = (ﬁfk(Ki)’m,k(Ki))g/(zkmv

and 7??}3([21) = (ﬁfk(f(i)vm,k([%i))a/(%),q'

Corollary 5.3. (a).~ For 0 < o < 2k, equations ~and hold if we replace HY(K?)
with the space K (K1) (or TF (K1) or T2 (K or TZ(KY)).

(b).~ For 0 <o < 2k, equcyfions~ and (5.4) hold if we replace Bg’q(K'd) with the space
KEA(EY) (or TZE(RY) or TZERD) or TZE(KY)).
Proof. (a). One can see that HY(K?) ~ HE(K%) ~ K’;’k(f(i) and HY(K?) ~ HY(K?) ~
7'fk(f(f£) by Theorem [3.5 and In addition, 7;pk(f(~i) is~isornorphic to 7?,6([%1) (by the
isomorphism of sequence spaces). Lastly, the result for 77, (K i) holds by using the retraction
Lemma . )

Part (b) follows from a same argument as (a), noticing that By?(K9) ~ BYY(K%) ~

Kg:,qf(f(jir) and ByY(K?) ~ BYY(K%) ~ Tf,f(f(i) by real interpolation. O

].)eﬁrlition 5.4. (a) Fork €N, 0< 0 <2k and 1 < p < oo, define HY(K{) = Kg’k(f(i) ®
Tok(KS). o S
(b) For k€N, 0 <o <2k and 1 < p,q < oo, define B5(K%) = IC‘;”,%(Ki) ® 7?}5(K$)

The following corollary follows immediately.
Corollary 5.5. For o > 0, equations and hold if we replace Hg(f(d) with ﬁg(f(i)
or Hg(Kf‘f_), for o >0, equations and hold if we replace By?(K?) with B (KY)
or BYY(K4%).
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5.2. The spaces ﬁg(f(i) and équ(f(i). The interpolation theorems for the spaces Izlg(f(ﬁlr)
and ég’q(f(i) are more delicate. We will rely on Proposition and Proposition m to
fullfill the story (or Proposition and Proposition if the involved operator A, is
diagonalizable).
For ¢ > 0, 1 < p < o0, we need to consider the critical set

Co, : = {(o, 119) : Jo = w(1pwy) € Vo, i > 0, such that (,uwzrwz)”ﬂp;i/p = Yia}
. (5.5)
= {(0,1):U:M+d—s for some x = w(7,1;) € Vo and i > 0}
p log ru, puw, p
contained in the (o, 1/p)-plane, which clearly consists of a sequence of lines, called critical
lines. See Figure [2l Moreover, we can see that

1 ds 1
o,—):o=—+4+2Z,tU1(0,-):0=2—
(o) o= +2m U o)
which we call Dirichlet critical lines and Neumann critical lines that appear in Theorem [4.6]

are contained in Co, .

ds

Iz

+27, with p = —2—},
p—1

=

FIGURE 2. An illustration for Co, .

For interpolations on HY(K%) and BY?(K%), we need to consider three different cases.

Definition 5.6. Let 0g,01 > 0 and 1 < pg, p1 < 00, and put

1 1-6 0
09:(1—0)00+901, — =
Po

Po p1
for 0 <8 < 1. We need to consider the following three cases:
(0+1). (09, 5-) ¢ Co, ;
(0+2). (00, 10%)’ (01, p%) and (og, p%a) lie on a same critical line in Co, ;
(04 8). otherwise.
Remark. In the third case, it should be (ag,pie) € Co,, but (Uo,p%) and (‘717;)%) could
not lie on the same critical line as (oy, é), although they may belong to Co, separately or

simultaneously.

We will show that (O, 1) is a safe case of the interpolations, where H = H and B = B for
(i, 09), (042) is ‘locally stable’ for H and B, while (O43) is the unstable case where the
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interpolation spaces of H or B becomes H or B. See Figure 3| for an illustration of the three
cases, and Theorem for the detailed interpolation theorem.

1

1

|

F1GURE 3. An illustration for the three cases of interpolations.

Theorem 5.7. Let the coefficients 0, 0q, 01,09, Po, P1,Pe be chosen as in Definition and
let qo,q1,90,q9 € (1,00) with q%a = q% + 1;1 The interpolation results for Hg(Kﬁ) and

ég”(f(i) are given by the following table:

(0+1) (0.2) (0:3)
[ER (K4, HE (KY)], HY(KY) = HYS(KY) | HE(KY) | HE(KY)
(He (KY), Hp (K1), HY (KY) = HE (KY) /| Y
(H5,(K$), 15, (K)),.0 BEIKY) = BhY(KY) / BRI(KY)
[BE™(K4), BB (K +>]9 B (K9) = Bhy (K4 | By (K9) | BY™(K9)
(BE™ (K1), BE N (KY)),.. (if po=a0) | B *(K$) = BEy@(K4) | Bby(K4) | Bhy® (K4)
(BR™(KY), B”l(Kd))eq@ By (Kd) = BY®(K{) | BR™(K{) /

where we have the restriction o = oy = o1 for the second equation, and the restriction
p = po = p1 for the third equation. Also ‘/’ in the above table means there exists no case or
only the trivial case.

Remark. One can apply reiteration theorems of real interpolation to get more interpolation
formulas.

Proof. We will use ‘- -+’ to stand for some unimportant information for simplification.
First, for each z = mw(mw,) € Vp with a, = (7"%,%,:5)1/2 and (,(p) = uwﬁ/p by using
Proposition and we conclude that
P (...)5’}3:110 (o) 1P (...)A'(wli:lm ()
ag,Bx(p) ag,Bz(p) ’ ag,Bx(p) ag,Bx(p) ’

. . 2log i .
if and only if o ¢ %5 + {bgffﬁ}izo. As a consequence, one can easily see that

o . . - . - 1
HP(K%) = H2(KY) and B2YK?) = BPY(K{), if and only if (0,5)¢Co+. (5.6)
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Now we proceed to prove the interpolation results. For convenience, we number the lines
in the critical set Co, in increasing order, £1,£2, {3, - -, from left to right, and call the region

Bo :=Uo<e<1((1 —t) +tl), Bi:=Uoci<1((1 =)l +tligq), i>1

the i-th stable bands.
Fix k € N, we will then prove the interpolation formulas with 0 < o < 2k for Sobolev
spaces and 0 < o < 2k for Besov spaces. We have HY(K%) = K? , (K%) & TF, (K%) with

Kﬁlr) = Z Eﬂkalig,ﬁz(p)(' )

zeVh
Applying Proposition we see that

W
Py A =T ) @ (8o S0 U @),

7wz

A)

e dg 2log i,z < ds | 210g7it1a :
if >+ og o fies <0< + Iog e fr As a consequence, and for short, we can write

HY(K?) = Hg’(fi’i) @ (®h_o Xig(o,p,p)) for (0,1/p) € B;N{(0,~):0< 0 <2k},
and similarly by applying Proposition instead,
BPI(KY) = é?%ﬁi)@ (®h_o Xir (0,1, q)) for (o,1/p) € B;N{(o, ; 10 <o <2k} (

We consider two possible cases.

