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Abstract

Let A be an n x n real expanding matrix and D be a finite subset of R™ with
0 € D. The family of maps {fi(x) = A7 (z + d)}aep is called a self-affine iterated
function system (self-affine IFS). The self-affine set K = K(A, D) is the unique com-
pact set determined by (A, D) satisfying the set-valued equation K = U fa(K). The

deD

number s = n In(#D)/In(q) with ¢ = |det(A)], is the so-called pseudo similarity di-
mension of K. As shown by He and Lau, one can associate with A and any number
s > 0 a natural pseudo Hausdorff measure denoted by H{. In this paper, we show
that, if s is chosen to be the pseudo similarity dimension of K, then the condition
HE(K) > 0 holds if and only if the IFS {fs}4ep satisfies the open set condition
(OSC). This extends the well-known result for the self-similar case that the OSC is
equivalent to K having positive Hausdorff measure H® for a suitable s. Furthermore,
we relate the exact value of pseudo Hausdorfl measure H2 (K) to a notion of upper
s-density with respect to the pseudo norm w(z) associated with A for the measure

p= lim > Odo+ Ady++AM-14,, , in the case that #D < |det A|.
M—00 g, .. dy_1€D

1 Introduction

Definition 1.1. Let M, (R) denote the set of n X n matrices with real entries. A matriz

A € M, (R) is called expanding if all its eigenvalues N\; satisfy |A;| > 1. A self-affine set in

R™ is a compact set K C R"™ satisfying the set-valued equation AK = |J (K + d), where
deD

A € M,(R) is an expanding matriz and D C R™ is a finite set of distinct real vectors,

which is called a digit set. K is called a self-similar set if A is a similarity matriz, i.e.
A = pR, where p > 1 and R is an orthogonal matriz. To simplify the notations, we let

q = |det(A)|.
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For an expanding matrix A € M,(R) and a digit set D C R", it has been shown that
the pair (A4, D) can uniquely determine a self-affine set K := K(A,D) (see [12]). Given
the pair (A, D), define

fa(z) = A" (z 4+ d), d € D.

The family of maps { f4}qep is called a self-affine iterated function system (self-affine IF'S).
An important property of these maps is that they are contractive with respect to a suitable
norm on R™ (see [18]). It is clear that the self-affine set K := K(A, D) determined by the

pair (A, D) satisfies K = |J fa(K).
deD

Definition 1.2. For the pair (A, D) as above, we say that the IFS {fq}aep satisfies the
open set condition (OSC) if there exists a non-empty bounded open set V' such that

U fa(V) €V and fo(V) N f (V) =0 for d # d' € D.
deD

The OSC is the most important separation condition in the theory of IFS and it is
thus very useful to find conditions equivalent to it. When the IFS is self-similar, it is
well-known [29] that the OSC is equivalent to the self-similar set generated by the IFS
having positive Hausdorff measure. For the self-affine case, He and Lau [10] showed that
if the OSC is satisfied, then the corresponding self-affine set has positive pseudo Hausdorff
measure. This last measure is defined by using a pseudo norm constructed from the matrix
A instead of the classical Euclidean norm. In this paper, we prove that the OSC is indeed
equivalent to the self-affine set generated by the IFS having positive pseudo Hausdorff
measure by showing that the converse also holds.

In the following, we always assume, without loss of generality, that 0 € D. For an
integer M > 1, consider the sets

M-1
Dy = { ZAjdj:djE'D}, and Do = | Dur.
j=0 M>1

Then Dy C Dpyy1 for any M > 1 since 0 € D. Combining our results with those proved
by He and Lau (Theorem 4.4 in [10]), we provide some conditions equivalent to the OSC
for self-affine IFSs.

Theorem 1.1. The following conditions are equivalent.
(i) The IFS {fq}aep satisfies the OSC;

(ii) 0 < H3(K) < 0o, where s =n In(#D)/In(q) and HE (K) denotes the s-dimensional
pseudo Hausdorff measure of K generated by the IFS { fq}aep (the detailed definition
of Hi (K) is given in Section 2);

(iii) #Dyr = (#D)M and Do is a uniformly discrete set, i.e. there exists § > 0 such that
|lx —yl| > 0 for any distinct elements x,y of Dso.

For the proof of Theorem 1.1, we utilize the connection between pseudo norm and
Euclidean norm as well as the technique used by Schief [29], Bishop and Peres [3] for the



self-similar case. We also would like to mention that there have been several equivalent
characterizations for the OSC under special cases given by Lagarias and Wang (Theorem
1.1 in [18]), by He and Lau (Theorem 4.4 in [10]) and by Fu and Gabardo (Theorem 3.2
in [6]).

In fractal geometry, one of the classical questions is to study the Hausdorff dimension
and the corresponding Hausdorff measure of the self-affine set K (A, D) determined by the
pair (A, D).

In the case that K (A, D) has positive Lebesgue measure and #D = |det A| € Z, K is
called a self-affine tile and the corresponding set D is called a tile digit set, where #D
denotes the number of elements in D. The Lebesgue measure and many aspects of the
theory of self-affine tiles including the structure and tiling properties, the connection to
wavelet theory, the fractal structure of the boundaries and the classification of tile digit
sets have been investigated thoroughly (see e.g. [18, 19, 7, 8, 20, 9, 21, 16, 17]).

The situation becomes more complicate when #D > ¢ := |det A| because the sets K +d,
d € D, might overlap. He, Lau and Rao [11] considered the problem as to whether or not
the Lebesgue measure of K (A, D) is positive for this case. Qiu [28] provided an algorithm
for calculating the Hausdorff measure of a special class of Cantor sets K(A, D) C R with
overlaps.

It is easy to see that the Lebesgue measure of K(A, D) is 0 if #D < ¢, a situation which
has motivated many researchers to study the Hausdorff dimension and Hausdorff measure
of such sets K(A,D). For self-similar sets satisfying certain separating conditions (e.g.
open set condition [5], weak separation condition [23, 24], finite type condition [26]), there
exist methods to calculate their Hausdorff dimensions [5, 11, 26, 30] and the corresponding
Hausdorff measures [1, 6, 14, 13, 15, 31, 32, 33]. However, no many results are available
in that direction for self-affine sets. The difficulty stems from the non-uniform contraction
in different directions, in contrast to the self-similar case where the contraction is uniform
in every direction. In [10], He and Lau defined a pseudo norm w(x) associated with the
matrix A and replaced the Euclidean norm by this pseudo norm to define the Hausdorff
dimension and the Hausdorff measure for subsets in R™. They called these the pseudo
Hausdorff dimension dim% and the pseudo Hausdorff measure Hj,, respectively. This
setup gives a convenient estimation to the classical Hausdorff dimension of K (A, D) and,
furthermore, it makes K (A, D) have a structure similar to that of a self-similar set since
the pseudo norm defined in terms of A absorbs the non-uniform contractivity from A.

