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Abstract. Let Γn denote the n-th level Sierpiński graph of the Sierpiński gasket K. We
consider, for any given conductance (a0, b0, c0) on Γ0, the Dirchlet form E on K ob-
tained from a recursive construction of compatible sequence of conductances (an, bn, cn)
on Γn, n ≥ 0. We prove that there is a dichotomy situation: either a0 = b0 = c0 and E
is the standard Dirichlet form, or a0 > b0 = c0 (or the two symmetric alternatives), and
E is a non-self-similar Dirichlet form independent of a0, b0. The second situation has
been studied in [9, 10] as a one-dimensional asymptotic diffusion. The analytic approach
here is more direct and yields sharper results; in particular, for the spectral property, we
give a precise estimate of the eigenvalue distribution of the associated Laplacian, which
improves a similar result in [10].

1. Introduction

Dirichlet forms play a central role in the analysis on fractals. There is a large literature
on the topic based on Kigami’s analytic approach on the post critically finite (p.c.f.) self-
similar sets, and the probabilistic approach of Lindstrøm on the nested fractals as well as
Barlow and Bass on the Sierpiński carpet (see [1, 2, 3, 6, 12, 15, 16, 17, 24, 25, 27, 29]
and the references therein). In those studies, the Sierpiński gaskets and carpets are always
served as fundamental examples, and are a source of inspiration.

Recall that a Sierpiński gasket (SG) is the unique nonempty compact set K in R2 sat-
isfying K =

⋃3
i=1 Fi(K) for an iterated function system (IFS) {Fi}

3
i=1 on R2 such that

Fi(x) = 1
2 (x−pi)+ pi with non-collinear pi’s. For convenience, we fix p1 = 0, p2 = 1, p3 =

exp
(
π
√
−1

3

)
. Denote by V0 = {p1, p2, p3} the boundary of K, and let Fω = Fω1 ◦· · ·◦Fωn for

a word ω ∈ Wn = {1, 2, 3}n. The standard Dirichlet form (E,F ) on the SG is well-known
[18, 29]: the energy E and the domain F are given by

E(u) = lim
n→∞

(
5
3

)n ∑
p∼nq

(u(p) − u(q))2, F = {u ∈ C(K) : E(u) < ∞} (1.1)

where p ∼n q means p , q and p, q ∈ Fω(V0) for some ω ∈ Wn. The domain F is known
to be some Besov type space [15]. In [28], Sabot classified all the Dirichlet forms on the
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SG which satisfy the energy self-similar identity

E(u) =

3∑
i=1

1
ri
E(u ◦ Fi), (1.2)

where ri, i = 1, 2, 3 are some positive numbers called the renormalization factors of the
energy form. The energy self-similar identity for the p.c.f fractals and nested fractals is
also studied in detail in [18].

More generally, one can also consider Dirichlet form without satisfying the energy self-
similar identity. Let Γ0 be the complete graph on V0 and for n ≥ 1, Γn the graph on Vn

which is defined inductively by Vn =
⋃3

i=1 Fi(Vn−1) with the edge relation ∼n defined as in
(1.1). Let l(Vn) be the collection of functions defined on Vn, and let (En, l(Vn)) be defined
by

En(u) =
∑

p∼nq
c(n)

pq (u(p) − u(q))2, u ∈ `(Vn), (1.3)

where c(n)
pq ≥ 0, call it the conductance of p and q in Γn. In the case that E(u) :=

limn→∞ En(u) < ∞ exists for u on V∗ =
⋃∞

n=0 Vn, it will allow us to define a Dirichlet
form on the SG. For the limit to exist, the key issue is that the sequence of En’s are com-
patible (see[18] for details): the restriction (or trace) of En on `(Vn−1) must be equal to
En−1, n ≥ 1.

In an attempt to produce all the Dirichlet forms (include the non-self-similar ones),
Meyers, Strichartz and Teplyaev [22] used the compatibility condition to solve a system
of linear equations of conductances on V1 (9 of them) in terms of those on V0 as well as the
given values of the harmonic functions on V1 \ V0, then extend this inductively. However
the setup is too general and the expressions are rather complicated, thus it does not give
much information on the structure of the limiting Dirichlet form. Recently two of the
authors studied some anomalous p.c.f. fractals in regard to the domains of the Dirichlet
forms and the associated Besov spaces [8]. In their investigation, a construction of the
non-self-similar energy form was considered, and some interesting properties were found
(see Section 4). In this note we intend to use the SG to study this construction in greater
detail so as to give more insight to the general cases.

