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Abstract. By considering all possible reparametrizations of the flows instead of the
time-1 maps, we introduce Bowen topological entropy and local entropy on subsets for
flows. Through handling techniques for reparametrization balls, we prove a covering
lemma for fixed-point free flows and then prove a variational principle.

1. Introduction

Throughout this paper, we let X be a compact metric space with metric d. A
flow over X is a pair (X,φ), where φ : X × R → X is a continuous map satisfying
φt ◦ φs = φs+t for all t, s ∈ R and φt(·) = φ(·, t) is a homeomorphism on X. A
Borel probability measure µ on X is called φ−invariant if for any Borel set B, it
holds µ(φt(B)) = µ(B) for all t ∈ R. It is called ergodic if any φ−invariant Borel set
has measure 0 or 1. The set of all Borel probability measures, all φ−invariant Borel
probability measures and all ergodic φ−invariant Borel probability measures on X are
denoted by M(X), Mφ(X) and Eφ(X) respectively.

Entropy is an important concept in dynamical system. There are several ways to
define the entropy for flows. The traditional idea to define the entropy is to consider
the time-1 map φ1. Then the entropy for flows is defined by the usual entropy for the
discrete system (X,φ1). (We call such system a topological dynamical system, or a
TDS for short.) In [9], Thomas introduced a definition of the entropy by considering
reparametrizations of the flows. In this paper, we will study the entropy for flows via
reparametrizations.

For a closed interval I which contains the origin, a continuous map α : I → R is
called a reparametrization if it is a homeomorphism onto its image and α(0) = 0. The
set of all such reparametrizations on I is denoted by Rep(I). For a flow φ on X, x ∈ X,
t ∈ R+ and ε > 0, we set

B(x, t, ε, φ) = {y ∈ X : there exists α ∈ Rep[0, t] such that

d(φα(s)x, φsy) < ε, for all 0 ≤ s ≤ t},
and call B(x, t, ε, φ) a (t, ε, φ)−ball or a reparametrization ball in X. Clearly, all the
reparametrization balls are open sets.

In the literature of entropy for flows via reparametrizations, (t, ε, φ)−balls are used in
place of the usual Bowen balls. Topological entropy for one parameter flows on compact

2000 Mathematics Subject Classification. Primary: 37B40, 54H20.
Key words and phrases. entropy, Bowen entropy, variational principle, reparametrization, flow.

1



2 DOU DOU, MENG FAN AND HUA QIU

metric spaces is defined by Bowen [1, 2]. To investigate the topological entropies of
mutually conjugate expansive flows, Thomas [9] first defined the entropy for flows
arised from allowing reparametrizations of orbits. Later on, he developed this study
in [10] and showed that his definition of entropy is equivalent to Bowen’s definition
for any flow without fixed points on compact metric spaces. Sun and Vargas studied
measure-theoretic aspect of this manner in [7, 8].

In 1973, Bowen [3] introduced the topological entropy for any subset in a way resem-
bling the Hausdorff dimension for discrete dynamical systems, which is called Bowen
topological entropy. In particular, Bowen topological entropy for the whole space co-
incides with the original topological entropy for compact discrete dynamical systems.
This definition plays a key role in topological dynamics and dimension theory [6].
Since the variational principles are fundamental results in ergodic theory and dynami-
cal systems, it is nature to find a variational principle for Bowen topological entropy.
Inspired by a classical result in dimension theory, Feng and Huang[4] proved that for
any non-empty compact subset K, Bowen topological entropy on K is the supremum of
the measure theoretic local entropies, where the supremum is taken over all the Borel
probability measures that concentrate on K. The proof is along the following steps:

(1) define the weighted entropy;
(2) give the relation between Bowen entropy and weighted entropy (actually they

coincide);
(3) prove a dynamical Frostman’s Lemma via weighted entropy;
(4) prove the result for compact subsets.

In this paper, we will introduce Bowen entropy on subsets for compact metric flows
through reparametrization balls and then apply Feng and Huang’s steps to prove a
variational principle for compact metric flows without fixed points. We should em-
phasize here that the technical difficulties arising from allowing reparametrizations of
orbits need to be overcome. The paper is organized as follows. In section 2, we intro-
duce Bowen topological entropy and local measure theoretic entropy for flows. Some
basic properties are also listed therein. In section 3, we give some lemmas related to
the reparametrization balls and then prove a covering lemma. These lemmas will play
a key role for proving the main theorem. Finally, in section 4, we follow Feng and
Huang’s technical line to prove the theorem.

2. Bowen topological entropy and local measure theoretic entropy

Let (X,φ) be a flow and Z a subset of X. For s ≥ 0, N ∈ N, and ε > 0, define

Ms
N,ε(φ, Z) = inf

∑
i

exp(−sti),

where the infimum is taken over all finite or countable families of reparametrization
balls {B(xi, ti, ε, φ)}, xi ∈ X and ti ≥ N such that

⋃
B(xi, ti, ε, φ) ⊃ Z.