In this paper, we are interested in the computation of the pseudo Hausdorff measure
of self-affine sets in the case that #D < ¢. This is motivated by the results in [6], which
gave an exact expression for the Lebesgue measure of K(A,D) with #D = ¢ and the
Hausdorff measure of the self-similar set K (A, D) associated with its similarity dimension
in the case that #D < ¢. One of the main results of this paper is to relate the pseudo
Hausdorff measure of K(A,D), namely H; (K (A, D)) where s = n In(#D)/In(q) is the
pseudo similarity dimension of K, to a notion of upper density with respect to (w.r.t.)
w(z) for the measure p which is defined by

p= lim Z Od-+ Ady ++++AM=1dy, ;- (1.1)

M—o0
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The measure p defined in (1.1) is indeed a counting measure on Dy, which counts the
number of repetitions. It is different from the invariant measure o determined by the pair
(A, D), which is defined in (3.1).

Theorem 1.2. Let K := K(A, D) be a self-affine set and let s = n In(#D)/1In(q) be the
pseudo similarity dimension of K. Then H3,(K) = (£ (1)), where p is defined by (1.1)
and & () is the upper s-density of p w.r.t. w(x) defined by

: w(U)
EF(w) = lim su —_—
’ () r—00 dmmepzr>0 (diamy,U)*

where the supremum is over all conver sets U with diam,U > r > 0 w.r.t. w(z) and
diam,U is defined in Section 2 by using w(x) instead of the classical Euclidean norm in
the definition of diamU .

We will divide the proof of Theorem 1.2 into two cases, (i) and (ii), with the case (i)
corresponding to the situation where the IFS {fy}4ep satisfies the OSC and the case (ii)
where it does not.

It follows from Theorem 1.1 that if the IFS {f;j}4ep satisfies the OSC, then K :=
K(A,D) is an s-set w.r.t. w(z). By analyzing the upper convex s-density w.r.t. w(x) of
points in K, we have the following expression of H;, (K).

Lemma 1.3. Let K := K(A,D) be the self-affine set associated with an IFS {fi}aep
satisfying the OSC. Let s = n In(#D)/1n(q) and let o be the invariant measure supported

on K satisfying .
/fdo:#DZ/fofddo
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for any compactly supported continuous function f on R™. Then, for any ro > 0,

. )
Hi(K) ™ = su L
(o (K) O<diame§ro (diam,U)3

where the supremum is taken over all convex sets U with U (VK # () and 0 < diam,,U < rg.

For case (i), Theorem 1.2 will follow from Lemma 1.3 after we prove that

U)
& W= sp 2
o) O<diamy, U<ro (diamg,U)*

For case (i), we show & (1) = oo by using the third equivalent condition in Theorem
1.1.

The paper is organized as follows. In Section 2, we collect some definitions and some
known results on pseudo norm, pseudo Hausdorff dimension and pseudo Hausdorff mea-
sures that we will use. In Section 3, we prove Theorem 1.1. Some properties of upper
convex s-density w.r.t. w(z) of points in K (A, D) and the upper s-density of p w.r.t. w(z)
are investigated respectively in Section 4 and in Section 5. In Section 6, Lemma 1.3 and
Theorem 1.2 are proved.



2 Preliminaries

In this section, we recall the notions of pseudo norm and pseudo Hausdorff measure defined
in [10]. and collect some known results about these that we will use later.

Let A € M,(R) be expanding with ¢ := |det A| € R. We can assume without loss of
generality that A has the property that ||z| < ||Az| and equality holds only for z = 0,
where the norm || - || is the Euclidean norm, since || - || in R" can be renormed with an
equivalent norm | - ||" so that |lz|| < ||Az|’ for all 0 # x € R™ [18]. He and Lau [10]
introduced a pseudo norm w(x) associated with A as follows:

e For 0 < § < 1/2, choose a positive function ¢s(z) € C°(R™) with support in
Bs := B(0,9) (the closed ball centered at 0 with radius ¢) such that ¢s(z) = ¢s(—2)
and [ ¢5(x) dz = 1.

o Let V=AB; \ By and h(z) = xv * ¢s(z). Define

w(x) = Z q*%h(ij), x € R". (2.1)

j=—o0

Note that V' is an annular region by our convention that ||z|| < ||Ax|| for = # 0. It is clear

that R”\ {0} = |J A¥V, where the union is disjoint.
keZ

Proposition 2.1 ([10]). The w(x) defined in (2.1) is a C* function on R"™ and satisfies
(i) w(z) =w(—z), w(x) =0z =0;
(i) w(Az) = ¢"/"w(z), z € R";

(iii) there exists an integer p > 0 such that for each x € R", the sum in (2.1) has at most
p non-zero terms and o < w(x) < pg?/™ x € V, where @ = infey h(x) > 0.

He and Lau [10] showed that the pseudo norm w(z) is comparable with the Euclidean
norm ||z|| through Apez and Apip, the maximal and minimal moduli of the eigenvalues of
A. For more details about the properties of w(x) and its relationship with the Euclidean
norm, please refer to [10, 4, 25].

Proposition 2.2 ([10]). Let A € M,(R) be an expanding matriz with |det A| = q and let
w(z) be a pseudo norm associated with A. Then for any 0 < € < A\pin — 1, there ezists
C > 0 (depending on €) such that

C—l”lenq/(nln()\mw—Fe)) < w(a:) < CHZI,‘Hlnq/(nln()\mm_e)), Hl,” > 1,
071Hl,Hlnq/(nln()\mmfe)) < UJ(I) < CHI‘HIH(]/(nln(AmMJFC)), ||.%’” <1.

Unlike Euclidean norm, the triangle inequality is not satisfied for pseudo norm any
more. However, we have the following inequality instead.



Lemma 2.3 ([10]). There exists B > 0 such that for any z,y € R",

w(z +y) < Bmax{w(z),w(y)}.

Furthermore, we can modify Lemma 2.3 into the following lemma, which will be used
in Section 5.

Lemma 2.4. For any e > 0, there is a positive number A\ > 1 such that for any 1, x5 € R"
with w(ze) > Aew(z1), w(z1 + x2) < (1 + €)w(xa) holds.