Case 1: (0o, pio) and (o1, p%) are in a same stable band. (This includes the (O42) case).

In fact, for those (o, %) in a same stable band B;, the spaces have the same remainder

terms on the right hand side of (5.7) and (5.8]). This means

{HE(KD)} o~ {HR(K)} {BE(ED} ~ {B(KY)}

1
(075)66

Noticing that we have all the interpolation results for H5(K%) and BYY(K?) by Corollary
and Definition the interpolation results concerning H2(K%) and B2Y(K%) follows.

(O’,%)EBH U,%)EBI' (0’,%)661"

Case 2: (09, = o) and (o1, pi) are not in a same stable band.

We assume (o, pio) € B;, and (01, ) € B;, with i; > i9. The hard situation is when
(00, pio) or (o1, pil) is in Co, . We will apply the reiteration argument to overcome this diffi-
culty.

Claim 1: If (09, -)EB; \ Co, for some i, then we have

(R, H2 (RD)], € HE(RD) © Sy Xo 400,00 70).
[B5® (K9), Boy ™ (K$)], € Bog ™ (K$) @ @)y X (00, Po, 19)-
Proof of Claim 1. The claim is an easy consequence of (5.6), (5.7) and (5.8). In fact, we
have

[H2(K), HEH(KY)], € [HR(KT), HEN(KY)], = HP(K) = HE(K$)@ah_o X (0, po, pa),
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and the identify for Besov spaces follows similarly. O
Claim 2: flsszmoze (ag,fie) € Bil’ \C?“ then we have [Hgg(Ki),Hg; (f(i)]e = HY(KY)
and [BRy®(KY), By (K9], = BR(KY).
Proof of Claim 2. We choose 8’ < 6 such that (og/, i) € B;,. Then using the reiteration
theorem, Corollary for H, Claim 1 and Case 1, we get
Hp(K9) © [HE(KY), HRH(KY)], © [HEy (KY) © @)y Xu k(0. por, por), HEH(KL)] 59
= [Hoy (K9), HDH(KS)], = HE (K$)
with n = f:—gi, where in the second inclusion we use the fact that @Z}:OXZ-%(U, Do’y Por) N

HE! (K%) = {0}. Thus we get the desired identity for Sobolev spaces. The Besov space case
follows from a same idea. 0

Let’s return to the general situation of Case 2. We choose to prove the 5-th interpolation
identity for example, while the proofs of the others are essentially the same. We choose 6, 61
such that

1 1
0<fp<b<b <1, (O‘QO,IT)¢CO+ and (JGI’F)GBil\COJr'
0 1
Choose i > 0 such that (og,, ﬁ) € B;. By Claim 1 and Claim 2, we already have
0
[éggﬂo (f(i)a ég%’ql (f(—uil-)]@o C ngg’qeo (K—Cil-) S @é’:OXi’,k(OPo’p@m QG0)7
[ng#m (Ki)’ Bgm (Ki)] 0 = 3521 190, (K-Cil-)
As a consequence, with n = (0 — 60y) /(61 — 6p), we have

By (K1) = (BRy ™ (K$), By (K),, © (BEy™ (KL, B ™ (KD)),
C (3533’% (K{) @ @l_oXir k(08 Do 105 3531 0 (Ki))w
= (Bogy ™ (K1), Boy " (K1), ,, = Bhy (K9,
where we use reiteration theorem in the second line, the fact that @éfzoXi’,k (004, Doy 0,) N
Bg‘;i 0 (.f(i) = {0} in the first equality of the third line, and the interpolation result for H

in the first and last equalities, noticing that - + =2 = L — L Then the desired result
Pog Poq Po 40

follows. O

5.3. Extend to real orders on K i. We will extend the interpolation theorems to real order
o’s for function spaces on K i. We need to appropriately combine the results in previous two
subsections.

The difficulty comes from the fact that most information of tangents of functions at bound-
ary takes part in when we clarify Hg(f(i) in Hg(f(i) In R% case, it can be shown that
HE(R?) is a retract of HY(RY) for —2k < o < 2k with any fixed k¥ € N(except the critical
order cases using a reflection technique). See [38] for a discussion on R%, and a proof in the
L? setting for spaces on K in the authors’ previous work [I1].

However, the idea of using retract is not convenient for the general LP setting on p.c.f.
fractals. We will instead to apply the idea of decomposing function spaces again.
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Throughout this section, we will use < f,g > to abbreviate the integral [ i J - gdp, and
write flg if < f,g >=0.

1. A decomposition by projection. To deal with negative orders, it is convenient to
introduce a suitable decomposition of spaces that is well behaved in dual spaces.

Lemma 5.8. Fork € N and w € P, assuming F(y, KNVy = {71'(’[1))} without loss of generality,
there is a linear map h — ﬁw : Hip—1 — C°(K) such that Awﬁw = Ayuh, P,]:lk—l ﬁw = ﬁw
and hy is supported away from Vo \ {m(w)}, where we denote 7:Lk,1,w for the range of this
map.

Proof. To achieve this, we choose a basis {h1, ha, -+, hy} of Hi_1, and denote
Qi5 = / hi : l_zjdu, 1< i,j <m.
FuK

It is clear that we can find g; € C*°(K),1 < ¢ < m, such that A,g; = Ayh;, the support of
gi is a small neighbourhood of F, K, and < g;, hj >r2()= a;j. In addition, we can assume
that

< i g; >=¢€ij tay, 1<i,57<m

with € = max; j{|e;;|} small enough so that we can find f; € C*°(K) supported in some
compact subsets of K \ F,, K away from the boundary, satisfying

< fi,g; >=0, V1 <i,j<m,
< fi, [ >= dije, V1<i,j<m,
< fiyhj >=¢ij + dije, V1<i,j<m.

Set ﬁi,w = g; + f; for each 1 < i < m, and extend this to be a linear map Hy_1 — C*°(K).
One can then check that

< hishjw >=< hiw, hjw >= aij + €ij + 0j€,

and thus P’}:[k—l w(h,) = ;Li,w for any 1 <4 < m. The lemma follows immediately. O

Remark. We omit a subscript k& for ilw since obviously we can make the choice of izw
consistent for different k’s. Later, we sometimes write f,, instead of A,,.