The quantity Ms
N,ε dose not decrease as N increases and ε decreases, hence the

following limits exist:

Ms
ε(φ, Z) = lim

N→∞
Ms

N,ε(φ, Z),Ms(φ, Z) = lim
ε→0
Ms

ε(φ, Z).
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Proposition 2.1. Let (X,φ) be a flow.

(1) For any s ≥ 0, N ∈ N and ε > 0, Ms
N,ε(φ, ·) is an outer measure on X.

(2) For any s ≥ 0, Ms(φ, ·) is a metric outer measure on X.

Proof. (1) is a direct result from the definition ofMs
N,ε(φ, ·) and we only need to prove

(2).

Suppose d = d(E,F ) > 0 and let 0 < ε < d/2, N ∈ N. For any δ > 0, we choose
a family of reparametrization balls {B(xi, ti, ε, φ)} with all ti ≥ N that covers E ∪ F
such that Ms

N,ε(φ,E ∪ F ) >
∑

i exp(−sti) − δ. Then {B(xi, ti, ε, φ)} can be divided
into two disjoint families {B(xi′ , ti′ , ε, φ)} and {B(xi′′ , ti′′ , ε, φ)} that cover E and F
respectively. Thus

Ms
N,ε(φ,E ∪ F ) >

∑
i

exp(−sti)− δ

=
∑
i′

exp(−sti′) +
∑
i′′

exp(−sti′′)− δ

≥Ms
N,ε(φ,E) +Ms

N,ε(φ, F )− δ,

which implies that Ms
N,ε(φ,E ∪ F ) ≥ Ms

N,ε(φ,E) + Ms
N,ε(φ, F ). Hence we have

Ms(φ,E ∪ F ) = Ms(φ,E) + Ms(φ, F ) and this means that Ms(φ, ·) is a metric
outer measure on X. �

The Bowen topological entropy hBtop(φ, Z) is defined as a critical value of the parameter
s, where Ms(φ, Z) jumps from ∞ to 0, i.e.

hBtop(φ, Z) = inf{s :Ms(φ, Z) = 0}
= sup{s :Ms(φ, Z) =∞}.

Proposition 2.2. Let (X,φ) be a flow. Then

(1) for Z ⊆ Z ′ ⊆ X, we have

hBtop(φ, Z) ≤ hBtop(φ, Z
′);

(2) for Z ⊆
∞⋃
i=1

Zi, s ≥ 0, we have

hBtop(φ, Z) ≤ sup
i≥1

hBtop(φ, Zi).

Proof. (1) It is easy to prove that Ms
N,ε(Z, φ) ≤ Ms

N,ε(Z
′, φ) when Z ⊆ Z ′. Then

Ms(Z ′, φ) = 0 implies Ms(Z, φ) = 0, which deduce that

hBtop(φ, Z) ≤ hBtop(φ, Z
′).

(2) Assume that

hBtop(φ, Z) > sup
i≥1

hBtop(φ, Zi).
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Then for some δ > 0, hBtop(φ, Z) > hBtop(φ, Zi) + δ for any i ≥ 1. For s = hBtop(φ, Z)− δ,
we have Ms(φ, Z) =∞, but Ms(φ, Zi) = 0 for each i. Hence

Ms(φ, Z) >
∞∑
i=1

Ms(φ, Zi),

a contradiction. �

For x ∈ X, ε > 0, t ≥ 0 and n ∈ N, we can define the following two classes of usual
Bowen balls:

Bt(x, ε, φ) = {y ∈ X : d(φsx, φsy) < ε, for all 0 ≤ s ≤ t}
and

Bn(x, ε, φ1) = {y ∈ X : d(φix, φiy) < ε, for all i = 0, 1, . . . , n− 1}.
Replacing the reparametrization balls by the usual Bowen balls Bt(x, ε, φ), we can have
the definition of the usual Bowen topological entropy on a subset Z for the flow (X,φ),

denote it by h̃Btop(Z, φ). If we replace the reparametrization balls by the Bowen balls
Bn(x, ε, φ1), we can have the definition of the usual Bowen topological entropy on a
subset Z for the time-1 map, denote it by hBtop(Z, φ1).

Remark 2.3. For any ε > 0, since X is compact and φ is continuous, there exists
δ > 0 such that for any 0 ≤ s ≤ 1 and x, y ∈ X, we have d(φsx, φsy) < ε whenever
d(x, y) < δ. Then it is easy to see that

Bdte(x, δ, φ1) ⊂ Bt(x, ε, φ) ⊂ Bdte(x, ε, φ1),(2.1)

where dte is the largest integer which is not smaller than t. Hence from the definitions

of the above Bowen topological entropies, hBtop(Z, φ1) = h̃Btop(Z, φ) for any subset Z of
X. Moreover, since the reparametrization ball B(x, t, ε, φ) always contains the usual

Bowen ball Bt(x, ε, φ), we have that hBtop(Z, φ) ≤ h̃Btop(Z, φ). Hence for any Z ⊂ X,

hBtop(Z, φ) ≤ hBtop(Z, φ1).