Proof. Let V. = AB; \ By. Denote § = max{[jz| : + € V} and Vi = U,y B(z,1).
Obviously, w € C(V;) since w € C*®(R"). So, for any € > 0, there exists a number § with
0 < 0 < 1 such that w(z1) — w(z2) < e whenever 21,29 € Vi with [|z1 — 22]| < J, where
a = infyey h(x) as introduced in Proposition 2.1. Choose ¢ > 1 large enough such that

nn(Aca/(pg”™)) _ —In(§/0)
Ing — InAnin

)

where p, ¢ are the same as in Proposition 2.1. For any x,z9 € R™ with w(z2) > Acw(x1),
without loss of generality, assume xz; # 0 and write 1 = Aly; and zo = Ay, with
li,lo € Z and y1,y2 € V. Tt is easy to check that w(z;) = qli/m w(y;) for i = 1,2, and hence

g2 > New(yn) fw(y2) > Aear/ (pg?!™),

since a < w(y;) < pg?/™ for i = 1,2 by Proposition 2.1 (iii). This gives that

n In(Aa/(pg”™))

lz — ll >
Ingq
and thus ls — 1] > _hlln/\((ve) > 0. Hence
ALy, | = [(A™Y)E by || < Ak e <o

So we have
w(@y + @) = w(AR(AV 2y 4 o)) = ¢ w(ATRy 4 ) < ¢ (w(ye) +ae)
since y1,y2 € V and ||Al=2y|| < 6, and thus
w(an +a2) < (1+€) ¢ w(yn) = (1+ ) w(xa).
[

Next, we come to the definition of pseudo Hausdorff measure and pseudo Hausdorff
dimension. For a given set £ C R", the diameter of E w.r.t. w(zx) is defined by

diam,, F = sup{w(z —y) : x,y € E}.

A collection of sets {U;}2; in R™ is called a §-cover of E C R" wrt. w(z) if EC |J U;
=1

1=
and diam,U; < §. Such a collection is called an open d-cover of E if U; is open for all
1>1. For ECR" and s > 0, § > 0, define

w.o(E) = inf { Z(diamei)S : {U;}2, is a d-cover of E w.r.t. w(:n)}
i=1



Since H; 5(E) is increasing when § tends to 0, we can define the s-dimensional Hausdorff
measure of E w.r.t. w(x) (the s-dimensional pseudo Hausdorff measure of E) by

Ho (E) = lm H s(E) =supH) s(E).
6—0 ’ 5>0 ’
It is direct to see that HZ is a Borel measure on R™. By Proposition 2.1 (ii), it is easy to
obtain that

Hi(AE) = ¢/ H, (E). (2.2)

As usual, we define the Hausdorff dimension of E w.r.t. w(z) ( the pseudo Hausdorff
dimension of E) to be the quantity

dimy E = inf{s : H;,(F) = 0} = sup{s: H;,(E) = oo}.

This setup gives a convenient estimation of the classical Hausdorff dimension and makes
a self-affine set have a structure as a self-similar set since the pseudo norm defined in terms
of A absorbs the non-uniform contractivity from A.

Theorem 2.5 ([10]). Let A € M,(R) be an expanding matriz with |det A| = g € R and
let w(z) be a pseudo norm associated with A. Then for any subset E C R™,
Ing

|
LU RPN

dimy F < dimpg F <
nln Apin

nln A\nas

where Amaz, Amin denote the maximal and minimal moduli of the eigenvalues of A, and
dimpg F is the classical Hausdorff dimension of E.

It follows immediately that dimf E = dimyg E when A\paz = Amin. This includes the
special case that A is a similarity matrix.

3 Proof of Theorem 1.1

In the following, let A € M,,(R) be expanding with | det A| = g and 0 € D C R" be a digit
set. Let K := K(A, D) be a self-affine set associated with (A, D). We always assume that
w(z) is a pseudo norm associated with A.

He and Lau [10] proved the direction “OSC = 0 < HE(K) < oo” for the self-affine
case.

Theorem 3.1 ([10]). Suppose that the IFS {fi}taep satisfies the OSC. Then dimf K =
s:=n In(#D)/In(q) and 0 < HS (K) < oo.

In particular, if A is a similarity matrix with scaling factor p > 1, then s := In(#D)/ In(p)
is the similarity dimension of the self-similar set K (A, D). For consistency, we call s :=
n In(#D)/1In(q) the pseudo similarity dimension of the self-affine set K (A, D).



To prove the other direction “0 < H; (K) < co = OSC”, Lemma 3.2 and Lemma 3.6
below are needed. It is well-known ([12]) that the IFS {f;}4ep determines a unique Borel
probability measure o supported on the set K (A, D) satisfying

/f da_#D;)/f fq do, (3.1)

for any compactly supported continuous function f on R™. We say that o has no overlap
if o(fa(K)N fy(K)) =0ford# d € D. Lemma 3.2 and its proof show that if the
self-affine set K has positive pseudo Hausdorff measure associated with the dimension
s:=n In(#D)/In(q), then the invariant measure o has no overlap.

Lemma 3.2. Suppose that 0 < H: (K) < oo with s := n In(#D)/In(q) and o is a self-
affine measure defined in (3.1). Then

o = (M3 (K)) " Hy, | K
(i.e. o is the restriction of H, to K normalized so as to give o(K) =1).
Proof. For any Borel subset £ C R™ and d € D, we have
Mo (f1 1 (B) = My (AE — d) = H,(AE) = ¢*/"H;,(E) = (#D) H;, (E).
Similarly, H,(fa(E)) = zpH;,(E). Then, we have

Ho(K) = H(| fa(K)) <D Hi(fa(K))

dE’D deD

= #D- %”HS( ) = Moy (K).

This implies that H;, (fa(K) N fy(K) =0 for d # d € D since 0 < H3 (K) < oo. Then for
any Borel set F,

M (ENK)=> H(EN fa(K Z Hsfd E)NK).
deD deD

This proves that H, [ K is invariant for the IFS { f;}4ep and thus the probablility measure
(H,(K))"'HE, | K coincides with o as this last measure is unique. O

For E,FF C R" and z € R", we let
D(E,F) =inf{d(z,y):xz € E,y € F}
D(z,E)=D({z},E) and D(E,z)= D(FE,{z}).

where d denotes the distance induced by the Euclidean norm. The Hausdorff distance
between compact sets E, F C R" is denoted by Dy (F, F') and defined by

Dy (E,F) = max{sup D(z, F'),sup D(E,y)}.
el yer

Denote Comp(R"™) the set of compact subsets in R"™. Then Blaschke selection Theorem [3]
implies that



Theorem 3.3 ([3]). (Comp(R™), Dy) is a compact metric space.

We use the pseudo norm to replace the Euclidean norm and let

Dy(E,F) =inf{dy(z,y) :=w(x —y):x € E,y € F},
Dy(z,E) = Dy({z},E) and Dy(E,z)= D,(E,{z}).

Define the Hausdorff distance w.r.t. w(x) between compact sets F and F' in R™ by

Dy (E, F) = max{sup Dy,(z, F'),sup D,,(E,y)}.
zeE yeF

Denote Uy(z,€) = {y € R" : dy(z,y) < €} to be the open e-neighborhood of z € R"
w.r.t. w(x) and Uy(F,€) = | J{Uw(z,€) : © € F}. Let f1, fo,..., fn be the IFS associated
with the expanding matrix A € M, (R) and the digit set D = {d;,da,...,dn} C R". Let
Y ={1,2,...,N} and ¥™ = {(i1d2...ip) : 1 <i; < N} for m > 1. Write £* = J,,,~0 ™
with X9 := (). For i = (i142...im) and j = (j1j2...jx) in ¥*, we use the notation ij for the
element (i1ig...9mJ172.-.Jk) € ¥, and say that i and j are incomparable if there exists
no k such that i = jk or j = ik. It follows from Proposition 2.1 (ii) that for any i € ¥

w(fi(z) = fily) = ¢ mw(z —y). (3.2)

Let r = q_%. For i € ¥™ m > 1, the length of i is denoted by |i| = m. Define

m

fi="fiofiu-ofi, Ki=fi(K) and r; =7l =g %,

It is obvious that, for any m > 1, K = [J;cxm K. Particularly, for i,j,k € ¥¥, it follows
from (3.2) that we can get some elementary property on diam,,, D,, and Dy ,, related to
the IFS maps fi. For later use, we collect them as follows.

