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Abstract. We study the Sobolev spaces Hp
σ(Ω) and Besov spaces Bp,qσ (Ω) with σ ∈ R and

1 < p, q < ∞, on products of p.c.f. self-similar sets in terms of the boundary behavior of
functions. First, we establish a general embedding theorem which says that these function
spaces are the restrictions of function spaces of the same type on a larger fractal domain
without boundary. Towards this, we develop a throughout study on the relationship be-

tween various Sobolev and Besov type spaces, including H̃, H̊ and B̃, B̊. In contrast to the
Euclidean case, one of the main differences comes from the appearance of many more crit-

ical orders of σ created by “derivatives” at boundary such that H̊ and B̊ present a critical

phenomenon if σ is critical, and as a consequence H̃, B̃ and H̊, B̊ will be different spaces
for any large order σ. Second, we provide a complete diagram of the interpolations of these
function spaces in different situations. In particular, we allow spaces in the interpolation
couple to involve the critical orders, and the resulted interpolation space, when it is of a
critical order, will vary in different situations.
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1. Introduction

The theory of function spaces has been a longlasting topic in analysis, and has been playing
a prominent role in the development of partial differential equations. In the general setting
of metric measure spaces, there have been fruitful works [8, 9, 14, 16, 17, 18, 22] recently,
involving various potential spaces and Lipschitz type spaces.

This work is devoted to the Sobolev spaces and Besov spaces on fractals, especially on
products of fractals. It is well-known that on the post critically finite(p.c.f.) self-similar sets
the analytic theory was developed by J. Kigami [24, 25], following several pioneering works
on certain fractals by probabilistic methods [3, 4, 5, 15, 28, 29], which constructed Brownian
motions, thus obtained the Laplacians indirectly as the generators. Since then, the theory of
local self-similar Dirichlet forms on fractals has been widely studied and sub-Gaussian heat
kernel estimates of the associate semigroups have been obtained [20, 27]. The initial study of
function spaces on fractals in the general p.c.f. setting was launched by R.S. Strichartz [34],
as well as the extension to products of fractals [35]. In these works, the p.c.f. self-similar sets
are viewed as bounded domains with finite boundary points, while products of them are not
p.c.f. but are more analogous to Euclidean spaces constructed as products of lines.

We are particularly interested in the function spaces on fractal domains with boundary.
The boundaries of fractals or fractal boundaries bring many striking features for the boundary
behavior of functions that never appear in Euclidean case. To reasonably establish the theory
of function spaces on fractal domains, in particular, the Sobolev spaces and Besov spaces, the
boundary condition of functions need to be dealt with in a more involved manner. In [35],
Strichartz took an explorative study on the L2 type of Sobolev spaces on products of p.c.f.
self-similar sets. Because the boundary creates difficulties, the strategy is to work instead
on a proper cover space of a product fractal that has no boundary, and then the study is
transferred into the trace theorems or extension theorems of function spaces by embedding
the product fractal into this cover space. In the p.c.f. setting, it is convenient to choose the
cover space as the product of the “double covers” of fractals, by taking two copies of the
fractals and identifying common boundary points. This pioneering work reveals the tip of
the iceberg, and leaves many unknown aspects to uncover.

One of our goals is to fulfill the story of Sobolev spaces and additionally their real interpola-
tions, the (heat) Besov spaces, on products of p.c.f. self-similar sets in the general Lp setting.

We will use K to denote a p.c.f. self-similar set and K̃ its double cover. We will mainly
deal with the Sobolev spaces Hp

σ(Ω) and Besov spaces Bp,q
σ (Ω) with σ ∈ R, p, q ∈ (1,∞), and

Ω = K̃d or K̃d
+ := K × K̃d−1, a product fractal or its half. Readers are suggested to refer
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to the monographs [30, 38] for the classical theorems of function spaces on domains with or
without boundary in Euclidean case.

Firstly, we will study the trace theorem for function spaces on K̃d
+ on the boundary, with

σ ≥ 0 (see Theorem 4.3) and prove an embedding theorem relating function spaces on K̃d

and K̃d
+. Mainly we devote to extend the results to real orders σ ∈ R, especially the following

embedding theorem (see Theorem 4.19):

Theorem 1. Let p, q ∈ (1,∞), p′ = p
p−1 , q

′ = q
q−1 and σ ∈ R. We have

Hp
σ(K̃d

+) = Hp
σ(K̃d)|K̃d

+
and Bp,q

σ (K̃d
+) = Bp,q

σ (K̃d)|K̃d
+

if and only if σ /∈ {dSp′ , 2−
dS
p } − 2N, where dS is spectral dimension of the Laplacian on K,

and the restriction is in the sense of distribution.

In the above theorem, we define Hp
σ(K̃d

+) as the dual of H̊p′

−σ(K̃d
+), and Bp,q

σ (K̃d
+) as the dual

of B̊p′,q′

−σ (K̃d
+) for negative orders σ, where the H̊ and B̊ spaces are the closures of C∞c (K̃d

+)
in corresponding spaces following J.L. Lions and E. Magenes [30]. In Euclidean case, for
example, see book [38], the definition for spaces with negative orders σ may be alternately
given directly by using this restriction. The theorem, analogous to the Euclidean case, shows
that the two definitions agree, with countably many exceptional orders of σ, which comes
from {dSp , 2−

dS
p′ }+ 2Z+ by dual.

Although Theorem 1 is analogous to the Euclidean case, there exist major differences in the
proof. In the fractal setting, as illustrated in [33], the tangents of functions at the boundary,
defined in terms of multiharmonic functions in contrast to the classical Taylor approximation,
contain much more information that do not take part in the matching conditions in extending
functions from K̃d

+ to K̃d across the boundary. This will bring many technical difficulties

and involve many more critical orders of σ than {dSp , 2−
dS
p′ }+2Z+. An intuitive explanation

of the (countable infinitely many) critical orders is that they are the σ’s such that higher

order tangents may appear for functions at boundary in Hp
σ′(K̃

d
+) with σ′ > σ compared to

those in Hp
σ(K̃d

+) \Hp
σ′(K̃

d
+), see (5.5) for the exact definition. However, in Euclidean case,

the critical orders are exactly 1
p + Z+ in extending functions from Rd+ to Rd, and no more

appears for the tangents.

The interpolation property of Sobolev spaces and Besov spaces on K̃d
+ is the next main

interest of this paper. We are particularly interested in the case that the interpolation
couple involves critical orders of σ, which is also a difficult problem in Euclidean case. See
Chapter 1, Section 18 in the monograph [30] by J.L. Lions and E. Magenes for the original
problem. In order to include the consideration of interpolations between different p’s (or
evenly q’s) in (1,∞), it is convenient to consider the critical set of couples (σ, 1

p), denoted as

CO+ := {(σ, 1
p) : σ is critical in the Lp setting}.

Since the function spaces of σ < 0 are defined as duals of H̊ and B̊ spaces, the critical set of
the forthcoming interpolation theorem is reflected in a reasonable sense to be CO := {(σ, 1

p) :

(−σ, 1 − 1
p) ∈ CO+}, as illustrated in Figure 1, which consists of countably many parallel

lines with slope 1
dS

between the two horizontal lines 1
p = 0 and 1. For p0, p1, pθ ∈ (1,∞) and
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θ ∈ (0, 1) with 1
pθ

= θ
p0

+ 1−θ
p1

, we need to consider the following three cases separately due

to the critical set CO, as shown in Figure 1.

(O1). (σθ,
1
pθ

) /∈ CO;

(O2). (σ0,
1
p0

), (σ1,
1
p1

) and (σθ,
1
pθ

) lie on a same critical line in CO;

(O3). otherwise.

Using [·, ·]θ, (·, ·)θ,q to stand for the complex and real interpolations respectively, we will
prove(see Theorem 5.20):

1
p

1

σ

Figure 1. An illustration for CO and the three cases of interpolations.

Theorem 2. Let σ0, σ1, σ ∈ R, p0, p1, q0, q1, p, q ∈ (1,∞), and put σθ = θσ0 + (1 − θ)σ1,
1
pθ

= θ
p0

+ 1−θ
p1

, and 1
qθ

= θ
q0

+ 1−θ
q1

. We also write p′ = p
p−1 , q′ = q

q−1 , p′θ = pθ
pθ−1 and

q′θ = qθ
qθ−1 . Then the interpolation results for Hp

σ(K̃d
+) and Bp,q

σ (K̃d
+) are given by the follow-

ing table:
(O1) (O2) (O3)[

Hp0
σ0 (K̃d

+), Hp1
σ1 (K̃d

+)
]
θ

Hpθ
σθ (K̃d

+) =
(
Ḣ
p′θ
−σθ(K̃

d
+)
)∗

Hpθ
σθ (K̃d

+)
(
Ḣ
p′θ
−σθ(K̃

d
+)
)∗(

Hp0
σ (K̃d

+), Hp1
σ (K̃d

+)
)
θ,pθ

Hpθ
σ (K̃d

+) =
(
Ḣ
p′θ
−σ(K̃d

+)
)∗

/
(
Ḣ
p′θ
−σ(K̃d

+)
)∗(

Hp
σ0(K̃d

+), Hp
σ1(K̃d

+)
)
θ,q

Bp,q
σθ (K̃d

+) =
(
Ḃp′,q′

−σθ (K̃d
+)
)∗

/
(
Ḃp′,q′

−σθ (K̃d
+)
)∗[

Bp0,q0
σ0 (K̃d

+), Bp1,q1
σ1 (K̃d

+)
]
θ

Bpθ,qθ
σθ (K̃d

+) =
(
Ḃ
p′θ,q

′
θ

−σθ (K̃d
+)
)∗

Bpθ,qθ
σθ (K̃d

+)
(
Ḃ
p′θ,q

′
θ

−σθ (K̃d
+)
)∗(

Bp0,q0
σ0 (K̃d

+), Bp1,q1
σ1 (K̃d

+)
)
θ,qθ

(if pθ = qθ) Bpθ,qθ
σθ (K̃d

+) =
(
Ḃ
p′θ,q

′
θ

−σθ (K̃d
+)
)∗

Bpθ,qθ
σθ (K̃d

+)
(
Ḃ
p′θ,q

′
θ

−σθ (K̃d
+)
)∗(

Bp,q0
σ (K̃d

+), Bp,q1
σ (K̃d

+)
)
θ,qθ

Bp,qθ
σ (K̃d

+) =
(
Ḃ
p′,q′θ
−σ (K̃d

+)
)∗

Bp,qθ
σ (K̃d

+) /

,

where the Ḣ spaces with σ ≥ 0 are contained in H̊ spaces and analogous to the Lions-Magenes
spaces in Euclidean case, satisfying Ḣ = H̊ if and only if (σ, 1

p) /∈ CO+, and similarly for Ḃ

spaces; the notation ‘∗’ means the dual space; also ‘/’ means there exists only the trivial case.

We should mention that there is a large literature on the topic of function spaces on more
general metric measure spaces from other different points of view, see [8, 9, 14, 16, 17, 18, 22]
and the references therein. See also [1, 2, 10, 11, 21] and the references therein for recent
works on function spaces on fractals.

In addition, the techniques and results from the books [7, 13, 19], the paper on pseudo
differential operators [23] and the paper on smooth bump functions [31] are important for
our developments.
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Now we briefly introduce the organization of this paper. In the remaining of this intro-
duction, we will briefly review some basic concepts, including the p.c.f. self-similar sets, the
construction of Dirichlet forms and Laplacians, and the Sobolev spaces Hp

σ(K̃d) and Besov

spaces Bp,q
σ (K̃d) defined on K̃d.

In Section 2, we will develop the main tool of this paper, the relations of various function
sequence spaces. In fact, we will extract the boundary information of a function into several
sequences of rescaling functions on cells approaching to the boundary. We will only deal with
a simple case, and leave a further discussion to Appendix A.

In Section 3, we deal with Sobolev spaces Hp
σ(Ω) for σ ≥ 0 on general fractal domains Ω :=

K l×K̃d−l with 0 ≤ l ≤ d which include K̃d, K̃d
+ as special cases. We will prove an embedding

result(Theorem 3.5) that Hp
σ(Ω) = Hp

σ(K̃d)|Ω, as well as a decomposition(Theorem 3.17) of a
Sobolev space Hp

σ(Ω) into the union of a “kernel” part and a “sequence” part, based on the
sequence spaces we studied in Section 2.

We will focus on Ω = K̃d
+ in the next two sections for simplicity, though quite a large

portion of the results can be extended to more general Ω’s with boundary.
In Section 4, first we present a trace theorem for values and normal derivatives (of Lapla-

cians) of functions in Hp
σ(K̃d

+) or Bp,q
σ (K̃d

+) at boundary(Theorem 4.3). Then we introduce

two classes of Sobolev type spaces H̃p
σ(K̃d

+), H̊p
σ(K̃d

+) and two classes of Besov type spaces

B̃p,q
σ (K̃d

+), B̊p,q
σ (K̃d

+) contained in the H and B spaces, and provide an exact characterization

of these spaces in terms of the boundary behavior of functions(traces for H̃, B̃ spaces, and

tangents for H̊, B̊ spaces, see Theorem 4.6 and 4.10). At last, we will use the above results
to prove Theorem 1(or 4.19), the first main result in this paper.

Finally in Section 5, we will devote to prove the second main result in this paper, Theorem
2(or 5.20). We will first derive an interpolation theorem for H̊ and B̊ spaces with σ ≥ 0, then
extends this to the real order case based on a dual approach. The main difficulty arises in
this fractal setting due to the appearance of tangents that do not take part in the matching
conditions of functions at boundary. We will provide a long proof to overcome it.

In addition to the main story, we will present three appendixes. Appendix A is a sup-
plement to Section 2, and will be crucial in Section 4 and 5. Appendix B includes a short
discussion about the definition of Sobolev spaces in the sense of distributions. Appendix C
collects several useful facts and important concepts which will be used throughout the paper.

Throughout this paper, we always write f . g to mean that f ≤ Cg for some constant
C > 0, and write f � g if both f . g and g . f hold.

1.1. The p.c.f. self-similar sets. The main objects we study in this paper are the p.c.f.
self-similar sets. Let {Fi}Ni=1 be an iterated function system (i.f.s.), a finite collection of
contractions, on a complete metric space (M, d). The associated self-similar set is the unique

compact set K ⊂M satisfying K =
⋃N
i=1 FiK. For m ≥ 1, we define Wm = {1, · · · , N}m the

collection of words of length m, and for each w = w1w2 · · ·wm ∈Wm, denote

Fw = Fw1 ◦ Fw2 ◦ · · · ◦ Fwm .

For uniformity, we set W0 = {∅}, with F∅ being the identity map. For convenience, let
W∗ =

⋃∞
m=0Wm be the collection of all finite words.
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Let Σ = {1, 2, · · · , N}N be the shift space endowed with the natural product topology.
There is a continuous surjection π : Σ→ K defined by

π(ω) =
⋂
m≥1

F[ω]mK,

where for ω = ω1ω2 · · · in Σ we write [ω]m = ω1ω2 · · ·ωm ∈Wm for each m ≥ 1. Let

CK =
⋃
i 6=j

FiK ∩ FjK, C = π−1(CK), P =
⋃
m≥1

σmC,

where σ is the shift map define as σ(ω1ω2 · · · ) = ω2ω3 · · · , P is called the post critical set.
Call K a p.c.f. self-similar set if #P < ∞. In what follows, we always assume that K is a
connected p.c.f. self-similar set.

1.2. Dirichlet forms. Let V0 = π(P) and call it the boundary of K. For m ≥ 1, we
always have FwK ∩ Fw′K ⊂ FwV0 ∩ Fw′V0 for any w 6= w′ ∈ Wm. For m ≥ 1, denote
Vm =

⋃
w∈Wm

FwV0 and let l(Vm) = {f : f maps Vm into C}. Write V∗ =
⋃
m≥0 Vm.

Let H = (Hxy)x,y∈V0 be a symmetric linear operator(matrix) on l(V0). H is called a
(discrete) Laplacian on V0 if H is non-positive definite; Hu = 0 if and only if u is constant
on V0; and Hxy ≥ 0 for any x 6= y ∈ V0. Given a Laplacian H on V0 and a vector r = {ri}Ni=1

with ri > 0, 1 ≤ i ≤ N , define the (discrete) Dirichlet form
(
E0, l(V0)

)
on V0 by

E0(f, g) = −(f,Hg),

for f, g ∈ l(V0), and inductively
(
Em, l(Vm)

)
on Vm by

Em(f, g) =
N∑
i=1

r−1
i Em−1(f ◦ Fi, g ◦ Fi), m ≥ 1,

for f, g ∈ l(Vm). Write Em(f) := Em(f, f) for short.
Say (H, r) is a harmonic structure if for any f ∈ l(V0),

E0(f) = min{E1(g) : g ∈ l(V1), g|V0 = f}.
In addition, call (H, r) a regular harmonic structure if 0 < ri < 1, ∀1 ≤ i ≤ N . In this paper,
we will always assume that there exists a regular harmonic structure associated with K.

Now for each f ∈ C(K), the sequence {Em(f)}m≥0 is nondecreasing, so the following
definition makes sense. Let domE = {f ∈ C(K) : lim

m→∞
Em(f) <∞}, and

E(f, g) = lim
m→∞

Em(f, g) for f, g ∈ domE .

We write E(f) := E(f, f) for short, and call E(f) the energy of f . Note that the form
(E , domE) satisfies the self-similar property,

E(f, g) =
∑

w∈Wm

r−1
w E(f ◦ Fi, g ◦ Fi), ∀m ≥ 1, f, g ∈ domE ,

with rw := rw1rw2 · · · rwm . It is known that (E , domE) turns out to be a local regular Dirichlet
form on L2(K,µ) for any Radon measure µ on K.

There is a natural metric on K related with the energy form (E , domE), called the effective
resistance metric, which is defined as

R(x, y) =
(

min{E(f) : f ∈ domE and f(x) = 1, f(y) = 0}
)−1

, ∀x 6= y ∈ K.
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It is easy to see that the Hausdorff dimension of K with respect to R(·, ·) is the unique positive

number dH satisfying
∑N

i=1 r
dH
i = 1. In this paper, we always choose a proper self-similar

measure µ on K that matches with R(·, ·). To be more precise, we fix a weight vector {µi}Ni=1

such that µi = rdHi , and let µ be the unique probability measure supported on K such that

µ(A) =

N∑
i=1

µiµ(F−1
i A), ∀A ⊂ K.

One can easily check that µ(FwK) = µw := µw1 · · ·µwm , for each w ∈Wm.
For f ∈ domE , say ∆f = u if

E(f, ψ) = −
∫
K
uψdµ

holds for any ψ ∈ dom0E , with dom0E := {ψ ∈ domE : ψ|V0 = 0}. In particular, we define
domLp(K)∆ =

{
f ∈ domE : ∆f ∈ Lp(K)

}
for 1 < p < ∞, where and from now on, we

abbreviate Lp(K,µ) to Lp(K).

We are also interested in the double cover K̃, which consists of two copies of K identified
at all boundary points. For convenience, we sometimes denote the two copies K+ and K−.

One can simply define an energy form (Ẽ , domẼ) on K̃ by

Ẽ(f, g) = E+(f |K+ , g|K+) + E−(f |K− , g|K−),

with domẼ = {f ∈ C(K̃) : f |K+ ∈ domE+ and f |K− ∈ domE−}, where (E+, domE+) and
(E−, domE−) are the natural energy forms on K+,K− respectively. Furthermore, we take µ̃

to be the measure on K̃ which coincides with µ on each copy K±, and define the Laplacian
∆̃ on K̃ as before (there is no boundary in this case).

In fact, for the double cover K̃, we can alternately define ∆̃ with the Bessel potential
(1−∆̃)−1 =

∫∞
0 e−tPtdt, where {Pt}t≥0 is the associated heat semigroup on K̃. This definition

is shown to be consistent with the former definition in [23], and D(∆̃) = domLp(K̃)∆̃ in the

Lp setting.

1.3. Function spaces on fractal domains. We will study Sobolev spaces and Besov spaces
on products of fractals Ω = K l×K̃d−l, where d ∈ N and 0 ≤ l ≤ d. There is a natural product
measure, still denoted by µ by a bit abuse of notation, and we can define ∆ = ∆(1) +· · ·+∆(d)

as the Laplacian on K̃d, where ∆(i) is the Laplacian on the i-th “direction”. (We will not

distinguish between ∆ and ∆̃ for convenience.) Detailed discussions on the definition of
Laplacians will be given in Section 3.

For a special case K̃d, using theorems about the Calderón-Zygmund operators on fractals
[23], we can see that Laplacian ∆ defined above is the generator of the heat semigroup

{Ut}t≥0 on Lp(K̃d), where Ut is the product of corresponding heat operators in all directions.

In particular, the Bessel potential (1 − ∆)−σ/2 = Γ(σ/2)−1
∫∞

0 tσ/2e−tUtdt is well-defined.
We define Sobolev spaces as follows.

Definition 1.1. For p ∈ (1,∞), σ ≥ 0, define the Sobolev space

Hp
σ(K̃d) = (1−∆)−σ/2Lp(K̃d),

with norm ‖f‖Hp
σ(K̃d) =

∥∥(1−∆)σ/2f
∥∥
Lp(K̃d)

.
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Using the heat semigroup {et∆}t≥0, we define the Besov spaces Bp,q
σ (K̃d) as follows.

Definition 1.2. For p, q ∈ (1,∞) and σ > 0, define the heat Besov space

Bp,q
σ (K̃d) =

{
f ∈ Lp(K̃d) :

(∫ ∞
0

(
t−σ/2

∥∥(t∆)ket∆f
∥∥
Lp(K̃d)

)q
dt/t

)1/q
<∞

}
,

with k ∈ N∩(σ/2,∞), and norm ‖f‖Bp,qσ (K̃d) = ‖f‖Lp(K̃d)+
( ∫∞

0 (t−σ/2‖(t∆)ket∆(f)‖Lp(K̃d))
qdt/t

)1/q
.

Note that in the above definition, different choices of k will provide equivalent norms
‖ · ‖Bp,qσ (K̃d), see [8, 9, 19, 22]. In addition, the Besov spaces Bp,q

σ (K̃d) are real interpolations

of Sobolev spaces Hp
σ(K̃d), see book [19].

Lemma 1.3. For p, q ∈ (1,∞), σ > 0 and θ ∈ (0, 1), we have(
Hp

0 (K̃d), Hp
σ(K̃d)

)
θ,q

= Bp,q
θσ (K̃d).

For subdomains Ω = K l × K̃d−l ⊂ K̃d, we will provide a definition of Sobolev spaces and
Besov spaces for integer orders first, then extend to positive real orders using interpolation
(Definition 3.4 and 4.1). In addition, we will show that these function spaces on Ω are just

the restrictions of corresponding type spaces on K̃d to Ω (Theorem 3.5, Proposition 4.2).
Moreover, in Section 4, we will extend the definitions of these spaces to negative orders.

2. Basic structures of sequence spaces

In this section, we study sequence spaces with values in a Banach space X. These sequence
spaces will play essential roles in reflecting the boundary behavior of functions in Sobolev or
Besov spaces on p.c.f. self-similar sets. See Section 3 for a decomposition theorem of Sobolev
spaces, and Section 4-6 for various applications of the results in this section.

We begin with a simple case.

Definition 2.1. Let 1 < p <∞, α > 0 and γ ∈ C \ {0}.
(a). Define lpα(X) =

{
s = {sn}n≥0 : {α−n‖sn‖X}n≥0 ∈ lp

}
, with norm ‖s‖lpα(X) =∥∥α−n‖sn‖X∥∥lp.

(b). Define lpα(X, γ) =
{
s = {sn}n≥0 : {sn+1 − γsn}n≥0 ∈ lpα(X)

}
, with norm ‖s‖lpα(X,γ) =

|γ|−1
∥∥{sn+1 − γsn}n≥0

∥∥
lpα(X)

+ ‖s0‖X .
(c). Define lpα(X)

γ
the closure of lpα(X) in lpα(X, γ).

We will compare the spaces defined above. It is convenient to introduce the following
operators.

Definition 2.2. Let α > 0 and γ ∈ C \ {0}.
(a). For each s ∈ X, define ~1(s) = {s, s, · · · }, which is a sequence of constant value.
(b). Define Λ(γ) : XZ+ → XZ+ such that Λ(γ)

(
{sn}n≥0

)
= {γnsn}n≥0.

Throughout this paper, we write X = ⊕mk=1Xk for Banach spaces X and Xk, 1 ≤ k ≤ m,
if
1. Xk ⊂ X and ‖ · ‖Xk � ‖ · ‖X , for each 1 ≤ k ≤ m;
2. For each x ∈ X, there is a unique representation x =

∑m
k=1 xk, with xk ∈ Xk, 1 ≤ k ≤ m.
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Lemma 2.3. Let α > 0 and γ ∈ C \ {0}.
(a). For 1 < p <∞, we have that Λ(γ−1) is an isometry from lpα(X, γ) to lp

α|γ|−1(X, 1).

(b). For 1 < p <∞, we have

lpα(X, γ) =

{
lpα(X)

γ
, if α ≥ |γ|,

lpα(X)
γ
⊕ Λ(γ)~1(X), if α < |γ|.

(2.1)

In addition,

lpα(X)
γ

= lpα(X) if and only if α 6= |γ|. (2.2)

Proof. (a) is easy. For (b), it is enough to consider the case γ = 1 by (a).
Let s = {sn}n≥0 ∈ lpα(X, 1). Define t = {tn}n≥0 with t0 = s0 and tn = sn− sn−1 for n ≥ 1.