Definition 5.9. Let x = n(tw) € V and k € N.

(a). Let Sy, ,n > 0 be the subspace of L2(K) spanned by functions {hyoFy;" : h € Hp_1},
and PS;?,w be the orthogonal projection from L%(K) to S&k. Clearly, PSZ,k extends to be from
LP(K) to Sy, .-

(b). Let Sy 1 be the subspace of L*(K) spanned by |, o S x> and Ps, . be the orthogonal
projection from L*(K) to Sy k. -

(c). Let Sik=Suko F71 and Sy = Swr o Fo ', Denote PS;ﬂk: Ps, , the map defined by
Pgn [ = (PSZ’kATf) o =1 respectively.

We have the following proposition.
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Proposition 5.10. Let z = n(tw) € Vo, k € N,0 <0 <2k and 1 < p < 0.

(a). Let f € HY(K) and if A, f LSy, we have Tcm(x)f =0.

(b). Ps,, extends to be a bounded map: LP(K) — LP(K).

(¢). Ps,, is bounded from Hg(K) to Hy(K), and 1 -3 cy. Ps, , is bounded from Hg(K)
to H2(K).

Proof. Without loss of generality, we assume 7 = () and consider Pg_, instead.

(a). Let h = Tangz)f and f' = f — h. Then we have

w,k

< (AphJw o F," f > = piayy < (Aph)w, Ay f >
= pp (< (Aph)w, Alh > 4+ < (A} R)w, Al f' >)
= sy (ALY 20y + 0OV (A RSl 22k )

where v, = min{v; ; : Vie > (rwuw)"ﬂu;l/p}. Thus the left side equals 0 for any n > 0
only if Tcm((,x)f =h=0.

(b). For each f € LP(K), we will construct a series >~ f, converging in LP(K), with
fn € 8y, for each n > 0, so that Ps, , f =" fn.
Let’s look at the L? setting first. We start with a special situation. Let f € L?(K) such that

Al f € Hy_y for some [ > 0. Denote Sl[l??’,i] =@l _ 05wk and write Psi[,?,’;i]f = Zln—o fn, with

fn € Sy - Clearly, g = f — Z '\, is k-multiharmonic in FL K, and so f; = (AL g)w o F*
by Lemma As a consequence we have f — P (o) f =0 on FSH'K, which shows that

f— P o l] f LSy, k- By this observation, we make the follovvlng construction.

Step 1: For any f € L*(K) such that AL f € Hyx_y for some 1 > 0, we can write Ps, . f=
Ziz:ofn with fn € Sy, for 0 <n <L

Step 2: For any f € L*(K) such that Al f € Hy_1 for some | > 0, we have by induction

an”LOO < H Z meLoc (FRK\F2TK) + Z Hfm”Loo < Ch HfHL2 )s fO""n > 0.

So we can continuously extend the definition of fn,n > 0 to general functions f in L*(K).
We have the following observations on the sequence { fy }n>0-
Observation 1: For any f € L*(K) andn > 1, A% 1f, = (A% 1f);.
Proof of Observation 1. Only need to consider the case that f € L?(K) with Al f € Hp_4
for some I > 0. Let g = f — Zm 0 fm- Then we have

Ag_lpsw,kg An S[" Loeo)§ = PSw,k (Ag_lg)’

where S[ 1% s the space spanned by Um?%1 Sk So we have Ay~ Lf, = An-lg, =

(A% 1g);. On the other hand, we have (A% 1f); = (A% 1g); as A% (f —g) € Hi_1. D
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Observation 2: There are kernels 1,71 € L°(K x K) such that for any f € L*(K), we
have

fo(&) = [ o€ n) f(n)du(n), (5.10)
A (&) = [ va(&m) (AL f(n)dp(n), Vn > 1.
Proof of Observation 2. We choose a basis {uj,ug, -+ ,u;} of S&m and let u, = u; —

PS[l,;o)ui- Since w; is multiharmonic in F,, K, we have u} = u; — PS}U Ui € L>(K).

Now, let f € L?(K) and write Ps,, .f = >_02¢ fn as before. We can see that < f,uj >=<
fo,w, >. If we write fo = 22:1 c;uj, then we have the linear equations

One can see that Zé:o < cug,uy >= 0,V1 < j < [ implies that Zizo ciu; = 0, since
< 22:0 Citly, Zé:o ciu, >= 0 if and only if Zé:o c;u; = 0. Thus fy is completely determined
by < f,uj >,1 < j <1, and thus we can write fo = Zé:l ciu; with ¢; = Zé-:l aij < f,fu;- >
and coefficients a;; independent of f. We then define ¢y (&,n) = Zé:l 2221 aijui(§)u;(n),
which clearly satisfies the first formula of ([5.10)).

Similarly, one can find 9] € L™ (K x K) such that fo(£)+f1(&) = [ ¥p0,.1)(&,n) f(n)dp(n)
for any f € L%(K). It suffices to take 1 = Yp,1] — %o, then the second formula of (5.10)
holds for n = 1. For larger n, we apply Observation 1.

As a consequence of Observation 2, one can extend formulas (5.10)) to any f € LP(K),1 <
p < oco. By similar estimates as in Section 3.2, we can see that for f € LP(K), > 77 fn
converges in LP(K), and additionally Ps, , f = Y ney fn since the functions that are multi-

harmonic in some F. K, 1 > 0 is dense in LP(K).
(c). This part follows from the following observation.

Observation 3: There is a kernel 1p € L*°(K x K) such that

AT f(6) = /K B AR (AT 1 (1)) du(n), (5.11)
for any f € HY, (K) and n > 1.

Proof of Observation 3. We only need to take

W) = (0" [ or(€m)Glmm)Glmom) -+ Glnor () (). O

Following a similar argument as above, we can see that Pg, , is bounded from HY (K) to

HY, (K). Then by Theorem and (a), 1=y, Pk is bounded from H, (K) to 2 (K).
For general 0 < o < 2k, the result follows from complex interpolation. O

Proposition can be extended to higher dimensional K i case without difficulty by using
the same argument in Section 3.2. We omit the details.



FUNCTION SPACES ON P.C.F. SELF-SIMILAR SETS III: EMBEDDING AND INTERPOLATION THEOREMS

In particular, for x = 7(7w) € Vy and f € Lp(f(i), we have
1 - “n _
PO F =3 fuo (FV) ™o (FM),
n=0

with f, € ﬁk—l,w (K, Lp(RiAl)) = ﬁk,Lw ® Lp(KiAl), and we can naturally relate each f,
with an f}, € Hi—1,0 (K, Lp(f(iﬂ)) if we assume without loss of generality that the map 7,
is one to one from Hy_1 to ﬁk,l,w.