Proposition 3.4. Given i,j,k € ¥*, we have the following identities.

diamy, (K;) = i diam, K,
Dy (fi(E), fi(K5)) = ¥ Dy (K, Kj),
Dy (fiu(E3), fu(K5)) = r¥ Dy o (K5, K).

According to Lemma 3.2, it is direct to get the following result.

Corollary 3.5. Suppose that 0 < Hi (K) < oo with s :=n In(#D)/In(q). Theni,je L*
are incomparable if and only if H5 (K; N K;) = 0.

Also if we admit only open sets in the covers of E, then H? (F) (also #H (E)) does
not change.

Lemma 3.6. For ECR" and s >0, § > 0, define

He S(E) = inf { Z(diamei)s : {Ui}2, is an open § — cover of E w.r.t. w(m)}

w,0
=1

Then 13, 5(E) = 13, 5(E).

w,0



Proof. Tt is obvious that H; ;(E) < 7:2;1 s(F). For any € > 0, by the definition of H; ;(E),
there exists a d-cover {U;}°, of E w.r.t. w(x) such that

56(E) =) (diam,Uy)® — e.
=1

Denote U(U;, 1) = {y € R": ||y — z|| < 1 for some = € U;} to be the open 1-neighborhood

of U;. For the above ¢ > 0, by using w(z) € C(U(U;,1)), there exists 6; > 0 such that
|w(z)—w(y)| < diam,,(U;)e whenever ||z—y|| < 6; and z,y € U(U;,1). Take §; = min{d;, 1}
and V; = U(U; 6"). Then U; C V; C U(U;,1) and V; is open. For any z1, 29 € V;, by the

)
definition of Vj, there exist z1,22 € U; such that [jz; — 2| < %,j = 1,2. This and

w(z) € C(V;) imply that
w(z1 — 2z2) < w(xy — x9) + diam,, (U;)e < diam,, (U;) + diam,, (U;)e < (1 +€)d.  (3.3)
It follows from (3.3) that diam,(V;) < (1 + e)diam,(U;) < (1 + €)d since 21,22 € V; are

arbitrary. Using the definition of H; ;,

Hey 1ros(B) <D (diamy, Vi)* < (14 €)*(diam,, U;)*
< (T+e)(Hys(E) +6).

Letting € — 0, one can get ﬁfu5(E) < H;, s(E). O

To prove the direction “0 < HE (K) < oo = OSC”, we use the idea due to [29, 3] for the
self-similar case and Lemma 2.3 on the connection between Pseudo norm and Euclidean
norm.

Theorem 3.7. If 0 < H:(K(A,D)) < oo with s := nIn(#D)/In(q) , then the IFS
{fa}aep satisfies the OSC.

Proof. Let t > 0. By the definition of #; (K) and Lemma 3.6, there exists a sequence of
open sets {U;};>1 such that

U .= U U; D K and Z(diamei)s < (1 + %) Ho, (K).
i=1 i=1

Claim 1: Denote 6 = D,,(K,U¢), where U¢ denotes the complement of U. Then for all
incomparable i,j with rj > tr;, we have Dy ., (Kj, Kj) > 6r;.

Proof. Suppose that Claim 1 does not hold. Then there exist a pair i, j with rj > ¢r; and
Dy (K, Kj) < 0r3. Since clearly D, (Kj, (fi(U))¢) = 071, we get

Kj C Uw(Ki,(STi) C fl(U)
This implies that
Hy(K)ri (L4+87) < H, (K) (17 +77) = Hip, (K5) + Hi, (K5)
= H(KiUK;) < (diam, f;(U;))*
i=1

= > (diam,Ui)* < H5 (K)rf (1+¢%),
i=1

10



which is a contradiction. (The second to the last inequality follows from the fact that
K; UK; C fi(U) and the second equality is obtained from Corollary 3.5). O

For 0 < b < 1, weset I, = {i € ©* : 7l <b < 7lI=1}. The elements of I, are obviously
incomparable and satisfy K = (J;c;, Ki.

Fix 0 < ¢ < min{diam, K, 8 diam, K, (8 diam,K)?, Amin — 1}, where 3 satisfies the
inequality in Lemma 2.3 and A, is the minimal moduli of the eigenvalues of A. For
k € ¥*, denote Gy = Uy (Kx,erk). Note that for any k > 1, the pair (A, A*D) can
determine a self-affine set A% K if K is determined by the pair (A4, D) and the IFS {f;}4ep
satisfies the OSC if and only if {f4-x4}4ep satisfies the OSC. To simplify the notations,
WLOG we can assume that diam, /K is small enough such that diam,Gx < 1 for any
k € ¥* since we can always use A“*K and {fs-k }dep instead of K and {fj}aep if
diam,, K is not small enough.

Claim 2: Denote (k) = {i € Ijiam, Gy : KiN Gk # 0}, and v = sup #I (k). Then v < oo.
K

Proof. For the given € > 0, let C; and «;, ¢ = 1,2, be the number as in Proposition 2.2
satisfying the inequality that ||z — y|| < (Cidy(z,y))* for ||z —y|| > 1 and ||z —y| <1
respectively. Take C = C and a = a; if (C183(diam,, K)?)*t > (Cy33(diam,, K)?)°2 and
if not, we take C' = Cy and o = a. Let B be the closed (C33(diam,, K )?)®-neighborhood
of K,ie. B={x € R": D(x,K) < (CB*(diam,,K)?)*}. Then for any k € ¥*, it holds
that

fi '(K;) € B, Vie I(k). (3.4)

In fact, noticing that K; NGy # (0 if i € I(k), for any y € Kj, it follows from the definition
of d,, and Lemma 2.3 that,

Dy, (y, Kx) < fmax{dy(y, 2), Dw(z, Kx)} < fmax{diam,, Kj, erx},
where z is any point in Kj N Gy. This gives that
Dw(flzl(y), K)<p max{rlzlridiamwK, e} (3.5)

On the other hand, if i € I(k), then i € Igiam, ¢, and thus we have r; < diam,, Gy by the
definition of Igiam, G, - Next, we will utilize Lemma 2.3 to give an estimation on diam,,Gx.
Let 21,22 € Gk. Then there exist x1,x9 € Ky satisfying that dy,(z;, z;) < ery for i = 1, 2.
By Lemma 2.3, we obtain

w(z1 — o1 + 21 — T2 + T2 — 29)

dw(zl, 2’2)
fmax{w(z; — x1),w(r1 — x2 + T2 — 22)}
fmax{w(z; — z1), Bmax{w(x; — z2),w(zs — 22)}}
B max{erg, f max{rxdiam, K, erc}}

Bridiam,, K.