We discuss three cases separately as follows.
Case 1: α < 1. In this case, we have t ∈ lpα(X) so that s∞ = lim

n→∞
sn =

∑∞
n=0 tn is well

defined. In addition, by the Minkowski inequality, we have the estimate∥∥s−~1(s∞)
∥∥
lpα(X)

=
∥∥α−n‖sn − s∞‖X∥∥lp =

∥∥α−n‖ ∞∑
m=n+1

tm‖X
∥∥
lp

≤
∥∥α−n ∞∑

m=n+1

‖tm‖X
∥∥
lp

=
∥∥ ∞∑
m=1

αmα−n−m‖tm+n‖X
∥∥
lp

≤ (
∞∑
m=1

αm)‖t‖lpα(X) . ‖s‖lpα(X,1).

As a consequence, we have
(
s−~1(s∞)

)
+~1(s∞) ∈ lpα(X)⊕~1(X). Thus, lpα(X, 1) ⊂ lpα(X)⊕~1(X).

The other direction is easy. So both (2.1) and (2.2) follows in this case.

Case 2: α = 1. Let’s first show that ~1(X) ⊂ lpα(X)
1
. For any s ∈ X and m ≥ 1, we define

a sequence vm = {vmns}n≥0 as follows,

vmn =

{
m−n
m , if n < m,

0, if n ≥ m.

It is easy to see that ‖vm −~1(s)‖lpα(X,1) = m−1+1/p‖s‖X . So we have ~1(X) ⊂ lpα(X)
1
.

Next, fix α′ < 1, clearly we have ~1(X) ⊂ lpα(X)
1

and lpα′(X) ⊂ lpα(X)
1
. As a consequence,

we have lpα′(X, 1) ⊂ lpα(X)
1

by Case 1. Then (2.1) follows noticing that lpα′(X, 1) is dense in

lpα(X, 1). In addition, we clearly have ~1(X) ⊂ lpα(X)
1
\ lpα(X), and so (2.2) follows.

Case 3: α > 1. In this case, we have the estimate that

‖s‖lpα(X) =
∥∥α−n‖ n∑

m=0

tm‖X
∥∥
lp
≤
∥∥α−n n∑

m=0

‖tn−m‖X
∥∥
lp

=
∥∥ n∑
m=0

α−mαm−n‖tn−m‖X
∥∥
lp
≤ (

∞∑
m=0

α−m)‖t‖lpα(X) . ‖s‖lpα(X,1).

As a consequence, we have lpα(X, 1) = lpα(X), and (2.1), (2.2) follows. �
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2.1. The spaces lpα,β(X0, X1) and lpα,β(X0, X1, γ).

Definition 2.4. Let (X0, X1) be an interpolation couple of Banach spaces and α, β > 0.
(a). For 1 < p <∞, define

lpα,β(X0, X1) = lpαβ(X0) ∩ lpβ(X1),

with norm ‖s‖lpα,β(X0,X1) = ‖s‖lpαβ(X0) + ‖s‖lpβ(X1).

(b). For 1 < p <∞ and γ ∈ C \ {0}, define

lpα,β(X0, X1, γ) = lpαβ(X0, γ) ∩ lpβ(X1, γ),

with norm ‖s‖lpα,β(X0,X1,γ) = ‖s‖lpαβ(X0,γ) + ‖s‖lpβ(X1,γ).

(c). Define lpα,β(X0, X1)
γ

the closure of lpα,β(X0, X1) in lpα,β(X0, X1, γ).

In this paper, we are most interested in the coefficients

α ∈ (0, 1), β ∈ (1,∞), |γ| ∈ (0, 1]. (2.3)

Also, in our applications, we will always have X1 ⊂ X0. The following lemma, same as
Lemma 2.3 (a), provides some convenience by reducing the coefficient γ to be 1.

Lemma 2.5. Let α, β > 0, γ ∈ C \ {0} and 1 < p <∞, we have that Λ(γ−1) is an isometry
from lpα,β(X0, X1, γ) to lp

α,β|γ|−1(X0, X1, 1).

Our aim is to recover a decomposition of lpα,β(X0, X1, γ) as lpα(X, γ) in Lemma 2.3 (b).

We will deal with this in a more concrete setting in the rest subsections. In this subsection,
let’s first see what is the limit of a sequence in lpα,β(X0, X1, γ). This is easy for readers who

are familiar with the real interpolation of function spaces, but we still provide a short proof
below.

For convenience, let’s briefly review the J-method of real interpolation.

J-method. Let X = (X0, X1) be an interpolation couple. Define Σ(X) = X0 + X1 and
∆(X) = X0 ∩ X1. We have a family of equivalent norms J(t, s) = max

{
‖s‖X0 , t‖s‖X1

}
on

∆(X) with t > 0. It is easy to see that J(t, s) is increasing, continuous, and convex of t.
For a measurable positive function ϕ on R+ and θ ∈ (0, 1), p ∈ [1,∞], we write Φθ,p

(
ϕ(t)

)
=( ∫∞

0

(
t−θϕ(t)

)p
dt/t

)1/p
with usual modification when p =∞.

Then for θ ∈ (0, 1), p ∈ [1,∞], we have

(X0, X1)θ,p =
{
s ∈ Σ(X) : s =

∫∞
0 u(t)dt/t for some measurable function

u : R+ → ∆(X) and Φθ,p

(
J(t, u(t)

)
<∞

}
with norm ‖s‖Xθ,p

= infu Φθ,p

(
J(t, u(t))

)
. In the above identity, u(t) is strongly measurable

in ∆(X), and the integral is taken in Σ(X). See the book [7] for unexplained details.

Lemma 2.6. Assume X1 ⊂ X0 continuously, and assume (2.3). Then, for αβ < |γ|, the
following operator Γγ : lpα,β(X0, X1, γ)→ X0 is well-defined:

Γγ
(
{sn}n≥0

)
= lim

n→∞
γ−nsn.

Moreover, Γγ : lpα,β(X0, X1, γ)→ (X0, X1)θ,p is bounded and surjective for θ = 1 + log β|γ|−1

logα .
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Proof. By Lemma 2.5, we only need consider the case γ = 1, noticing that Γγ = Γ1Λ(γ−1).
In this case, αβ < 1, and we have lpα,β(X0, X1, 1) = lpαβ(X0, 1) ∩ lpβ(X1, 1) ⊂ lpαβ(X0, 1).

Then, by the discussion in Lemma 2.3 (b), we know the limit exists of each sequence in
lpα,β(X0, X1, 1), and so Γ1 is well-defined.

Next, we need to show that Γ1 : lpα,β(X0, X1, 1) → (X0, X1)θ,p is bounded and surjective.

Let s =
∫∞

0 u(t)dt/t ∈ Σ(X) = X0 with a strongly measurable function u : R+ → ∆(X) =

X1. For n ∈ Z, define un =
∫ αn−1

αn u(t)dt/t. Then we have s =
∑∞

n=−∞ un and( ∞∑
n=−∞

(
α−nθJ(αn, un)

)p)1/p
. Φθ,p

(
J(t, u(t))

)
. (2.4)

For n ≤ 0, it is clear that α−nθJ(αn, un) = α−nθ max
{
‖un‖X0 , α

n‖un‖X1

}
� α(1−θ)n‖un‖X1 .

Let s0 =
∑0

n=−∞un, we then have

J(1, s0) � ‖s0‖X1≤
0∑

n=−∞
‖un‖X1 . (

0∑
n=−∞

α−(1−θ)np′)
1
p′
( 0∑
n=−∞

(
α−nθJ(αn, un)

)p) 1
p
, (2.5)

where p′ = p
p−1 . For n ≥ 1, denote sn = un, and define ū = (− logα)−1

∑∞
n=0 1(αn,αn−1]sn.

Then by using estimates (2.4) and (2.5), we have

Φθ,p

(
J(t, ū(t))

)
.
( ∞∑
n=0

(
α−nθJ(αn, sn)

)p)1/p
. Φθ,p

(
J(t, u(t))

)
.

On the other hand, since αθ = αβ and αθ−1 = β, we can easily check( ∞∑
n=0

(
α−nθJ(αn, sn)

)p)1/p
�
∥∥{sn}n≥0

∥∥
lpα,β(X0,X1)

.

It follows by J-method that s ∈ (X0, X1)θ,p if and only if there is s = {sn}n≥0 ∈ lpα,β(X0, X1)

such that s =
∑∞

n=0 sn. In addition, ‖s‖Xθ,p
� inf

{
‖{sn}n≥0‖lpα,β(X0,X1) :

∑∞
n=0 sn = s

}
.

Obviously, this is equivalent to say that s ∈ (X0, X1)θ,p if and only if s = Γ1(s) for some
s ∈ lpα,β(X0, X1, 1), and ‖s‖Xθ,p

� inf
{
‖s‖lpα,β(X0,X1,1) : s = Γ1(s)

}
. �

2.2. The interpolation couple D(Lσ) =
(
X,D(Lσ)

)
. From now on, we restrict our con-

sideration to a more concrete setting. In particular, in this subsection, we will derive a
decomposition result analogous to Lemma 2.3 (b).

In the rest of this section, we will assume that X is a Banach space with a sectorial operator
L. In addition, we may assume the following.

(L1). L is sectorial of angle ω ∈ [0, π2 ).

(L2). {(1 + L)it}t∈R is a C0-group.

Readers can find a systematic discussion on sectorial operators in [], see also Appendix C.
In particular, there is a one to one correspondence between (single valued) sectorial operators
L of angle ω ∈ [0, π2 ) and bounded (injective) holomorphic semigroups {e−tL}t≥0.
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For σ ≥ 0, we denote D(Lσ) the domain of Lσ with norm ‖s‖D(Lσ) = ‖s‖X + ‖Lσs‖X . For

short, we will write D(Lσ) :=
(
X,D(Lσ)

)
. Our interest is the following sequence spaces,

lpασ ,β
(
D(Lσ)

)
: = lpασ ,β

(
X,D(Lσ)

)
,

lpασ ,β
(
D(Lσ), γ

)
: = lpασ ,β

(
X,D(Lσ), γ

)
,

lpασ ,β
(
D(Lσ)

)γ
: = lpασ ,β

(
X,D(Lσ)

)γ
,

where σ ≥ 0 and α ∈ (0, 1), β ∈ (1,∞), γ ∈ (0, 1] as in (2.3). Here, we denote lpασ ,β
(
D(Lσ)

)γ
the closure of lpασ ,β

(
D(Lσ)

)
in lpασ ,β

(
D(Lσ), γ

)
.

We need the following proposition from the book [19] (Chapter 6, Section 6.2.3).

Proposition 2.7 ([19]). Assume (L1). For σ > 0, 1 ≤ p ≤ ∞ and any fixed σ′ > σ, let

Xσ,p =
{
s ∈ X :

( ∫ ∞
0

t−σp‖(tL)σ
′
e−tL(s)‖pXdt/t

)1/p
<∞

}
.

Then Xσ,p =
(
X,D(Lσ

′
)
)
θ,p

with 0 < θ = σ/σ′ < 1, and norm ‖s‖Xσ,p equivalent to

‖s‖X +
( ∫ ∞

0
t−σp‖(tL)σ

′
e−tL(s)‖pXdt/t

)1/p
.

As a consequence of the above proposition, we can derive the following lemma.

Lemma 2.8. Assume (L1). Let k ∈ N, ϕ ∈ Cc(0, 1) satisfying
∫ 1

0 ϕ(t)dt = 1 and∫ 1

0
tjϕ(t)dt = 0 for j = 1, 2, · · · , k − 1.

For 0 < α < 1, s ∈ X, we define SL,ϕα (s) = {SL,ϕα (s)n}n≥0 by

SL,ϕα (s)n = α−n
∫ αn

0
ϕ(α−nt)e−tL(s)dt, ∀n ≥ 0.

Then, for θ > 0 and 0 < σ < k, we have SL,ϕα : Xσ,p → lp
ασ+θ,α−θ

(
D(Lσ+θ), 1

)
and

Γ1

(
SL,ϕα (s)

)
= s, ∀s ∈ Xσ,p.

Proof. Let s ∈ Xσ,p. First, we immediately have

∥∥Lσ+θSL,ϕα (s)n
∥∥
X
. α−nθ

( ∫ αn

cαn
t−σp‖(tL)σ+θe−tL(s)‖pXdt/t

)1/p
, (2.6)

where we assume ϕ supports on [c, 1] with c > 0.
Next, using the assumption on ϕ, we have

SL,ϕα (s)n+1 − SL,ϕα (s)n = α−n(−1)k
∫ αn

0
αnkΦ(α−nt)

dk

dtk
e−tL(s)dt,
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where Φ(t) =
∫

0≤t1≤t2≤···≤tk≤t
(
α−1ϕ(α−1t1)− ϕ(t1)

)
dtk · · · dt1. In fact, Φ is characterized as

the unique function supported in [cα, 1] such that Φ(k)(t) = α−1ϕ(α−1t)− ϕ(t). So we have∥∥SL,ϕα (s)n+1 − SL,ϕα (s)n
∥∥
X
. αnσ

( ∫ αn

cαn+1

t−σp‖tk d
k

dtk
e−tL(s)‖pXdt/t

)1/p
= αnσ

( ∫ αn

cαn+1

t−σp‖(tL)ke−tL(s)‖pXdt/t
)1/p

.

(2.7)

Combining estimates (2.6), (2.7), and using Proposition 2.7, we then have

SL,ϕα (s) ∈ lpασ(X, 1) ∩ lp
α−θ

(
D(Lσ+θ)

)
.

Noticing that α−θ > 1, we have SL,ϕα (s) ∈ lp
ασ+θ,α−θ

(
D(Lσ+θ), 1

)
by Lemma 2.3. Lastly, since∫ 1

0 ϕ(t)dt = 1, we have limn→∞ S
L,ϕ
α (s)n = s in X, and thus Γ1

(
SL,ϕα (s)

)
= s in Xσ,p. �

Combining Lemma 2.6 and 2.8, we are able to derive the following decomposition of the
spaces lpασ ,β

(
D(Lσ), γ

)
.

Proposition 2.9. Assume (L1) and (2.3). Let 1 < p < ∞, k ≥ 1, and define ϕ and SL,ϕα

as in Lemma 2.8. Then for 0 < σ < k − log βγ−1

logα we have,

lpασ ,β
(
D(Lσ), γ

)
=

l
p
ασ ,β

(
D(Lσ)

)γ
, if ασβ ≥ γ,

lpασ ,β
(
D(Lσ)

)γ
⊕ Λ(γ)SL,ϕα (X

σ+ log βγ−1

logα
,p

), if ασβ < γ.
(2.8)

In particular, we have

lpασ ,β
(
D(Lσ)

)γ
= lpασ ,β

(
D(Lσ)

)
if and only if ασβ 6= γ. (2.9)

Proof. We consider three cases separately.
Case 1: ασβ > γ. In this case, we can see that lpασβ(X) = lpασβ(X, γ) and lpβ

(
D(Lσ)

)
=

lpβ
(
D(Lσ), γ

)
by Lemma 2.3. Both (2.8) and (2.9) follows.

Case 2: ασβ = γ. Using Lemma 2.3, we can see that

Λ(γ)~1
(
D(Lσ)

)
⊂ lpασβ

(
D(Lσ), γ

)
= lpασβ

(
D(Lσ)

)γ
⊂ lpασ ,β

(
D(Lσ)

)γ
.

Observe that for any s 6= 0 in D(Lσ), Λ(γ)~1(s) /∈ lpασ ,β
(
D(Lσ)

)
. We have (2.9) proved.

In addition, we see that{
{γns}n≥0 : s ∈ D(Lσ)

}
∪
{
{δnms}n≥0 : s ∈ D(Lσ) and m ≥ 0

}
spans a dense subspace of lpασ ,β(D(Lσ), γ). So (2.8) follows.

Case 3: ασβ < γ. First, we have SL,ϕα (X
σ+ log βγ−1

logα
,p

) ⊂ lp
ασ ,βγ−1

(
D(Lσ), 1

)
by applying

Lemma 2.8. So we have

lpασ ,β
(
D(Lσ)

)
⊕ Λ(γ)SL,ϕα (X

σ+ log βγ−1

logα
,p

) ⊂ lpασ ,β
(
D(Lσ), γ

)
,

applying Lemma 2.5.
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On the other hand, let s ∈ lpασ ,β
(
D(Lσ), γ

)
. We have s∞ := Γγ(s) ∈ X

σ+ log βγ−1

logα
,p

by

Lemma 2.6. Define s′ = s− Λ(γ)SL,ϕα (s∞). Then we have

s′ ∈ lpασ ,β
(
D(Lσ)

)
= lpασβ(X) ∩ lpβ

(
D(Lσ)

)
by Lemma 2.3, noticing that s′∞ = limn→∞ γ

−ns′n = 0 in X. Thus, we have

lpασ ,β
(
D(Lσ), γ

)
⊂ lpασ ,β

(
D(Lσ)

)
⊕ Λ(γ)SL,ϕα (X

σ+ log βγ−1

logα
,p

).

So (2.8) and (2.9) follow immediately. �

2.3. The spaces lp,qασ ,β
(
D(Lσ)

)
and lp,qασ ,β

(
D(Lσ), γ

)
. In this last subsection, we will develop

some interpolation properties of the sequence spaces. The following result from the book [],
Chapter 6 is useful.

Proposition 2.10 ([19]). Assume (L2). Then for σ > 0, θ ∈ (0, 1), we have

D(Lθσ) = [X,D(Lσ)]θ,

where [·, ·]θ denotes the complex interpolation space.

Lemma 2.11. Assume (L2) and (2.3). Then for p ∈ (1,∞), σ1, σ2 ≥ 0 and θ ∈ (0, 1), we
have [

lpασ1 ,β
(
D(Lσ1)

)
, lpασ2 ,β

(
D(Lσ2)

)]
θ

= lpασθ ,β
(
D(Lσθ)

)
, with σθ = (1− θ)σ1 + θσ2.

Proof. First, we consider the interpolation couple
(
lp(X), lp

ασ ,α−σ

(
D(Lσ)

))
. By a little abuse

of the notations, we write Λ(α)L : lp(X)→ lp(X) as

Λ(α)L
(
{sn}n≥0

)
=
{
αnL(sn)

}
n≥0

.

One can show that Λ(α)L is sectorial. In fact, for each λ > 0, we have

λ
(
λ+ Λ(α)L

)−1({sn}n≥0

)
=
{
λ(λ+ αnL)−1(sn)

}
n≥0

.

Thus λ
(
λ + Λ(α)L

)−1
is uniformly bounded by supλ>0,ε>0

∥∥λ(λ + εL)−1
∥∥. The fact that

Λ(α)L is sectorial follows from Proposition 2.1.1 (a) and (f) in book [].

Next, we can check that
{(

1 + Λ(α)L
)it}

t∈R is a C0-group. First, we have
(
1 + Λ(α)L

)it ∈
L
(
lp(X)

)
. In fact,

(
1+Λ(α)L

)it({sn}n≥0

)
=
{

(1+αnL)it(sn)
}
n≥0

, and we have the following

estimate for each term∥∥(1 + αnL)it
∥∥ =

∥∥(αn + (1− αn)(1 + L)−1
)it

(1 + L)it
∥∥

≤
∥∥( αn

1− αn
+ (1 + L)−1

)it∥∥ · ∥∥(1 + L)it
∥∥ ≤ C∥∥(1 + L)it

∥∥,
where C is clearly independent of n by Proposition 3.5.5 (c) in []. Second, we can see that
D
(
1 + Λ(α)L

)
∩R

(
1 + Λ(α)L

)
is dense in lp(X), since D(L) is dense in X and {δnms}n≥0 ∈

D
(
1 + Λ(α)L

)
∩ R

(
1 + Λ(α)L

)
for any s ∈ D(L) and m ≥ 0, where D

(
1 + Λ(α)L

)
and

R
(
1 + Λ(α)L

)
are the domain and range of the operator 1 + Λ(α)L respectively. Combining

the above two claims, by Corollary 3.5.7 in [], we have
{(

1 + Λ(α)L
)it}

t∈R is a C0-group.
Thus, we can apply Proposition 2.10 to conclude that[
lp(X), lp

ασ ,α−σ

(
D(Lσ)

)]
θ

=
[
lp(X),D

(
(Λ(α)L

)σ)]
θ

= D
((

Λ(α)L
)θσ)

= lp
αθσ ,α−θσ

(
D(Lθσ)

)
.
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By a standard argument of complex interpolation, we then conclude that[
lpβ(X), lpασ ,β

(
D(Lσ)

)]
θ

= lp
αθσ ,β

(
D(Lθσ)

)
.

The lemma follows by using the reiteration theorem. �

Now we have a class of sequence spaces that are stable under complex interpolation, by
the reiteration theorem of real interpolations.

Definition 2.12. Assume (L2) and (2.3), and let p, q ∈ (1,∞). Define

lp,qασ ,β
(
D(Lσ)

)
=
(
lpβ(X), lp

ασ′ ,β

(
D(Lσ′)

))
σ
σ′ ,q

,

lp,qασ ,β
(
D(Lσ), γ

)
=
(
lpβ(X, γ), lp

ασ′ ,β

(
D(Lσ′), γ

))
σ
σ′ ,q

,

for some σ′ > σ > 0.

We have the following decomposition concerning the spaces.

Proposition 2.13. Assume (2.3), (L1) and (L2). Let p, q ∈ (1,∞), k ≥ 1, ϕ and SL,ϕα as

in Lemma 2.8. Then for 0 < σ < k − log βγ−1

logα , we have

lp,qασ ,β
(
D(Lσ), γ

)
=

l
p,q
ασ ,β

(
D(Lσ)

)γ
, if ασβ ≥ γ,

lp,qασ ,β,
(
D(Lσ)

)γ
⊕ Λ(γ)SL,ϕα (X

σ+ log βγ−1

logα
,q

), if ασβ < γ.
(2.10)

Here, we denote lp,qασ ,β
(
D(Lσ)

)γ
the closure of lp,qασ ,β

(
D(Lσ)

)
in lp,qασ ,β

(
D(Lσ), γ

)
. In particular,

we have

lp,qασ ,β
(
D(Lσ)

)γ
= lp,qασ ,β

(
D(Lσ)

)
if and only if ασβ 6= γ. (2.11)

Proof. We consider three cases separately.

Case 1: ασβ > γ. In this case, we choose σ′ such that − log βγ−1

logα > σ′ > σ, then

lp,qασ ,β
(
D(Lσ)

)
=
(
lpβ(X), lp

ασ′ ,β

(
D(Lσ′)

))
σ
σ′ ,q

=
(
lpβ(X, γ), lp

ασ′ ,β

(
D(Lσ′), γ

))
σ
σ′ ,q

= lp,qασ ,β
(
D(Lσ), γ

)
by Lemma 2.3 and Proposition 2.9. Both (2.10) and (2.11) hold in this case.

Case 2: ασβ = γ. In this case, we take σ′ > σ, and notice that{
lpβ
(
D(Lσ

′
)
)
⊂ lpβ(X),

lp
ασ′β

(
D(Lσ

′
)
)
⊂ lp

ασ′ ,β

(
D(Lσ′)

)
,

and

{
lpβ
(
D(Lσ

′
), γ
)
⊂ lpβ(X, γ),

lp
ασ′β

(
D(Lσ

′
), γ
)
⊂ lp

ασ′ ,β

(
D(Lσ′), γ

)
.

As a consequence, we have by using real interpolation (see Theorem 5.6.1 in the book []),

lqασβ
(
D(Lσ

′
)
)
⊂ lp,qασ ,β

(
D(Lσ)

)
, lqασβ

(
D(Lσ

′
), γ
)
⊂ lp,qασ ,β

(
D(Lσ), γ

)
. (2.12)

Then, we can see that

{γns}n≥0 ∈ lqασβ
(
D(Lσ′)

)γ
⊂ lp,qασ ,β

(
D(Lσ)

)γ
for any s ∈ D(Lσ

′
) (2.13)

by using Lemma 2.3. Now, using (2.13), we have lp
ασ′ ,β

(
D(Lσ′), γ

)
⊂ lp,qασ ,β

(
D(Lσ)

)γ
. Since

lp
ασ′ ,β

(
D(Lσ′), γ

)
is dense in lp,qασ ,β

(
D(Lσ), γ

)
by the property of real interpolation, we see that

lp,qασ ,β
(
D(Lσ), γ

)
⊂ lp,qασ ,β

(
D(Lσ)

)γ
, and thus (2.10) follows immediately.



16 SHIPING CAO AND HUA QIU

It remains to show (2.11), i.e. lp,qασ ,β
(
D(Lσ)

)γ
6= lp,qασ ,β

(
D(Lσ)

)
in this case. Obviously, we

have lp
ασ′ ,β

(
D(Lσ′)

)
⊂ lp

ασ′β
(X) and as a consequence

lp,qασ ,β
(
D(Lσ)

)
⊂ lqασβ(X). (2.14)

Thus, for s ∈ D(Lσ
′
) and s 6= 0, we can see that {γns}n≥0 ∈ lp,qασ ,β

(
D(Lσ), γ

)
\ lp,qασ ,β

(
D(Lσ)

)
by (2.13) and (2.14). Thus (2.11) follows.

Case 3: ασβ < γ. For this case, we choose − log βγ−1

logα < σ1 < σ < σ2, we notice that by

Proposition 2.9,

lpασi ,β
(
D(Lσi), γ

)
= lpασi ,β

(
D(Lσi)

)
⊕ Λ(γ)SL,ϕα (X

σi+
log βγ−1

logα
,p

), i = 1, 2.