For this class of Dirichlet form on the SG, we require the conductances of the cells
Fω(V0) on the same level |ω| = n have the same expression (note that the conductances
on the edges of Fω(V0) may be different), and we will give a necessary and sufficient
condition for the existence of a compatibility sequence {En}n. The tool we use is the well-
known electrical network theory. The energy En(u) in (1.3) corresponds to an electrical
network R(Γn) with resistance r(n)

pq = (c(n)
pq )−1, and u is the potential on Vn. The sequence

of networks {R(Γn)}∞n=0 are said to be compatible if the trace of R(Γn) on Vn−1 equals
R(Γn−1), n ≥ 1. Note that this is equivalent to the compatibility of the sequence of energy
forms En, n ≥ 0.

Let (a0, b0, c0) be the conductance on V0, and let (an, bn, cn) be the conductances of
Fω(V0), |ω| = n, n ≥ 1 to be determined. By the well-known ∆ − Y transform [18, 29],
the resistances (a−1

n , b
−1
n , c

−1
n ) on the ∆-side is equivalent to a set of resistances (xn, yn, zn)
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on the Y-side. It is direct to show (use (2.1) and refer to Figure 2) that {R(Γn)}∞n=0 are
compatible can be reduced to {(xn, yn, zn)}n≥0 satisfy

xn−1 = xn + φ(xn; yn, zn),
yn−1 = yn + φ(yn; zn, xn),
zn−1 = zn + φ(zn; xn, yn),

n ≥ 1, (1.4)

where φ(xn; yn, zn) := (xn+yn)(xn+zn)
2(xn+yn+zn) , and symmetrically for the other two. We will refer to

finding the solution of (xn, yn, zn) from (xn−1, yn−1, zn−1) as a recursive construction of the
energy form En. Necessarily, (xn, yn, zn) has to be positive, and the following is a necessary
and sufficient condition for this to hold.

Proposition 1.1. For a0, b0, c0 > 0, in order for (1.4) to have positive solutions (xn, yn, zn), n ≥
1, it is necessary and sufficient that x0 ≥ y0 = z0 > 0 (or the symmetric alternates).

In this case, xn ≥ yn = zn > 0, n ≥ 0 and {(xn, yn, zn)}n≥0 is uniquely determined by the
initial data (x0, y0, z0).

The proposition will be proved in Lemmas 2.1, 2.2. We let µ be the normalized α-
Hausdorff measure on K with α =

log 3
log 2 . For two functions f , g ≥ 0, we use f � g to mean

that they dominate each other by a positive constant. As a consequence of Proposition
1.1, we have the following theorem.

Theorem 1.2. For the case x0 > y0 = z0 > 0 in the above proposition, we have a0 > b0 =

c0 and

an =
xn

yn(2xn + yn)
� 2n, bn = cn =

1
2xn + yn

�

(
3
2

)n

.

Moreover E(a0,b0)(u) = lim
n→∞
E

(a0,b0)
n (u) defines a strongly local regular Dirichlet form on

L2(K, µ) with domain F independent of (a0, b0); it satisfies

E(a0,b0)(u) =

3∑
i=1

E(a1,b1)(u ◦ Fi), (1.5)

but does not satisfy the energy self-similar identity. (Here E(a0,b0)
n := En is defined as in

(1.3) with conductances (an, bn, cn) on each n-level subcells).