IAIA A IA

The last inequality is obtained by the restriction of . This and r; < diam,, Gy give r; <
B%ridiam,, K. Substituting this into (3.5), one can get Dy, (fi. ' (y), K) < (diam,, K)?2.
Then by using Proposition 2.2, we have

11



)™, if D(fi ' (y), K) >
)2, if D(fi'(y), K) <

9

B (CrDw(fi ' (),
D(f'(y), K) < {(csz(fkl(w

K
K
(CB3(diam,, K)2)®,

1
1

IN

which proves (3.4).

Since for any i,j € ¥, r; = rj = r™. Then rj > rjr holds. We may apply Claim 1 for
t =1 to get § > 0 such that

Dy (K5, K5) > 01 > drrdiam, G
for any distinct i,j € I(k), where G = U, (K, €). Hence, by Proposition 3.4, we have
Do (fi (), fig ' (K5)) = 0 diam,, G
and
Du(fi'(Ky), fi ' (K;) = (€' 6 diam,,G)

with some positive C’, o/ for all i,j € I(k) by Proposition 2.2. By Theorem 3.3, #I(k)

is bounded by the maximal number of compact subsets of B which are (C’ 5rdiamwG)°‘/—

separated in the Hausdorff metric, which is obviously independent of k € ¥*. ]
Claim 3: Choose k such that v = #I(k). Then for any j € ¥*, I(jk) = {ji: i€ I(k)}.
Proof. Notice that () # K; N Gy implies

0 7% fGNGE) = fi(E) 0 f(G) = Kji 0 (U (K, eri))
= Kji N Uw(Kjk,ﬂ“jk) = Kji N ij.
This shows that {ji : i € I(k)} C I(jk). On the other hand, we further note that
#{ji:ie€ I(k)} = #I(k) = v. By the selection of k and the maximality of #I(k), Claim
3 follows. O
Claim 4: D, (K, K;) > erjik for any j # i and any i € ¥*.

Proof. For any word jl with j # 4, Claim 3 implies that jl ¢ I(iik). By the definition of
I(iik), for jl € Idiafm’uiGiik7 Kj] N G = 0. Hence, Dw(Kiik, Kj]) > er;ik. Noticing that

Kj - U{Kjl : ]1 € Idian’leiik}7
then Claim 4 follows. O

Claim 5: For i € ¥*, denote Gf = U, (K;, 87 er;). Then U = L% G}y gives the OSC.
jexr

12



Proof. Clearly, U is open and Ky C G} C U. For each i,
fi(U) = U fi(G5x) = U Gk CU.
jex* jex*
For i # j, fi(U) N f;(U) = 0. Indeed, if not, there exist i, j such that Gj N GJ;, # 0. Let
y € Gy N G;jk. Then there exist y1 € Kjik and ya2 € Kjji such that w(y —y1) < B eriik
and w(y — y2) < 67167%_1{' Without loss of generality, we assume that r;x > 7j5. Then
we have w(y; — y2) < eriik. Hence, Dy, (Kiik, Kj) < eriik, which contradicts Claim 4. [

This completes the proof of Theorem 3.7. 0

There is another equivalent condition for the OSC provided by He and Lau in [10].

Theorem 3.8 ([10]). Let A € M,(R) be expanding and let D C R™ be a digit set. Then
the IFS {fa}aep satisfies the OSC if and only if #Dyr = (#D)M and Dy is a uniformly

discrete set.

Theorem 3.7 together with Theorem 3.8 and Theorem 3.1 imply Theorem 1.1.

4 The upper convex density w.r.t. w(x)

In this section, we introduce the notion of s-sets w.r.t. the pseudo norm w(z), and study
the upper convex density of an s-set w.r.t. w(x) at certain points. These are definitions
analogous to those corresponding to the Euclidean norm. (See, for example, Section 2 in

[5]-)

A subset E C R" is called an s-set (0 < s <n) w.r.t. w(z) if E is H;-measurable and
0 < H(E) < oo. The upper convex s-density of an s-set E w.r.t. w(x) at z is defined as

H(ENU
Dy (Bx)=lm  sp  wlE0D)
’ =0 0<diam, U<r,zc€U (dlame)s
where the supremum is over all convex sets U with z € U and 0 < diam,U < r, and the
limit exists obviously. We have the following result similar to Theorem 2.2 and Theorem
2.3 in [5].

Theorem 4.1. If E is an s-set w.r.t. w(z) in R", then Dy, .(E,r) =1 at H;,-almost all
r € E and D;, (E,x) =0 at H;,-almost all x € E°.

We will prove Theorem 4.1 by showing that Dy, .(E,z) = 0 at H; -almost all z € E°
(Lemma 4.4) and Dj, .(E,r) = 1 at H;-almost all z € F (Lemma 4.5) respectively. We
need an analogue of Vitali covering theorem [5] and the following lemma. We should
mention that the sets encountered in the following can always be represented in terms of
known H? -measurable sets using combinations of lim, lim, countable unions and intersec-
tions. So without explicit mention in this section, we always assume that the sets involved
are H,,-measurable.

Lemma 4.2. Let E C R" be Hj -measurable with H;,(E) < +o0o and let € > 0. Then
there exists p > 0, depending only on E and €, such that for any collection of Borel sets
{U;}2, with 0 < diam,,U; < p, we have

1, (En|JUs) <D (diam,Us)* +e.

13



Proof. By the definition that H;, = %in}) H;, 5, we may choose p > 0 such that
_> I
) < Zdlamw i) +¢e/2 (4.1)

for any p-cover {W;} of E w.r.t. w(z). Given Borel sets {U;} with 0 < diam,,(U;) < p, by
the definition of H;,, we can find a p-cover {V;} of E'\ JU; w.r.t. w(z) satisfying

1, (E\|JUi) + /2> diam, (V).

Then {U;} U{V;} is a p-cover of E w.r.t. w(z), and using (4.1), we have
E) < Zdiamw —|—Zd1amw ) +e/2.

Hence,

Ho(ENJU) = HL(E) - HZ;(E\UUi)

< Zdlamw —i—Zdlamw —|—6/2—Zd1amw )+¢e/2

A collection of sets V is called a Vitali class for E w.r.t. w(z) if for each z € E and
6 > 0, there exists U € V with x € U and 0 < diam,,U < 6.

Theorem 4.3 (Vitali covering theorem).
(a) Let E be an HS -measurable subset of R™ and let V be a Vitali class of closed sets for

E w.r.t. w(z). Then we may select a (finite or countable) disjoint sequence U; from
V such that either ) (diam,U;)®* = oo or H (E \ U, U;) = 0.