Then by the reiteration theorem of real and complex interpolations, and the fact that (A1 ⊕
B1, A2 ⊕B2)θ,q = (A1, A2)θ,q ⊕ (B1, B2)θ,q if (A1 +A2) ∩ (B1 +B1) = {0}, we conclude that

lp,qασ ,β
(
D(Lσ), γ

)
= lp,qασ ,β

(
D(Lσ)

)
⊕ Λ(γ)SL,ϕα (X

σ+ log βγ−1

logα
,q

).

So (2.10) and (2.11) follows immediately. �

3. A decomposition of Sobolev spaces

From now on, we return to the study of function spaces on fractals. We will always use
K to denote a connected p.c.f. self-similar set equipped with a regular harmonic structure

(H, r), and a self-similar measure µ with weight µi = rdHi as introduced in Section 1.
In this section, we will establish some useful characterizations of Sobolev spaces on products

of fractals. We split this section into three parts. In the first part, we will give a brief
discussion on the Laplacians on product spaces, and will provide a useful characterization of
the Sobolev spaces. In the second part, we will study the relation between Sobolev spaces and
the sequence spaces we described in Section 2. In particular, we will decompose a Sobolev
space into the union of a kernel part and a sequence part. In the third part, we will fulfill
the unprovided proofs in the last two parts.

3.1. The Laplacian. First, we introduce some notations.

Notation. Let S1, S2, · · · , Sd be some metric measure spaces, and let Ω = S1×S2× · · · ×Sd
be the product space with product topology and measure.

(a). Let fi be a measurable function on Si for i = 1, 2, · · · , d. We define the tensor product
f1 ⊗ f2 ⊗ · · · ⊗ fd : Ω→ C by

f1 ⊗ f2 ⊗ · · · ⊗ fd(x) = f1(x1)f2(x2) · · · fd(xd), ∀x = (x1, x2, · · · , xd) ∈ Ω.

(b). For each x = (x1, x2, · · · , xd) ∈ Ω and 1 ≤ i ≤ d, write x∧i = (x1, · · · , xi−1, xi+1, · · · , xd).
Denote Ω∧i = {x∧i : x ∈ Ω}.

(c). For 1 ≤ i ≤ d, x = (x1, x2 · · · , xd) ∈ Ω and f : Ω→ C, write

f
(i)

x∧i
(xi) = f(x1, · · · , xi−1, xi, xi+1, · · · , xd).

In this way, for each y ∈ Ω∧i, we view f
(i)
y (·) as a function Si → C, and write f

(i)
• for the

corresponding map from Ω∧i to functions on Si.

On the other hand, for each z ∈ Si, we view f
(i)
• (z) as a function Ω∧i → C, and write

f (i)(·) for the corresponding map from Si to functions on Ω∧i.
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(d). Following the notations of (c), for p ∈ (1,∞), for a function space D(Si) on Si, we
define

Lp
(
Ω∧i, D(Si)

)
:=
{
f

(i)
• is strongly measurable from Ω∧i to D(Si), and ‖f (i)

• ‖D(Si) ∈ L
p(Ω∧i)

}
;

for a function space D(Ω∧i) on Ω∧i, we define

Lp
(
Si, D(Ω∧i)

)
:=
{
f (i)(·) is strongly measurable from Si to D(Ω∧i), and ‖f (i)(·)‖D(Ω∧i) ∈ Lp(Si)

}
.

(e). Let U : Lp(Si) → Lp(Si) be a closed operator. Define U (i) : Lp(Ω) → Lp(Ω) as

the closed operator with D(U (i)) = Lp
(
Ω∧i,D(U)

)
, and U (i)f(x) = Ufx∧i(xi) (in almost

everywhere sense).

Remark 1. If ρ(U) 6= ∅, we can show
(
c− U (i)

)−1
=
(
(c− U)−1

)(i)
for c ∈ ρ(U), and thus

D(U (i)) =
{
f ∈ Lp(Ω) : f (i)

y ∈ D(U) for almost every y ∈ Ω∧i, and Uf•∧i(•i) ∈ Lp
(
Ω)
)}
.

Remark 2. In the case that S1 = · · · = Sd = S, we will usually omit the index of Si, but
still keep the superscript in Ω∧i to highlight i. See Proposition 3.3 for example.

Let’s consider the particular case Ω = K l × K̃d−l. With the above notations, the ∆(i)

with 1 ≤ i ≤ d are the Laplacians acting on certain “directions”. For short, we write
i = i1i2 · · · im with each 1 ≤ ij ≤ d, and ∆(i) = ∆(im)∆(im−1) · · ·∆(i1). Write C∞(Ω) for the

space of “smooth” functions f such that ∆(i)f ∈ C(Ω) for any i.

Remark 3. On Ω = K l×K̃d−l, for l < i ≤ d, by Remark 1, we can equivalently define −∆(i)

as the generator of the semigroup {P (i)
t }t≥0 on Lp(Ω), where {Pt}t≥0 is the heat semigroup

of −∆ on Lp(K̃).

Remark 4. On Ω = K l × K̃d−l, for 1 ≤ i ≤ l, we have f = −∆(i)G(i)f , where G is the

Green’s operator on K. Clearly, G(i)f(x) =
∫
K G(xi, y)f

(i)

x∧i
(y)dµ(y), where G ∈ C(K ×K)

is the Green’s function. See [26] or [36] for detailed constructions of the Green’s function G.

The definition of ∆ on K̃d is a little more complicated. The heat operator on K̃d is

naturally defined as the product Ut = P
(1)
t · · ·P

(d)
t . The −∆ on K̃d, viewed as the generator

of {Ut}t≥0, is determined by the corresponding Bessel potential

(1−∆)−1 =

∫ ∞
0

e−tUtdt.

It is well-known that Hambly and Kumagai in [20], Kumagai and Sturm in [27], showed
that the p.c.f. fractals under consideration satisfy the sub-Gaussian heat kernel estimates.
As an application, Ionescu, Rogers and Strichartz [23] studied Calderón-Zygmund operators
on product of p.c.f. fractals. Below is an immediate consequence of Corollary 5.5 in [23].

Proposition 3.1 ([23]). The operators ∆(i)(1−∆)−1 is bounded from Lp(K̃d) to Lp(K̃d).

Lemma 3.2. For 1 < p <∞ and Ω = K̃d, we have ∆ =
∑d

i=1 ∆(i).

Proof. First, we show
∑d

i=1 ∆(i) ⊂ ∆. Let f ∈
⋂d
i=1D(∆(i)). By Remark 3, we have

(P
(i)
t − 1)f =

∫ t
0 P

(i)
t′ ∆(i)fdt′ using the fundamental identity for semigroups (Proposition
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A.8.2 in the book []). As a consequence, we have

Utf − f =
d∑
i=1

( d∏
j=i+1

P
(j)
t

)
(P (i)f − f) =

d∑
i=1

( ∫ t

0

( d∏
j=i+1

P
(j)
t

)
P

(i)
t′ dt

′)∆(i)f.

Furthermore, using the fact that {P (i)
t }t≥0 is a bounded strongly continuous semigroup for

any 1 ≤ i ≤ d, we can conclude that lim
t→0

1
t (Utf −f) =

∑d
i=1 ∆(i)f . This shows f ∈ D(∆) and

∆f =
∑d

i=1 ∆(i)f .

Next, ∆ ⊂
∑d

i=1 ∆(i) follows from Proposition 3.1. �

Before ending this subsection, we return to Sobolev spaces. As an immediate consequence
of Lemma 3.2 we have the following characterization of Hp

2k(K̃
d) (Definition 1.1).

Proposition 3.3. For p ∈ (1,∞), k ∈ Z+ and fixed 1 ≤ i ≤ d,

Hp
2k(K̃

d) =
{
f ∈ Lp(K̃d) : f ∈ D(∆(i)),∀i with |i| ≤ k

}
=
{
f ∈ Lp(K̃d) : (∆(i))jf ∈ Lp

(
K̃,Hp

2k−2j(K̃
d∧i)

)
, j = 0, 1, · · · , k

}
.

Proof. The first identify is an immediate consequence of Lemma 3.2. In addition, using this,
for any k′ ≤ k, we can see{

f ∈ Lp(K̃d) : f ∈ Lp
(
K̃,Hp

2k′(K̃
d∧i)

)}
=
{
f ∈ Lp(K̃d) : f ∈ D(∆(i)),∀i = i1i2 · · · im, with m ≤ k′ and ij 6= i, 1 ≤ j ≤ m

}
.

The second identity follows. �

Proposition 3.3 is referred as the definition of Sobolev spaces in many contexts. Thus, it
is reasonable to define Sobolev spaces on Ω = K l × K̃d−l as follows.

Definition 3.4. Let Ω = K l × K̃d−l for some 1 ≤ l ≤ d, and 1 < p <∞.
(a). For k ∈ Z+, we define

Hp
2k(Ω) =

{
f ∈ Lp(Ω) : f ∈ D(∆(i)),∀i with |i| ≤ k

}
with norm ‖f‖Hp

2k(Ω) =
∑
|i|≤k ‖∆(i)f‖Lp(Ω).

(b). For k ∈ Z+, 0 < θ < 1, define Hp
2k+2θ(Ω) =

[
Hp

2k(Ω), Hp
2k+2(Ω)

]
θ
.

Clearly, we still have the characterization

Hp
2k(Ω) =

{
f ∈ Lp(Ω) : f ∈ D

(
(∆(1))j

)
, (∆(1))jf ∈ Lp

(
K,Hp

2k−2j(Ω
∧1)
)
, j = 0, 1, · · · , k

}
,

We will revisit Proposition 3.3 and Definition 3.4 in Appendix B, where we enlarge the
domain of Laplacians to distributions, and see what happens.

One of our goals in this section is to prove the following theorem, which is also referred as
an equivalent definition of the Sobolev spaces. See the book [].

Theorem 3.5. Let Ω = K l × K̃d−l for some 1 ≤ l ≤ d. Then, we have
(a). Hp

σ(Ω) = Hp
σ(K̃d)|Ω, for 1 < p <∞ and σ ≥ 0.

(b).
[
Hp1
σ1 (Ω), Hp2

σ2 (Ω)
]
θ

= Hpθ
σθ (Ω), where 1

pθ
= 1−θ

p1
+ θ

p2
, σθ = (1 − θ)σ1 + θσ2, for

1 < p1, p2 <∞, σ1, σ2 ≥ 0 and 0 < θ < 1.
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We will show that Hp
σ(Ω) is a retract of Hp

σ(K̃d), with the same extension map E and the
natural restriction map R for 0 ≤ σ ≤ 2k with k ∈ Z+. See Definition C.7 for the concept of
retract.

It is easy to observe that Hp
σ(K̃d)|Ω ⊂ Hp

σ(Ω) by complex interpolation. The other half
can be directly proved in the case when K is the unit interval, where various cut-off and
reflection techniques are available. However, for the fractal case, multiplication of functions
do not preserve smoothness (see [6]), things will be difficult. We will come back to the proof
in the last part of this section, as a first application of the following decomposition theorem.

3.2. A decomposition theorem. As the main part of this section, for Ω = K l× K̃d−l with
1 ≤ l ≤ d, we will provide a decomposition theorem of Hp

σ(Ω) with σ ≥ 0. First, we introduce
some notations.

Definition 3.6. (a). For k ∈ Z+ and on K, let Hk−1 = {f ∈ D(∆k) : ∆kf = 0} be the
space of k-multiharmonic functions on K.

(b). Let Ω = K l × K̃d−l with 1 ≤ l ≤ d. For k ∈ Z+, denote Hk−1

(
K,D(Ω∧1)

)
:=

Hk−1 ⊗D(Ω∧1) for some function space (Banach space) D(Ω∧1) on Ω∧1.

Note that the dimension of Hk−1 is k#V0, H−1 = {0} and H0 is the space of harmonic
functions on K. In addition, Hk−1

(
K,D(Ω∧1)

)
can be understood as “the space of multi-

harmonic functions on K taking values in D(Ω∧1)”.
The following notations concern the contraction maps of K.

Definition 3.7. Fix w ∈W∗.
(a). Define Aw by Awf(x) = f(Fwx) for any function f on K.

(b). Let Ω = K l × K̃d−l for some 1 ≤ l ≤ d, and let 1 ≤ i ≤ l. We define F
(i)
w as the

contraction map

F (i)
w (x1, x2, · · · , xd) = (x1, x2, · · · , xi−1, Fwxi, xi+1, · · · , xd),

and define A
(i)
w by A

(i)
w f(x) = f(F

(i)
w x) for any function f on Ω.

It is also helpful to extend some notations in Section 2 in this section, by replacing the

number γ with the operator A
(1)
w .

Definition 3.8. Let 1 < p < ∞, α, β > 0, Ω = K l × K̃d−l for some 1 ≤ l ≤ d and
D(Ω), D1(Ω), D2(Ω) be some function spaces (Banach spaces) on Ω.

(a). Define

lpα
(
D(Ω), A(1)

w

)
=
{
s = {sn}n≥0 : {sn+1 −A(1)

w sn}n≥0 ∈ lpα
(
D(Ω)

)}
,

with norm ‖s‖
lpα(D(Ω),A

(1)
w )

=
∥∥{sn+1 −A(1)

w sn}n≥0

∥∥
lpα(D(Ω))

+ ‖s0‖D(Ω).

(b). In addition, define

lpα,β
(
D1(Ω), D2(Ω), A(1)

w

)
= lpαβ

(
D1(Ω), A(1)

w

)
∩ lpβ

(
D2(Ω), A(1)

w

)
,

with norm ‖s‖
lpα,β(D1(Ω),D2(Ω),A

(1)
w )

= ‖s‖
lpαβ(D1(Ω),A

(1)
w )

+ ‖s‖
lpβ(D2(Ω),A

(1)
w )

.

See Appendix A for a further discussion on these spaces under certain setting.
From now on, we aim to a decomposition of the Sobolev spaces Hp

σ(Ω). We will first deal

with the half space K̃d
+ := K × K̃d−1 and the full space K̃d, and construct a restriction
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map and an extension map for Hp
σ(K̃d

+) and Hp
σ(K̃d) respectively in the following. For

convenience, throughout the rest of this paper, we always assume

(C1). For any x ∈ V0, we have #π−1(x) = 1.

For each x ∈ V0, we fix to denote its address by τxẇx with τx, wx ∈ W∗, i.e. x = π(τxẇx),
and require that

FτxK ∩ FτyK = ∅, ∀x 6= y ∈ V0. (3.1)

Remark. The condition (C1) is not necessary, but will bring simplification for the proof.
See [11](Section 8) for a brief discussion on this condition and an example that (C1) fails.

1. The restriction map.

Since Hk−1 with k ∈ Z+ is a finite dimensional subspace in L∞(K), for 1 < p < ∞,
the orthogonal projection PHk−1

: L2(K) → Hk−1 extends to be a bounded map PHk−1
:

Lp(K)→ Hk−1. As usual, we denote P
(1)
Hk−1

the operator on Lp(K̃d
+) as before.

Definition 3.9. (a). Let w ∈W∗ \ {∅}, k ∈ Z+. Define Rw,kf =
{
P

(1)
Hk−1

(A
(1)
w )nf

}
n≥0

for a

function f in Lp(K̃d
+).

(b). For x ∈ V0 with address τxẇx, define Rx,kf = Rwx,kA
(1)
τx f for a function f in Lp(K̃d

+).

(c). For x ∈ V0 with address τxẇx, 1 < p < ∞, denote αx = r
(1+dH)/2
wx , βx = βx(p) =

r
−dH/p
wx .

Noticing that Hp
σ(K̃d)|K̃d

+
⊂ Hp

σ(K̃d
+), for a function f ∈ Hp

σ(K̃d), we simplify Rx,kf |K̃d
+

to

Rx,kf without causing confusion.
We will show the following proposition.

Proposition 3.10. Let k ∈ Z+, 0 ≤ σ ≤ 2k, 1 < p <∞, x ∈ V0 and Ω = K̃d
+. Then Rx,k is

bounded from Hp
σ(Ω) (also Hp

σ(K̃d)) to lpασx ,βx
(
Hk−1(K,Lp(Ω∧1)),Hk−1(K,Hp

σ(Ω∧1)), A
(1)
wx

)
.

The proof relies on the following two lemmas.

Lemma 3.11. Let k ≥ j ≥ 0, 1 < p < ∞, w ∈ W∗ \ {∅} and Ω = K̃d
+. There exists a

function gw,k,j ∈ L∞(K ×K) such that for any f ∈ D((∆(1))j), we have

P
(1)
Hk−1

A(1)
w f(ξ)−A(1)

w P
(1)
Hk−1

f(ξ) =

∫
K
gw,k,j(ξ1, η)

(
(∆(1))jf

)(1)

ξ∧1
(η)dµ(η).

Proof. For j = 0, the lemma is obvious since PHk−1
is realized with an integration kernel.

Now, assume j ≥ 1. Let G be the Green’s operator on K, and G(1) its associated op-
erator on K̃d

+ as before. See Remark 4 in the last subsection. Let f ∈ D((∆(1))j), then

we have g = f − (G(1))j(−∆(1))jf ∈ D((∆(1))j) with (∆(1))jg = 0. As a consequence,
g ∈ Hj−1

(
K,Lp(Ω∧1)

)
. Thus,

D((∆(1))j) = Hj−1

(
K,Lp(Ω∧1)

)
⊕ (G(1))j

(
Lp(Ω)

)
. (3.2)

It is easy to see that (P
(1)
Hk−1

A
(1)
w − A(1)

w P
(1)
Hk−1

)|Hj−1(K,Lp(Ω∧1)) = 0. So by (3.2), it suffices

to prove the lemma for the function (G(1))j(−∆(1))jf . We only need to take

gw,k,j(ξ, η) = (−1)j
∫
Kj−1

(PHj−1Aw−AwPHk−1
)Gη1(ξ)G(η1, η2) · · ·G(ηj−1, ηj)dµ(η1) · · · dµ(ηj−1),
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where Gη(ξ) = G(ξ, η) is the Green’s function. �

Lemma 3.12. Let 1 < p <∞, f ∈ Lp(K) and g ∈ L∞(K). Define

s = {µn/pw

∫
K
Anwf(ξ)g(ξ)dµ(ξ)}∞n=0,

then we have

‖s‖lp . ‖f‖Lp(K)‖g‖L∞(K).

Proof. Let Z = K \ FwK. Then ‖f‖Lp(K) =
∥∥‖µn/pw Anwf‖Lp(Z)

∥∥
lp

by scaling, and

∣∣ ∫
K
f(ξ)g(ξ)dµ(ξ)

∣∣ =
∣∣ ∞∑
m=0

µmw

∫
Z
Amw f(ξ)Amw g(ξ)dµ(ξ)

∣∣
≤
∞∑
m=0

µmw ‖Amw f‖Lp(Z)‖g‖L∞(K),

where we use the fact µ(Z) ≤ 1. So using Minkowski inequality, we get

‖s‖lp ≤ ‖g‖L∞(K)

∥∥ ∞∑
m=0

µn/pw µmw ‖An+m
w f‖Lp(Z)

∥∥
lp

≤ ‖g‖L∞(K)

∞∑
m=0

µ
m−m

p
w ‖f‖Lp(K).

Since µw < 1, we get the lemma. �

Now we return to the proof of Proposition 3.10.

Proof of Proposition 3.10. It suffices to consider Rw,k for any w ∈ W∗ \ {∅}. We write

α = r
(1+dH)/2
w and β = µ

−1/p
w = r

−dH/p
w for short.

First, we show that Rw,k is a bounded map from Hp
σ(Ω) to lpβ

(
Hk−1(K,Hp

σ(Ω∧1)), A
(1)
w

)
.

First, we consider the case σ = 2j with j ∈ Z+ and 0 ≤ j ≤ k. Let f ∈ Hp
2j(Ω)⊂Lp

(
K,Hp

2j(Ω
∧1)
)
.

By applying Lemma 3.11, we see that(
(Rw,kf)n+1 −A(1)

w (Rw,kf)n
)
(ξ) =

((
P

(1)
Hk−1

A(1)
w −A(1)

w P
(1)
Hk−1

)
(A(1)

w )nf
)

(ξ)

=

∫
K
gw,k,0(ξ1, η)

(
(A(1)

w )nf
)(1)

ξ∧1
(η)dµ(η).

The claim then follows from Lemma 3.12 since gw,k,0 ∈ L∞(K × K). For general 0 ≤ σ ≤
2k, the claim follows from the fact that Hp

σ(Ω∧1) = Hp
σ(K̃d−1) is stable under complex

interpolation, so is Hk−1

(
K,Hp

σ(Ω∧1)
)
.

Next, we need to show thatRw,k is a bounded map fromHp
σ(Ω) to lpασβ

(
Hk−1(Lp(Ω∧1)), A

(1)
w

)
.

As the last paragraph, we only need to consider the case σ = 2j with j ∈ Z+ and 0 ≤ j ≤ k.
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We apply Lemma 3.11 again, and see that(
(Rw,kf)n+1 −A(1)

w (Rw,kf)n
)
(ξ) =

((
P

(1)
Hk−1

A(1)
w −A(1)

w P
(1)
Hk−1

)
(A(1)

w )nf
)

(ξ)

=

∫
K
gw,k,j(ξ1, η)

(
(∆(1))j(A(1)

w )nf
)(1)

ξ∧1
(η)dµ(η)

= (rwµw)jn
∫
K
gw,k,j(ξ1, η)

(
(A(1)

w )n(∆(1))jf
)(1)

ξ∧1
(η)dµ(η)

The claim then follows from Lemma 3.12 since (∆(1))jf ∈ Lp(Ω) = Lp(K,Lp(Ω∧1)) and
gw,k,j ∈ L∞(K ×K). �

2. The extension map.

Now for Ω = K̃d
+, x ∈ V0, 1 < p <∞, k ∈ Z+ and 0 ≤ σ ≤ 2k, we will construct a bounded

map Ex,k (or Ẽx,k) from lpασx ,βx
(
Hk−1(K,Lp(Ω∧1)),Hk−1(K,Hp

σ(Ω∧1)), A
(1)
wx

)
to Hp

σ(K̃d
+)
(
or

Hp
σ(K̃d)

)
.

Let w ∈ W∗ \ {∅}, without loss of generality, we assume that FwK is bounded away from
V0 \ {π(ẇ)}. We introduce some maps that will be used.

1). For each h ∈ Hk−1, clearly there is a smooth function h̆ ∈ C∞(K) such that

Awh̆ = h, PHk−1
h̆ = 0

and h̆ vanishes in a neighbourhood of V0 \ {π(ẇ)}. By choosing h̆ properly, h → h̆ becomes
a linear map from Hk−1 to C∞(K).

In addition, for any f =
∑m

i=1 hi ⊗ fi with m ∈ N, hi ∈ Hk−1 and fi defined on Ω∧1, we
write

f̆ =
m∑
i=1

h̆i ⊗ fi.

2). For each h ∈ Hk−1, still clearly there is a smooth function h̄ ∈ C∞(K) such that

Awh̄ = Awh, PHk−1
h̄ = h

and h̄ vanishes in a neighbourhood of V0 \ {π(ẇ)}. By choosing h̄ properly, h → h̄ becomes
a linear map from Hk−1 to C∞(K).

In addition, for any f =
∑m

i=1 hi ⊗ fi with m ∈ N, hi ∈ Hk−1, and fi defined on Ω∧1, we
write

f̄ =

m∑
i=1

h̄i ⊗ fi.

Now, we define the extension map Ex,k for Hp
σ(K̃d

+).

Definition 3.13. (a). Let w ∈W∗ \{∅} and assume that FwK ∩V0 = {π(ẇ)}∩V0. For each

sequence of s = {sn}n≥0 ∈
(
Hk−1(K,Lp(Ω∧1))

)Z+, we define formally

Ew,ks = s̄0 +

∞∑
n=1

s̆′n ◦ (F (1)
w )−n+1,

where s′n = sn −A(1)
w sn−1.
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(b). Let x ∈ V0 and τxẇx be the address of x as we discussed after (C1). Define

Ex,ks = (Ewx,ks) ◦ F−1
τx .

Proposition 3.14. Let k ∈ Z, 0 ≤ σ ≤ 2k, 1 < p < ∞, x ∈ V0 and Ω = K̃d
+. Then

Ex,k is bounded from lpασx ,βx
(
Hk−1(K,Lp(Ω∧1)),Hk−1(K,Hp

σ(Ω∧1)), A
(1)
wx

)
to Hp

σ(Ω), with αx =

r
(1+dH)/2
wx , βx = r

−dH/p
wx .

In addition, we have Ex,ks supported in FτxK × K̃d−1, and Rx,kEx,k = Id.

Proof. It suffices to consider Ew,k by assuming FwK ∩ V0 = {π(ẇ)} ∩ V0. We write α =

r
(1+dH)/2
w and β = µ

−1/p
w = r

−dH/p
w for short.

First, for any j ∈ Z+ with 0 ≤ j ≤ k and θ ≥ 0, we show that Ew,k is bounded from

lp
α2jβ

(
Hk−1(K,Hp

θ (Ω∧1)), A
(1)
w

)
to the function space{

f ∈ D
(
(∆(1))j

)
: (∆(1))jf ∈ Lp

(
K,Hp

θ (Ω∧1)
)}
.