Definition 5.11. For z = w(tw) € Vo, k € N and 1 < p < oo, we define I} from
Pgi?kLp(f{ﬁ) to (He_1 (K, LP(K9M))™ by

I P(l) A 1 Z fm —m}nzo

for each element P f Yoo fno ( w ) "o (F.ﬁl))_1 in PszﬁkLp(f(f‘f_).

Lemma 5.12. Leta;:ﬂ(mi)) eVo, keN,0< 0 <2k and 1 < p < .

(a). I is isomorphic from Péi)kﬂg(f(i) to lig,ﬂz (Hp—1(K, Lp(f(jl_/\l)),Hk_l(K, Hg(IN(iAl)),Ag)).
= . ALY

(Hi-1(K, Lp(KiAl))7Hk—l(K7 HE(KIMY))

(b). I is isomorphic from Pél) ﬁg(f(d) to ZZU B

Proof. Part (a ) follows from a similar argument in Section 3.2, by using -7 and
the fact that hy, € C>(K) Wlth good support of hy, and AFh,.

For part (b), one has Tan$® )f Tan$® 1)( (\) f) by Proposition |5.10| (a) for functions

f € HE(KY). So Tan' 1)f = 0 if and only if ||LC kP xkaLOO(KLp(Kd/\l)) = o(v},) with

Vi = min{y; » : 2Pz < iz} The claim then follows from Theorem and Proposition
1ALD O

Now we introduce a new decomposition of the space Hg(Ki) with —2k < o < 2k for
k € N(extend to negative 0’s). In the following, we view each f € Hp(Kd) as a functional
on Hgk(Kd) with p/ = 2. Noticing that for f € LP(K¢) and ¢ € Hgk(Kd) it holds that

1 1
< Péx?kf, p >=< f, Pém?kcp >

so we can naturally extend the map Péi)k to HY(K?). In addition, since Péi)k : ﬁgl(f(i) —
flgl(f(i) for 0 < o < 2k, we have Péi)k : HY(K9) — HY(K?) for —2k < o < 0 by dual. The
same works for Besov spaces (one may be cautious about the order o = 0 for Besov spaces).
Definition 5.13. (a). For k € N, =2k < 0 < 2k and 1 < p,q < oo, define I@gk(f(i) =
(1= Saery P HEGRE) and KEL(RY) = (1= X, PEY, ) BEU(RY), |

(b). Fork e N, =2k < 0 <2k and1 < p,q < 0o, define 7:171;([%1) = (erVo Péi)k)Hg(f(i),
. . 1 -
THUEYD) = (Saev, PS,) BEUKY).
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Remark 1. One may worry about the case o = 0 for Besov spaces since we did not deal
with this previously. Luckily, we have HY(K¢) and B5?(K4 d) are retracts of HY(K?) and

Bg’q(R' 4), with extension maps being © (extension by 0), for —% < o < 95 S0 the properties

for o = 0 naturally follows once we have the properties for o G (—d—§, d?s) \ {0}.

Remark 2. Clearly, all the spaces I@p LKD), ]@?%(_f{d) 7_73 (Kf‘ﬁ) and ﬁkq(Ki) are closed
spaces of HY(K¢) or BYY(K) since the operator > éi)k is idempotent, which means

zeVy
()2 _ (1)
that (X ,ev, PSM) =D vevh Ps

2. Interpolation properties of the decomposition.

Lemma 5.14. Let k € N, =2k < 0 < 2k and 1 < p,q < co. In addition, assume (—o, I%) ¢
Co. 1~uith p = 1%' Then equations , hold if we replace HE(K9) with t{te space
ICZk(Ki);A equajﬁions , holc? if we replace ByY(K?) with the space /Cﬁ’,%(K_‘f_) In
addition, IC?:%(K?L) = (ICf%’k(Ki),ICgk’k(Ki))e’q for0< 6= %k% < 1.

Proof. We can see that, for 0 < o < 2k, (1 — Yy, Pg pM )(f|Kd) € flgl(lzjl_) for any

z k

f € HY (K% by Theorem and Proposition [5.10[ (¢). Thus ICg’k(K’i) is a retract of
HE2(KY) for any (o, 1%) satisfying the assumption. In fact, we can take the extension map
E: KD, (K%)= HY(K?) by Ef =< f, (1= ,er, P M)( |a) > for f € K? ((K%), where o
represents a function in Hg,; (K%); and the restriction map R : Hg(Kd) — IC’;’,C(Kﬁlr) is defined
in the following way: for f € HY(K?), we write g =< f,Oe > where o represents a function
in Hg,;(f(i), then noticing that g € HZ(K{), we define Rf := (1 — > weli Péi)k)g One can
check that R is bounded by Theorem [£.19] and it is direct to see that RE is the identity map
on KL, (K{).

The same extension and restriction maps work for Besov spaces, and the result follows. [

It remains to study the interpolation property of tpk(f(i) and 7?]3(1?1) This time we
will use duality instead of retract. The argument is based on the following discussion.

Lemma 5.15. Fiz k € N and v = n(tw) € Vo. Let f = Y02 fn € Ps,  LP(K), g =
> o gn € PSI’kLp/(K) with 1 < p < oo,p’ = %, and fn,gn € Sy for n > 0. In addition,
we write {hn}n>0 = Iy i f, {en}tn>0 = Iz kg as defined in Definition|5.11. Then we have

0o
< f»g >=[r ZMZ < hn,waén,w >K\FwK
n=0

+ pr Z MnJrl < Aphp — (Awhn)w, Awen — (AwenJw > K\FyK
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Proof. By a direct computation, we get

[o.¢]
< f.9 >:Z < f19 >F rr(K\FuK)
n=0

=lr Z/LZ) < ALL)AT Z fn7A7ul)AT Z 9n >K\FUJK
n=0

m=0 m=0

00
=Hr Z Hg < Aphp_1+ AZ;ATfnv Apen—1+ AZ;ATgn > K\FyK
n=0

0
=Hr Z ,uTuL; < Awhn—l_(Awhn—l)Aw + hn,un Awen—l - (Awen—l)Aw + én,w >K\FwK .
n=0

Then the desired result follows. O

Lemma [5.15] provides a characterization of < f,g > with a conjugate symmetric form on
{hn},{en}. Then comparing Lemma we have the following lemma for negative o’s.