It follows that for initial data x0 ≥ y0 = z0 > 0 on Γ0, the recursive construction gives
a dichotomy result on the Dirchlet forms: when a0 = b0 = c0 > 0, then E(a0,b0) is the
standard Dirichlet form in (1.1); when a0 > b0(= c0) > 0, then by the above estimation of
an and bn(= cn), we have

E(a0,b0)(u) �

sup
n≥0

2n
∑
ω∈Wn

((
uω(p2) − uω(p3)

)2
+

(
3
4

)n (
uω(p1) − uω(p2)

)2
+

(
3
4

)n (
uω(p1) − uω(p3)

)2
) ,

where uω(x) = u ◦ Fω(x). It is seen that there are two scaling factors in E(a0,b0). The
renormalizing factor is 2n, and the energy is basically concentrated on the p2 p3 direction.
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For this Dirichlet form E(a0,b0) with a0 > b0, we can give a sharp estimate of the dis-
tribution of the eigenvalues (Section 3). Let ∆(a0,b0) be the Laplacian, the infinitesimal
generator of

(
E(a0,b0),F

)
on L2(K, µ). Denote by ρ(a0,b0)(t) the eigenvalue count with the

Dirichlet boundary condition (D.B.C), that is

ρ(a0,b0)(t) = #
{
λ ≤ t : λ is an eigenvalue of −∆(a0,b0) with D.B.C.

}
, (1.6)

Theorem 1.3. Assume that a0 > b0 = c0, and let t0 = inf{t : ρ(a0,b0)(t) > 0}, then

ρ(a0,b0)(t) � t
log 3

log(9/2) , t > t0.

We remark that in another investigation, K. Hattori, T. Hattori and Watanabe [9] studied
the asymptotically one-dimensional diffusion processes on the SG (see also Hambly and
Jones [10], Hambly and Yang [13]). The random walk they considered is in fact the
normalized probability of (an, bn, bn) as transition probability on the three sides of the
n-level cells of the SG. (They used this as an assumption, and in fact it is one of the
dichotomy cases from Theorem 1.2 (or Proposition 1.1).) We will give a brief comparison
of these two approaches in Section 2. For the estimate of the eigenvalue distribution in
Theorem 1.3, it improves the lower bound of ρ(a0,b0)(t) in [10, Theorem 13] where it was
shown to be C−1tlog 3/ log(9/2)(log t)−β with β > log 3/ log 2, using a heat kernel technique in
the estimation.

The recursive construction can be extended to more general p.c.f. sets (see [8] for some
examples), but it also have limitation. In Section 4, we give two other examples that this
construction have abnormality. The first one is the twisted SG introduced by Mihai and
Strichartz [23], it is a modification of the IFS of the SG that reflecting the three subcells of
the SG along the angle bisectors at the three vertices. We show that for a0 > b0 = c0, the
closure of V∗ under the (effective) resistance metric has interesting topology different from
the SG; the second one is from [8], it is called a Sierpinski sickle, which is the attractor of
an IFS of 17 similitudes and three boundary points, of which the recursive construction
does not yield a compatible sequence for a Dirichlet form.

2. Proof of Theorem 1.2

Let (a, b, c) denote the conductance of a ∆-shape network. Recall the ∆-Y transform
(see e.g., [18], [29]) states that the ∆-shaped network with resistance (a−1, b−1, c−1) and the
Y-shaped network with resistance (x, y, z) (see Figure 1) are equivalent by the following
relation

x =
a
η
, y =

b
η
, z =

c
η
, (2.1)

with η = ab + bc + ca, and conversely,

a =
x
r
, b =

y
r
, c =

z
r
, (2.2)

where r = xy + yz + zx = η−1.
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Figure 1. ∆ − Y-transform

Assume the conductances on the edges of the n-th level cells are given by (an, bn, cn)
for n ≥ 0. The compatibility of the n-th and (n − 1)-th resistance networks on the Y-side
reduces to trace the left side graph in Figure 2 on V0, which yields (1.4).

Figure 2. Consistence of the n-th and (n − 1)-th resistance networks

Our first lemma is to characterize all compatible resistance sequences {(xn, yn, zn)}n≥0.

Lemma 2.1. In order for (1.4) to have positive solutions (xn, yn, zn) for all n ≥ 1, it is
necessary and sufficient that x0 ≥ y0 = z0 > 0 (or its symmetric alternatives).

Proof. Sufficiency. Without loss of generality, assume that x0 ≥ y0 = z0 > 0. Then the
equations (1.4) becomes x0 = x1 +

(x1+y1)2

2(x1+2y1) ,

y0(= z0) = y1 +
y1(x1+y1)

x1+2y1
.