But it is not clear whether the equality holds for every Z ⊂ X.

Let µ ∈ M(X). The measure-theoretical lower and upper local entropies of µ are
defined respectively by

hµ(φ) =

∫
hµ(φ, x) dµ, and hµ(φ) =

∫
hµ(φ, x) dµ

where

hµ(φ, x) = lim
ε→0

lim inf
t→+∞

−1

t
log µ(B(x, t, ε, φ))

and

hµ(φ, x) = lim
ε→0

lim sup
t→+∞

−1

t
log µ(B(x, t, ε, φ)).

Remark 2.4. Similar to Remark 2.3, it holds that

hµ(φ) ≤ hµ(φ1), and hµ(φ) ≤ hµ(φ1).

It is also not clear whether the equalities hold for every µ ∈M(X).
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Now we state the main theorem.

Theorem 2.5. Let (X,φ) be a compact metric flow without fixed points. If K is a
non-empty compact subset of X, then

(2.2) hBtop(φ,K) = sup{hµ(φ) : µ ∈M(X), µ(K) = 1}.

We suggest here that there are some further results related to Theorem 2.5 for
flows without fixed points. Due to Feng and Huang [4], the compact subsets K’s can
be improved to analytic sets under the finite entropy or even zero mean dimension
assumption. And one can also consider another kind of concept, named as packing
entropy, then there will be a variational principle via the measure-theoretical upper
local entropy. The proofs may involve more results in ergodic theory to flows and more
techniques in geometric measure theory.

3. Properties about reparametrization balls and a covering lemma

In this section, we first will give some properties about reparametrization balls for
flows without fixed points. Then we will apply these results to prove a related covering
lemma(Theorem 3.5). This lemma is crucial in the proof of Theorem 2.5.

Lemma 3.1 (Lemma 1.2 of [9]). Let (X,φ) be a compact metric flow without fixed
points. For any η > 0, there exists θ > 0 such that for any x, y ∈ X, any interval I
containing the origin, and any reparametrization α ∈ Rep(I), if d(φα(s)(x), φs(y)) < θ
for all s ∈ I, then it holds that

|α(s)− s| <

{
η|s|, if |s| > 1,

η, if |s| ≤ 1.

Lemma 3.2. Let (X,φ) be a compact metric flow without fixed points. Then for any
0 < η < 1, there exists θ > 0 such that for any x ∈ X, ε > 0, 0 < ε′ < θ, t > 1

1−η and

y ∈ B(x, t, ε, φ), it holds that

(3.1) B(y, t̃, ε′, φ) ⊆ B(x, t̃, ε+ ε′, φ),

where t̃ = (1− η)t.

Proof. Let θ be the same as in Lemma 3.1. By the definition of the reparametrization
ball, for any y ∈ B(x, t, ε, φ), there exists an α1 ∈ Rep[0, t], such that d(φα1(s)x, φsy) <

ε, ∀s ∈ [0, t]. And for any z ∈ B(y, t̃, ε′, φ), there exists an α2 ∈ Rep[0, t̃], such that
d(φα2(s)y, φsz) < ε′,∀s ∈ [0, t̃].

From Lemma 3.1 and the definition of t̃, we know that |α2(t̃) − t̃| < ηt̃. This can
deduce that α2(t̃) < (1 + η)t̃ = (1 − η2)t < t. Hence α2(s) ∈ [0, t] whenever s ∈ [0, t̃]
and α1 ◦ α2 ∈ Rep[0, t̃]. Let α3 = α1 ◦ α2, then it holds that

d(φα3(s)x, φsz) ≤ d(φα1◦α2(s)x, φα2(s)y) + d(φα2(s)y, φsz)

< ε+ ε′,

for any s ∈ [0, t̃]. Thus z ∈ B(x, t̃, ε+ ε′, φ). �
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Lemma 3.3. Let (X,φ) be a compact metric flow without fixed points. Let 0 < η < 1,
t > 1, and θ be as in Lemma 3.1. Write t̃ = (1− η)t. Then for any 0 < ε < θ,

(1) if y ∈ B(x, t, ε, φ), then x ∈ B(y, t̃, ε, φ);
(2) if y ∈ B(x, t, ε

2
, φ), then B(x, t, ε

2
, φ) ⊆ B(y, t̃, ε, φ).

Proof. (1). Let y ∈ B(x, t, ε, φ) and α1 be a reparametrization on [0, t] such that
d(φα1(s)x, φsy) < ε, ∀s ∈ [0, t]. By Lemma 3.1, α1(t) > t − ηt = t̃. Letting α2 =

α−1
1 |[0,t̃] ∈ Rep[0, t̃], we have

d(φα2(s)y, φsx) = d(φα1◦α−1
1 (s)x, φα−1

1 (s)y) < ε,∀s ∈ [0, t̃].