Lemma 5.16. Let k € N, -2k <0 <0, 1 < p < 00, and in addition assume that (—o, Z%) ¢
Co, withp' = %. Fiz x = m(tw) € Vo, then we can extend Iy, to be an isomorphism from

P HR(KY) to 12,5 (i1 (K, LP(KPM)) +18, (Hpeor (K, HE(KIM)), with o = (rup) "/

x,k agﬂz

and By = P

Proof. For convenience, we focus on the case d = 1. By using Lemma (b) and Lemma
and using Proposition we can see that

1 fl ez ey =< Mapfllr, . ()

ag Bz
for any f € Ps,,LP(K). One can easily prove that Ps,, LP(K) is dense in Ps,, H5(K),
noticing that LP(K) is dense in H5(K). So the claim follows for d = 1 case.

For d > 1 cases, a similar argument will work, applying the fact that (AN B)* = A* 4+ B*
if AN B is dense in both A and B (See Theorem 2.7.1. in book [7]). We omit the details. [

Noticing that for —2k < ¢ < 0, we have

g (P, L (RE) 0, (0 IR
=loes, (Hp—1 (K, LP(KM)), AQ) + 1, (He1 (K, HP(RIMY), AD).

Now, using Lemma (a), Lemma combining with Lemma we have the following
result.

Lemma 5.17. Let k € N, =k < o <k and 1 < p,q < 00, and in addition assume that
(—o, I%) ¢ Co, withp' = ;L. There exists a map A that is an isomorphism from TP(KY) —
ﬁf—i—k k(f(f‘f_) In addition, A is also an isomorphism from ’f?;ﬂq(f(ff_) — Agfkk(f(i) for —k <
c<0or0<o<k.

Proof. In fact, we only need to construct the isomorphism A that works for 7A;pk,(f( jl_) with

o = —k, 0, k, and then use complex and real interpolations. The map can be easily constructed
with Lemma We omit the details. O
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As a consequence, we get the interpolation properties of 7A:Tpk(f(i) and 7?}?([2’1).

Lemma 5.18. Let k € N, —k < 0 < k and 1 < p,q < co. In addition, we assume that
(—o, Z%) ¢ Co, withp' = pfl' Then equations , hold if we replace HY(K?) with the

space 7?,{(}21), equations , hold if we replace BYY(K®) with the space 7?}3([%1).
In addition, ff,f(f(i) = (ﬂk,k(‘f{j{)’mk('f(i))&q Jor 0 <8 = UTZIC <1

3. The final interpolation theorem. Now we are ready to present the interpolation
theorem for H7(K%) and BYY(K¢) with o € R. As we have noticed, since for o < 0, H5(K?)

and Bg’q(f(i) are duals of Hflg(f(jl_) and ég/’q/(Ki), the critical set are now reflected, i.e.

Co— {(a,;) (01— ]13) € Co, .

Also, we have three cases of interpolations.

Definition 5.19. Let 0g,01 € R and 1 < pg,p1 < oo, and put

1 1-60 0
op=(1—-60)og+ 0oy, — = + —
Po Po P

for 0 < 0 < 1. We need to consider the following three cases:
(01). (oy, p%) ¢ Co;
(02). (o9, p%), (o1, p%) and (oy, %) lie on a same critical line in Co;
(03). otherwise.

See Figure [ for an illustration.

FIGURE 4. An illustration for Co and the three cases of interpolations.

Theorem 5.20. Let the coefficients 6, 00,01, 09, po,p1,Pe be chosen as in Definition [5.19
and let qo,q1,q9,9 € (1,00) with q% = (;% + 1(1;10. We also write ¢ = %, Py = p:ﬂl and
q = ng—ﬂl. The interpolation results for Hg(f(f‘f_) and Bg’q(f(f_) are given by the following
table:
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(01) (02) (03)
[HE(KY), HEL(KY)), Hyy (KY) = (%, (K4)" | HE(KY) | (H%,(K)"
(HE(RY), HY (K1), Y (K4) = (17 (RY))” /| )y
(HE,(KY), HE (KD), BEI(KY) = (BV (K1) / (B" (K9,
(B (), B (), By (KY) = (B (K4)" | By (RY) | (B (K1)
(Bo ™ (K4), Bo™ (KY)),.,, (i po = ap) | BE™ (KY) = (B0 (RY)" | By (KY) | (B0 (RY))”
(BE™ (K1), BE" (KY)),., By (RY) = (B 5(K)" | B (KY) /
where we have the restriction 0 = og = o1 for the second equation, and the restriction

¢

p = po = p1 for the third equation. Also ‘/’ in the above table means there exists no case or

only the trivial case.

Proof. First, we assume (o, 10) (o1, pll) and (oy, ple) are not in Co. Then the interpolation
results follow from Lemma [5.14] and Lemma[5.18] We can fill in the cases that involve Co by
applying Theorem [5.7 and relteratlon O

APPENDIX A. ON SEQUENCE SPACES

This appendix is a supplement to Section 2. We will take the same setting.

1). Let X be a Banach space, and L be a sectorial operator on X satisfying (L1) and
(L2).

2). Let a € (0,1), 8 € (1,00), p € (1,00), o > 0.
In addition, we need more in this appendix.

3). Let H be a finitely dimensional space over C, and A be a linear operator H — H, with
its largest eigenvalue (in absolute value) no larger than 1.

We define the tensor product

m
H®RX = {Zhi(@xi:hi e H,x; € X,V1 §i§mandeN},
i=1
with the cross project norm
m m
Isllox =inf {3 lhillalaillx s => hi@zi,m e N}.
i=1 i=1

Since H is finitely dimensional, let {@-}i]\il be a basis of H, one can easily see

N
HeX={) ¢@z:2€XVI<i< N},
=1

with H Zi\il i ®xiH7{®X = Zfil ||z;||x by the open mapping theorem. In this sense, we can
view H ® X merely as a N-dimensional vector space over X.
We then extend the operator A to H x X, by

ZA ) ® x5
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for s = > h; ® ;. It is easy to check that A is well-defined on H ® X, i.e. A(s) is
independent of the choice of the expansions of s.
In this appendix, we will consider the sequence spaces

PH®X,A) = {S = {Sn}nZO {sny1 — ASn}nZO cell(H® X)},
with norm [[s||z (nex,4) = lISollnex + | {sn+1 — AS”}”ZOHZ{;(H@)X)’ and the spaces
e s(H@D(L7)) =18, 5(H® X)NIG(H & D(LY)),
o s(H@D(L?),A) =10, ,(H® X, A)NIG(H @ D(L7), A),

where we use D(L?) to denote the couple (X, D(L?)) for short as in Section 2.
In the case that A is diagonalizable, each of the above spaces is isomorphic to a direct
sum of one of the three kinds of sequence spaces: 15(X,7), ZZU (D(L?)) and 12, ﬁ(D(LU), 7).