(b) If H:(E) < +oo, then for any given € > 0, we may also require that
E) < Z(diamel) +€
%

Proof. (a). Fix p > 0. We may assume that diam,U < p for all U € V. Let U; € V and
Ui NE # (. We choose U;, i > 2 inductively. Suppose that Uy, ..., U,, have been chosen,
and let

dy, = sup{diam,, U : U € Vand UNU; =0,i =1,2,...m}.

m
Note that {d,,}m>1 is decreasing. If d,, = 0, then E C |J U;. Indeed, if there existed a

=1

m
point x € E'\ |J U;, then, letting

i=1

1, "
0p = ilnf{w(m—y),y € HUz} > 0,
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we could find U € V such that z € U and 0 < diam,,U < J,, contradicting the fact that
dm = 0. So (a) follows and the process terminates. Otherwise, let U,,+1 € V be a set

m
satisfying Up11 N (U U;) = 0 and diamy, (Upt1) > 3dim.
i=1
Suppose that the process continues indefinitely and that ) (diam,,U;)® < co. For each
i, let B; be a pseudo ball centered in U; with radius 2 § diam,, (U;), where f3 is the constant

in Lemma 2.3. We claim that for every k& > 1,

E\UUC U B;. (4.2)

i=k+1

In fact, for x € E '\ UUZ, there exists U € V with z € U and UO(U U;) = (. By the

assumption that Z(dlamez) < 00, we obtain that lli)rgo diam,,U; = 0 Hence, we have

diam,,U > 2 diam,,U; > dy_y for some £ > k+2. f UNU; =0 for k < j < £ and thus for
1 <5 </¢—1, it would follow that

diam,,U > 2diam,,U; > d;_; > diam,,U,

a contradiction. Let thus i be the smallest integer j with k < j < £ such that U N U; # 0.
Since UﬁUj=@f0r1§j§i—l, we have

diame < d,‘_l < 2 diamei.

By elementary geometry, we have U C B; and (4.2) follows.

Thus, if § > 0,
ws(ENJU) < Hy 5B\ U U) < ) (diamy,By)* < 2°6%° > (diam, U;)°,
=1 i=k+1 i=k+1

provided that k is large enough to ensure that diam,,B; < ¢ for i > k. Hence, for all § > 0,
oo
ws(ENJU) =0
i=1

So HE(E '\ Ej U;) = 0 which proves (a).

(b). Suppose that p chosen at the beginning of the proof is the number corresponding to
e and E given in Lemma 4.2. If ). (diam,,U;)® = +o0, then (b) is obvious. Otherwise, by
(a) and Lemma 4.2, we obtain

Ho (BN JU) +HL(EN(JU)

i=1 i=1

M, (E)

= 0+ H,(EN|JUi) <) (diam,T;)* +e.
i=1 =1
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Lemma 4.4. If E is an s-set w.r.t. w(z) in R", then Dy, (E,z) = 0 for H;,-almost all
x € E°.

Proof. Fix o > 0, we show that the measurable set F' = {z ¢ E : D} (E,z) > a} has zero
pseudo Hausdorff measure. By the regularity of H:, for any given § > 0, there exists a
closed set Ey C E such that H;,(E \ E1) <. For p > 0, let

V = {U closed & convex : 0 < diam,,U < p, UNE; =0, H(ENU) > a(diam,,U)*}.

Then V is a Vitali class of closed sets for F' w.r.t. w(z). It follows from Theorem 4.3 (a)
that we can find a disjoint sequence of sets {U;} in V with either ) (diam,,U;)* = +oo or
H:,(F\ | JU;) = 0. However, by the definition of V,

Z(diamei)s < é ;HZ)(E nU;) = éin}(E N LZJ Us)

%

1 1
< —Hy(E\ Ep) < — < +o0.
a a

This implies that H: (F'\ JU;) = 0, and thus we have
i

Hup(F) < Hoy(FAUJU) +Ho,(F 0 JU)

IN

)
1, (FA\|JU) + D (diam, U;)* < ~+0.

This is true for any 6 > 0 and any p > 0. So H5,(F) = 0. O

Lemma 4.5. If E is an s-set w.r.t. w(z) in R", then Dy, (E,z) = 1 at H;,-almost all
r e k.

Proof. Firstly, we use the definition of pseudo Hausdorff measure w.r.t. w(x) to show that
Dy, (E,x) > 1 ae. in E. Take a < 1 and p > 0. Let

F={xeE:H,(ENU) < a(diam,U)* for all convex U with x € U and diam,U < p}.
For any £ > 0, we may find a p-cover of F' by convex sets {U;} such that
> (diamy, U;)* < H3,(F) +&.

Hence, assuming that each U; contains some points of F' and using the definition of F', we
obtain

Mo, (F) < HL(FNU) <Y HL(ENU) <o) (diam,U;)* < a(H5(F) +¢).

Since a < 1 and the outer inequality holds for all € > 0, we conclude that H;, (F') = 0. We
may define such F' for any p > 0. So D, .(E,r) > a for a.e. x € E by the definition. This
is true for all a < 1, so we conclude that Dy, .(E,z) > 1 a.e. in E.
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Secondly, we use a Vitali method to show that Dy, .(E,r) <1 a.e. in E. Given a > 1, let
F:={x € E:D;, (F,z) > a} be a measurable subset of £/ and let

Fo={x € F:Dj (E\F,z) =0}

Then HE (F \ Fy) = 0 by Lemma 4.4. By the definition of upper convex s-density, for
x € Fy, we have

Dy, o(Fox) 2 Dy, (B, x) — Dy, (E\ Fix) > a
Thus,
V = {U closed & convex : Hy,(F NU) > a(diam,,U)*} (4.3)
is a Vitali class for Fy. Then, by Theorem 4.3 (b), for any given € > 0, we can find a
disjoint sequence {U;}; in V such that #H: (Fp) < > (diam,U;)* + ¢. By (4.3), we obtain

7

that

1 1
S = S < 1 )8 — s ; < — s .
H(F) = M (Fy) < §i (diamy, U;)° +¢ < Ei Hoy(FNU) e < My (F) +e

This inequality holds for any € > 0. Hence, we have H; (F') = 0 if « > 1 as required. [

Theorem 3.1 implies that if the IFS { f;}4ep satisfies the OSC, then the corresponding
self-affine set K := K(A, D) is an s-set w.r.t. w(x), where s = dim%; K = n In(#D)/In(q)
is the pseudo similarity dimension of K. Thus Theorem 4.1 can be applied to K directly.

5 The upper s-density of y w.r.t. w(z)

In this section, let u be a Borel measure on R"™, we use the pseudo norm w(z) instead of
the Euclidean norm to define the upper s-density of p w.r.t. w(zx). It will be used to find
a different expression for the pseudo Hausdorff measure of K (A, D). This is motivated by
the connection between the upper s-density of p in (1.1) which was first introduced in [6]
and the Hausdorff measure of a self-similar set K (A, D).