This proves (1).

(2). For y ∈ B(x, t, ε
2
, φ), let α1 ∈ Rep[0, t] such that d(φα1(s)x, φsy) < ε

2
for all

s ∈ [0, t]. ∀z ∈ B(x, t, ε
2
, φ), there exists α2 ∈ Rep[0, t] such that d(φα2(s)x, φsz) < ε

2

for all s ∈ [0, t].

If α1(t) ≥ α2(t), then α−1
1 ◦ α2 is well-defined on [0, t]. Define α3 ∈ Rep[0, t] by

α3 = α−1
1 ◦ α2. Then it holds that for every s ∈ [0, t],

d(φα3(s)y, φsz) ≤ d(φα2(s)x, φsz) + d(φα2(s)x, φα3(s)y)

<
ε

2
+ d(φα1◦α3(s)x, φα3(s)y) (note that α3(s) ≤ t)

<
ε

2
+
ε

2
= ε,

i.e., z ∈ B(y, t, ε, φ).

If α1(t) < α2(t), a similar argument shows that y ∈ B(z, t, ε, φ). By (1), we then
have that z ∈ B(y, t̃, ε, φ).

Combining the above two cases, we conclude that B(x, t, ε
2
, φ) ⊆ B(y, t̃, ε, φ). �

Lemma 3.4. Let (X,φ) be a compact metric flow without fixed points. For any ε > 0,
there exists δ > 0 depending only on ε, such that

(3.2) B(x, t1, ε, φ) ⊂ B(x, t2, 2ε, φ), for any x ∈ X,

whenever t1, t2 > 0 and |t1 − t2| < δ.

Proof. It is obvious true for t1 ≥ t2. Now we assume t1 < t2.

For any y ∈ B(x, t1, ε, φ), let α1 ∈ Rep[0, t1] such that d(φα1(s)x, φsy) < ε, ∀s ∈ [0, t1].
We now define α2 ∈ Rep[0, t2] by

α2(s) =

{
α1(s), if 0 ≤ s ≤ t1
α1(t1) + s− t1, if t1 < s ≤ t2.

Then for 0 ≤ s ≤ t1, d(φα2(s)x, φsy) = d(φα1(s)x, φsy) < ε. Since X is a compact space
and φ is continuous, there exists δ > 0 such that d(φtx, x) < ε

2
for any x ∈ X whenever
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0 < t < δ. And hence for t1 < s ≤ t2,

d(φα2(s)x, φsy) = d(φs−t1φα1(t1)x, φs−t1φt1y)

≤ d(φs−t1φα1(t1)x, φα1(t1)x) + d(φα1(t1)x, φt1y) + d(φs−t1φt1y, φt1y)

<
ε

2
+ ε+

ε

2
= 2ε.

�

Now we give our covering lemma which is a variation of the classical 5r-coving Lemma
in fractal geometry(see, for example, Theorem 2.1 of [5]).

Theorem 3.5 (A covering lemma for reparametrization balls). Let (X,φ) be a
compact metric flow without fixed points. For 0 < η < 1, let θ > 0 be as in Lemma
3.1. Let B = {B(x, t, ε, φ)}(x,t)∈I be a family of reparametrization balls in X with

0 < ε < θ
2

and t > 1
(1−η)2

. Then there exists a finite or countable subfamily B′ =

{B(x, t, ε, φ)}(x,t)∈I′(I ′ ⊂ I) of pairwise disjoint reparametrization balls in B such that⋃
B∈B

B ⊆
⋃

(x,t)∈I′
B(x, t̂, 5ε, φ)

where t̂ = (1− η)2t.

Proof. We denote by A = {x : (x, t) ∈ I}, the collection of central points of the
reparametrization balls in B. Let

M = inf{t : (x, t) ∈ I}
and

A1 = {x ∈ A : (x, t) ∈ I and M ≤ t < M + δ},
where δ > 0 is choosen as in Lemma 3.4.

Choose an arbitrary x1 ∈ A1 and then inductively choose

xk+1 ∈ A1 \
k⋃
i=1

B(xi, t̃i, 3ε, φ) (recall that t̃i = (1− η)ti)

as long as A1 \
k⋃
i=1

B(xi, t̃i, 3ε, φ) 6= ∅, where each ti satisfies (xi, ti) ∈ I and M ≤ ti <

M + δ. For each xi, we only choose one such ti, noticing that there may exist different
ti’s with (xi, ti) ∈ I.

Firstly we show that B(xi, ti, ε, φ)’s are mutually disjoint. Suppose we have chosen
xi and xj, i > j and there exists y ∈ B(xi, ti, ε, φ) ∩ B(xj, tj, ε, φ). As |ti − tj| < δ, by
Lemma 3.4,

y ∈ B(xi, ti, ε, φ) ⊆ B(xi, tj, 2ε, φ).