Thus, all the results in Section 2 apply with no difficulty. What we are of interest in this

——A
appendix is the case that A is not diagonalizable. Similar as before, we use [5(H ® X) and
—A _
1" 5(H®D(L7)) to denote the closures of Io(H® X) and 12, 5(H®D(L?)) in I§,(H® X, A)
and I}, ;(H ® D(L7), A) respectively.

Notations (a). Let X be a generalized eigenvalue of A on H, and we write Uy := Uy a for
the generalized eigenspace, i.e. Uy = Uy a = Jyn_oker(A — \)™

(b). Let 1 > v >y > -+ > v > 0 be the absolute values of nonzero eigenvalues of
A H — H, which is ordered in decreasing order.

(c). Write ({? = Uia =Uj=, Una for 0 <i <1

(d). Write A(s) = {s, As, A%s,---} forse H® X.

The following lemma is easy to derive, analogous to Lemma

Lemma A.1. For 1 < p < oo, we have

———A
l@(H@X) : if a = 0,

lL(H® X, A) = ZZ(H@@X) @ AU ®X), ifyim<a<y, (Al
lg(H@X) @@i:OA U®X), ifa<y.

In addition, I5(H ® X)A =15(H ® X) if and only if a ¢ {v0,71," "+ , 1}

Proof. Since H can be decomposed into Jordan blocks of A, it suffices to consider a Jordan
block only. Without loss of generality, we assume o4 = {\} with v = |\|. Thus, we need to
consider three cases a@ < vy, @ = v and « >  separately. The cases o < v and « > -y are very
similar to those of Lemma but we need a little more effort for the case a = 7.

Let s € I5(H ® X, A), and write t € [5(H ® X) with tg = sg and t,, = s, — Asp_1.

Case 1: a < 7y. Clearly sy := nh_}ngo A "s, =5 A7, is well defined. In addition,

m=0

HS - g(sw)“lg(H®X) - HainHSn - AnSOOHH@)XHlP = Hoan Z AnimthH@)XHlp
m=n+1
o0

o0
<[ X @A N tmnllnex [ < (Y a™ 1A DElizaex) S Isllingex,a-

m=1 m=1
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Thus, B(H ® X, A) C B(H ® X) ® A(H ® X). The other direction estimate is obvious.

Case 2: a = . Comparing with Case 2 in the proof of Lemma [2.3] it suffices to show that
A(s) e B(H® X)A for any s = h®x. We assume that (A —\)™h = 0 and (A —\)™"1h # 0,
and let r1 = 8, 79 = (A= N)ry, -+, 7 = (A= XN)™ "1y, For any c1,¢a,- -+, ¢ > 0, we define
a sequence s = {s, }n>0 € [h(H ® X) according to the following rule:

1). let sop =11 =s5;

2). if As, = Y i dir with dyy # 0, we define sp41 = max{0,1 — é—%}dm/rm/ +
Z?lmfﬂ diri;

3). take sp+1 =0 if s, = 0.

It is easy to see that lim.,_,olim., - --lim., 0 |ls — E(S)"ZZ(H®X,A) = 0, and thus the
desired result holds.

Case 3: o >« (including the case v = 0). In this case, we have the estimate that

n n
Isllizexy = lo™1 Y- A" " tmlluex |l <l D IA™ - ltn-mlxex]);
m=0

m=0

n o
=[| > a7 A 0™ tn-mlmex]l, < (D2 o ™A™ D)1t ¢ex) S sl pex.a)-

m=0 m=0

As a consequence, we have [5(H @ X, A) = H(H ® X). O

Next, we aim to establish decompositions analogous to Proposition 2.9 and 2.13] The key
relies on the following map Sé’j, based on SL¥ defined in Lemma

Definition A.2. Let h € Uy for some nonzero eigenvalue A and s = h®@x € Uy® X. Define
SL:;?(S) = {Si’ﬁ(s)}nzo as the unique sequence such that Si’f(s)o = h® SE?(x)o and

sL;j(s)nH _ Asj;j(s)n = A" @ (SEP(2), 01 — SE9(2),).

«
Obviously, S’é’A extends to be a unique map on R(A) ® X.
The following lemma is an immediate consequence of lemma [2.8|

Lemma A.3. Let 1 < p < oo, k,p be chosen as in Lemma 2.8, and let 0 < o < k.

(a). We have Si’j U ® Xop — li‘7+9,a_9'y;1 (Ui ®D(LU+9),A) for0<i<I and @ > 0.

(b). Let h € Uy with A\ # 0 and s = h@x. Write h; = (A — \)'h. By expanding each term
Sﬁ,’i(s)n = Z;.io hi ® zi n, we have

lim A "xg, = 2.
n—0o0

The following lemma is crucial.

g J o _ . - Lo 77
Lemma A.4. Let o’ < ;, then ZZU,B(U%' ® D(L7),A) = ZZU,B(UZ ® D(L7)) @ Sa,ﬂUz ®

—1 .
log B, )
loga

Proof. Without loss of generality, we assume Uj; is a Jordan block of A with eigenvalue A.
Thus, we can choose a basis {h1, ho,- -, hp} of U; such that

B = (A = X)™ " 1hy.
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Of cause, (A — A)hpy = 0.
Let s = {sp}n>0 € 2, ﬂ(Ui ® D(L?), A), then we can write

m
Sn=Y_hi® i, with z;,, € D(L).
i=1
Clearly, we have

m m m
Spy1 — Asp = Z hi @ ;g1 — A Z hi @ @0 — Z hi @ xi—1p

Pt i1 i—2
m

=h1 @ (T1n41 — AT1n) + Z hi @ (Tim41 — ATin — Tizipn)-
i—2

From this identity, we see that {x1,}n>0 € ZZU”Q(D(LU),)\), and for i > 2, {z;n}n>0 €
1o 5(D(L7), A) if {zi—1,n}n>0 € 10 5(D(L7)).