Let s ∈ lp
α2jβ

(
Hk−1(K,Hp

θ (Ω∧1)), A
(1)
w

)
. Write s′n = sn − A

(1)
w sn−1 for n ≥ 1, and for

convenience, write f0 = s̄0 and fn = s̆′n ◦ (F
(1)
w )−n+1 for short. Then we see that∥∥{(∆(1))jfn}n≥0

∥∥
lpβ(L∞(K,Hp

θ (Ω∧1)))

.‖s0‖Hk−1(K,Hp
θ (Ω∧1)) +

∥∥{sn+1 −A(1)
w sn}n≥0

∥∥
lp
α2jβ

(Hk−1(K,Hp
θ (Ω∧1)))

�‖s‖
lp
α2jβ

(Hk−1(K,Hp
θ (Ω∧1)),A

(1)
w )
.

Write Z = K \ FwK. Then we have∥∥ ∞∑
m=0

|(∆(1))jfm|
∥∥
Lp(K,Hp

θ (Ω∧1))

=
∥∥µn/pw ‖(A(1)

w )n
n+1∑
m=0

|(∆(1))jfm|‖Lp(Z,Hp
θ (Ω∧1))

∥∥
lp
.
∥∥µn/pw

n+1∑
m=0

‖(∆(1))jfm‖L∞(Z,Hp
θ (Ω∧1))

∥∥
lp

=
∥∥ ∞∑
m=−1

1n≥mµ
m/p
w µ(n−m)/p

w ‖(∆(1))jfn−m‖L∞(Z,Hp
θ (Ω∧1))

∥∥
lp
.
∥∥{(∆(1))jfn}n≥0

∥∥
lpβ(L∞(K,Hp

θ (Ω∧1)))
.

Now, noticing that

lp
α2jβ

(
Hk−1(K,Hp

θ (Ω∧1)), A(1)
w

)
⊂ lpβ

(
Hk−1(K,Lp(Ω∧1)), A(1)

w

)
,

we clearly have Ew,ks ∈ Lp(Ω) by applying the above two estimates (take j = 0, θ = 0). In
addition, the claim also follows from above.

Next, for j ∈ Z+ with 0 ≤ j ≤ k, we observe that

lp
α2j ,β

(
Hk−1(K,Lp(Ω∧1)),Hk−1(K,Hp

2j(Ω
∧1)), A(1)

w

)
=

j⋂
j′=0

lp
α2j′β

(
Hk−1(K,Hp

2(j−j′)(Ω
∧1)), A(1)

w

)
,

using the fact that the Sobolev space Hp
σ(K̃d−1) is stable under complex interpolation.
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Then by using the fact that

Hp
2j(Ω) =

{
f ∈ Lp(Ω) : f ∈ D

(
(∆(1))j

′)
, (∆(1))j

′
f ∈ Lp

(
K,Hp

2(j−j′)(Ω
∧1)
)
, j′ = 0, 1, · · · , j

}
,

we find that Ew,k is a bounded map from lp
α2j ,β

(
Hk−1(K,Lp(Ω∧1)),Hk−1(K,Hp

2j(Ω
∧1)), A

(1)
w

)
to Hp

2j(Ω), by combining the above two parts.

On the other hand, it is easy to verify that Rw,kEw,k = Id on lpβ
(
Hk−1(K,Lp(Ω∧1)), A

(1)
w

)
,

and thus it holds on subspaces.
Till now, we have proved the proposition for σ = 2j with 0 ≤ j ≤ k. Since {(1−∆)it}t∈R

is a C0-group as a consequence of Proposition?? in [], where ∆ is the Laplacian on K̃d−1, by

applying Lemma 2.11 to −∆, noticing that Hp
σ(K̃d−1) = D(∆σ/2) for σ ≥ 0, the result for

general 0 ≤ σ ≤ 2k then follows by using complex interpolation. �

Next, we construct the extension map Ẽx,k for Hp
σ(K̃d). The only thing we need to do is

to extend each function s̄0 and s̆′n to K̃d. To make things clear, we introduce the following
notations.

3). For each h ∈ Hk−1 and x = π(τxẇx) ∈ V0, there is clearly a function Mx(h) ∈ Hk−1

such that

∆jMx(h)(x) = ∆jh(x), ∂n∆jMx(h)(x) = −∂n∆jh(x), ∀0 ≤ j ≤ k − 1.

By choosing Mx(h) properly, h→Mx(h) becomes a linear map from Hk−1 to Hk−1.
For convenience, we write Mx(h⊗f) = Mx(h)⊗f and thus Mx extends to be a linear map

Mx : Hk−1

(
K,Lp(Ω∧1)

)
→ Hk−1

(
K,Lp(Ω∧1)

)
.

With this map, we define Ẽx,k as follows.

Definition 3.15. Let x = π(τxẇx) ∈ V0 and s = {sn}n≥0 ∈
(
Hk−1(K,Lp(Ω∧1))

)Z+. Define

s− = {Mx(sn)}n≥0, and we formally define Ẽx,ks on K̃d as

Ẽx,ks|K̃d
+

= Ex,ks, Ẽx,ks|K̃d
−

= Ex,ks−.

Using a same argument as Proposition 3.14, we have

Proposition 3.16. Let k ∈ Z+, 0 ≤ σ ≤ 2k, 1 < p <∞, x ∈ V0. Then Ẽx,k is bounded from

lpασx ,βx
(
Hk−1(K,Lp(Ω∧1)),Hk−1(K,Hp

σ(Ω∧1)), A
(1)
w

)
to Hp

σ(K̃d), with αx = r
(1+dH)/2
wx , βx =

r
−dH/p
wx .

In addition, we have Ẽx,ks supported in F
(1)
τx K̃

d
+ ∪ F

(1)
τx K̃

d
−, and Rx,kẼx,k = Id.

3. The decomposition.
Still assume 1 < p < ∞, k ∈ Z+ and 0 ≤ σ ≤ 2k. Notice that the maps Rx,k, Ex,k and

Ẽx,k for x ∈ V0 can be defined naturally on K × Ω′ for Ω′ = K l × K̃s−l−1 (also on K̃ × Ω′).
For simplicity, we introduce some notations.
Notations.

(a). Let Ω = K l × K̃d−l with 0 ≤ l ≤ d. We define Kpσ,k(Ω) =
{
f ∈ Hp

σ(Ω) : Rx,kf =

0,∀x ∈ V0

}
.
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(b). Let Ω = K l × K̃d−l with 1 ≤ l ≤ d. We define

T pσ,k(Ω) =
{
f ∈ Hp

σ(Ω) : f =
∑
x∈V0

Ex,ksx, with

sx ∈ lpασx ,βx
(
Hk−1(K,Lp(Ω∧1)),Hk−1(K,Hp

σ(Ω∧1)), A(1)
wx

)
,∀x ∈ V0

}
.

Also define

T pσ,k(K̃
d) =

{
f ∈ Hp

σ(K̃d) : f =
∑
x∈V0

Ẽx,ksx, with

sx ∈ lpασx ,βx
(
Hk−1(K,Lp(K̃d−1)),Hk−1(K,Hp

σ(K̃d−1)), A(1)
wx

)
,∀x ∈ V0

}
.

As an easy consequence of the Proposition 3.10, 3.14 and 3.16. We conclude this subsection
with the following theorem.

Theorem 3.17. Let 1 < p <∞, k ∈ Z+ and 0 ≤ σ ≤ 2k. We have
(a). Hp

σ(K̃d) = Kpσ,k(K̃
d)⊕ T pσ,k(K̃

d).

(b). Hp
σ(K̃d

+) = Kpσ,k(K̃
d
+)⊕ T pσ,k(K̃

d
+).

(c). for Ω = K l × K̃d−l with 2 ≤ l ≤ d, Hp
σ(Ω) = Kpσ,k(Ω)⊕ T pσ,k(Ω).

Proof. Noticing the requirement (3.1), part (a) is a consequence of Proposition 3.10 and
3.16, part (b) is a consequence of Proposition 3.10 and 3.14. We will prove (c) in the next
subsection. �

3.3. Proof of Theorem 3.5 and 3.17 (c). In the last part of this section, we will prove
Theorem 3.5, and also fullfill the proof of the decomposition theorem. Let’s start from the
simple case where Ω = K̃d

+.

Lemma 3.18. For each f on K̃d
+, we define Θ(f) to be the function on K̃d such that

Θ(f)(x) =

{
f(x), if x ∈ K̃d

+,

0, if x ∈ K̃d
−.

Then Θ is bounded from Kpσ,k(K̃
d
+) to Kpσ,k(K̃

d). As a consequence, Kpσ,k(K̃
d)|K̃d

+
= Kpσ,k(K̃

d
+).

Proof. First, for j = 0, 1, 2, · · · , k, we can easily see that Θ is bounded from Kp2j,k(K̃
d
+) to

Kp2j,k(K̃
d). Next, by Theorem 3.17 (a) and (b), Lemma 2.11, and the fact that[

Hp
2j(K̃

d), Hp
2j+2(K̃d)

]
θ

= Hp
2j+2θ(K̃

d),
[
Hp

2j(K̃
d
+), Hp

2j+2(K̃d
+)
]
θ

= Hp
2j+2θ(K̃

d
+),

we conclude[
Kp2j,k(K̃

d),Kp2j+2,k(K̃
d)
]
θ

= Kp2j+2θ,k(K̃
d),

[
Kp2j,k(K̃

d
+),Kp2j+2,k(K̃

d
+)
]
θ

= Kp2j+2θ,k(K̃
d
+),

for j = 0, 1, · · · , k − 1 and θ ∈ (0, 1). Thus, Θ is bounded from Kpσ,k(K̃
d
+) to Kpσ,k(K̃

d) for all

0 ≤ σ ≤ 2k by using complex interpolation. �

Lemma 3.19. For 1 < p <∞ and σ ≥ 0, we have Hp
σ(K̃d

+) = Hp
σ(K̃d)|K̃d

+
. In fact, Hp

σ(K̃d
+)

is a retract of Hp
σ(K̃d).
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Proof. Obviously, we have Hp
σ(K̃d)|K̃d

+
⊂ Hp

σ(K̃d
+). On the other hand, define the extension

map Λk from Lp(K̃d
+) to Lp(K̃d) as

Λk = Θ(1−
∑
x∈V0

Ex,kRx,k) +
∑
x∈V0

Ẽx,kRx,k.

Using Proposition 3.10 and 3.16 and Lemma 3.18, we can see that Λk is bounded from
Hp
σ(K̃d

+) to Hp
σ(K̃d). The lemma follows. �

For the special case Ω = K̃d
+, Theorem 3.5 follows immediately from Lemma 3.19. Now

we prove Theorem 3.5 for the general case.

Proof of Theorem 3.5 and Theorem 3.17 (c). For d = 1, Theorem 3.5 is true by Lemma 3.19,
and there is nothing to prove for Theorem 3.17 (c).

For d ≥ 2, we prove by induction. We assume that both results are true for d−1, and thus
could be applied to Ω′ = K l × K̃d−l−1 ⊂ K̃d−1. As a consequence, for σ1, σ2 ≥ 0, we have[

Hp
σ1(Ω′), Hp

σ2(Ω′)
]
θ

= Hp
σθ

(Ω′), with σθ = (1− θ)σ1 + θσ2 and θ ∈ (0, 1).

Let Ω = K × Ω′ ⊂ K̃d. We can use a same proof as Proposition 3.10 to see that Rx,k is

bounded from Hp
σ(Ω) (also Hp

σ(K̃ × Ω′)) to lpασx ,βx
(
Hk−1(K,Lp(Ω′)),Hk−1(K,Hp

σ(Ω′)), A
(1)
wx

)
.

Moreover, we have lpασx ,βx
(
Hk−1(K,Lp(Ω′)),Hk−1(K,Hp

σ(Ω′)), A
(1)
wx

)
is a retract of

lpασx ,βx
(
Hk−1(K,Lp(K̃d−1)),Hk−1(K,Hp

σ(K̃d−1)), A(1)
wx

)
.

In fact, there is an extension map E (independent of σ) from Hp
σ(Ω′) to Hp

σ(K̃d−1) and let R

be the restriction map from K̃d−1 to Ω′, such that RE = Id. The extension map E naturally
extends to the sequence spaces.

As a consequence lpασx ,βx
(
Hk−1(K,Lp(Ω′)),Hk−1(K,Hp

σ(Ω′)), A
(1)
wx

)
is stable under complex

interpolation. Thus, we can use a same proof as Proposition 3.14 (or 3.16) to see that

Ex,k (or Ẽx,k) is bounded from lpασx ,βx
(
Hk−1(K,Lp(Ω′)),Hk−1(K,Hp

σ(Ω′)), A
(1)
wx

)
to Hp

σ(Ω) (or

Hp
σ(K̃ × Ω′)). As an immediate consequence, we have Theorem 3.17 (c) proved for Ω.
In addition, following the same proof of Lemma 3.18 and Lemma 3.19, we have Hσ

p (K×Ω′)

is a retract of Hp
σ(K̃ × Ω′). Now, we apply the claim to different Ω′ and different directions,

we have

Hp
σ(K̃d) y Hp

σ(K × K̃d−1) y · · ·y Hp
σ(Kd−1 × K̃) y Hp

σ(Kd),

which are realized by the extension map Λk and the restricition map in different directions.
As a consequence, we have Hp

σ(K̃d) y Hp
σ(Ω). Theorem 3.5 is proved for d. The proof is

completed by induction. �

4. Embedding Theorems and boundary behavior

In this section, we study the embedding theorems of function spaces on product of fractals.
Recall that in Theorem 3.5 we have shown that the Sobolev spaces Hp

σ(Ω) on Ω = K l⊗ K̃d−l

with σ ≥ 0 are stable under complex interpolation. We can then define the Besov spaces
Bp,q
σ (Ω) by real interpolation as follows.
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Definition 4.1. Let Ω = K l × K̃d−l, p, q ∈ (1,∞) and σ > 0, we define

Bp,q
σ (Ω) =

(
Lp(Ω), Hp

σ′(Ω)
)
σ
σ′ ,q

, with σ′ > σ.

Note that the definition is independent of the choice of σ′. In addition, Bp,q
σ (Ω) is a retract

of Bp,q
σ (K̃d), noticing that the couple

(
Lp(Ω), Hp

σ′(Ω)
)

is a retract of
(
Lp(K̃d), Hp

σ′(K̃
d)
)
. One

can equivalently define Bp,q
σ (Ω) on Ω as the restriction of Bp,q

σ (K̃d) on K̃d.

Proposition 4.2. Let Ω = K l × K̃d−l, p, q ∈ (1,∞) and σ > 0. We have Bp,q
σ (Ω) =

Bp,q
σ (K̃d)|Ω.

In this section, we will introduce some related spaces, H̊p
σ(Ω), B̊p,q

σ (Ω), H̃p
σ(Ω), B̃p,q

σ (Ω) and
some others, which will play important roles in the next section. At the end of this section,
we will extend the embedding theorems, Theorem 3.5 and Proposition 4.2, to real orders. For
convenience, we will mostly focus on Ω = K̃d

+ in this section and the next section, though
quite a large portion of the theorems can be extended to the general case.

4.1. A trace theorem. We begin this section with a trace theorem of Hp
σ(Ω) and Bp,q

σ (Ω)

on the boundary ∂Ω of Ω = K l × K̃d−l. In this part, for simplicity, we only take care of a
face of ∂Ω, which is identified with K l−1 × K̃d−l.

It is well-known that on K, we have Hp
σ(K) ⊂ C(K) if and only if σ > 2dH

p(1+dH) = dS
p ,

where dS := 2dH
1+dH

is the spectral dimension on K, see [] for a proof. Similarly, we also have

that ∂nf(x),∀x ∈ V0 is well-defined for any f ∈ Hp
σ(K) if and only if σ > 2 − dS

p′ . Readers

can compare the following theorem with the classical trace theorem in monographs [] and [].

Theorem 4.3. Let Ω = K l × K̃d−l with 1 ≤ l ≤ d, 1 < p <∞, p′ = p
p−1 and x ∈ V0.

(a). For 2k − dS
p′ < σ ≤ 2k + dS

p with k ∈ Z+, the trace map

T (x,1)
σ f =

(
f |{x}×Ω∧1 , · · · , (∆(1))k−1f |{x}×Ω∧1 , ∂

(1)
n f |{x}×Ω∧1 , · · · , ∂(1)

n (∆(1))k−1f |{x}×Ω∧1
)

is bounded and surjective from Hp
σ(Ω) to

∏k−1
i=0 B

p,p
σ−2i−dS/p(Ω

∧1)×
∏k−1
i=0 B

p,p
σ−2i−2+dS/p′

(Ω∧1),

and is bounded and surjective from Bp,q
σ (Ω) to

∏k−1
i=0 B

p,q
σ−2i−dS/p(Ω

∧1)×
∏k−1
i=0 B

p,q
σ−2i−2+dS/p′

(Ω∧1).

(b). For 2k + dS
p < σ ≤ 2k + 2− dS

p′ with k ∈ Z+, the trace map

T (x,1)
σ f =

(
f |{x}×Ω∧1 , · · · , (∆(1))kf |{x}×Ω∧1 , ∂

(1)
n f |{x}×Ω∧1 , · · · , ∂(1)

n (∆(1))k−1f |{x}×Ω∧1
)

is bounded and surjective from Hp
σ(Ω) to

∏k
i=0B

p,p
σ−2i−dS/p(Ω

∧1)×
∏k−1
i=0 B

p,p
σ−2i−2+dS/p′

(Ω∧1),

and is bounded and surjective from Bp,q
σ (Ω) to

∏k
i=0B

p,q
σ−2i−dS/p(Ω

∧1)×
∏k−1
i=0 B

p,q
σ−2i−2+dS/p′

(Ω∧1).

Remark. It is known that B2,2
σ (K̃d) = H2

σ(K̃d) by the standard interpolation theory, so that

B2,2
σ (Ω) = H2

σ(Ω) for any Ω = K l × K̃d−l.

To prove Theorem 4.3, it suffices to show that for i < k, 2i+ dS
p < σ ≤ 2k and 2i+2− dS

p′ <

σ′ ≤ 2k, and for any f ∈ Hp
σ(Ω), f ′ ∈ Hp

σ′(Ω), x = π(τẇ) ∈ V0 and a.e. ξ ∈ Ω∧1, we always
have

(∆(1))if(x, ξ) = lim
n→∞

(rτµτ )−i(rwµw)−in(∆(1))i(Rx,kf)n(F−1
τ x, ξ),

∂(1)
n (∆(1))if ′(x, ξ) = lim

n→∞
r−1
τ r−nw (rτµτ )−i(rwµw)−in∂(1)

n (∆(1))i(Rx,kf
′)n(F−1

τ x, ξ),
(4.1)
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where Rx,k is defined in Definition 3.9. Then Theorem 4.3 follows immediately from Theorem
3.17 and Proposition 2.9 for Hp

σ(Ω) case, and from Proposition 2.13 for Bp,q
σ (Ω) case by using

real interpolation. Indeed, the identities in (4.1) follow from the following lemma, noticing

that Hp
σ(Ω) ⊂ (1 − ∆(1))−σ/2

(
Lp(Ω)

)
and (1 − ∆(1))−σ/2

(
Lp(Ω)

)
⊂ L∞

(
K,Lp(Ω∧1)

)
for

σ > dS
p .

Lemma 4.4. Let Ω = K l × K̃d−l, k ∈ Z+, 0 < σ ≤ 2k and x = π(τẇ) ∈ V0. For each
f ∈ Hp

σ(Ω), we have

lim
n→∞

(rwµw)−σn/2µn/pw

∥∥(A(1)
w )nA(1)

τ f − (Rx,kf)n
∥∥
D((∆(1))σ/2)

= 0;

For each f ∈ Bp,q
σ (Ω), we have

lim
n→∞

(rwµw)−σn/2µn/pw

∥∥(A(1)
w )nA(1)

τ f − (Rx,kf)n
∥∥(
D((∆(1))0),D((∆(1))k)

)
σ/(2k),q

= 0.

Proof. Write l̊(σ) =
{
s = {sn}n≥0 ∈ l∞(D((∆(1))σ/2)) : limn→∞ sn = 0

}
for short, and

denote l̊α(σ) =
{
s = {sn}n≥0 : {α−nsn}n≥0 ∈ l̊(σ)

}
with α > 0. One can easily check that

the map f →
{

(A
(1)
w )nA

(1)
τ f − (Rx,kf)n

}
n≥0

is bounded from Lp(Ω) to l̊β(0), and is bounded

from Hp
2k(Ω) to l̊α2kβ(2k), where α = (rwµw)1/2 and β = µ

−1/p
w as in the last section.

In addition, using Theorem 3.5 (b), one can easily check that[̊
lβ(0), l̊α2kβ(2k)

]
σ/(2k)

= l̊ασβ(σ), ∀σ ∈ (0, 2k).

The identity for Hp
σ(Ω) case then follows by using complex interpolation.

The identity for Bp,q
σ (Ω) follows by the real interpolation of the couple

(̊
lβ(0), l̊α2kβ(2k)

)
.
�

Remark. We can get better estimates if we use the norm L∞
(
K,Lp(Ω∧1)

)
for the remainder

term in Lemma 4.4 for σ large enough. See the authors’ previous work [] for a discussion on
Ω = K in the L2 setting.

4.2. The spaces H̃p
σ(Ω) and B̃p,q

σ (Ω). In this part, we focus on H̃p
σ(Ω) and B̃p,q

σ (Ω) for

Ω = K l × K̃d−l with 1 ≤ l ≤ d, which are viewed as functions in Hp
σ(K̃d) and Bp,q

σ (K̃d) with

support in Ω. The notations H̃p
σ(Ω) and B̃p,q

σ (Ω) follow from Tribel [].

For convenience, we write Θ : Lp(Ω)→ Lp(K̃d) the extension map by zero.

Definition 4.5. (a). For 1 < p <∞ and σ ≥ 0. Define

H̃p
σ(Ω) =

{
f ∈ Hp

σ(Ω) : Θf ∈ Hp
σ(K̃d)

}
.

(b). For 1 < p, q <∞ and σ > 0. Define

B̃p,q
σ (Ω) =

{
f ∈ Bp,q

σ (Ω) : Θf ∈ Bp,q
σ (K̃d)

}
.

In fact, by introducing the Dirichlet Laplacian ∆D and the Neumann Laplacian ∆N on Ω,
using the same idea in Section 3.1, we have

H̃p
σ(Ω) = Hp

σ,D(Ω) ∩Hp
σ,N (Ω) := (1−∆D)−σ/2

(
Lp(Ω)

)
∩ (1−∆N )−σ/2

(
Lp(Ω)

)
.

This can be shown easily using symmetric extension. Moreover, we have the following char-
acterizations.



FUNCTION SPACES ON P.C.F. SELF-SIMILAR SETS III: EMBEDDING AND INTERPOLATION THEOREMS29

Theorem 4.6. Let 1 < p, q <∞, p′ = p
p−1 and σ /∈ {dSp , 2−

dS
p′ }+ 2Z+. Then

(a). H̃p
σ(K̃d

+) =
{
f ∈ Hp

σ(K̃d
+) : T

(x,1)
σ f = 0,∀x ∈ V0}.

(b). B̃p,q
σ (K̃d

+) =
{
f ∈ Bp,q

σ (K̃d
+) : T

(x,1)
σ f = 0,∀x ∈ V0

}
.

Proof. Write Ω = K̃d
+ for simplicity.

(a). The statement is clearly true when σ ∈ 2Z+, so we only need to extend the result to
general σ using interpolation.

Let’s fix k ∈ N. We show the following two claims.

Claim 1: The interpolation couple
(
H̃p

0 (Ω), H̃p
2k(Ω)

)
is a retract of

(
Hp

0 (K̃d), Hp
2k(K̃

d)
)
.

Proof of Claim 1. We have the extension map Θ already. We define the restriction
map R using the mappings Λk defined in Lemma 3.19. Let f ∈ Lp(K̃d), we define f ′ =

Λk(f |K̃d
−). Then, we define Rf = (f − f ′)|Ω. Clearly, we have R :

(
Hp

0 (K̃d), Hp
2k(K̃

d)
)
→(

H̃p
0 (Ω), H̃p

2k(Ω)
)
, and RΘ is the identity on H̃p

0 (Ω).

Claim 2: We have
[
H̃p

0 (Ω), H̃p
2k(Ω)

]
σ/2k

=
{
f ∈ Hp

σ(Ω) : T
(x,1)
σ f = 0,∀x ∈ V0

}
.

Proof of Claim 2. Recall that in Theorem 3.17, we have developed the decomposition
Hp
σ(Ω) = Kpσ,k(Ω)⊕ T pσ,k(Ω) for 0 ≤ σ ≤ 2k. Note that

T pσ,k(Ω) =
{
f ∈ Hp

σ(Ω) : f =
∑
x∈V0

Ex,ksx, with

sx ∈ lpασx ,βx
(
Hk−1(K,Lp(Ω∧1)),Hk−1(K,Hp

σ(Ω∧1)), A(1)
wx

)
, ∀x ∈ V0

}
,

we then define

T̃ pσ,k(Ω) =
{
f ∈ Hp

σ(Ω) : f =
∑
x∈V0

Ex,ksx, with

sx ∈ l̃pασx ,βx
(
Hk−1(K,Lp(Ω∧1)),Hk−1(K,Hp

σ(Ω∧1)), A(1)
wx

)
, ∀x ∈ V0

}
,

(4.2)

with

l̃p···(· · · ) =
{
s ∈ lp···(· · · ) : {(∆(1))isn(F−1

τ x, •)}n≥0 ∈ lpασx ,βx(Lp(Ω∧1), Hp
σ(Ω∧1)),

{∂(1)
n (∆(1))isn(F−1

τ x, •)}n≥0 ∈ lpασx ,βx(Lp(Ω∧1), Hp
σ(Ω∧1)),∀0 ≤ i < k, x ∈ V0

}
.