By (1) of Lemma 3.3, it holds that

xi ∈ B(y, t̃j, 2ε, φ).

And thus by Lemma 3.2, xi ∈ B(xj, t̃j, 3ε, φ). This contradicts the choice of xi.
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Secondly we claim that there exists a finite k1 such that

A1 ⊂
k1⋃
i=1

B(xi, t̃i, 3ε, φ).

To see this, we note that there exists r > 0 such that d(φsx, φsy) < ε for any s ∈
[0,M + δ], whenever d(x, y) < r. So each reparametrization ball B(xi, ti, ε, φ) contains
an ordinary ball B(xi, r). Since a compact metric space cannot contain infinite many
mutually disjoint balls with the same radius r, we can conclude that k1 is finite.

For any x ∈ A1, we can choose an xi from {x1, · · · , xk1} such that x ∈ B(xi, t̃i, 3ε, φ).
Then for (x, t) ∈ I with M ≤ t < M + δ, by Lemma 3.2 and 3.4, we have that

B(x, t, ε, φ) ⊂ B(x, ti, 2ε, φ) ⊂ B(x, t̃i, 2ε, φ) ⊂ B(xi, t̂i, 5ε, φ).

Hence ⋃
x∈A1,(x,t)∈I

B(x, t, ε, φ) =
⋃

x∈A1,(x,t)∈I,M≤t<M+δ

B(x, t, ε, φ)

⊂
k1⋃
i=1

B(xi, t̂i, 5ε, φ).

Let

A2 = {x ∈ A : (x, t) ∈ I and M + δ ≤ t < M + 2δ}
and

A′2 = {x ∈ A2 : there exists t with (x, t) ∈ I and M + δ ≤ t < M + 2δ

such that B(x, t, ε, φ) ∩
k1⋃
i=1

B(xi, ti, ε, φ) = ∅}.

For x ∈ A2 \A′2, for each t with (x, t) ∈ I and M + δ ≤ t < M + 2δ, there exists some
i ∈ {1, 2, · · · , k1}, such that

B(x, t, ε, φ) ∩B(xi, ti, ε, φ) 6= ∅.
Choose one such t and any y ∈ B(x, t, ε, φ) ∩ B(xi, ti, ε, φ). By (1) of Lemma 3.3, we
have

x ∈ B(y, t̃, ε, φ).

By Lemma 3.4 and 3.2, we have

B(y, t̃, ε, φ) ⊆ B(y, t̃i, 2ε, φ) ⊆ B(xi, t̃i, 3ε, φ).

Thus

x ∈ B(xi, t̃i, 3ε, φ).

This yields that

(3.3) A2 \ A′2 ⊆
k1⋃
i=1

B(xi, t̃i, 3ε, φ).
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Choose xk1+1 ∈ A′2 arbitrarily and then inductively choose

xk+1 ∈ A′2 \
k⋃

i=k1+1

B(xi, t̃i, 3ε, φ).

As above there is a finite k2 such that the reparametrization balls B(xi, ti, ε, φ), i =
1, 2, · · · , k2, are pairwise disjoint and

A′2 ⊆
k2⋃

i=k1+1

B(xi, t̃i, 3ε, φ).

Combining with (3.3), using the same argument as above, we get⋃
x∈A2,(x,t)∈I

B(x, t, ε, φ) ⊂
k2⋃
i=1

B(xi, t̂i, 5ε, φ).

Repeating the above process, we finish the proof.

�

4. Proof of Theorem 2.5

With the preparation in Section 3, we can now proceed Feng-Huang’s steps to prove
Theorem 2.5.

Step 1. Defining a weighted entropy for flows.

Let (X,φ) be a compact metric flow. For any bounded function f : X → R, N ∈ N
and ε > 0, define

(4.1) Ws
N,ε(φ, f) = inf

∑
i

ci exp(−sti),

where the infimum is taken over all finite or countable families {(B(xi, ti, ε, φ), ci)} such
that 0 < ci <∞, xi ∈ X, ti ≥ N for all i and∑

i

ciχBi ≥ f,

where Bi := B(xi, ti, ε, φ) and χA denotes the characteristic function of set A.

For Z ⊆ X, we set Ws
N,ε(φ, Z) = Ws

N,ε(φ, χZ). The quantity Ws
N,ε(φ, Z) does not

decrease as N increases and ε decreases, hence the following limits exist:

Ws
ε (φ, Z) = lim

N→∞
Ws

N,ε(φ, Z), Ws(φ, Z) = lim
ε→0
Ws

ε (φ, Z).

Clearly, there exists a critical value of the parameter s, which will be denoted as
hWB
top (φ, Z), where Ws(φ, Z) jumps from ∞ to 0, i.e.

hWB
top (φ, Z) = inf{s :Ws(φ, Z) = 0}

= sup{s :Ws(φ, Z) =∞}.

We call hWB
top (φ, Z) the weighted Bowen topological entropy (or just weighted entropy for

short) of the flow φ on Z.
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Step 2. Relations between Bowen entropy and weighted entropy.