Now, according to Proposition we have lim,, oo A™"%1,, = 21, exists. We define
s =g— Sﬁ"j(hl ®x1,00) and write s,(ll) =31 h; @ zY for each sg) in s, Then, we have

\n

{:c%%}nzo el’, B(D(L")) by applying Lemma [A.3[ and Proposition ﬁ Thus {x&%}nzo €
1, ;(D(L°),~). Define M = lim,, 00 Azl write 5@ = (1) — gb¥ ho ® 2V , and
a8 VA

2,00 2,n « 2,00

repeat this to define s . ... The procedure stops when we get (™). Until now, we get
m
s=> SM%(hi@al M)+ s,
i=1

0 _ (i—1)

if we set z; 5, = ¥1,00 for consistency. Clearly, for each 1 < ¢ < m, we have T €
XUJFIO%/B%_I ,and s(™ C lzg,ﬁ(Ui@)D(L")). Thus we have proved that ZZU,,B (Ui D(L7), A) =
oga
loga 7 Lo/
lgt,ﬁ(Ui ®D(L°)) ® S AU © XU tog v
loga  ?
The other direction is immediate. ) O

Now, we have all the important ingredients for the proof of the following propositions. We
omit the detailed proof.
Proposition A.5. Let 1 < p < oo, k > 1, and define p and Sﬁ’ﬁ as in Definition . Then

for0<o<k-— }Zgg we have,

A
loo s(H@D(L7)) if a°B > 70,

A . _
P, (H&DI7), A) = I, s(HoD(L)) & (Bh_ySei(Uy ® X wemst )y i < a8 <,

[

log P

— A _
lho g(H®D(L7)) & (D Sﬁ,’f(Ui DX eyt ), ifa’B <,

logax >

In particular, we have

lzgﬁ (7—[ ® D(LU)) = ZZU,B(% ® D(L")) if and only if &°B ¢ {0,771, , N}
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Proposition A.6. Let 1 < p,q < oo, k > 1, and define p and Sg’ﬁ as in Definition .
Then for 0 < o < k — 68 e have,

log
A
I g(H @ D(L”))A, if a? > 7,
lp’qg(H®D(L0) A) = I 5 (HoD(L7) @ (Dio Siﬁ((_]i’ ® X +logﬁw71 ), i vigr < 7B < i,
a’, ’ o w,q

A _
P4 (HeDL)) @ (Do S50 @ X s ), ifa’B <,

loga

In particular, we have

A
lers(H@D(L)) =175 (R D(L)) if and only if a7 ¢ {10, 7, )

Before ending this appendix, we present another result that will be useful in Section 5.
Let’s recall the map A(a)L : X%+ — X%+ with a > 0, defined in the proof of Lemma

A(a)L({Sn}nZO) = {anL(Sn)}n207
for {Sn}nZO € X2+,

Lemma A.7. Let0<a<1,8>1,1<p<ocoand o >0. Then

(a). A(a)(1+ A(oz)L)_1 is an isomorphism from lZU,ﬁ (D(L?)) to ZZUH,,B (D(Lo+1)).

-1 . . :

(b). A(a)(1+ A(a)L) " is an isomorphism from ZZ_IB(D(L)) + lg(X) to lg (D(L)).
Proof. (a). As in the proof of Lemma we view A(a)L as a sectorial operator on lgoﬁ(X)’
then lgaﬁ (D(L7)) = D(A(a)L)?). So (1+ A(Oé)L)il is an isomorphism from lga’ﬁ (D(L7))
ot ﬁ(D(LUH)). The claim follows immediately.

(b). First, we can see that A(a)(1+ A(a)L)_l maps from lg,lﬁ(D(L ) to I5(D(L)), and
maps from ZZ(X) to lg (D(L)). On the other hand, we can see that A(a™")(1+ A(a)L) maps
from 15(D(L)) to I . 5(D(L)) + L5(X). O

P
to la”+1

APPENDIX B. DISTRIBUTIONS AND HARMONIC FUNCTIONS ON FRACTALS

Definition B.1. (a). Let Q = K' x K% viewed as a subspace of K with the natural
boundary. For each compact set E contained in the interior of 2, we denote

Dp(Q) ={f € C>®(Q): the support of f is contained in E},

with seminorms sup|;<; ]\A(i)f||c(9), leZy.

Let {Ey, }n>0 be an increasing sequence of compact sets contained in £ whose union is the
interior of Q. Define D(Q) = U, D, (Q), with the corresponding inductive limit topology.

(b). The dual space of D(QY), denoted by D'(QY), is called the distribution space on Q.

(c). Define the Laplacians in the sense of distributions, i.e. for f € ©'(Q), define AW f
and Af in ©'(Q) such that

<AUfp>=<fAVp > <Afp>=<fAp>
holds for any ¢ € D(Q). In addition, A = 34 AW,
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It was shown in [32], that ©(2) is dense in Cy(§2) with the construction of smooth bump
functions [31], which we have used several times in this paper. A related useful result is
provided below, which is an important tool in Section 4.3.

Proposition B.2 (L. Rogers, R.S. Strichartz and A. Teplyaev[31]). Let x = w(rw) € Vp.
There exists hj1,hj2 € C®(K) for j >0, supported in FrK, such that

Aihjjl(x) = 0ij, Aihj{ﬂ(x) =0, Vi > 0.
anAZth(:E) = 07 anAZhj72(x) = 5i:j’

Let’s return to Sobolev spaces on Q2. On Q= K% and for 1 < p < o0, it is not hard to see
that D(A®) = {feLr(K): AWDf ¢ LP(K%)},V1 < i < d. So in Proposition @ we can
simply say

HY (K = {f e IP(KY) : AW f € LP(KY),Vi with |i] < k).

Also, recall the definition of HY (Q2) on Q = K' x K% with 1 < I < d in Definition
Below, we provide a necessary and sufficient condition such that the same property holds.

Recall the definition of ~; , for x = w(rw) € Vy and i > 0, provided below Definition

It is well-known that 79, = 1 and vy, = 7y, with U(] » and U; .« being 1-dimensional spaces
in Hy if we assume (C1).

Proposition B.3. Let 1 < p< oo, ke N and Q = K' x K with 1 <1< d. We have

HY.(Q) = {f e LP(Q): ADf € LP(Q),Vi with |3 < k},

where AW is defined in distribution sense, if and only if V2,0 < rwz,uw/z Vo = w(mpg) € W
and (C1) holds.

Proof. We consider the Q = K case. It suffices to prove that D(A) = {f € LP(K) : Af €
LP(K)} if and only if 72, < rwmu}ﬁ,vx = m(7zW) € Vp and (C1) holds.

On the one hand, let’s assume g , < rwzuw/zp,Vx = 7(1,w;) € Vp and (C1). We can show,
by using Theorem that Hg / (K) has codimension #P in GL? (K), where G is the Green’s
operator and p’ = ]%. As a consequence, we have Afolgl(K ) has codimension #P in L”/(K ).
In addition, for f € LP(K), we have Af = 0 if and only if < f, Ap >=0,Yp € ﬁgl(K), since
Aﬁgl(K) is the closure of AD(K) in L (K). This shows that {f € LP(K) : Af = 0} is an
#Vy = #P dimensional space, thus we have Hy = {f € LP(K) : Af = 0}. The claim follows
from the equality

{felP(K): Af e I’(K)} = GLP(K) & {f € LP(K) : Af = 0}.
On the other hand, if 7o, > rwz,uw/z for some x = w(mw,;) € Vp or (C1) does not hold,
following a similar argument, one can see that Ho C {f € LP(K) : Af = 0}. O

APPENDIX C. USErFUL FACTS

We collect some useful facts from the books [7, [I3] [19] for convenience of readers.
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1. Sectorial operators and semigroups. Let’s first briefly introduce the definition of
sectorial operators, which can be found in [19]. In the following, X always denotes a (non-
trivial) Banach space and L a single-valued operator on X. For 0 < 0 < 7, let

G {zeC:2#0and |argz| <0} if6e(0,m),
"0, 00) if 6 =0.