(4.3)

We can check that T̃ pσ,k(Ω) is stable under complex interpolation, i.e.
[
T̃ p0,k(Ω), T̃ p2k,k(Ω)

]
σ/2k

=

T̃ pσ,k(Ω), using Lemma C.9 (b) and Lemma 2.11. Furthermore, by applying Proposition 2.9,

we see that

T̃ pσ,k(Ω) =
{
f ∈ T pσ,k(Ω) : T (x,1)

σ f = 0,∀x ∈ V0

}
, if σ /∈ {dS

p
, 2− dS

p′
}+ 2Z+.

and T̃ pσ,k(Ω) = T pσ,k(Ω) if σ < dS
p . Clearly, we have H̃σ

0 (Ω) = Kp0,k(Ω)⊕ T̃ p0,k(Ω) and H̃σ
2k(Ω) =

Kp2k,k(Ω)⊕ T̃ p2k,k(Ω). Thus[
H̃p

0 (Ω), H̃p
2k(Ω)

]
σ/2k

= Kpσ,k(Ω)⊕ T̃ pσ,k(Ω) =
{
f ∈ Hp

σ(Ω) : T (x,1)
σ f = 0,∀x ∈ V0

}
.

Now, using Claim 1, we conclude that H̃p
σ(Ω) is stable under complex interpolation. Then

(a) follows from Claim 2.
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(b). It suffices to show that
(
H̃p

0 (Ω), H̃p
2k(Ω)

)
σ/2k,q

=
{
f ∈ Bp,q

σ (Ω) : T
(x,1)
σ f = 0,∀x ∈ V0

}
by using Proposition 2.13. This follows from a same proof of Claim 2. �

Remark 1. We can use the above argument iteratively to show a same result for general
Ω = K l × K̃d−l.

4.3. The spaces H̊p
σ(Ω) and B̊p,q

σ (Ω). In this section, we introduce the function spaces

H̊p
σ(Ω) and B̊p,q

σ (Ω). We focus on Ω = K̃d
+ for simplicity.

Definition 4.7. (a). For 1 < p < ∞ and σ ≥ 0. Define H̊p
σ(Ω) as the closure of C∞c (Ω) in

Hp
σ(Ω).

(b). For 1 < p, q <∞ and σ > 0. Define B̊p,q
σ (Ω) as the closure of C∞c (Ω) in Bp,q

σ (Ω).

In classical analysis, on a smooth bounded domain Ω ⊂ Rd+, we always have H̃p
σ(Ω) =

H̊p
σ(Ω) for all orders σ ≥ 0 except for the critical orders {dSp , 2 −

dS
p′ } + 2Z+. However, in

fractal setting, things will be different since the boundary behavior of functions will be more
complicated. In fact, other than the normal derivative, some other ‘higher order derivatives’
emerge, which do not play a role in the matching of pieces of functions at junction points,
but really reflect the boundary behavior of functions. See [11, 33] for example.

To be more precise, we need to introduce the so-called tangents of functions. Recall the
definition of multiharmonic functions in Definition 3.6 (a) and the map Aw in Definition 3.7
(a). We introduce the following notations.

Notations. 1). Denote H# =
⋃∞
k=1Hk−1.

2). Let λ be a generalized eigenvalue of Aw on H#, and write Uλ,w for the generalized
eigenspace, i.e. Uλ,w =

⋃∞
m=0 ker(Aw − λ)m.

3). Let 1 = γ0,w > γ1,w > · · · > γl,w > · · · be the absolute values of nonzero eigenvalues
of Aw : H# → H#, which is ordered in decreasing order.

4). Write Ūi,w =
⋃
|λ|=γi,w Uλ,w for each i ≥ 0.

For convenience, for x = π(τẇ) ∈ V0, we write γi,x = γi,w, Uλ,x = Uλ,w and Ūi,x = Ūi,w.

These notations are analogous to those in the Appendix A, and we will use the results there.
Nevertheless, we recommend readers to consider a simple case that Aw is diagonalizable at
this stage, so that all the sequence spaces that we will consider later are essentially direct
sums of sequence spaces illustrated in Section 2, and only the results in Section 2 are needed.

For x ∈ V0, σ ≥ 0, in contrast with the trace map T
(x,1)
σ in Theorem 4.3, we introduce the

following tangent map Tan
(x,1)
σ on Lp(Ω) with Ω = K̃d

+. Readers may also read [12, 32, 33, 37]
for some disucssions on the definition of tangents.

Definition 4.8. Let x = π(τẇ) ∈ V0, 1 < p < ∞, σ ≥ 0, αx = (rwµw)1/2 and βx = µ
−1/p
w .

Let i ≥ 0 be such that γi+1,x ≤ ασxβx < γi,x. For f ∈ Lp(Ω), we write Tan
(x,1)
σ f = s with

s ∈
⊕i

j=0 Ūj,x ⊗ Lp(Ω∧1) if

lim
n→∞

γ−ni,x
∥∥(A(1)

w

)n
(A(1)

τ f − s)
∥∥
L∞(K,Lp(Ω∧1))

= 0.

For convenience, we set Tan
(x,1)
σ f = 0 for 0 ≤ σ ≤ dS/p (i.e. ασxβx ≥ 1).

In fact, by applying Theorem 3.17, Lemma 4.4 and using Lemma A.1 (or Lemma 2.3 if Aw
is diagonalizable), we can easily see the existence of the tangents at x for functions in Hp

σ(Ω).
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Lemma 4.9. The tangent map Tan
(x,1)
σ is bounded from Hp

σ(Ω)→
⊕

γj,x>ασxβx
Ūj,x⊗Lp(Ω∧1).

Remark. If Aw is diagonalizable, we can easily see a trace theorem for the tangent as
Theorem 4.3. However, when Aw is not diagonalizable, the trace space is not so clear at
present. It is of interest to see whether it is related with some interpolation functor.

In this subsection, we will derive the following characterization of Sobolev spaces H̊p
σ(K̃d

+)

and Besov spaces B̊p,q
σ (K̃d

+).

Theorem 4.10. Let 1 < p, q <∞.

(a). For σ ≥ 0, we have H̊p
σ(K̃d

+) =
{
f ∈ Hp

σ(K̃d
+) : Tan

(x,1)
σ f = 0,∀x ∈ V0

}
.

(b). For σ > 0, we have B̊p,q
σ (K̃d

+) =
{
f ∈ Bp,q

σ (K̃d
+) : Tan

(x,1)
σ f = 0, ∀x ∈ V0

}
.

We will prove this theorem in the remaining part of this subsection. First, let’s look at
some easy lemmas.

Lemma 4.11. Let 1 < p < ∞ and 0 ≤ σ < σ′ ≤ 2k. The space Kpσ′,k(K̃
d
+) is dense in

Kpσ,k(K̃
d
+).

Proof. Since Hp
σ′(K̃

d) is dense in Hp
σ(K̃d), we have Hp

σ′(K̃
d
+) is dense in Hp

σ(K̃d
+) by Theorem

3.5. The lemma then follows by using Theorem 3.17 (b). �

Lemma 4.12. Let x = π(τẇ) ∈ V0, 1 < p < ∞ and k ∈ Z+. Then there exists a constant

C > 0 only depending on k and p, such that for any f ∈ C∞(K̃d
+), we can find a function

g ∈ C∞(K̃d
+) supported in F

(1)
τ K̃d

+ satisfying

‖g‖Hp
2k(K̃d

+) ≤ C‖f‖Hp
4k(K̃d

+),

and
T

(x,1)
2k′ g = T

(x,1)
2k′ f, ∀k′ ∈ Z+.

Proof. For convenience, we write T
(x,1)
2k f =

(
(T

(x,1)
2k f)0, · · · , (T (x,1)

2k f)2k−1

)
, i.e. (T

(x,1)
2k f)i =

(∆(1))if |{x}×K̃d−1 for 0 ≤ i < k, and (T
(x,1)
2k f)i = (∂(1)∆(1))i−kf |{x}×K̃d−1 for k ≤ i < 2k.

Clearly, for 0 ≤ i < 2k, we have∥∥(T
(x,1)
2k f)i

∥∥
Hp

2k(K̃d−1)
. ‖f‖Hp

4k(K̃d
+) (4.4)

by using Theorem 4.3, noticing that Bp,p
σ (K̃d−1) ⊂ Hp

σ−ε(K̃
d−1).

First, we look for a smooth function g1 supported in F
(1)
τ K̃d

+ satisfying ‖g1‖Hp
2k(K̃d

+) ≤

C1‖f‖Hp
4k(K̃d

+) for some constant C1 > 0, and T
(x,1)
2k g1 = T

(x,1)
2k f . For this, by applying

Proposition B.2 (due to L. Rogers, R.S. Strichartz and A. Teplyaev []), we choose hj,1, hj,2 ∈
C∞(K), j = 0, 1, · · · , k − 1 supported in FτK and{

∆ihj,1(x) = δi,j ,

∂n∆ihj,1(x) = 0,

{
∆ihj,2(x) = 0,

∂n∆ihj,2(x) = δi,j ,
∀i ≥ 0 and 0 ≤ j < k.

Then we take g1 =
∑k−1

i=0 hi,1 ⊗ (T
(x,1)
2k f)i +

∑k−1
i=0 hi,2 ⊗ (T

(x,1)
2k f)i+k, which is obviously

supported in F
(1)
τ K̃d

+ and T
(x,1)
2k g1 = T

(x,1)
2k f . Using (4.4), one can easily see that

‖g1‖Hp
2k(K̃d

+) ≤ C1‖f‖Hp
4k(K̃d

+),
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where C1 only depends on k and p.
So it remains to consider higher order Laplacians and normal derivatives of f at x. Choose

hj,1, hj,2 ∈ C∞(K) for j ≥ k, supported in FτK, such that{
∆ihj,1(x) = δi,j ,

∂n∆ihj,1(x) = 0,

{
∆ihj,2(x) = 0,

∂n∆ihj,2(x) = δi,j ,
∀i ≥ 0 and j ≥ k.

We define
g2 =

∑
j≥k

(rwµw)jnj (Aτhj,1 ◦ F
−nj
w ◦ F−1

τ )⊗ (∆(1))jf(x, •)

+
∑
j≥k

(rwµw)jnj (Aτhj,2 ◦ F
−nj
w ◦ F−1

τ )⊗ ∂(1)
n (∆(1))jf(x, •),

with each nj ∈ N to be determined. Obviously, for each j ≥ k, by choosing nj sufficiently

large, we can make ‖g2‖Hp
2k(K̃d) as small as possible. In addition, g2 ∈ C∞(K̃d

+) and is

supported in F
(1)
τ K̃d

+. See [] for a discussion for the one dimensional case. The lemma is
proven with g = g1 + g2. �

The following scaling property is obvious.

Lemma 4.13. For f ∈ Hp
2k(F

(1)
w K̃d

+), we have

(rwµw)kµ−1/p
w ‖f‖

Hp
2k(F

(1)
w K̃d

+)
. ‖A(1)

w f‖Hp
2k(K̃d

+) . µ
−1/p
w ‖f‖

Hp
2k(F

(1)
w K̃d

+)
.

Lemma 4.14. For x = π(τẇ) ∈ V0 and f ∈ Hp
8k(K̃

d
+), we have

lim
n→∞

(rwµw)−2knµn/pw

∥∥(A(1)
w )nA(1)

τ f − (Rx,4kf)n
∥∥
Hp

4k(K̃d
+)

= 0.

Proof. First, we can easily see that

lim
n→∞

(rwµw)−4knµn/pw

∥∥(A(1)
w )nA(1)

τ f − (Rx,4kf)n
∥∥
Lp(K̃d

+)
= 0.

In fact, it is helpful to consider the case K̃d
+ = K. Next, we can directly check that

lim
n→∞

µn/pw

∥∥(A(1)
w )nA(1)

τ f − (Rx,4kf)n
∥∥
Hp

8k(K̃d
+)

= 0,

since by Lemma 4.13,∥∥(A(1)
w )nA(1)

τ f − (Rx,4kf)n
∥∥
Hp

8k(K̃d
+)
. µ−n/pw

∥∥A(1)
τ f −

(
Rw,4k(A

(1)
τ f · 1|

(F
(1)
w )nK̃d

+

)
)

0

∥∥
Hp

8k((F
(1)
w )nK̃d

+)

. µ−n/pw ‖A(1)
τ f‖

Hp
8k((F

(1)
w )nK̃d

+)
= o(µ−n/pw ).

The lemma then follows by complex interpolation. �

Proof of Theorem 4.10. (a). For convenience, write Ω = K̃d
+. Fix k ∈ N and let 0 ≤ σ ≤ 8k,

we let

Ḣp
σ(Ω) = Kpσ,4k(Ω)⊕ Ṫ pσ,4k(Ω),

where

Ṫ pσ,4k(Ω) =
∑
x∈V0

Ex,4kl
p
ασx ,βx

(
Hk−1(K,Lp(Ω∧1)),Hk−1(K,Hp

σ(Ω∧1))
)
. (4.5)

See Definition 3.13 for the meaning of the symbols.
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Claim 1: Ḣp
8k(Ω) ⊂ H̊p

2k(Ω).

Proof of Claim 1. Let f ∈ Ḣp
8k(Ω) and fix x = π(τẇ) ∈ V0. By using Lemma 4.14, we can

see that

lim
n→∞

(rwµw)−2knµn/pw

∥∥(A(1)
w )nA(1)

τ f
∥∥
Hp

4k(Ω)
= 0.

For fixed ε > 0, by choosing nx large enough, we have∥∥(A(1)
w )nxA(1)

τ f
∥∥
Hp

4k(Ω)
≤ ε(rwµw)2knxµ−nx/pw .

By applying the Dirichlet heat kernel Pt with t sufficiently small, we have Ptf ∈ C∞(Ω) with∥∥(A(1)
w )nxA(1)

τ Ptf
∥∥
Hp

4k(Ω)
≤ 2ε(rwµw)2knxµ−nx/pw .

By applying Lemma 4.12, noticing the requirement (3.1), we can find a function gx ∈ C∞(Ω)
supported outside a neighbourhood of the point F−1

τ (x), satisfying the same boundary condi-

tions (values and normal derivatives of (∆(1))i’s) as (A
(1)
w )nxA

(1)
τ Ptf at (V0 \ {F−1

τ x})×Ω∧1,
and

‖gx‖Hp
2k(Ω) .

∥∥(A(1)
w )nxA(1)

τ Ptf
∥∥
Hp

4k(Ω)
. ε(rwµw)2knxµ−nx/pw .

Apply Lemma 4.13, we have
∥∥gx ◦ (F

(1)
w )−nx ◦ (F

(1)
τ )−1

∥∥
Hp

2k(F
(1)
τ ◦(F

(1)
w )nxΩ)

. ε,

‖Ptf‖Hp
2k(F

(1)
τ ◦(F

(1)
w )nxΩ)

. ε.

We replace Ptf with gx◦(F
(1)
w )−nx ◦(F

(1)
τ )−1 on the cell F

(1)
τ (F

(1)
w )nxΩ for each x by using the

matching condition at (FτF
nx
w V0\{x})×Ω∧1, and denote the result function as fε. Obviously,

fε ∈ C∞c (Ω) and ‖f−fε‖Hp
2k(Ω) . ε. The claim then follows since 2ε can be chosen arbitrarily

small. �

The following claim is an easy consequence of Claim 1 and Lemma 4.11.

Claim 2: Define

T̊ pσ,4k(Ω) =
∑
x∈V0

Ex,4kl
p
ασx ,βx

(
Hk−1(K,Lp(Ω∧1)),Hk−1(K,Hp

σ(Ω∧1))
)A(1)

w
. (4.6)

(Here lp···(· · · )
A

(1)
w

is the closure of lp···(· · · ) in lp···(· · · , A(1)
w ), see Appendix A for details.) Then

for 0 ≤ σ ≤ 2k, we have Kpσ,4k(Ω)⊕ T̊ pσ,4k(Ω) ⊂ H̊p
σ(Ω).

The following claim is a consequence of Claim 2 and Proposition A.5 in Appendix A (or
Proposition 2.9 if Aw is diagonalizable).

Claim 3:
{
f ∈ Hp

σ(Ω) : Tan
(x,1)
σ f = 0,∀x ∈ V0

}
⊂ H̊p

σ(Ω).

Claim 3 implies half of part (a). The other direction of the containment is obvious by

Lemma 4.9 and the fact that C∞c (Ω) ⊂
{
f ∈ Hp

σ(Ω) : Tan
(x,1)
σ f = 0,∀x ∈ V0

}
.

(b). This follows by a similar proof as part (a), using real interpolation and Proposition
A.6 instead. �
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4.4. An embedding theorem with σ ∈ R. In this last subsection, we will extend the
Sobolev spaces and Besov spaces to σ ∈ R. Let’s first look at the full space K̃d. Formally, we
can extend Definition 1.1 and Definition 1.2 directly. To make things meaningful, we need to
use the distributions on K̃d (or equivalently the uniform extrapolation space of ∆, see [] for
details). See Definition B.1 in Appendix B for the definition and [] for a detailed discussion.

Definition 4.15. Let p, q ∈ (1,∞), σ ∈ R, and consider the ∆ : D′(K̃d)→ D′(K̃d).
(a). Define the Sobolev space

Hp
σ(K̃d) = (1−∆)−σ/2Lp(K̃d),

with norm ‖f‖Hp
σ(K̃d) =

∥∥(1−∆)σ/2f
∥∥
Lp(K̃d)

.

(b). Define the heat Besov space

Bp,q
σ (K̃d) =

{
f ∈ Lp(K̃d) :

(∫ ∞
0

(
t−σ/2

∥∥(t∆)ket∆f
∥∥
Lp(K̃d)

)q
dt/t

)1/q
<∞

}
,

with k ∈ N∩(σ/2,∞), and norm ‖f‖Bp,qσ (K̃d) = ‖f‖Lp(K̃d)+
( ∫∞

0 (t−σ/2‖(t∆)ket∆(f)‖Lp(K̃d))
qdt/t

)1/q
.

Since (1−∆) : Lp(K̃d)→ Lp(K̃d) is invertible, we can apply Theorem ?? in book [].

Proposition 4.16. Let p, q ∈ (1,∞) and σ ∈ R. Then (1 − ∆) is an isomorphism from

Hp
σ(K̃d) to Hp

σ−2(K̃d) and from Bp,q
σ (K̃d) to Bp,q

σ−2(K̃d).

Thus, for a lot of properties, we only need to study the σ ≥ 0 case. In particular, the
interpolation property, Lemma 1.3, holds for σ ∈ R. Also, since Lp(K̃d) is the dual space

of Lp
′
(K̃d) for 1

p + 1
p′ = 1, it is not hard to see the following dual property for Hp

σ(K̃d) and

Bp,q
σ (K̃d), where for Bp,q

σ (K̃d) we apply the property of real interpolation.

Proposition 4.17. Let p, q ∈ (1,∞) and σ ∈ R. Also, let p′ = p
p−1 , q

′ = q
q−1 . Then

(a). Hp
σ(K̃d) is the dual of Hp′

−σ(K̃d).

(b). Bp,q
σ (K̃d) is the dual of Bp′,q′

−σ (K̃d).

However, to define Sobolev spaces and Besov spaces with σ ∈ R on a domain with bound-
ary is a more delicate question. In history, basically there are two methods for the Sobolev
spaces, by trace or by dual. See the monographs [30] and [38] for example. The two are
almost the same, except for delicate difference at some critical orders. In this paper, we will
admit the definition by dual due to J.L. Lions and E. Magenes [30].

For D(K̃d
+) ⊂ Lp(K̃d

+) a function space on K̃d
+, we denote

(
D(K̃d

+)
)∗

as the dual of D(K̃d
+),

embedded in D′(K̃d
+) with a natural meaning.

Definition 4.18. Let p, q ∈ (1,∞), p′ = p
p−1 , q

′ = q
q−1 and σ ∈ R.

(a). If σ ≥ 0, we define Hp
σ(K̃d

+) = Hp
σ(K̃d)|K̃d

+
and Bp,q

σ (K̃d
+) = Bp,q

σ (K̃d)|K̃d
+

as before.

(b). If σ < 0, we define Hp
σ(K̃d

+) =
(
H̊p′

−σ(K̃d
+)
)∗

and Bp,q
σ (K̃d

+) =
(
B̊p′,q′

−σ (K̃d
+)
)∗

.

We end this section with an embedding theorem concerning the function spaces on K̃d
+

and K̃d.

Theorem 4.19. Let p, q ∈ (1,∞), p′ = p
p−1 , q

′ = q
q−1 and σ ∈ R. We have

Hp
σ(K̃d

+) = Hp
σ(K̃d)|K̃d

+
and Bp,q

σ (K̃d
+) = Bp,q

σ (K̃d)|K̃d
+
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if and only if σ /∈ {dSp′ , 2−
dS
p } − 2N, where the restriction is in the sense of distribution.

Remark. For each f ∈ D′(K̃d), we restrict it to D′(K̃d
+) with the equation

< f |K̃d
+
, ϕ >=< f,Θϕ >,∀ϕ ∈ D(K̃d

+),

where Θ is the extension by zero map introduced in Lemma 3.18.

Proof. It suffices to consider the σ < 0 case, and we focus on Sobolev spaces. Since D(K̃d
+)

is dense in H̊p′

−σ(K̃d
+), each f ∈ Hp

σ(K̃d
+) is uniquely determined by the distribution f |D(K̃d

+),

which we still denote by f for convenience. Thus, the Sobolev spaces Hp
σ(K̃d

+) is well defined
as a space of distributions, and the theorem makes sense. We consider two cases in the
following.

First, we consider σ /∈ {dSp′ , 2 −
dS
p } − 2N. In this case, combining Theorem 4.6 and 4.10,

we can see that

H̊p′

−σ(K̃d
+) ⊂ H̃p′

−σ(K̃d
+).

As a consequence, we can identify H̊p′

−σ(K̃d
+) with the closed subspace ΘH̊p′

−σ(K̃d
+) ofHp′

−σ(K̃d).

Thus, each f ∈ Hp
σ(K̃d) =

(
Hp′

−σ(K̃d)
)∗

naturally restricts to be in Hp
σ(K̃d

+) =
(
H̊p′

−σ(K̃d
+)
)∗

.

Also, each f ∈ Hp
σ(K̃d

+) =
(
H̊p′

−σ(K̃d
+)
)∗

can be extended to Hp
σ(K̃d) =

(
Hp′

−σ(K̃d)
)∗

by the
Hahn-Banach Theorem. This proves the non-critical order case.

Next, we consider the critical order case, i.e. σ ∈ {dSp′ , 2 −
dS
p } − 2N. For this case, we

notice that

H̊p′

−σ(K̃d
+) * H̃p′

−σ(K̃d
+),

since T̊ p
′

−σ,k(K̃
d
+) * T̃ p

′

−σ,k(K̃
d
+) for k ≥ −σ in N. As a consequence, let ˚̃Hp′

−σ(K̃d
+) be the closure

of D(K̃d
+) in H̃p′

−σ(K̃d
+), one see that ˚̃Hp′

−σ(K̃d
+) is a proper dense subspace of H̊p′

−σ(K̃d
+) and( ˚̃Hp′

−σ(K̃d
+)
)∗

= Hp
σ(K̃d)|K̃d

+
by a same argument as the first case. Thus, we conclude that

Hp
σ(K̃d

+) ( Hp
σ(K̃d)|K̃d

+
.

This finishes the proof. The proof for Besov spaces is essentially the same. �

Remark. There is a natural analog of Theorem 4.19 in [38] Section 2.10. We remark here
that our method is essentially different from the classical case in the following senses.

1). Our proof is self-contained. In particular, our proof derives the observation that

functions in Hp
σ(K̃d

+) can extend by zero to Hp
σ(K̃d) (i.e. Hp

σ(K̃d
+) = H̃p

σ(K̃d
+)) for 0 ≤

σ < dS
p without further characterization of the spaces. (See Section 2.10 for the role of this

observation in the proof, and see papers [] and [] for a proof of this obvervation on Rd+).
2). The normal derivatives and the tangents are defined in a pointwise way on fractal

domains, compared with the classical domains. In addition, much information in the tangent
does not take part in the matching conditions. So there is not an easy restriction mapping
from the whole space to the half space, analogous to the reflection method in the classical
domains.
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5. Interpolation theorems

The interpolation theorems for Sobolev spaces and Besov spaces on domains in Rd have
been extensively studied in a sequence of monographs [30],[7] and [38].

It is of interest to derive the corresponding results in the fractal setting. In this section,
we will provide a full list of interpolation results of Sobolev spaces and Besov spaces on K̃d

and K̃d
+. We are particularly concern those involving critical orders of σ, see Figure ??.

5.1. The full space K̃d case. We will first consider the interpolation property of Hp
σ(K̃d)

and Bp,q
σ (K̃d) on K̃d with p, q ∈ (1,∞) and σ ∈ R. For p, q fixed, of cause, the spaces are

both complex and real interpolation stable, by Lemma 1.3, Proposition 4.16, with a standard
reiteration argument of interpolations. So we are particular interested in the case that p, q
are not fixed. Readers please refer to the book [] for a classical theorem on Rd.

Theorem 5.1. Let 0 < θ < 1, σ, σ0, σ1 ∈ R and 1 < p0, p1, q0, q1 < ∞. Put σθ ∈ R,
1 < pθ, qθ <∞ sasifying

σθ = (1− θ)σ0 + θσ1,
1

pθ
=

1− θ
p0

+
θ

p1
,

1

qθ
=

1− θ
q0

+
θ

q1
.