Proposition 4.1. Let (X,φ) be a compact metric flow without fixed points, and Z ⊂ X.
Let 1 < η < 1 and θ be as in Lemma 3.1. Then for any s ≥ 0, δ > 0 and 0 < ε < θ

6
,

(4.2) M
s+δ

(1−η)3

N,8ε (φ, Z) ≤ Ws
N,ε(φ, Z) ≤Ms

N,ε(φ, Z)

when N ∈ N is large enough.

Proof. Taking f = χZ and ci ≡ 1 in (4.1), it is clear that the second inequality holds
for each N ∈ N. In the following, we prove the first inequality when N is large enough.

LetN > max{ 1
(1−η)3

, 2} such that n2e−(n−1)δ ≤ e−s for all n ≥ N . Let {B(xi, ti, ε, φ), ci}i∈I
be a family so that I ⊂ N, xi ∈ X, 0 < ci <∞, ti ≥ N and

(4.3)
∑
i∈I

ciχBi ≥ χZ ,

where as in Step 1, we denote Bi := B(xi, ti, ε, φ). Then we will show that

(4.4) M
s+δ

(1−η)3

N,8ε (φ, Z) ≤
∑
i∈I

cie
−sti ,

and hence M
s+δ

(1−η)3

N,8ε (φ, Z) ≤ Ws
N,ε(φ, Z).

For simplicity, in the rest of the proof, we denote B̃i := B(xi, t̃i, ε, φ) and 5B̂i :=
B(xi, t̂i, 5ε, φ), for i ∈ I.

Now we decompose I into subsets In := {i ∈ I : ti ∈ (n−1, n]} and decompose each
In into finite subsets In,k := {i ∈ In : i ≤ k} for n ≥ N and k ∈ N. For τ > 0, set

Zn,τ = {x ∈ Z :
∑
i∈In

ciχBi(x) > τ} and

Zn,k,τ = {x ∈ Z :
∑
i∈In,k

ciχBi(x) > τ}.

For each n ≥ N, k ∈ N and τ > 0, let us consider the set Zn,k,τ . We may assume
that each ci is a positive integer. This could be done as follows. Since In,k is finite and
by approximating the ci’s from above, we may first assume ci’s are positive rational
numbers. Also notice that Zn,k,dτ for dci’s is equal to Zn,k,τ for ci’s, so by multiplying
with a common denominator d, we may then assume that each ci is a positive integer.
Let m = dτe, the smallest integer no less than τ . Denote B = {Bi : i ∈ In,k} and
define u : B → Z by u(Bi) = ci. We now inductively define integer-valued functions
v1, v2, · · · , vm on B and subfamilies B1,B2, · · · ,Bm of B starting with v0 = u. Using
Theorem 3.5, we find a pairwise disjoint subfamily B1 of B such that⋃

B∈B

B ⊆
⋃
B∈B1

5B̂
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and hence Zn,k,τ ⊆
⋃
B∈B1 5B̂. Then by repeatedly using Theorem 3.5, for j = 1, . . . ,m,

we can define inductively disjoint subfamilies Bj of B such that

Bj ⊆ {B ∈ B : vj−1(B) ≥ 1}, Zn,k,τ ⊆
⋃
B∈Bj

5B̂

and the functions vj’s such that

vj(B) =

{
vj−1(B)− 1 for B ∈ Bj,
vj−1(B) for B ∈ B \ Bj.

This is possible since for j < m,

Zn,k,τ ⊆ {x :
∑

B∈B:x∈B

vj(B) ≥ m− j},

whence every x ∈ Zn,k,τ belongs to some reparametrization ball B ∈ B with vj(B) ≥ 1.
Thus

m∑
j=1

#(Bj)e−sn =
m∑
j=1

∑
B∈Bj

(vj−1(B)− vj(B))e−sn

≤
m∑
j=1

∑
B∈B

(vj−1(B)− vj(B))e−sn

≤
∑
B∈B

u(B)e−sn =
∑
i∈In,k

cie
−sn.

Denote Jn,k,τ := {i ∈ I : Bi ∈ Bj0}, where j0 ∈ {1, . . . ,m} is chosen such that #(Bj0)
is the smallest. Then

#(Jn,k,τ )e−sn ≤
1

m

∑
i∈In,k

cie
−sn ≤ 1

τ

∑
i∈In,k

cie
−sn.

Moreover, due to the construction of Bj0 , Zn,k,τ ⊆
⋃
i∈Jn,k,τ 5B̂i.

We next show that for each n ≥ N and τ > 0, we have

(4.5) M
s+δ

(1−η)3

N,8ε (φ, Zn,τ ) ≤
1

n2τ

∑
i∈In

cie
−sti .