Definition C.1. An operator L on X is called sectorial of angle 0 if
1) o(L) C Sp;
2) SUP) e\, [AMA+L)7| < oo for all 0" € (6, ).

A useful result concerning powers of sectorial operators is given as follows (Proposition
3.1.2 in [19]).

Lemma C.2. Let L be a sectorial operator of angle 0, then L7 is a sectorial operator of angle
o for 0 <o <m/6.

A wide class of sectorial operators come from semigroups. In particular, let —L be the
generator of a bounded single-valued semigroup {7'(¢)}+>0, then L is a sectorial operator of
angle 7, due to the identity

A+L) = / e MT(t)dt, YA€ C with Rel > 0.
0
Definition C.3. For § € (0,35], a map T : Sy — L(X) is called a bounded holomorphic
(degenerate) semigroup of angle 0 if it has the following properties:
1) The semigroup law T(AN)T () = T (X + p) holds for all A\, pn € Sy.
2) The map T : Sg — L(X) is holomorphic.
3) The map T satisfies SUPjes,, T()\)H < oo for any 0 < 0 <6.

The following well-known result shows the relationship between bounded holomorphic semi-
groups and sectorial operators.

Proposition C.4. There is a one to one correspondence between (single-valued) sectorial
operators L of angle 6 € [0,7/2) and bounded (single-valued) holomorphic semigroups T' on
Sr/2—0, given by the relations

TN =, A+L) ! = / b e MT(t)dt.
0

Readers can read Proposition 3.4.4 in book [19] for details, where the original proposition
deals with mutli-valued operators as well.

A wide class of examples of holomorphic semigroups are given by symmetric Markov semi-
groups {P;};>0 on L*(Q). In particular, Theorem 1.4.2 in [13] shows that any symmetric
Markov semigroup {F;};>0 extends to a bounded holomorphic semigroup {Px}es,, on LP(€2)

for 1 < p < oo, with 6, = 5(1 - \% — 1|). For stronger results, we will need better estimates
of the heat kernel.

2. Heat kernel estimate. Let’s now return to the specific setting of p.c.f. self-similar sets.
The self-similar Dirichlet form (€, dom&) was constructed by both a probabilistic approach
13, 4, Bl [15], 29], 28] and an analytic approach [24], [25]. The sub-Gaussian heat kernel estimates
of the associated Markov semigroup { P, };>¢ are due to Hambly and Kumagai in [20], Kumagai
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and Sturm in [27]. In particular, on the double cover K or K with Neumann boundary
condition, we have the upper bound
d(z,y)”

c 1
pr(x,y) < Wexp(—C(f)ﬂ—l), for 0 <t < 1.

In the above formula, « is the Hausdorff dimension and /3 is known as the walk-dimension of
K. In addition, it has been shown that § > 2 for more general settings. See [17].

The sub-Gaussian upper bound can be generalized to long time estimate if we subtracting
its projection onto constant functions, i.e.

d(x,y)”

1
: )7-1), for 0 < t < oo,

—-1/2 ¢
pe(z,y) — p 2| < w7 & (= C(
where p is the total measure. In fact, for ¢ large, py(z,y) — 1~ /2 has exponential decay over
t controlled by the first non-zero eigenvalue of the Laplacian.
Following a similar proof of Lemma 3.4.6 and Theorem 3.4.8 in [13], one can extend the
estimate to a half space of the complex plane,
_1/2’ < 4 d(z,y)"
r

< Wexp(—cl( )T cost), (C.1)

Ipa(z,y) —
for any A = re? with —4 < 0 < 5. This in particular, by applying Proposition implies
the following result.

Lemma C.5. The heat semigroup {P,\}Aegﬁ/2 18 a holomorphic semigroup, so L = —A is
sectorial of angle 0.

Stronger results are established in [], where the Calderon-Zygmund operators are studied,
using (C.1]). We will not state the general results here, but instead an important consequence.

Lemma C.6. {(1 - A)it}teR is a Co-group of bounded operators from LP(K) — LP(K) for
1 <p<oo.

The lemmas enables us to apply complex interpolation. Proposition [3.1] at the beginning
of Section 3 is another useful consequence of [23].

3. Retract. Lastly, we would like to mention the concept of retracts, see Section 6.4 in [7] for
more details. Let’s write X = (X1, X2) and Z = (Z1, Z») for interpolation couples of Banach
spaces, and write Xy and Zy for the corresponding interpolation spaces respectively, given by
the same interpolation functor ¢ (real, complex, or more general interpolation functors).

Definition C.7. We say X is a retract of Z if there is a bounded map R : Z — X and a
bounded map E : X — Z such that RE = id is the identity map on X.

For convenience, we call R the restriction map and E the extension map, and we write
Z ~ X from time to time.

More generally, for two classes of spaces {X;}ier and {Z;}icr, we say {X;}ier is a retract
of {Z;}icr, with restriction map R and extension map F, if each X; is a retract of Z; with
RZZ—>XZ,EX2—>Z7, andRE:idonXi.

The following lemma (Theorem 6.4.2 in [7]) is an easy consequence of the definition of
interpolation functors.
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Lemma C.8. Assume X is a retract of Z with the restriction map R and the extension map
E. Then Xy is a retract of Zy, with the same R and E. In particular, X9 = RZy.

In our situation, we will use some variants of the above lemma.

Lemma C.9. Assume X is a retract of Z with the restriction map R and the extension map
E.
(a). Define T; = EX; and K; ={z € Z; : Rz =0} fori=1,2. Then

Zi=T,®K;, and Zy = Ty & Kp.

(b). Let Y = (Yy, Y1) be an interpolation couple such that Y; C X;. Define T, = EY; with
norm induced from Y;, and Banach spaces

Zi:{zeZi:RZEH}Zj}@KiCZi
fori=1,2. Then
Zyg=Ty® Ky=EYy® Ky ={z € Zy: Rz € Yy}

The proof of part (a) is straightforward using basic property of interpolation functors, and
(b) is clearly using part (a).
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