Then we have [
Hp0
σ0 (K̃d), Hp1

σ1 (K̃d)
]
θ

= Hpθ
σθ

(K̃d), (5.1)(
Hp0
σ (K̃d), Hp1

σ (K̃d)
)
θ,pθ

= Hpθ
σ (K̃d), (5.2)[

Bp0,q0
σ0 (K̃d), Bp1,q1

σ1 (K̃d)
]
θ

= Bpθ,qθ
σθ

(K̃d), (5.3)(
Bp0,q0
σ0 (K̃d), Bp1,q1

σ1 (K̃d)
)
θ,qθ

= Bpθ,qθ
σθ

(K̃d). (if pθ = qθ) (5.4)

Proof. The first two identities can be proven with a same argument as that for the Rd case,
using the fact that

{
(1−∆)it

}
t∈R is a C0-group, see [] for example.

We now prove (5.3) and (5.4). The key idea follows from Peetre [], by introducing a

retraction from the spaces of the form lqασ(Lp) to Besov spaces Bp,q
σ (K̃d). We will realize a

similar retraction using heat kernel instead of Fourier transform here.
Let’s first recall Lemma 2.6 and 2.8, which together imply the following claim. For conve-

nience, we write L = 1−∆ : Lp(K̃d)→ Lp(K̃d) in the proof.

Claim 1: Fix k ∈ N and 0 < α < 1, and let 0 < σ < 2k, p, q ∈ (1,∞). We have Bp,q
σ (K̃d)

is a retract of lq
αk,ασ/2−k

(
D(Lk), 1

)
, with the restriction map being R = Γ1, and extension map

being E = SL,ϕα with suitable ϕ. (See Lemma 2.6 and 2.8 for the notations.)

To proceed, we need to use some properties of the Laplacian ∆.

Claim 2: For k ∈ N and L : Lp(K̃d)→ Lp(K̃d), we have

sup
t>0

∥∥t(t+ Lk
)−1∥∥ <∞, sup

t>0

∥∥Lk(t+ Lk
)−1∥∥ <∞.

By Lemma C.5 in Appendix C, L = 1−∆ : Lp(K̃d)→ Lp(K̃d) is sectorial of angle 0. So
we can apply Lemma C.2 to conclude that Lk is also sectorial of angle 0. The claim follows

from the definition of sectorial operators and the equality Lk
(
t+ Lk

)−1
= 1− t

(
t+ Lk

)−1
.

As a consequence of Claim 2, we have
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Claim 3: The map I : lq
ασ/2−k

(
Lp(K̃d)

)
→ lq

αk,ασ/2−k

(
D(Lk)

)
defined by

I
(
{sn}n≥0

)
=
{

(α−kn + Lk)−1(sn)
}
n≥0

is an isomorphism for 0 < σ < 2k.

By using Claim 1 and Claim 3, noticing that lq
αk,ασ/2−k

(
D(Lk), 1

)
is in fact isomorphic to

lq
αk,ασ/2−k

(
D(Lk)

)
, we conclude that Bp,q

σ (K̃d) is a retract of lq
ασ/2−k

(
Lp(K̃d)

)
. Hence (5.3)

and (5.4) follows using Lemma C.9. �

Remark. It is possible to establish a Littlewood-Paley type decomposition of the Besov
spaces, basing on Theorem in [], which will also provide a suitable retract.

We end this part with some corollaries for spaces on K̃d
+.

Definition 5.2. For k ∈ N, 0 < σ < 2k, 1 < p < ∞, recall the definition of Kpσ,k(K̃
d
+)

and T pσ,k(K̃
d
+) defined before Theorem 3.17, the space Ṫ pσ,k(K̃

d
+) defined in equation (4.5), the

space T̊ pσ,k(K̃
d
+) defined in equation (4.6), and the space T̃ pσ,k(K̃

d
+) defined in equations (4.2)

and (4.3). For 1 < q <∞, we define

Kp,qσ,k(K̃
d
+) =

(
Kp0,k(K̃

d
+),Kp2k,k(K̃

d
+)
)
σ/(2k),q

, T p,qσ,k (K̃d
+) =

(
T p0,k(K̃

d
+), T p2k,k(K̃

d
+)
)
σ/(2k),q

,

Ṫ p,qσ,k (K̃d
+) =

(
Ṫ p0,k(K̃

d
+), Ṫ p2k,k(K̃

d
+)
)
σ/(2k),q

, T̊ p,qσ,k (K̃d
+) =

(
T̊ p0,k(K̃

d
+), T̊ p2k,k(K̃

d
+)
)
σ/(2k),q

,

and T̃ p,qσ,k (K̃d
+) =

(
T̃ p0,k(K̃

d
+), T̃ p2k,k(K̃

d
+)
)
σ/(2k),q

.

Corollary 5.3. (a). For 0 ≤ σ ≤ 2k, equations (5.1) and (5.2) hold if we replace Hp
σ(K̃d)

with the space Kpσ,k(K̃
d
+) (or T pσ,k(K̃

d
+) or Ṫ pσ,k(K̃

d
+) or T̃ pσ,k(K̃

d
+)).

(b). For 0 < σ < 2k, equations (5.3) and (5.4) hold if we replace Bp,q
σ (K̃d) with the space

Kp,qσ,k(K̃
d
+) (or T p,qσ,k (K̃d

+) or Ṫ p,qσ,k (K̃d
+) or T̃ p,qσ,k (K̃d

+)).

Proof. (a). One can see that Hp
σ(K̃d) y Hp

σ(K̃d
+) y Kpσ,k(K̃

d
+) and Hp

σ(K̃d) y Hp
σ(K̃d

+) y
T pσ,k(K̃

d
+) by Theorem 3.5 and 3.17. In addition, T pσ,k(K̃

d
+) is isomorphic to Ṫ pσ,k(K̃

d
+) (by the

isomorphism of sequence spaces). Lastly, the result for T̃ pσ,k(K̃
d
+) holds by using the retraction

Lemma C.9.
Part (b) follows from a same argument as (a), noticing that Bp,q

σ (K̃d) y Bp,q
σ (K̃d

+) y
Kp,qσ,k(K̃

d
+) and Bp,q

σ (K̃d) y Bp,q
σ (K̃d

+) y T p,qσ,k (K̃d
+) by real interpolation. �

Definition 5.4. (a) For k ∈ N, 0 ≤ σ ≤ 2k and 1 < p < ∞, define Ḣp
σ(K̃d

+) = Kpσ,k(K̃
d
+)⊕

Ṫ pσ,k(K̃
d
+).

(b) For k ∈ N, 0 < σ < 2k and 1 < p, q <∞, define Ḃp
σ(K̃d

+) = Kp,qσ,k(K̃
d
+)⊕ Ṫ p,qσ,k (K̃d

+).

The following corollary follows immediately.

Corollary 5.5. For σ ≥ 0, equations (5.1) and (5.2) hold if we replace Hp
σ(K̃d) with H̃p

σ(K̃d
+)

or Ḣp
σ(K̃d

+); for σ > 0, equations (5.3) and (5.4) hold if we replace Bp,q
σ (K̃d) with B̃p,q

σ (K̃d
+)

or Ḃp,q
σ (K̃d

+).
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5.2. The spaces H̊p
σ(K̃d

+) and B̊p,q
σ (K̃d

+). The interpolation theorems for the spaces H̊p
σ(K̃d

+)

and B̊p,q
σ (K̃d

+) are more delicate. We will rely on Proposition A.5 and Proposition A.6 to
fullfill the story (or Proposition 2.9 and Proposition 2.13 if the involved operator Awx is
diagonalizable).

For σ ≥ 0, 1 < p <∞, we need to consider the critical set

CO+ : =
{

(σ,
1

p
) : ∃x = π(τxẇx) ∈ V0, i ≥ 0, such that (µwxrwx)σ/2µ−1/p

wx = γi,x
}

=
{

(σ,
1

p
) : σ =

2 log γi,x
log rwxµwx

+
dS
p

for some x = π(τxẇx) ∈ V0 and i ≥ 0
} (5.5)

contained in the (σ, 1/p)-plane, which clearly consists of a sequence of lines, called critical
lines. See Figure 2. Moreover, we can see that{

(σ,
1

p
) : σ =

dS
p

+ 2Z+

}
∪
{

(σ,
1

p
) : σ = 2− dS

p′
+ 2Z+, with p′ =

p

p− 1

}
,

which we call Dirichlet critical lines and Neumann critical lines that appear in Theorem 4.6,
are contained in CO+ .

1
p

1

σ

Figure 2. An illustration for CO+ .

For interpolations on H̊p
σ(K̃d

+) and B̊p,q
σ (K̃d

+), we need to consider three different cases.

Definition 5.6. Let σ0, σ1 ≥ 0 and 1 < p0, p1 <∞, and put

σθ = (1− θ)σ0 + θσ1,
1

pθ
=

1− θ
p0

+
θ

p1

for 0 < θ < 1. We need to consider the following three cases:
(O+1). (σθ,

1
pθ

) /∈ CO+;

(O+2). (σ0,
1
p0

), (σ1,
1
p1

) and (σθ,
1
pθ

) lie on a same critical line in CO+;

(O+3). otherwise.

Remark. In the third case, it should be (σθ,
1
pθ

) ∈ CO+ , but (σ0,
1
p0

) and (σ1,
1
p1

) could

not lie on the same critical line as (σθ,
1
pθ

), although they may belong to CO+ separately or

simultaneously.

We will show that (O+1) is a safe case of the interpolations, where Ḣ = H̊ and Ḃ = B̊ for

( 1
pθ
, σθ), (O+2) is ‘locally stable’ for H̊ and B̊, while (O+3) is the unstable case where the
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interpolation spaces of H̊ or B̊ becomes Ḣ or Ḃ. See Figure 3 for an illustration of the three
cases, and Theorem 5.7 for the detailed interpolation theorem.

1
p

1

σ

Figure 3. An illustration for the three cases of interpolations.

Theorem 5.7. Let the coefficients θ, σ0, σ1, σθ, p0, p1, pθ be chosen as in Definition 5.6, and
let q0, q1, qθ, q ∈ (1,∞) with 1

qθ
= θ

q0
+ 1−θ

q1
. The interpolation results for H̊p

σ(K̃d
+) and

B̊p,q
σ (K̃d

+) are given by the following table:

(O+1) (O+2) (O+3)[
H̊p0
σ0 (K̃d

+), H̊p1
σ1 (K̃d

+)
]
θ

H̊pθ
σθ (K̃d

+) = Ḣpθ
σθ (K̃d

+) H̊pθ
σθ (K̃d

+) Ḣpθ
σθ (K̃d

+)(
H̊p0
σ (K̃d

+), H̊p1
σ (K̃d

+)
)
θ,pθ

H̊pθ
σ (K̃d

+) = Ḣpθ
σ (K̃d

+) / Ḣpθ
σ (K̃d

+)(
H̊p
σ0(K̃d

+), H̊p
σ1(K̃d

+)
)
θ,q

B̊p,q
σθ (K̃d

+) = Ḃp,q
σθ (K̃d

+) / Ḃp,q
σθ (K̃d

+)[
B̊p0,q0
σ0 (K̃d

+), B̊p1,q1
σ1 (K̃d

+)
]
θ

B̊pθ,qθ
σθ (K̃d

+) = Ḃpθ,qθ
σθ (K̃d

+) B̊pθ,qθ
σθ (K̃d

+) Ḃpθ,qθ
σθ (K̃d

+)(
B̊p0,q0
σ0 (K̃d

+), B̊p1,q1
σ1 (K̃d

+)
)
θ,qθ

(if pθ = qθ) B̊pθ,qθ
σθ (K̃d

+) = Ḃpθ,qθ
σθ (K̃d

+) B̊pθ,qθ
σθ (K̃d

+) Ḃpθ,qθ
σθ (K̃d

+)(
B̊p,q0
σ (K̃d

+), B̊p,q1
σ (K̃d

+)
)
θ,qθ

B̊p,qθ
σ (K̃d

+) = Ḃp,qθ
σ (K̃d

+) B̊p,qθ
σ (K̃d

+) /

,

where we have the restriction σ = σ0 = σ1 for the second equation, and the restriction
p = p0 = p1 for the third equation. Also ‘/’ in the above table means there exists no case or
only the trivial case.

Remark. One can apply reiteration theorems of real interpolation to get more interpolation
formulas.

Proof. We will use ‘· · · ’ to stand for some unimportant information for simplification.

First, for each x = π(τxẇx) ∈ V0 with αx = (rwxµwx)1/2 and βx(p) = µ
−1/p
wx , by using

Proposition A.5 and A.6, we conclude that

lpασx ,βx(p)(· · · )
A

(1)
wx

= lpασx ,βx(p)(· · · ), lp,qασx ,βx(p)(· · · )
A

(1)
wx

= lp,qασx ,βx(p)(· · · ),

if and only if σ /∈ dS
p + { 2 log γi,x

log rwxµwx
}i≥0. As a consequence, one can easily see that

H̊p
σ(K̃d

+) = Ḣp
σ(K̃d

+) and B̊p,q
σ (K̃d

+) = Ḃp,q
σ (K̃d

+), if and only if (σ,
1

p
) /∈ CO+ . (5.6)
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Now we proceed to prove the interpolation results. For convenience, we number the lines
in the critical set CO+ in increasing order, `1, `2, `3, · · · , from left to right, and call the region

B0 := ∪0≤t≤1

(
(1− t) + t`1

)
, Bi := ∪0<t≤1

(
(1− t)`i + t`i+1

)
, i ≥ 1

the i-th stable bands.
Fix k ∈ N, we will then prove the interpolation formulas with 0 ≤ σ ≤ 2k for Sobolev

spaces and 0 < σ < 2k for Besov spaces. We have H̊p
σ(K̃d

+) = Kpσ,k(K̃
d
+)⊕ T̊ pσ,k(K̃

d
+) with

T̊ pσ,k(K̃
d
+) =

∑
x∈V0

Ex,kl
p
ασx ,βx(p)(· · · )

A
(1)
wx
.

Applying Proposition A.5, we see that

lpασx ,βx(p)(· · · , A
(1)
wx) = lpασx ,βx(p)(· · · )

A
(1)
wx ⊕

(
⊕ii′=0 S

−∆,ϕ

α,A
(1)
wx

(Ūi′,x ⊗ · · · )
)
,

if dS
p +

2 log γi,x
log rwxµwx

< σ ≤ dS
p +

2 log γi+1,x

log rwxµwx
. As a consequence, and for short, we can write

Hp
σ(K̃d

+) = H̊p
σ(K̃d

+)⊕
(
⊕ii′=0 Xi′,k(σ, p, p)

)
for (σ, 1/p) ∈ Bi ∩

{
(σ,

1

p
) : 0 ≤ σ ≤ 2k

}
, (5.7)

and similarly by applying Proposition A.6 instead,

Bp,q
σ (K̃d

+) = B̊p,q
σ (K̃d

+)⊕
(
⊕ii′=0Xi′,k(σ, p, q)

)
for (σ, 1/p) ∈ Bi∩

{
(σ,

1

p
) : 0 < σ < 2k

}
. (5.8)

We consider two possible cases.

Case 1: (σ0,
1
p0

) and (σ1,
1
p1

) are in a same stable band. (This includes the (O+2) case).

In fact, for those (σ, 1
p) in a same stable band Bi, the spaces have the same remainder

terms on the right hand side of (5.7) and (5.8). This means{
Hp
σ(K̃d

+)
}

(σ, 1
p

)∈Bi
y
{
H̊p
σ(K̃d

+)
}

(σ, 1
p

)∈Bi
,
{
Bp
σ(K̃d

+)
}

(σ, 1
p

)∈Bi
y
{
B̊p
σ(K̃d

+)
}

(σ, 1
p

)∈Bi
.

Noticing that we have all the interpolation results for Hp
σ(K̃d

+) and Bp,q
σ (K̃d

+) by Corollary

5.5 and Definition 4.1, the interpolation results concerning H̊p
σ(K̃d

+) and B̊p,q
σ (K̃d

+) follows.

Case 2: (σ0,
1
p0

) and (σ1,
1
p1

) are not in a same stable band.

We assume (σ0,
1
p0

) ∈ Bi0 and (σ1,
1
p1

) ∈ Bi1 with i1 > i0. The hard situation is when

(σ0,
1
p0

) or (σ1,
1
p1

) is in CO+ . We will apply the reiteration argument to overcome this diffi-

culty.

Claim 1: If (σθ,
1
pθ

)∈Bi \ CO+ for some i, then we have{[
H̊p0
σ0 (K̃d

+), H̊p1
σ1 (K̃d

+)
]
θ
⊂ Ḣpθ

σθ (K̃d
+)⊕⊕ii′=0Xi′,k(σθ, pθ, pθ),[

B̊p0,q0
σ0 (K̃d

+), B̊p1,q1
σ1 (K̃d

+)
]
θ
⊂ Ḃpθ,qθ

σθ (K̃d
+)⊕⊕ii′=0Xi′,k(σθ, pθ, qθ).

Proof of Claim 1. The claim is an easy consequence of (5.6), (5.7) and (5.8). In fact, we
have[
H̊p0
σ0 (K̃d

+), H̊p1
σ1 (K̃d

+)
]
θ
⊂
[
Hp0
σ0 (K̃d

+), Hp1
σ1 (K̃d

+)
]
θ

= Hpθ
σθ

(K̃d
+) = H̊pθ

σθ
(K̃d

+)⊕⊕ii′=0Xi′,k(σ, pθ, pθ),
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and the identify for Besov spaces follows similarly. �

Claim 2: Assume (σθ,
1
pθ

) ∈ Bi1 \ CO+, then we have
[
H̊p0
σ0 (K̃d

+), H̊p1
σ1 (K̃d

+)
]
θ

= Ḣpθ
σθ (K̃d

+)

and
[
B̊p0,q0
σ0 (K̃d

+), B̊p1,q1
σ1 (K̃d

+)
]
θ

= Ḃpθ
σθ(K̃

d
+).

Proof of Claim 2. We choose θ′ < θ such that (σθ′ ,
1
pθ′

) ∈ Bi1 . Then using the reiteration

theorem, Corollary 5.5 for Ḣ, Claim 1 and Case 1, we get

Ḣpθ
σθ

(K̃d
+) ⊂

[
H̊p0
σ0 (K̃d

+), H̊p1
σ1 (K̃d

+)
]
θ
⊂
[
H̊
pθ′
σθ′ (K̃

d
+)⊕⊕i1i′=0Xi′,k(σ, pθ′ , pθ′), H̊

p1
σ1 (K̃d

+)
]
η

=
[
H̊
pθ′
σθ′ (K̃

d
+), H̊p1

σ1 (K̃d
+)
]
η

= Ḣpθ
σθ

(K̃d
+)

(5.9)

with η = θ−θ′
1−θ′ , where in the second inclusion we use the fact that ⊕i1i′=0Xi′,k(σ, pθ′ , pθ′) ∩

H̊p1
σ1 (K̃d

+) = {0}. Thus we get the desired identity for Sobolev spaces. The Besov space case
follows from a same idea. �

Let’s return to the general situation of Case 2. We choose to prove the 5-th interpolation
identity for example, while the proofs of the others are essentially the same. We choose θ0, θ1

such that

0 < θ0 < θ < θ1 < 1, (σθ0 ,
1

pθ0
) /∈ CO+ and (σθ1 ,

1

pθ1
) ∈ Bi1 \ CO+ .

Choose i ≥ 0 such that (σθ0 ,
1
pθ0

) ∈ Bi. By Claim 1 and Claim 2, we already have{[
B̊p0,q0
σ0 (K̃d

+), B̊p1,q1
σ1 (K̃d

+)
]
θ0
⊂ Ḃpθ0 ,qθ0

σθ0
(K̃d

+)⊕⊕ii′=0Xi′,k(σθ0 , pθ0 , qθ0),[
B̊p0,q0
σ0 (K̃d

+), B̊p1,q1
σ1 (K̃d

+)
]
θ1

= Ḃ
pθ1 ,qθ1
σθ1

(K̃d
+).

As a consequence, with η = (θ − θ0)/(θ1 − θ0), we have

Ḃpθ,qθ
σθ

(K̃d
+) =

(
Ḃp0,q0
σ0 (K̃d

+), Ḃp1,q1
σ1 (K̃d

+)
)
θ,qθ
⊂
(
B̊p0,q0
σ0 (K̃d

+), B̊p1,q1
σ1 (K̃d

+)
)
θ,qθ

⊂
(
Ḃ
pθ0 ,qθ0
σθ0

(K̃d
+)⊕⊕ii′=0Xi′,k(σθ0 , pθ0 , qθ0), Ḃ

pθ1 ,qθ1
σθ1

(K̃d
+)
)
η,qθ

=
(
Ḃ
pθ0 ,qθ0
σθ0

(K̃d
+), Ḃ

pθ1 ,qθ1
σθ1

(K̃d
+)
)
η,qθ

= Ḃpθ,qθ
σθ

(K̃d
+),

where we use reiteration theorem in the second line, the fact that ⊕ii′=0Xi′,k(σθ0 , pθ0 , qθ0) ∩
Ḃ
pθ1 ,qθ1
σθ1

(K̃d
+) = {0} in the first equality of the third line, and the interpolation result for Ḣ

in the first and last equalities, noticing that η
pθ0

+ 1−η
pθ1

= 1
pθ

= 1
qθ

. Then the desired result

follows. �

5.3. Extend to real orders on K̃d
+. We will extend the interpolation theorems to real order

σ’s for function spaces on K̃d
+. We need to appropriately combine the results in previous two

subsections.
The difficulty comes from the fact that most information of tangents of functions at bound-

ary takes part in when we clarify H̊p
σ(K̃d

+) in Hp
σ(K̃d

+). In Rd+ case, it can be shown that

Hp
σ(Rd+) is a retract of Hp

σ(Rd) for −2k ≤ σ ≤ 2k with any fixed k ∈ N(except the critical

order cases using a reflection technique). See [38] for a discussion on Rd+, and a proof in the
L2 setting for spaces on K in the authors’ previous work [11].

However, the idea of using retract is not convenient for the general Lp setting on p.c.f.
fractals. We will instead to apply the idea of decomposing function spaces again.
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Throughout this section, we will use < f, g > to abbreviate the integral
∫
K f · ḡdµ, and

write f⊥g if < f, g >= 0.

1. A decomposition by projection. To deal with negative orders, it is convenient to
introduce a suitable decomposition of spaces that is well behaved in dual spaces.

Lemma 5.8. For k ∈ N and ẇ ∈ P, assuming FwK∩V0 =
{
π(ẇ)

}
without loss of generality,

there is a linear map h → ĥw : Hk−1 → C∞(K) such that Awĥw = Awh, PĤk−1,w
ĥw = ĥw

and ĥw is supported away from V0 \ {π(ẇ)}, where we denote Ĥk−1,w for the range of this
map.

Proof. To achieve this, we choose a basis {h1, h2, · · · , hm} of Hk−1, and denote

aij =

∫
FwK

hi · h̄jdµ, 1 ≤ i, j ≤ m.

It is clear that we can find gi ∈ C∞(K), 1 ≤ i ≤ m, such that Awgi = Awhi, the support of
gi is a small neighbourhood of FwK, and < gi, hj >L2(K)= aij . In addition, we can assume
that

< gi, gj >= εij + aij , 1 ≤ i, j ≤ m

with ε = maxi,j{|εij |} small enough so that we can find fi ∈ C∞(K) supported in some
compact subsets of K \ FwK away from the boundary, satisfying

< fi, gj >= 0, ∀1 ≤ i, j ≤ m,
< fi, fj >= δijε, ∀1 ≤ i, j ≤ m,
< fi, hj >= εij + δijε, ∀1 ≤ i, j ≤ m.

Set ĥi,w = gi + fi for each 1 ≤ i ≤ m, and extend this to be a linear map Hk−1 → C∞(K).
One can then check that

< hi, ĥj,w >=< ĥi,w, ĥj,w >= aij + εij + δijε,

and thus PĤk−1,w
(hi) = ĥi,w for any 1 ≤ i ≤ m. The lemma follows immediately. �

Remark. We omit a subscript k for ĥw since obviously we can make the choice of ĥw
consistent for different k’s. Later, we sometimes write ĥw instead of ĥw.

Definition 5.9. Let x = π(τẇ) ∈ V0 and k ∈ N.

(a). Let Snw,k, n ≥ 0 be the subspace of L2(K) spanned by functions {ĥw ◦F−nw : h ∈ Hk−1},
and PSnk,w be the orthogonal projection from L2(K) to Snw,k. Clearly, PSnw,k extends to be from

Lp(K) to Snw,k.

(b). Let Sw,k be the subspace of L2(K) spanned by
⋃
n≥0 S

n
w,k, and PSw,k be the orthogonal

projection from L2(K) to Sw,k.
(c). Let Snx,k = Snw,k ◦ F−1

τ and Sx,k = Sw,k ◦ F−1
τ . Denote PSnx,k , PSx,k the map defined by

PSnx,kf = (PSnw,kAτf) ◦ F−1
τ respectively.

We have the following proposition.
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Proposition 5.10. Let x = π(τẇ) ∈ V0, k ∈ N, 0 ≤ σ ≤ 2k and 1 < p <∞.

(a). Let f ∈ Hp
σ(K) and if Aτf⊥Sx,k, we have Tan

(x)
σ f = 0.

(b). PSx,k extends to be a bounded map: Lp(K)→ Lp(K).

(c). PSx,k is bounded from Hp
σ(K) to Hp

σ(K), and 1−
∑

x∈V0 PSx,k is bounded from Hp
σ(K)

to H̊p
σ(K).