Definition 5.1. Let p be a Borel measure in R™. The upper s-density of u w.r.t. w(zx)

is defined by
U)
Er lim su L
’ ) = r—0o0 dzamep>r>0 (dlame)

where the supremum is over all compact convex sets U C R™ with diam,U > r > 0.

Let © be a Borel measure and let o be a Borel probability measure. The convolution
1 * o is defined to be the measure so that

o(2) (i x 0)(z) = / oz + ) du(z) do(y),
RTL n RTL

holds for any compactly supported continuous function ¢ on R™.
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Lemma 5.1. Let u and o be two Borel measures on R™ with o being a probability measure.
Then £f (1 x 0) = EF ().

Proof. By the definition of £ (1) and the convolution of p x o, we get

pxo(U)
et x0) = lim su 2T\
w,s (iLL ) 00 dlamep>,r,>O (d1ame)
n Jgn d d
— Lm sup Jen Jon XU 'x +y) du(x) do(y)
=00 diam,, U>r>0 (dlame)S
: Jon 1(U —y)do(y)
= lim su
00 diamep2r>0 (diam,, U)*

w(U —y)

< lim sup sup ————=— (Since o is a Borel probability measure)
T—=90 diam,, U>r>0 ycR™ (dlame)s

= lim sup ﬂ
"= diam,, U>r>0 (dlame)

= i), (5-1)

I

where the supremum is over all convex sets U C R" with diam,U > r > 0. Thus,
Es(px o) < EF () by (5.1).

For the reverse inequality, fix a real number R > 0. Let € > 0 and r > )\, 32 R where
Ac is the same as in Lemma 2.4 and § is defined in Lemma 2.3. For any set U C R"
with diam,U > r, choose a set U = Uyes, 0R)(U + ). Obviously U ¢ U — y for any
y € By,(0, R), the closed ball centered at 0 Wlth radius R w.r.t. w(z). Moreover, we claim
that diam,,U < (14€) diam,,U. In fact, for any two points x1,xs € U, we write z; = z;+v;
with z; € U and y; € By (0, R) for i = 1,2. Then w(y; —y2) < BR. If w(z1 — 22) > A\ B R,
then we have w(z1 — 22) > Aew(y1 — y2), and this gives

w(zy —x2) =w((z1 — 22) + (131 —12)) < (1 +€) w(z1 — 22)
by Lemma 2.4. Otherwise if w(z1 — 2z2) < ABR, then we have
w(z, — x9) < Bmax{w(z — 2z),w(y; —y2)} < Bmax{ABR, BR} = A\S*R < 1.

Thus we have w(x1 — x2) < (1 + €) diam,U in both cases, which yields the claim since
x1,T9 are arbitrary points in U. Then we have

wa(O,R) p(U) do(y) < wa(O,R) p(U —y) do(y) (diam,, U)*

(diam,,U)* - (diam,,U) (diam, U)*
wa 0 R) M(U y) dg( ) s
- (diam,,U)* L+
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Hence, we have

lim sup wa (0,R) w(U) do(y)
700 diame, U>r>0 (diam,,U)*

lim sup wa (0,R) M(U/ —y)do(y)
=00 diamy, U’ >r>0 (diam,,U")*
m sup Jra u(? - y)/ do(y)
700 diam, U/ >r>0  (diamg,U')S

= Ehslpro)-(1+¢)

IN

1+ e)?

IN

(1+¢)°
By letting € — 0 and R — oo, we obtain that & ,(u) < &5 (u*0). O

Lemma 5.2. Let o be the Borel probability measure supported on K (A, D) which satisfies

(3.1). For M > 1, define upr = Y. Oz, then for any Borel measurable set W C R™, we
€D
have (A~ MW) = W (par x o) (W).

Proof. For any Borel measurable set W C R"™, we deduce from the identity (3.1) that

oA Mw) = /n Xa-my(z) do(x)

1
= @D > /R xamay (A2 ANy + -+ AN dy) do(a)
di,da,...,dps €D
1 _
= Gy Z /R xw(z+ AM=Ldy + o 4 dyy) do(z)

di,dz,...,dpr €D

_ (#é)M /R (@) d(o « ) (@)

6 Pseudo Hausdorff measure of self-affine sets

This section is devoted to proving Theorem 1.2 by considering the IFS {f;}4cp satisfies
and does not satisfy the OSC separately. The following technical lemma is needed. We
borrow the technique of its proof from [27] for the self-similar case.

Lemma 6.1. Let the IFS {fq}aep satisfy the OSC. Then HE (K NU) < (diam,U)?® for
any subset U in R™.

Proof. We will prove the statement by a contradiction. Assume that there exists a subset
U C R"™ such that HJ (K NU) > (diam,,U)®. Then we can find some 0 < £ < 1 such that
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(1 —-r)H,(KNU) > (diam,U)®. Fix 6 > 0 and choose a positive integer m such that
diam,, f;(U) < ¢ for all words i € ¥, where ¥ is defined in Section 3. Note that

U faxnuyckn | A©), (6.1)
iexm iexm
since fi(K) C Ujesm fj(K) = K for each i € ¥™. By the assumption that the IFS {fi}aep

satisfies the OSC, then by using Theorem 3.1 and Lemma 3.2, we have H; (fi(K NU)) N
f;(KNU)) =0 for distinct i,j € 3™. Therefore, by (6.1), we obtain

Ho(Kn | A0) = Hu(|J AEND))
iexm iexm
= Y HL(KEND)) = H, (KN D). (6.2)

iexm
Defining n = £ K 15, (K N Usexm fi(U)), it follows from (6.2) that

1 1 (diam,U)*
> S g7 .
n_2me(KﬂU)>2/£ - >0

For n > 0, we can choose a sequence of sets {U;}; with JU; O K\ |J fi(U) and
i iexm
diam,, (U;) < 6 such that

> (diam, U)° < M, 5(K\ | A(U)) +n
i iexm
< HLEN {J AO)) +. (6.3)
iexm

The family {f;(U) }iexm U {U;}; is clearly a d-cover of K w.r.t. w(z). Using the fact that

>, rf =1and (6.3), we obtain that
iexm

/Hw,(S(K)

IN

> (diamy fi(U))* + Z(diamei)S

icxm
(diam, U)* + H5,(K\ | A(0) +7
iexm
< (L=r)HL(KNU)+HL,(EN\ | AU) +n
iexm

IN

Taking the inequality (6.2) into account, this yields

Hus(K) < (1—m)Hy(Kn | AO)+HLEN\ | £O) +n

iexm iexm
< My (K)—wHy,(Kn | A(U)+n
iexm
= Hy(K)—n
< HfU(K)—%nH;‘;(KﬁU).
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Letting § — 0, we get
1
M3 (K) < M, (K) — S nH3 (K D),

which is a contradiction since 0 < H5,(K) < oo and 3xkH5 (K NU) > 0. O

Lemma 3.2 shows that if the IFS {f;}4cp satisfies the OSC, then the probability mea-
sure o in (3.1) is a multiple of the restriction of the s-dimensional pseudo Hausdorff measure
H3, to the set K, with s = dim% K = n In(#D)/In(q), i.e.

o= (Hy(K)"'H;, | K. (6.4)

Combining the formula (6.4), Lemma 6.1, Theorem 3.1 and Theorem 4.1, we obtain
the following lemma.