Assume Zn,τ 6= ∅. Since Zn,k,τ ↑ Zn,τ , we have that Zn,k,τ 6= ∅ when k is large enough.
Let Jn,k,τ be the sets constructed in the previous discussion. Denote En,k,τ = {xi : i ∈
Jn,k,τ}. Note that the family of all non-empty compact subsets of X is compact under
the Hausdorff metric. So there exists a subsequence {kj} of natural numbers and a
non-empty compact set En,τ ⊂ X such that En,kj ,τ converges to En,τ in the Hausdorff
metric as j goes to infinity.

Since any two points in En,k,τ can not be contained in the same Bi, any two points in
En,τ also can not. Note that each Bi for i ∈ Jn,k,τ contains a ball with radius r > 0 (for
the choice of r, one may refer to the proof of Theorem 3.5). Thus En,τ is a finite set,
moreover, #(En,kj ,τ ) = #(En,τ ) when j is sufficiently large. By choosing subsequence
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of {kj}(still denoted by {kj}), when xij ∈ En,kj ,τ tends to x ∈ En,τ , we can make the
corresponding parameters tij converges to a number denoted by tx. We note that each
tx(x ∈ En,τ ) lies in the interval [n− 1, n].

By Lemma 3.4, B(xij , t̂ij , 5ε, φ) ⊆ B(xij , t̂x, 6ε, φ) when j is large enough. Since

when j is large enough, xij ∈ B(x, t̂x, ε, φ), by Lemma 3.2 (here we require that ε < θ
6
),

B(xij , t̄x, 6ε, φ) ⊆ B(x, t̄x, 7ε, φ), where t̄ = (1− η)3t. Hence

Zn,kj ,τ ⊆
⋃

i∈Jn,kj,τ

5B̂i ⊆
⋃

x∈En,τ

B(x, t̄x, 7ε, φ),

when j is large enough. And thus

Zn,τ ⊆
⋃

x∈En,τ

B(x, t̄x, 8ε, φ).

Since #(En,kj ,τ ) = #(En,τ ) when j is large enough, we then have

#(En,τ )e
−ns ≤ 1

τ

∑
i∈In

cie
−sn.

This forces

M
s+δ

(1−η)3

N,8ε (φ, Zn,τ ) ≤
∑
x∈En,τ

e
− s+δ

(1−η)3
t̄x =

∑
x∈En,τ

e−(s+δ)tx

≤ #(En,τ )e
−(s+δ)(n−1) ≤ 1

enδ−(s+δ)τ

∑
i∈In

cie
−sn

≤ 1

n2τ

∑
i∈In

cie
−sn ≤ 1

n2τ

∑
i∈In

cie
−sti .

Thus we have (4.5).

Fix an τ ∈ (0, 1). Note that
∑∞

n=N n
−2 < 1. It follows that Z ⊂

⋃∞
n=N Zn,n−2τ from

(4.3). Hence by Proposition 2.1 and (4.5), we have

M
s+δ

(1−η)3

N,8ε (φ, Z) ≤
∞∑
n=N

M
s+δ

(1−η)3

N,8ε (φ, Zn,n−2τ ) ≤
∞∑
n=N

1

τ

∑
i∈In

cie
−sti =

1

τ

∑
i∈I

cie
−sti .

Let τ tend to 1, we get the desired result. �

Corollary 4.2. Ms+δ(φ, Z) ≤ Ws(φ, Z) ≤Ms(φ, Z) and hBtop(φ, Z) = hWB
top (φ, Z).

Step 3. A Frostman lemma for fixed-point free flows.

Proposition 4.3. Let (X,φ) be a compact metric flow without fixed points and K
a non-empty compact subset of X. Let s ≥ 0, N ∈ N and ε > 0. Suppose that
c := Ws

N,ε(φ,K) > 0. Then there exists a Borel probability measure µ on X such that
µ(K) = 1 and

(4.6) µ(B(x, t, ε, φ)) ≤ 1

c
e−st, ∀x ∈ X, t ≥ N.
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Proof. Since c < ∞, we can define a function p on C(X) (the space of continuous
real-valued functions on X) by

p(f) = (1/c)Ws
N,ε(φ, χK · f).

Let 1 ∈ C(X) denote the constant function 1(x) ≡ 1. It is easy to verify that

(1) p(f + g) ≤ p(f) + p(g) for any f, g ∈ C(X);
(2) p(`f) = `p(f) for any ` ≥ 0 and f ∈ C(X);
(3) p(1) = 1, 0 ≤ p(f) ≤‖ f ‖∞ for any f ∈ C(X), and p(g) = 0 for g ∈ C(X) with

g ≤ 0.

By the Hahn-Banach theorem, we can extend the linear functional l 7→ `p(1), ` ∈ R,
from the subspace of the constant functions to a linear functional L : C(X) → R
satisfying

L(1) = p(1) = 1 and − p(−f) ≤ L(f) ≤ p(f) for any f ∈ C(X).