Proof. Without loss of generality, we assume τ = ∅ and consider PSw,k instead.

(a). Let h = Tan
(x)
σ f and f ′ = f − h. Then we have

< (Anwh)̂w ◦ F−nw , f > = µnw < (Anwh)̂w, A
n
wf >

= µnw
(
< (Anwh)̂w, A

n
wh > + < (Anwh)̂w, A

n
wf
′ >

)
= µnw

(
‖(Anwh)̂w‖2L2(K) + o(γnj,x)‖(Anwh)̂w‖L2(K)

)
,

where γj,x = min{γi,x : γi,x > (rwµw)σ/2µ
−1/p
w }. Thus the left side equals 0 for any n ≥ 0

only if Tan
(x)
σ f = h = 0.

(b). For each f ∈ Lp(K), we will construct a series
∑∞

n=0 fn converging in Lp(K), with
fn ∈ Snw,k for each n ≥ 0, so that PSw,kf =

∑∞
n=0 fn.

Let’s look at the L2 setting first. We start with a special situation. Let f ∈ L2(K) such that

Alwf ∈ Hk−1 for some l ≥ 0. Denote S
[0,l]
w,k = ⊕ln=0S

n
w,k, and write P

S
[0,l]
w,k

f =
∑l

n=0 fn, with

fn ∈ Snw,k. Clearly, g = f −
∑l−1

n=0 fn is k-multiharmonic in F lwK, and so fl = (Alwg)̂w ◦ F−lw
by Lemma 5.8. As a consequence, we have f − P

S
([0,l])
k,w

f = 0 on F l+1
w K, which shows that

f − P
S
[0,l]
w,k

f⊥Sw,k. By this observation, we make the following construction.

Step 1: For any f ∈ L2(K) such that Alwf ∈ Hk−1 for some l ≥ 0, we can write PSw,kf =∑l
n=0 fn with fn ∈ Snw,k for 0 ≤ n ≤ l.

Step 2: For any f ∈ L2(K) such that Alwf ∈ Hk−1 for some l ≥ 0, we have by induction

‖fn‖L∞(K) .
∥∥ n∑
m=0

fm
∥∥
L∞(FnwK\F

n+1
w K)

+
n−1∑
m=0

‖fm‖L∞(K) ≤ Cn‖f‖L2(K), for n ≥ 0.

So we can continuously extend the definition of fn, n ≥ 0 to general functions f in L2(K).

We have the following observations on the sequence {fn}n≥0.

Observation 1: For any f ∈ L2(K) and n ≥ 1, An−1
w fn = (An−1

w f)1.

Proof of Observation 1. Only need to consider the case that f ∈ L2(K) with Alwf ∈ Hk−1

for some l ≥ 0. Let g = f −
∑n−2

m=0 fm. Then we have

An−1
w PSw,kg = An−1

w P
S
[n−1,∞)
w,k

g = PSw,k
(
An−1
w g

)
,

where S
[n−1,∞)
w,k is the space spanned by

⋃
m≥n−1 S

m
w,k. So we have An−1

w fn = An−1
w gn =

(An−1
w g)1. On the other hand, we have (An−1

w f)1 = (An−1
w g)1 as An−1

w (f − g) ∈ Hk−1. �
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Observation 2: There are kernels ψ0, ψ1 ∈ L∞(K ×K) such that for any f ∈ L2(K), we
have {

f0(ξ) =
∫
K ψ0(ξ, η)f(η)dµ(η),

An−1
w fn(ξ) =

∫
K ψ1(ξ, η)

(
An−1
w f(η)

)
dµ(η),∀n ≥ 1.

(5.10)

Proof of Observation 2. We choose a basis {u1, u2, · · · , ul} of S0
w,k, and let u′i = ui −

P
S
[1,∞)
w,k

ui. Since ui is multiharmonic in FwK, we have u′i = ui − PS1
w,k
ui ∈ L∞(K).

Now, let f ∈ L2(K) and write PSw,kf =
∑∞

n=0 fn as before. We can see that < f, u′i >=<

f0, u
′
i >. If we write f0 =

∑l
i=1 ciui, then we have the linear equations

< f, u′j >=

l∑
i=1

ci < ui, u
′
j >, 1 ≤ j ≤ l.

One can see that
∑l

i=0 < ciui, u
′
j >= 0, ∀1 ≤ j ≤ l implies that

∑l
i=0 ciui = 0, since

<
∑l

i=0 ciui,
∑l

i=0 ciu
′
i >= 0 if and only if

∑l
i=0 ciui = 0. Thus f0 is completely determined

by < f, u′j >, 1 ≤ j ≤ l, and thus we can write f0 =
∑l

i=1 ciui with ci =
∑l

j=1 aij < f, u′j >

and coefficients aij independent of f . We then define ψ0(ξ, η) =
∑l

i=1

∑l
j=1 aijui(ξ)ū

′
j(η),

which clearly satisfies the first formula of (5.10).
Similarly, one can find ψ[0,1] ∈ L∞(K×K) such that f0(ξ)+f1(ξ) =

∫
K ψ[0,1](ξ, η)f(η)dµ(η)

for any f ∈ L2(K). It suffices to take ψ1 = ψ[0,1] − ψ0, then the second formula of (5.10)
holds for n = 1. For larger n, we apply Observation 1.

As a consequence of Observation 2, one can extend formulas (5.10) to any f ∈ Lp(K), 1 <
p < ∞. By similar estimates as in Section 3.2, we can see that for f ∈ Lp(K),

∑∞
n=0 fn

converges in Lp(K), and additionally PSw,kf =
∑∞

n=0 fn since the functions that are multi-

harmonic in some F lwK, l ≥ 0 is dense in Lp(K).

(c). This part follows from the following observation.

Observation 3: There is a kernel ψ ∈ L∞(K ×K) such that

An−1
w fn(ξ) =

∫
K
ψ(ξ, η)∆k

(
An−1
w f(η)

)
dµ(η), (5.11)

for any f ∈ Hp
2k(K) and n ≥ 1.

Proof of Observation 3. We only need to take

ψ(ξ, η) = (−1)k
∫
Kk

ψ1(ξ, η0)G(η0, η1)G(η1, η2) · · ·G(ηk−1, η)dµ(η0) · · · dµ(ηk−1). �

Following a similar argument as above, we can see that PSw,k is bounded from Hp
2k(K) to

Hp
2k(K). Then by Theorem 4.10 and (a), 1−

∑
x∈V0 Px,k is bounded from Hp

2k(K) to H̊p
2k(K).

For general 0 ≤ σ ≤ 2k, the result follows from complex interpolation. �

Proposition 5.10 can be extended to higher dimensional K̃d
+ case without difficulty by using

the same argument in Section 3.2. We omit the details.



FUNCTION SPACES ON P.C.F. SELF-SIMILAR SETS III: EMBEDDING AND INTERPOLATION THEOREMS45

In particular, for x = π(τẇ) ∈ V0 and f ∈ Lp(K̃d
+), we have

P
(1)
Sx,k

f =
∞∑
n=0

fn ◦ (F (1)
w )−n ◦ (F (1)

τ )−1,

with fn ∈ Ĥk−1,w

(
K,Lp(K̃d∧1

+ )
)

:= Ĥk−1,w ⊗ Lp(K̃d∧1
+ ), and we can naturally relate each fn

with an f ′n ∈ Hk−1,w

(
K,Lp(K̃d∧1

+ )
)

if we assume without loss of generality that the map ŵ

is one to one from Hk−1 to Ĥk−1,w.

Definition 5.11. For x = π(τẇ) ∈ V0, k ∈ N and 1 < p < ∞, we define Ix,k from

P
(1)
Sx,k

Lp(K̃d
+) to

(
Hk−1(K,Lp(K̃d∧1

+ ))
)Z+ by

Ix,kP
(1)
Sx,k

f =
{

(A(1)
w )n

n∑
m=0

f ′m ◦ (F (1)
w )−m

}
n≥0

for each element P
(1)
Sx,k

f =
∑∞

n=0 fn ◦ (F
(1)
w )−n ◦ (F

(1)
τ )−1 in PSx,kL

p(K̃d
+).

Lemma 5.12. Let x = π(τẇ) ∈ V0, k ∈ N, 0 ≤ σ ≤ 2k and 1 < p <∞.

(a). Ix,k is isomorphic from P
(1)
Sx,k

Hp
σ(K̃d

+) to lpασx ,βx
(
Hk−1(K,Lp(K̃d∧1

+ )),Hk−1(K,Hp
σ(K̃d∧1

+ )), A
(1)
w

)
.

(b). Ix,k is isomorphic from P
(1)
Sx,k

H̊p
σ(K̃d

+) to lpασx ,βx
(
Hk−1(K,Lp(K̃d∧1

+ )),Hk−1(K,Hp
σ(K̃d∧1

+ ))
)A(1)

w

.

Proof. Part (a) follows from a similar argument in Section 3.2, by using (5.10), (5.11), and

the fact that ĥw ∈ C∞(K) with good support of ĥw and ∆kĥw.

For part (b), one has Tan
(x,1)
σ f = Tan

(x,1)
σ

(
P

(1)
Sx,k

f
)

by Proposition 5.10 (a) for functions

f ∈ Hp
σ(K̃d

+). So Tan
(x,1)
σ f = 0 if and only if ‖Ix,kP

(1)
Sx,k

f‖L∞(K,Lp(K̃d∧1
+ )) = o(γnj,x) with

γj,x = min{γi,x : ασxβx < γi,x}. The claim then follows from Theorem 4.10 and Proposition
A.5. �

Now we introduce a new decomposition of the space Hp
σ(K̃d

+) with −2k ≤ σ ≤ 2k for

k ∈ N(extend to negative σ’s). In the following, we view each f ∈ Hp
σ(K̃d

+) as a functional

on H̊p′

2k(K̃
d
+) with p′ = p

p−1 . Noticing that for f ∈ Lp(K̃d
+) and ϕ ∈ H̊p′

2k(K̃
d
+), it holds that

< P
(1)
Sx,k

f, ϕ >=< f, P
(1)
Sx,k

ϕ >,

so we can naturally extend the map P
(1)
Sx,k

to Hp
σ(K̃d

+). In addition, since P
(1)
Sx,k

: H̊p′
σ (K̃d

+)→

H̊p′
σ (K̃d

+) for 0 ≤ σ ≤ 2k, we have P
(1)
Sx,k

: Hp
σ(K̃d

+)→ Hp
σ(K̃d

+) for −2k ≤ σ < 0 by dual. The

same works for Besov spaces (one may be cautious about the order σ = 0 for Besov spaces).

Definition 5.13. (a). For k ∈ N, −2k < σ < 2k and 1 < p, q < ∞, define K̂pσ,k(K̃
d
+) =(

1−
∑

x∈V0 P
(1)
Sx,k

)
Hp
σ(K̃d

+) and K̂p,qσ,k(K̃
d
+) =

(
1−

∑
x∈V0 P

(1)
Sx,k

)
Bp,q
σ (K̃d

+).

(b). For k ∈ N, −2k < σ < 2k and 1 < p, q <∞, define T̂ pσ,k(K̃
d
+) =

(∑
x∈V0 P

(1)
Sx,k

)
Hp
σ(K̃d

+),

T̂ p,qσ,k (K̃d
+) =

(∑
x∈V0 P

(1)
Sx,k

)
Bp,q
σ (K̃d

+).
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Remark 1. One may worry about the case σ = 0 for Besov spaces since we did not deal
with this previously. Luckily, we have Hp

σ(K̃d
+) and Bp,q

σ (K̃d
+) are retracts of Hp

σ(K̃d) and

Bp,q
σ (K̃d), with extension maps being Θ (extension by 0), for −dS

p′ < σ < dS
p . So the properties

for σ = 0 naturally follows once we have the properties for σ ∈ (−dS
p′ ,

dS
p ) \ {0}.

Remark 2. Clearly, all the spaces K̂pσ,k(K̃
d
+), K̂p,qσ,k(K̃

d
+), T̂ pσ,k(K̃

d
+) and T̂ p,qσ,k (K̃d

+) are closed

spaces of Hp
σ(K̃d

+) or Bp,q
σ (K̃d

+) since the operator
∑

x∈V0 P
(1)
Sx,k

is idempotent, which means

that
(∑

x∈V0 P
(1)
Sx,k

)2
=
∑

x∈V0 P
(1)
Sx,k

.

2. Interpolation properties of the decomposition.

Lemma 5.14. Let k ∈ N, −2k < σ < 2k and 1 < p, q <∞. In addition, assume (−σ, 1
p′ ) /∈

CO+, with p′ = p
p−1 . Then equations (5.1),(5.2) hold if we replace Hp

σ(K̃d) with the space

K̂pσ,k(K̃
d
+); equations (5.3),(5.4) hold if we replace Bp,q

σ (K̃d) with the space K̂p,qσ,k(K̃
d
+). In

addition, K̂p,qσ,k(K̃
d
+) =

(
K̂p−2k,k(K̃

d
+), K̂p2k,k(K̃

d
+)
)
θ,q

for 0 < θ = σ+2k
4k < 1.

Proof. We can see that, for 0 ≤ σ < 2k,
(
1 −

∑
x∈V0 P

(1)
Sx,k

)
(f |K̃d

+
) ∈ H̊p′

σ (K̃d
+) for any

f ∈ Hp′
σ (K̃d) by Theorem 3.5 and Proposition 5.10 (c). Thus K̂pσ,k(K̃

d
+) is a retract of

Hp
σ(K̃d) for any (σ, 1

p) satisfying the assumption. In fact, we can take the extension map

E : K̂pσ,k(K̃
d
+)→ Hp

σ(K̃d) by Ef =< f,
(
1−

∑
x∈V0 P

(1)
Sx,k

)
(•|K̃d

+
) > for f ∈ K̂pσ,k(K̃

d
+), where •

represents a function in Hp′

2k(K̃
d); and the restriction map R : Hp

σ(K̃d)→ K̂pσ,k(K̃
d
+) is defined

in the following way: for f ∈ Hp
σ(K̃d), we write g =< f,Θ• > where • represents a function

in H̊p′

2k(K̃
d
+); then noticing that g ∈ Hp

σ(K̃d
+), we define Rf := (1 −

∑
x∈V0 P

(1)
Sx,k

)g. One can

check that R is bounded by Theorem 4.19, and it is direct to see that RE is the identity map
on K̂pσ,k(K̃

d
+).

The same extension and restriction maps work for Besov spaces, and the result follows. �

It remains to study the interpolation property of T̂ pσ,k(K̃
d
+) and T̂ p,qσ,k (K̃d

+). This time we

will use duality instead of retract. The argument is based on the following discussion.

Lemma 5.15. Fix k ∈ N and x = π(τẇ) ∈ V0. Let f =
∑∞

n=0 fn ∈ PSx,kL
p(K), g =∑∞

n=0 gn ∈ PSx,kLp
′
(K) with 1 < p < ∞, p′ = p

p−1 , and fn, gn ∈ Snx,k for n ≥ 0. In addition,

we write {hn}n≥0 = Ix,kf , {en}n≥0 = Ix,kg as defined in Definition 5.11. Then we have

< f, g >=µτ

∞∑
n=0

µnw < ĥn,w, ên,w >K\FwK

+ µτ

∞∑
n=0

µn+1
w < Awhn − (Awhn)̂w, Awen − (Awen)̂w >K\FwK .
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Proof. By a direct computation, we get

< f, g >=

∞∑
n=0

< f, g >FτFnw(K\FwK)

=µτ

∞∑
n=0

µnw < AnwAτ

n∑
m=0

fn, A
n
wAτ

n∑
m=0

gn >K\FwK

=µτ

∞∑
n=0

µnw < Awhn−1 +AnwAτfn, Awen−1 +AnwAτgn >K\FwK

=µτ

∞∑
n=0

µnw < Awhn−1−(Awhn−1)̂w + ĥn,w, Awen−1 − (Awen−1)̂w + ên,w >K\FwK .

Then the desired result follows. �

Lemma 5.15 provides a characterization of < f, g > with a conjugate symmetric form on
{hn}, {en}. Then comparing Lemma 5.12, we have the following lemma for negative σ’s.

Lemma 5.16. Let k ∈ N, −2k < σ < 0, 1 < p <∞, and in addition assume that (−σ, 1
p′ ) /∈

CO+ with p′ = p
p−1 . Fix x = π(τẇ) ∈ V0, then we can extend Ix,k to be an isomorphism from

P
(1)
Sx,k

Hp
σ(K̃d

+) to lpασxβx
(
Hk−1(K,Lp(K̃d∧1

+ ))
)

+ lpβx
(
Hk−1(K,Hp

σ(K̃d∧1
+ ))

)
, with αx = (rwµw)1/2

and βw = µ
−1/p
w .

Proof. For convenience, we focus on the case d = 1. By using Lemma 5.12 (b) and Lemma
5.15, and using Proposition A.5, we can see that

‖f‖Hp
σ(K) � ‖Ix,kf‖lp

ασxβx
(Hk−1),

for any f ∈ PSx,kL
p(K). One can easily prove that PSx,kL

p(K) is dense in PSx,kH
p
σ(K),

noticing that Lp(K) is dense in Hp
σ(K). So the claim follows for d = 1 case.

For d > 1 cases, a similar argument will work, applying the fact that (A ∩B)∗ = A∗ +B∗

if A∩B is dense in both A and B (See Theorem 2.7.1. in book [7]). We omit the details. �

Noticing that for −2k < σ < 0, we have

lpασxβx
(
Hk−1(K,Lp(K̃d∧1

+ ))
)

+ lpβx
(
Hk−1(K,Hp

σ(K̃d∧1
+ ))

)
=lpασxβx

(
Hk−1(K,Lp(K̃d∧1

+ )), A(1)
w

)
+ lpβx

(
Hk−1(K,Hp

σ(K̃d∧1
+ )), A(1)

w

)
.

Now, using Lemma 5.12 (a), Lemma 5.16, combining with Lemma A.7, we have the following
result.

Lemma 5.17. Let k ∈ N, −k < σ < k and 1 < p, q < ∞, and in addition assume that
(−σ, 1

p′ ) /∈ CO+ with p′ = p
p−1 . There exists a map Λ that is an isomorphism from T̂ pσ,k(K̃

d
+)→

T̂ pσ+k,k(K̃
d
+). In addition, Λ is also an isomorphism from T̂ p,qσ,k (K̃d

+)→ T̂ p,qσ+k,k(K̃
d
+) for −k <

σ < 0 or 0 < σ < k.

Proof. In fact, we only need to construct the isomorphism Λ that works for T̂ pσ,k(K̃
d
+) with

σ = −k, 0, k, and then use complex and real interpolations. The map can be easily constructed
with Lemma A.7. We omit the details. �
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As a consequence, we get the interpolation properties of T̂ pσ,k(K̃
d
+) and T̂ p,qσ,k (K̃d

+).

Lemma 5.18. Let k ∈ N, −k < σ < k and 1 < p, q < ∞. In addition, we assume that
(−σ, 1

p′ ) /∈ CO+ with p′ = p
p−1 . Then equations (5.1),(5.2) hold if we replace Hp

σ(K̃d) with the

space T̂ pσ,k(K̃
d
+); equations (5.3),(5.4) hold if we replace Bp,q

σ (K̃d) with the space T̂ p,qσ,k (K̃d
+).

In addition, T̂ p,qσ,k (K̃d
+) =

(
T̂ p−k,k(K̃

d
+), T̂ pk,k(K̃

d
+)
)
θ,q

for 0 < θ = σ+k
2k < 1.

3. The final interpolation theorem. Now we are ready to present the interpolation
theorem for Hp

σ(K̃d
+) and Bp,q

σ (K̃d
+) with σ ∈ R. As we have noticed, since for σ < 0, Hp

σ(K̃d
+)

and Bp,q
σ (K̃d

+) are duals of H̊p′

−σ(K̃d
+) and B̊p′,q′

σ (K̃d
+), the critical set are now reflected, i.e.

CO =
{

(σ,
1

p
) : (−σ, 1− 1

p
) ∈ CO+

}
.

Also, we have three cases of interpolations.

Definition 5.19. Let σ0, σ1 ∈ R and 1 < p0, p1 <∞, and put

σθ = (1− θ)σ0 + θσ1,
1

pθ
=

1− θ
p0

+
θ

p1

for 0 < θ < 1. We need to consider the following three cases:
(O1). (σθ,

1
pθ

) /∈ CO;

(O2). (σ0,
1
p0

), (σ1,
1
p1

) and (σθ,
1
pθ

) lie on a same critical line in CO;

(O3). otherwise.

See Figure 4 for an illustration.

1
p

1

σ

Figure 4. An illustration for CO and the three cases of interpolations.

Theorem 5.20. Let the coefficients θ, σ0, σ1, σθ, p0, p1, pθ be chosen as in Definition 5.19,
and let q0, q1, qθ, q ∈ (1,∞) with 1

qθ
= θ

q0
+ 1−θ

q1
. We also write q′ = q

q−1 , p′θ = pθ
pθ−1 and

q′θ = qθ
qθ−1 . The interpolation results for Hp

σ(K̃d
+) and Bp,q

σ (K̃d
+) are given by the following

table:
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(O1) (O2) (O3)[
Hp0
σ0 (K̃d

+), Hp1
σ1 (K̃d

+)
]
θ

Hpθ
σθ (K̃d

+) =
(
Ḣ
p′θ
−σθ(K̃

d
+)
)∗

Hpθ
σθ (K̃d

+)
(
Ḣ
p′θ
−σθ(K̃

d
+)
)∗(

Hp0
σ (K̃d

+), Hp1
σ (K̃d

+)
)
θ,pθ

Hpθ
σ (K̃d

+) =
(
Ḣ
p′θ
−σ(K̃d

+)
)∗

/
(
Ḣ
p′θ
−σ(K̃d

+)
)∗(

Hp
σ0(K̃d

+), Hp
σ1(K̃d

+)
)
θ,q

Bp,q
σθ (K̃d

+) =
(
Ḃp′,q′

−σθ (K̃d
+)
)∗

/
(
Ḃp′,q′

−σθ (K̃d
+)
)∗[

Bp0,q0
σ0 (K̃d

+), Bp1,q1
σ1 (K̃d

+)
]
θ

Bpθ,qθ
σθ (K̃d

+) =
(
Ḃ
p′θ,q

′
θ

−σθ (K̃d
+)
)∗

Bpθ,qθ
σθ (K̃d

+)
(
Ḃ
p′θ,q

′
θ

−σθ (K̃d
+)
)∗(

Bp0,q0
σ0 (K̃d

+), Bp1,q1
σ1 (K̃d

+)
)
θ,qθ

(if pθ = qθ) Bpθ,qθ
σθ (K̃d

+) =
(
Ḃ
p′θ,q

′
θ

−σθ (K̃d
+)
)∗

Bpθ,qθ
σθ (K̃d

+)
(
Ḃ
p′θ,q

′
θ

−σθ (K̃d
+)
)∗(

Bp,q0
σ (K̃d

+), Bp,q1
σ (K̃d

+)
)
θ,qθ

Bp,qθ
σ (K̃d

+) =
(
Ḃ
p′,q′θ
−σ (K̃d

+)
)∗

Bp,qθ
σ (K̃d

+) /

,

where we have the restriction σ = σ0 = σ1 for the second equation, and the restriction
p = p0 = p1 for the third equation. Also ‘/’ in the above table means there exists no case or
only the trivial case.

Proof. First, we assume (σ0,
1
p0

), (σ1,
1
p1

) and (σθ,
1
pθ

) are not in CO. Then the interpolation

results follow from Lemma 5.14 and Lemma 5.18. We can fill in the cases that involve CO by
applying Theorem 5.7 and reiteration. �

Appendix A. On sequence spaces

This appendix is a supplement to Section 2. We will take the same setting.
1). Let X be a Banach space, and L be a sectorial operator on X satisfying (L1) and

(L2).
2). Let α ∈ (0, 1), β ∈ (1,∞), p ∈ (1,∞), σ ≥ 0.

In addition, we need more in this appendix.
3). Let H be a finitely dimensional space over C, and A be a linear operator H → H, with

its largest eigenvalue (in absolute value) no larger than 1.
We define the tensor product

H⊗X =
{ m∑
i=1

hi ⊗ xi : hi ∈ H, xi ∈ X,∀1 ≤ i ≤ m and m ∈ N
}
,

with the cross project norm

‖s‖H⊗X = inf
{ m∑
i=1

‖hi‖H‖xi‖X : s =
m∑
i=1

hi ⊗ xi,m ∈ N
}
.

Since H is finitely dimensional, let {φi}Ni=1 be a basis of H, one can easily see

H⊗X =
{ N∑
i=1

φi ⊗ xi : xi ∈ X,∀1 ≤ i ≤ N
}
,

with
∥∥∑N

i=1 φi⊗xi
∥∥
H⊗X �

∑N
i=1 ‖xi‖X by the open mapping theorem. In this sense, we can

view H⊗X merely as a N -dimensional vector space over X.
We then extend the operator A to H×X, by

A(s) =
m∑
i=1

A(hi)⊗ xi
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for s =
∑m

i=1 hi ⊗ xi. It is easy to check that A is well-defined on H ⊗ X, i.e. A(s) is
independent of the choice of the expansions of s.