Lemma 6.2. Let K := K(A,D) be a self-affine set and let the IFS {fq}aep satisfy the
OSC. Then for any ry > 0,

_ U)
M) = s
( ( )) 0< diamy,U<rg (dlame)s

where s is the pseudo similarity dimension of K, o is defined by (3.1) and the supremum
is over all convex sets U with U (K # 0 and 0 < diam,U < rg.

Proof. By applying Theorem 3.1, K is an s-set w.r.t. w(z). From Theorem 4.1, we can
pick a point € K such that D, .(K,z) = 1. Then there exists a positive sequence {7y, }»
with r, < rg, r, = 0 as n — oo such that

1 S(KNU 1
n

. s (K NU)
0<diam, U<ry,,zcU (diame)S n

0<diam, U<ry,,xcU (diamw U)S

For each n, there exists a convex set U, containing x with 0 < diam,,U,, < r,, such that

H(KNU) _ H(KNU,) 1

sup + —.

0<diam, U<r,,z€U (diame)s o (diamen)s n
Thus . .
Hu.)(KﬂUn) 1 <1< ”Hu.,(KﬂUn) +g’
(diam,Up)* n = = (diam,U,)* n
which yields that % — 1 as n — oco. Moreover, by Lemma 6.1, for each convex

. He,(KNU HE(KNU)
set U with K NU 75 @7 we have W S 1. Hence Sup0<diame§TO W =1. By
applying the formula (6.4) to the above equality, the lemma follows. ]

We have the following representation for the pseudo Hausdorff measure of self-affine
sets.

Theorem 6.3. Let K := (A, D) be a self-affine set and let s := n In(#D)/In(q) be the

pseudo similarity dimension of K. Then H3 (K) = (5 (n)™!, where p is defined by
(1.1).
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Proof. Let us assume first that #;,(K) > 0 and thus that the OSC holds by Theorem 1.1.
By Lemma 6.2, it is sufficient to prove that

o(U)
Er(n) = sup —_—
w,s( ) 0<diam, U<rq (dlame)s
for some ry > 0, where the supremum is over all convex sets U with U N K # () and
0 < diam,,U < ryg.
o)

Fix rg > 0. It follows from Lemma 6.2 that sup Tamy U is finite. Then, for
0<diam,,U<rg w
any given £ > 0, there exists a convex set Uy with diam,Uy < rg and Uy N K # () such

that

(Vo) a(U)

— > su —— —=¢. 6.5

(diam,U0)® ~ o<diamati<ry (diamy,U)® (65)
For any N > 1, define uy = > Odg+Ady++AN-1dy_,- Using Lemma 5.1 and

do,...,dN_1ED
Lemma 5.2, we have
o(Uo) _ _ox 1 (AN Up) ~ i O 1 (AN Up)
(diam,,Up)* (diam,, (ANUp))®  N—oo (diam,,(ANUy))*
o p(U)

<  lim sup

T—=00 diam,, U>r>0 m
= Elulo ) =5, (6.6)
It follows from (6.5) and (6.6) that
a(U)
sup s < Eus(p)

0<diam£)USrO (dlame)s w,s(M)

By letting € — 0, we get
o(U

e D <eiw.

O<diamy U<ro (diam,,U)

Conversely, for any given convex set U, using Lemma 5.2, we have,

oxuU) lim o*xpunU) in a(A~ND)
(diam,U)*  N-oo (diam,U)®  N-ooo (diam,,(A=NU))s
a(V)
< sup

0<diam,, V<rg (diamw V)s

Using Lemma 5.1 again, we have thus that

V)
Ebs() = Ep (o) < sup o)
’ (M) ’ (M ) 0<diam, V<rg (dlamwv)s

Thus we have proved the desired result in the case that H2 (K) > 0.

On the other hand, if #3 (K) = 0, then the IFS {f4s}4ep does not satisfy the OSC by
Theorem 1.1. Thus, by Theorem 1.1, either the (#D)™ expansions in Dy are not distinct
for some M or Dy, is not uniformly discrete. For z € R"™, we will use

k .
Ik’(z):{y:(yla'-')yn)ERn:|yi_zi|§§alzla2a"'an}
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to denote the cube centered at z = (z1, ..., 2,) € R” with side length k.

Assume first that there exists some M such that the (#D)™ expansions in Dy, are
not distinct. Then there exists a € Djs which can be represented in two different ways in
terms of the digits in D, i.e.

M—-1 ‘ M-1 ‘
a=> Adj=> Ad, d;d;eD,
j=0 3=0

with d; # d;- for at least one 0 < j < M — 1. Then a + AMq has at least four distinct

k—1 ‘
expansions in Dyys. More generally, for k > 1, S AMJg has at least 2% distinct expansions

7=0
k—1 ,
in Dyps. Then, if ar, = > AMia, then p({ax}) > 2*. Then, for any r > 0, we have
§=0
I 2k
pllr(a)) > — 00, k — oo,

(diamy, I, (ax))® — (diam,I,-(0))*

This implies that sup % = oo for any 7 > 0, and in particular, £ . (u) = co.
diam, U>r>0 v '

Next, assume that #Dy; = (#D)M holds for each M > 1, but Dy, is not a uniformly
discrete set. Then there exists M; > 1 and x1,y1 € Dy, € Do with z1 # y1 such that
|1 —y1]] < % Write F} = {x1,y1} and w; = 1. Then F} C Dy, C Do and ||z1 —wi || < %
for any 21 € F1. Let S1 = 0. Inductively, for k > 2, assume that M;, S; and z;,y; € Dy,
k—1

Fj C Ds;1+m; have been defined for 1 < j < k —1. Let S, = >  M;. Choose M}, and
j=1

Tk, Yk € Dy, C Doo with zp, # yi and ||z — k| < W. Write

Fk - {21 +A522’2 + - —|—AS’“zk 1z € {xi,yi},l S ) S k},

Wy = 1 + Aszzbz + -+ Askxk.
Then Fj, C Dg,+m, C Doo, Wi € Dg, 4-0,,- Thus for any k£ > 1, z € Fj,, we have
(21 — 1) + A% (20 — 22) + - - + A% (2 — 23) |

1 1
Z 1A% B [ ———
5+ 4l e A
1

|2 — wy|

IN

22| Al

A

This shows that p(I>(wy)) > 2%. Hence, for any r > 2, we have Io(wy) C I.(w;) and

pl(w) o
(diamy, I, (wg))® — (diam,,I,(0))

- — 00, k— oo

So &5 () = oo as before.
Therefore, we always have 75 (K) = (&5 (1))~ O
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