If f ∈ C(X) with f ≥ 0, then p(−f) = 0 and so L(f) ≥ 0. Hence combining the
fact L(1) = 1, we can use the Riesz representation theorem to find a Borel probability
measure µ on X such that L(f) =

∫
fdµ for f ∈ C(X).

For any compact set E ⊂ X \K, by the Uryson lemma, there is f ∈ C(X) such that
0 ≤ f ≤ 1, f(x) = 1 for x ∈ E and f(x) = 0 for x ∈ K. Then f · χK ≡ 0 and thus
p(f) = 0. Hence µ(E) ≤ L(f) ≤ p(f) = 0. This shows µ(X \K) = 0, i.e. µ(K) = 1.

For any compact set E ⊂ B(x, t, ε, φ), by the Uryson lemma again, there exists
f ∈ C(X) such that 0 ≤ f ≤ 1, f(y) = 1 for y ∈ E and f(y) = 0 for y ∈ X \
B(x, t, ε, φ). Then µ(E) ≤ L(f) ≤ p(f). Since f · χK ≤ χB(x,t,ε,φ) and t ≥ N , we have
Ws

N,ε(φ, χK · f) ≤ e−st and thus p(f) ≤ 1
c
e−ts. Therefore µ(E) ≤ 1

c
e−st. It follows that

µ(B(x, t, ε, φ)) = sup{µ(E) : E is a compact subset of B(x, t, ε, φ)} ≤ 1

c
e−st.

�

Step 4. Proof of Theorem 2.5.

Proof. We first show that hBtop(φ,K) ≥ hµ(φ) for any µ ∈ M(X) with µ(K) = 1. Let
µ be a such measure. For any x ∈ X and ε > 0, we write

hµ(φ, x, ε) = lim inf
t→∞

−1

t
log µ(B(x, t, ε, φ)).

Clearly hµ(φ, x, ε) is nonnegative and increases as ε decreases. Hence by the monotone
convergence theorem and the definition of the lower local entropy,

lim
ε→0

∫
hµ(φ, x, ε) dµ =

∫
hµ(φ, x) dµ = hµ(φ).

Let 0 < η < 1, we will show that hBtop(φ,K) ≥ (1 − η)hµ(φ). Clearly, it is sufficient

to show hBtop(φ,K) ≥ (1− η)
∫
hµ(φ, x, ε) dµ for sufficiently small ε > 0.
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Let θ > 0 be as in Lemma 3.3. Fix 0 < ε < θ and ` ∈ N. Denote u` =
min{`,

∫
hµ(φ, x, ε) dµ − 1

`
}. Then there exist a Borel set A` ⊂ X with µ(A`) > 0

and 2 < N ∈ N such that

(4.7) µ(B(x, t, ε, φ)) ≤ e−u`t, ∀x ∈ A`, t ≥ N.

Let {B(xi, ti,
1
2
ε, φ)} be a countable or finite family so that xi ∈ X, t̃i = (1− η)ti ≥ N

and
⋃
iB(xi, ti,

1
2
ε, φ) ⊃ (K ∩ A`). We may assume that for each i, B(xi, ti,

1
2
ε, φ) ∩

(K ∩ A`) 6= ∅, and choose yi ∈ B(xi, ti,
1
2
ε, φ) ∩ (K ∩ A`). Then by (4.7) and (2) of

Lemma 3.3, we have∑
i

e−ti(1−η)u` =
∑
i

e−t̃iu` ≥
∑
i

µ(B(yi, t̃i, ε, φ))

≥
∑
i

µ(B(xi, ti,
1

2
ε, φ)) ≥ µ(K ∩ A`) = µ(A`) > 0.

It follows thatM(1−η)u`(φ,K) ≥M(1−η)u`
d N
1−η e,

ε
2

(φ,K) ≥ µ(K ∩A`). Therefore hBtop(φ,K) ≥
(1− η)µ`. Let `→∞, we have u` →

∫
hµ(φ, x, ε) dµ, and the inequality hBtop(φ,K) ≥

(1− η)
∫
hµ(φ, x, ε) dµ holds. Hence hBtop(φ,K) ≥ (1− η)hµ(φ).

Let η → 0, we then have the desired inequality.

We next show that hBtop(φ,K) ≤ sup{hµ(φ) : µ ∈ M(X), µ(K) = 1}. We can

assume that hBtop(φ,K) > 0. By Corollary 4.2, we have hWB
top (φ,K) = hBtop(φ,K). Let

0 < s < hBtop(φ,K). Then there exist ε > 0 and N ∈ N such that c :=Ws
N,ε(φ,K) > 0.

By Proposition 4.3, there exists µ ∈M(X) with µ(K) = 1 such that µ(B(xi, ti, ε, φ)) ≤
1
c
e−ts for any x ∈ X and t ≥ N . Clearly h(φ, x) ≥ hµ(φ, x, ε) ≥ s for each x ∈ X and

hence hµ(φ) ≥
∫
hµ(φ, x) dµ ≥ s. This finishes the proof of Theorem 2.5. �
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