In this appendix, we will consider the sequence spaces

lpα(H⊗X,A) :=
{
s = {sn}n≥0 : {sn+1 −Asn}n≥0 ∈ lpα(H⊗X)

}
,

with norm ‖s‖lpα(H⊗X,A) = ‖s0‖H⊗X +
∥∥{sn+1 −Asn}n≥0

∥∥
lpα(H⊗X)

, and the spaces

lpασ ,β
(
H⊗D(Lσ)

)
:= lpασβ(H⊗X) ∩ lpβ

(
H⊗D(Lσ)

)
,

lpασ ,β
(
H⊗D(Lσ), A

)
:= lpασβ(H⊗X,A) ∩ lpβ

(
H⊗D(Lσ), A

)
,

where we use D(Lσ) to denote the couple
(
X,D(Lσ)

)
for short as in Section 2.

In the case that A is diagonalizable, each of the above spaces is isomorphic to a direct
sum of one of the three kinds of sequence spaces: lpα(X, γ), lpασ ,β

(
D(Lσ)

)
and lpασ ,β

(
D(Lσ), γ

)
.

Thus, all the results in Section 2 apply with no difficulty. What we are of interest in this

appendix is the case that A is not diagonalizable. Similar as before, we use lpα(H⊗X)
A

and

lpασ ,β
(
H⊗D(Lσ)

)A
to denote the closures of lpα(H⊗X) and lpασ ,β

(
H⊗D(Lσ)

)
in lpα

(
H⊗X,A

)
and lpασ ,β

(
H⊗D(Lσ), A

)
respectively.

Notations (a). Let λ be a generalized eigenvalue of A on H, and we write Uλ := Uλ,A for
the generalized eigenspace, i.e. Uλ = Uλ,A =

⋃∞
m=0 ker(A− λ)m.

(b). Let 1 ≥ γ0 > γ1 > · · · > γl > 0 be the absolute values of nonzero eigenvalues of
A : H → H, which is ordered in decreasing order.

(c). Write Ūi := Ūi,A =
⋃
|λ|=γi Uλ,A for 0 ≤ i ≤ l.

(d). Write ~A(s) = {s,As,A2s, · · · } for s ∈ H ⊗X.

The following lemma is easy to derive, analogous to Lemma 2.3.

Lemma A.1. For 1 < p <∞, we have

lpα(H⊗X,A) =


lpα(H⊗X)

A
, if α ≥ γ0,

lpα(H⊗X)
A
⊕
⊕i

i′=0
~A(Ūi ⊗X), if γi+1 ≤ α < γi,

lpα(H⊗X)
A
⊕
⊕l

i=0
~A(Ūi ⊗X), if α < γl.

(A.1)

In addition, lpα(H⊗X)
A

= lpα(H⊗X) if and only if α /∈ {γ0, γ1, · · · , γl}.

Proof. Since H can be decomposed into Jordan blocks of A, it suffices to consider a Jordan
block only. Without loss of generality, we assume σA = {λ} with γ = |λ|. Thus, we need to
consider three cases α < γ, α = γ and α > γ separately. The cases α < γ and α > γ are very
similar to those of Lemma 2.3, but we need a little more effort for the case α = γ.

Let s ∈ lpα(H⊗X,A), and write t ∈ lpα(H⊗X) with t0 = s0 and tn = sn −Asn−1.
Case 1: α < γ. Clearly s∞ := lim

n→∞
A−nsn =

∑∞
m=0A

−mtm is well defined. In addition,

∥∥s− ~A(s∞)
∥∥
lpα(H⊗X)

=
∥∥α−n‖sn −Ans∞‖H⊗X∥∥lp =

∥∥α−n‖ ∞∑
m=n+1

An−mtm‖H⊗X
∥∥
lp

≤
∥∥ ∞∑
m=1

(αm‖A−m‖)α−n−m‖tm+n‖H⊗X
∥∥
lp
≤
( ∞∑
m=1

αm‖A−m‖
)
‖t‖lpα(H⊗X) . ‖s‖lpα(H⊗X,A).
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Thus, lpα(H⊗X,A) ⊂ lpα(H⊗X)⊕ ~A(H⊗X). The other direction estimate is obvious.
Case 2: α = γ. Comparing with Case 2 in the proof of Lemma 2.3, it suffices to show that

~A(s) ∈ lpα(H⊗X)
A

for any s = h⊗x. We assume that (A−λ)mh = 0 and (A−λ)m−1h 6= 0,
and let r1 = s, r2 = (A− λ)r1, · · · , rm = (A− λ)m−1r1. For any c1, c2, · · · , cm > 0, we define
a sequence s = {sn}n≥0 ∈ lpα(H⊗X) according to the following rule:

1). let s0 = r1 = s;
2). if Asn =

∑m
i=m′ diri with dm′ 6= 0, we define sn+1 = max{0, 1 − cm′

|dm′ |
}dm′rm′ +∑m

i=m′+1 diri;
3). take sn+1 = 0 if sn = 0.

It is easy to see that limc1→0 limc2→0 · · · limcm→0 ‖s − ~A(s)‖lpα(H⊗X,A) = 0, and thus the
desired result holds.

Case 3: α > γ (including the case γ = 0). In this case, we have the estimate that

‖s‖lpα(H⊗X) =
∥∥α−n‖ n∑

m=0

An−mtm‖H⊗X
∥∥
lp
≤
∥∥α−n n∑

m=0

‖Am‖ · ‖tn−m‖H⊗X
∥∥
lp

=
∥∥ n∑
m=0

α−m‖Am‖αm−n‖tn−m‖H⊗X
∥∥
lp
≤
( ∞∑
m=0

α−m‖Am‖
)
‖t‖lpα(H⊗X) . ‖s‖lpα(H⊗X,A).

As a consequence, we have lpα(H⊗X,A) = lpα(H⊗X). �

Next, we aim to establish decompositions analogous to Proposition 2.9 and 2.13. The key

relies on the following map SL,ϕα,A, based on SL,ϕα defined in Lemma 2.8.

Definition A.2. Let h ∈ Uλ for some nonzero eigenvalue λ and s = h⊗x ∈ Uλ⊗X. Define

SL,ϕα,A(s) = {SL,ϕα,A(s)}n≥0 as the unique sequence such that SL,ϕα,A(s)0 = h⊗ SL,ϕα (x)0 and

SL,ϕα,A(s)n+1 −ASL,ϕα,A(s)n = λn+1h⊗
(
SL,ϕα (x)n+1 − SL,ϕα (x)n

)
.

Obviously, SL,ϕα,A extends to be a unique map on R(A)⊗X.

The following lemma is an immediate consequence of lemma 2.8.

Lemma A.3. Let 1 < p <∞, k, ϕ be chosen as in Lemma 2.8, and let 0 < σ < k.

(a). We have SL,ϕα,A : Ūi ⊗Xσ,p → lp
ασ+θ,α−θγ−1

i

(
Ūi ⊗D(Lσ+θ), A

)
for 0 ≤ i ≤ l and θ > 0.

(b). Let h ∈ Uλ with λ 6= 0 and s = h⊗ x. Write hi = (A− λ)ih. By expanding each term

SL,ϕα,A(s)n =
∑∞

i=0 hi ⊗ xi,n, we have

lim
n→∞

λ−nx0,n = x.

The following lemma is crucial.

Lemma A.4. Let ασβ < γi, then lpασ ,β
(
Ūi ⊗ D(Lσ), A

)
= lpασ ,β

(
Ūi ⊗ D(Lσ)

)
⊕ SL,ϕα,A(Ūi ⊗

X
σ+

log βγ−1
i

logα
,p

).

Proof. Without loss of generality, we assume Ūi is a Jordan block of A with eigenvalue λ.
Thus, we can choose a basis {h1, h2, · · · , hm} of Ūi such that

hm = (A− λ)m−1h1.
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Of cause, (A− λ)hm = 0.

Let s = {sn}n≥0 ∈ lpασ ,β
(
Ūi ⊗D(Lσ), A

)
, then we can write

sn =
m∑
i=1

hi ⊗ xi,n with xi,n ∈ D(Lσ).

Clearly, we have

sn+1 −Asn =
m∑
i=1

hi ⊗ xi,n+1 − λ
m∑
i=1

hi ⊗ xi,n −
m∑
i=2

hi ⊗ xi−1,n

= h1 ⊗ (x1,n+1 − λx1,n) +

m∑
i=2

hi ⊗ (xi,n+1 − λxi,n − xi−1,n).

From this identity, we see that {x1,n}n≥0 ∈ lpασ ,β
(
D(Lσ), λ

)
, and for i ≥ 2, {xi,n}n≥0 ∈

lpασ ,β
(
D(Lσ), λ

)
if {xi−1,n}n≥0 ∈ lpασ ,β

(
D(Lσ)

)
.

Now, according to Proposition 2.9, we have limn→∞ λ
−nx1,n := x1,∞ exists. We define

s(1) = s−SL,ϕα,A(h1⊗x1,∞) and write s
(1)
n =

∑m
i=1 hi⊗x

(1)
i,n for each s

(1)
n in s(1). Then, we have

{x(1)
1,n}n≥0 ∈ lpασ ,β

(
D(Lσ)

)
by applying Lemma A.3 and Proposition 2.9. Thus {x(1)

2,n}n≥0 ∈
lpασ ,β

(
D(Lσ), γ

)
. Define x

(1)
2,∞ = limn→∞ λ

−nx
(1)
2,n, write s(2) = s(1) − SL,ϕα,A(h2 ⊗ x(1)

2,∞), and

repeat this to define s(3) · · · . The procedure stops when we get s(m). Until now, we get

s =
m∑
i=1

SL,ϕα,A(hi ⊗ x(i−1)
i,∞ ) + s(m),

if we set x
(0)
1,∞ = x1,∞ for consistency. Clearly, for each 1 ≤ i ≤ m, we have x

(i−1)
i,∞ ∈

X
σ+

log βγ−1
i

logα
,p

, and s(m) ⊂ lpασ ,β(Ūi⊗D
(
Lσ)

)
. Thus we have proved that lpασ ,β

(
Ūi⊗D(Lσ), A

)
=

lpασ ,β
(
Ūi ⊗D(Lσ)

)
⊕ SL,ϕα,A(Ūi ⊗X

σ+
log βγ−1

i
logα

,p
).

The other direction is immediate. �

Now, we have all the important ingredients for the proof of the following propositions. We
omit the detailed proof.

Proposition A.5. Let 1 < p <∞, k ≥ 1, and define ϕ and SL,ϕα,A as in Definition A.2. Then

for 0 ≤ σ < k − log β
logα we have,

lpασ ,β
(
H⊗D(Lσ), A

)
=


lpασ ,β

(
H⊗D(Lσ)

)A
, if ασβ ≥ γ0,

lpασ ,β
(
H⊗D(Lσ)

)A
⊕
(⊕i

i′=0 S
L,ϕ
α,A(Ūi′ ⊗X

σ+
log βγ−1

i′
logα

,p
)
)
, if γi+1 ≤ ασβ < γi,

lpασ ,β
(
H⊗D(Lσ)

)A
⊕
(⊕l

i=0 S
L,ϕ
α,A(Ūi ⊗X

σ+
log βγ−1

i
logα

,p
)
)
, if ασβ < γl,

In particular, we have

lpασ ,β
(
H⊗D(Lσ)

)A
= lpασ ,β

(
H⊗D(Lσ)

)
if and only if ασβ /∈ {γ0, γ1, · · · , γl}.
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Proposition A.6. Let 1 < p, q < ∞, k ≥ 1, and define ϕ and SL,ϕα,A as in Definition A.2.

Then for 0 < σ < k − log β
logα we have,

lp,qασ ,β
(
H⊗D(Lσ), A

)
=


lp,qασ ,β

(
H⊗D(Lσ)

)A
, if ασβ ≥ γ0,

lp,qασ ,β
(
H⊗D(Lσ)

)A
⊕
(⊕i

i′=0 S
L,ϕ
α,A(Ūi′ ⊗X

σ+
log βγ−1

i′
logα

,q
)
)
, if γi+1 ≤ ασβ < γi,

lp,qασ ,β
(
H⊗D(Lσ)

)A
⊕
(⊕l

i=0 S
L,ϕ
α,A(Ūi ⊗X

σ+
log βγ−1

i
logα

,q
)
)
, if ασβ < γl,

In particular, we have

lp,qασ ,β
(
H⊗D(Lσ)

)A
= lp,qασ ,β

(
H⊗D(Lσ)

)
if and only if ασβ /∈ {γ0, γ1, · · · , γl}.

Before ending this appendix, we present another result that will be useful in Section 5.
Let’s recall the map Λ(α)L : XZ+ → XZ+ , with α > 0, defined in the proof of Lemma 2.11,

Λ(α)L
(
{sn}n≥0

)
= {αnL(sn)}n≥0,

for {sn}n≥0 ∈ XZ+ .

Lemma A.7. Let 0 < α < 1, β > 1, 1 < p <∞ and σ ≥ 0. Then

(a). Λ(α)
(
1 + Λ(α)L

)−1
is an isomorphism from lpασ ,β

(
D(Lσ)

)
to lp

ασ+1,β

(
D(Lσ+1)

)
.

(b). Λ(α)
(
1 + Λ(α)L

)−1
is an isomorphism from lp

α−1β

(
D(L)

)
+ lpβ(X) to lpβ

(
D(L)

)
.

Proof. (a). As in the proof of Lemma 2.11, we view Λ(α)L as a sectorial operator on lpασβ(X),

then lpασ ,β
(
D(Lσ)

)
= D

(
Λ(α)L)σ

)
. So

(
1 + Λ(α)L

)−1
is an isomorphism from lpασ ,β

(
D(Lσ)

)
to lp

ασ+1,α−1β

(
D(Lσ+1)

)
. The claim follows immediately.

(b). First, we can see that Λ(α)
(
1 + Λ(α)L

)−1
maps from lp

α−1β

(
D(L)

)
to lpβ

(
D(L)

)
, and

maps from lpβ(X) to lpβ
(
D(L)

)
. On the other hand, we can see that Λ(α−1)

(
1 + Λ(α)L

)
maps

from lpβ(D
(
L)
)

to lp
α−1β

(
D(L)

)
+ lpβ(X). �

Appendix B. Distributions and harmonic functions on fractals

Definition B.1. (a). Let Ω = K l × K̃d−l, viewed as a subspace of K̃d with the natural
boundary. For each compact set E contained in the interior of Ω, we denote

DE(Ω) = {f ∈ C∞(Ω) : the support of f is contained in E},

with seminorms sup|i|≤l ‖∆(i)f‖C(Ω), l ∈ Z+.

Let {En}n≥0 be an increasing sequence of compact sets contained in Ω whose union is the
interior of Ω. Define D(Ω) =

⋃∞
n=0 DEn(Ω), with the corresponding inductive limit topology.

(b). The dual space of D(Ω), denoted by D′(Ω), is called the distribution space on Ω.

(c). Define the Laplacians in the sense of distributions, i.e. for f ∈ D′(Ω), define ∆(i)f
and ∆f in D′(Ω) such that

< ∆(i)f, ϕ >=< f,∆(i)ϕ >, < ∆f, ϕ >=< f,∆ϕ >

holds for any ϕ ∈ D(Ω). In addition, ∆ =
∑d

i=1 ∆(i).
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It was shown in [32], that D(Ω) is dense in C0(Ω) with the construction of smooth bump
functions [31], which we have used several times in this paper. A related useful result is
provided below, which is an important tool in Section 4.3.

Proposition B.2 (L. Rogers, R.S. Strichartz and A. Teplyaev[31]). Let x = π(τẇ) ∈ V0.
There exists hj,1, hj,2 ∈ C∞(K) for j ≥ 0, supported in FτK, such that{

∆ihj,1(x) = δi,j ,

∂n∆ihj,1(x) = 0,

{
∆ihj,2(x) = 0,

∂n∆ihj,2(x) = δi,j ,
∀i ≥ 0.

Let’s return to Sobolev spaces on Ω. On Ω = K̃d and for 1 < p <∞, it is not hard to see
that D(∆(i)) =

{
f ∈ Lp(K̃d) : ∆(i)f ∈ Lp(K̃d)

}
,∀1 ≤ i ≤ d. So in Proposition 3.3, we can

simply say

Hp
2k(K̃

d) =
{
f ∈ Lp(K̃d) : ∆(i)f ∈ Lp(K̃d),∀i with |i| ≤ k

}
.

Also, recall the definition of Hp
2k(Ω) on Ω = K l × K̃d−l with 1 ≤ l ≤ d in Definition 3.4.

Below, we provide a necessary and sufficient condition such that the same property holds.
Recall the definition of γi,x for x = π(τẇ) ∈ V0 and i ≥ 0, provided below Definition 4.7.

It is well-known that γ0,x = 1 and γ1,x = rw, with Ū0,x and Ū1,x being 1-dimensional spaces
in H# if we assume (C1).

Proposition B.3. Let 1 < p <∞, k ∈ N and Ω = K l × K̃d−l with 1 ≤ l ≤ d. We have

Hp
2k(Ω) =

{
f ∈ Lp(Ω) : ∆(i)f ∈ Lp(Ω), ∀i with |i| ≤ k

}
,

where ∆(i) is defined in distribution sense, if and only if γ2,x ≤ rwxµ
1/p
wx ,∀x = π(τxẇx) ∈ V0

and (C1) holds.

Proof. We consider the Ω = K case. It suffices to prove that D(∆) =
{
f ∈ Lp(K) : ∆f ∈

Lp(K)
}

if and only if γ2,x ≤ rwxµ
1/p
wx , ∀x = π(τxẇx) ∈ V0 and (C1) holds.

On the one hand, let’s assume γ2,x ≤ rwxµ
1/p
wx , ∀x = π(τxẇx) ∈ V0 and (C1). We can show,

by using Theorem 4.10, that H̊p′

2 (K) has codimension #P in GLp
′
(K), where G is the Green’s

operator and p′ = p
p−1 . As a consequence, we have ∆H̊p′

2 (K) has codimension #P in Lp
′
(K).

In addition, for f ∈ Lp(K), we have ∆f = 0 if and only if < f,∆ϕ >= 0, ∀ϕ ∈ H̊p′

2 (K), since

∆H̊p′

2 (K) is the closure of ∆D(K) in Lp
′
(K). This shows that {f ∈ Lp(K) : ∆f = 0} is an

#V0 = #P dimensional space, thus we have H0 = {f ∈ Lp(K) : ∆f = 0}. The claim follows
from the equality{

f ∈ Lp(K) : ∆f ∈ Lp(K)
}

= GLp(K)⊕
{
f ∈ Lp(K) : ∆f = 0

}
.

On the other hand, if γ2,x > rwxµ
1/p
wx for some x = π(τxẇx) ∈ V0 or (C1) does not hold,

following a similar argument, one can see that H0 ( {f ∈ Lp(K) : ∆f = 0}. �

Appendix C. Useful Facts

We collect some useful facts from the books [7, 13, 19] for convenience of readers.
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1. Sectorial operators and semigroups. Let’s first briefly introduce the definition of
sectorial operators, which can be found in [19]. In the following, X always denotes a (non-
trivial) Banach space and L a single-valued operator on X. For 0 ≤ θ < π, let

Sθ :=

{{
z ∈ C : z 6= 0 and | arg z| < θ

}
if θ ∈ (0, π),

(0,∞) if θ = 0.

Definition C.1. An operator L on X is called sectorial of angle θ if
1) σ(L) ⊂ Sθ;
2) supλ∈C\Sθ′

∥∥λ(λ+ L)−1
∥∥ <∞ for all θ′ ∈ (θ, π).

A useful result concerning powers of sectorial operators is given as follows (Proposition
3.1.2 in [19]).

Lemma C.2. Let L be a sectorial operator of angle θ, then Lσ is a sectorial operator of angle
σθ for 0 < σ < π/θ.

A wide class of sectorial operators come from semigroups. In particular, let −L be the
generator of a bounded single-valued semigroup {T (t)}t≥0, then L is a sectorial operator of
angle π

2 , due to the identity

(λ+ L)−1 =

∫ ∞
0

e−λtT (t)dt, ∀λ ∈ C with Reλ > 0.

Definition C.3. For θ ∈ (0, π2 ], a map T : Sθ → L(X) is called a bounded holomorphic
(degenerate) semigroup of angle θ if it has the following properties:

1) The semigroup law T (λ)T (µ) = T (λ+ µ) holds for all λ, µ ∈ Sθ.
2) The map T : Sθ → L(X) is holomorphic.
3) The map T satisfies supλ∈Sθ′

∥∥T (λ)
∥∥ <∞ for any 0 < θ′ < θ.

The following well-known result shows the relationship between bounded holomorphic semi-
groups and sectorial operators.

Proposition C.4. There is a one to one correspondence between (single-valued) sectorial
operators L of angle θ ∈ [0, π/2) and bounded (single-valued) holomorphic semigroups T on
Sπ/2−θ, given by the relations

T (λ) = e−λL, (λ+ L)−1 =

∫ ∞
0

e−λtT (t)dt.

Readers can read Proposition 3.4.4 in book [19] for details, where the original proposition
deals with mutli-valued operators as well.

A wide class of examples of holomorphic semigroups are given by symmetric Markov semi-
groups {Pt}t≥0 on L2(Ω). In particular, Theorem 1.4.2 in [13] shows that any symmetric
Markov semigroup {Pt}t≥0 extends to a bounded holomorphic semigroup {Pλ}λ∈Sθp on Lp(Ω)

for 1 < p <∞, with θp = π
2 (1− |2p − 1|). For stronger results, we will need better estimates

of the heat kernel.

2. Heat kernel estimate. Let’s now return to the specific setting of p.c.f. self-similar sets.
The self-similar Dirichlet form (E , domE) was constructed by both a probabilistic approach
[3, 4, 5, 15, 29, 28] and an analytic approach [24, 25]. The sub-Gaussian heat kernel estimates
of the associated Markov semigroup {Pt}t≥0 are due to Hambly and Kumagai in [20], Kumagai
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and Sturm in [27]. In particular, on the double cover K̃ or K with Neumann boundary
condition, we have the upper bound

pt(x, y) ≤ c

tα/β
exp

(
− C(

d(x, y)β

t
)

1
β−1
)
, for 0 < t < 1.

In the above formula, α is the Hausdorff dimension and β is known as the walk-dimension of
K. In addition, it has been shown that β ≥ 2 for more general settings. See [17].

The sub-Gaussian upper bound can be generalized to long time estimate if we subtracting
its projection onto constant functions, i.e.∣∣pt(x, y)− µ−1/2

∣∣ ≤ c

tα/β
exp

(
− C(

d(x, y)β

t
)

1
β−1
)
, for 0 < t <∞,

where µ is the total measure. In fact, for t large, pt(x, y)− µ−1/2 has exponential decay over
t controlled by the first non-zero eigenvalue of the Laplacian.

Following a similar proof of Lemma 3.4.6 and Theorem 3.4.8 in [13], one can extend the
estimate to a half space of the complex plane,∣∣pλ(x, y)− µ−1/2

∣∣ ≤ c′

(r cos θ)α/β
exp

(
− C ′(d(x, y)β

r
)

1
β−1 cos θ

)
, (C.1)

for any λ = reiθ with −π
2 < θ < π

2 . This in particular, by applying Proposition C.4, implies
the following result.

Lemma C.5. The heat semigroup {Pλ}λ∈Sπ/2 is a holomorphic semigroup, so L = −∆ is
sectorial of angle 0.

Stronger results are established in [], where the Calderon-Zygmund operators are studied,
using (C.1). We will not state the general results here, but instead an important consequence.

Lemma C.6.
{

(1−∆)it
}
t∈R is a C0-group of bounded operators from Lp(K̃) → Lp(K̃) for

1 < p <∞.

The lemmas enables us to apply complex interpolation. Proposition 3.1 at the beginning
of Section 3 is another useful consequence of [23].

3. Retract. Lastly, we would like to mention the concept of retracts, see Section 6.4 in [7] for
more details. Let’s write X̄ = (X1, X2) and Z̄ = (Z1, Z2) for interpolation couples of Banach
spaces, and write X̄θ and Z̄θ for the corresponding interpolation spaces respectively, given by
the same interpolation functor θ (real, complex, or more general interpolation functors).

Definition C.7. We say X is a retract of Z if there is a bounded map R : Z → X and a
bounded map E : X → Z such that RE = id is the identity map on X.

For convenience, we call R the restriction map and E the extension map, and we write
Z y X from time to time.

More generally, for two classes of spaces {Xi}i∈I and {Zi}i∈I , we say {Xi}i∈I is a retract
of {Zi}i∈I , with restriction map R and extension map E, if each Xi is a retract of Zi with
R : Zi → Xi, E : Xi → Zi and RE = id on Xi.

The following lemma (Theorem 6.4.2 in [7]) is an easy consequence of the definition of
interpolation functors.
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Lemma C.8. Assume X̄ is a retract of Z̄ with the restriction map R and the extension map
E. Then X̄θ is a retract of Z̄θ, with the same R and E. In particular, X̄θ = RZ̄θ.

In our situation, we will use some variants of the above lemma.

Lemma C.9. Assume X̄ is a retract of Z̄ with the restriction map R and the extension map
E.

(a). Define Ti = EXi and Ki = {z ∈ Zi : Rz = 0} for i = 1, 2. Then

Zi = Ti ⊕Ki, and Z̄θ = T̄θ ⊕ K̄θ.

(b). Let Ȳ = (Y0, Y1) be an interpolation couple such that Yi ⊂ Xi. Define Ṫi = EYi with
norm induced from Yi, and Banach spaces

Żi = {z ∈ Zi : Rz ∈ Yi} = Ṫi ⊕Ki ⊂ Zi
for i = 1, 2. Then

¯̇Zθ = ¯̇Tθ ⊕ K̄θ = EȲθ ⊕ K̄θ = {z ∈ Z̄θ : Rz ∈ Ȳθ}.

The proof of part (a) is straightforward using basic property of interpolation functors, and
(b) is clearly using part (a).
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