(2.3)

Using the second equation in (2.3), we obtain

x1 =
y2

1

2y1 − y0
− 2y1, (2.4)

(we can exclude the case that 2y1 = y0). Substituting (2.4) back to the first equation in
(2.3), we obtain

5y2
1 + (4x0 − 2y0)y1 − 2x0y0 − y2

0 = 0,
which gives y1, then x1 (by substituting into (2.4) again) as the following:

x1 = 1
15

(
14x0 + 3y0 − 2

√
4x2

0 + 6x0y0 + 6y2
0

)
,

y1(= z1) = 1
5

(
−2x0 + y0 +

√
4x2

0 + 6x0y0 + 6y2
0

)
,

(2.5)
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is a pair of positive solution of (1.4). Also by x0 ≥ y0, we have

x1 − y1 =
1

15

(
20x0 − 5

√
4x2

0 + 6x0y0 + 6y2
0

)
≥ 0.

Hence, x1 ≥ y1 = z1. We can repeat this process inductively, and obtain the sequence
{(xn, yn, zn)}n≥0 as positive solution of (1.4).

Necessity. Without loss of generality, let x0 ≥ y0 ≥ z0 > 0, we will show that y0 = z0.
Assume otherwise, y0 > z0. Let (x1, y1, z1) be positive solution of (1.4) for n = 1, we first
prove the following claims in regard to (x1, y1, z1):

(i) x1 ≥ y1 > z1: For if x1 < y1, then clearly, x1 + φ(x1; y1, z1) < y1 + φ(y1; z1, x1),
which is x0 < y0, a contradiction. Hence x1 ≥ y1; by the same argument, we have y1 > z1

from y0 > z0.

(ii)
y1

z1
>

y0

z0
: Indeed, if this were not true, letting y0

z0
= µ0 > 1, we have

y1

z1
≤ µ0 =

y0

z0
=

y1 + φ(y1; z1, x1)
z1 + φ(z1; x1, y1)

.

Therefore y1
z1
≤

y1+x1
z1+x1

, that is y1 ≤ z1, which contradicts the fact that y1 > z1 in (i).

(iii) Let λ0 = 2x0
y0+z0

> 1, and let ρ = 1
5

(
6 − λ−1

0

)
(> 1), we claim that

2x1

y1 + z1
≥ λ0ρ. (2.6)

If otherwise, then
2x1

y1 + z1
< λ0ρ. (2.7)

By (1.4), we have

λ0 =
2x0

y0 + z0
=

2x1 + 2φ(x1; y1, z1)

(y1 + z1) +
(y1+z1)(2x1+y1+z1)

2(x1+y1+z1)

. (2.8)

Observe that
2(x1 + y1 + z1)
(2x1 + y1 + z1)

< 2.

This, together with (2.7), (2.8) and a simple calculation, yields
2(x1 + y1)(x1 + z1)

(y1 + z1)(2x1 + y1 + z1)
> λ0 · (3 − 2ρ). (2.9)

On the other hand, by using ρ = 1
5

(
6 − λ−1

0

)
, we have

2(x1 + y1)(x1 + z1)
(y1 + z1)(2x1 + y1 + z1)

≤
1
2
·

(2x1 + y1 + z1)2

(y1 + z1)(2x1 + y1 + z1)
=

1
2

(
1 +

2x1

y1 + z1

)
<

1
2

(1 + λ0 · ρ) = λ0 · (3 − 2ρ).

This contradicts (2.9), and (iii) follows.

By (i), we can carry out the estimate in (iii) inductively and obtain
2xn

yn + zn
≥ λ0 · ρ

n → ∞, as n→ ∞. (2.10)
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Also using (ii), we have yn
zn
≥

y0
z0

= µ0 > 1 for any n ≥ 1, and a similar argument as in (iii)
yields

yn

zn
→ ∞, as n→ ∞ (2.11)

(for example, one can take ρ = (5 − µ−1
0 )/4 > 1, and show that there is n0 such that for all

n ≥ n0, yn
zn
> ρ yn−1

zn−1
holds).

Now consider yn−1 = yn + φ(yn; zn, xn),
zn−1 = zn + φ(zn; xn, yn),

for n and xn
yn+zn

sufficiently large. By xn
yn+zn

→ ∞, it reduces toyn−1 =
( 3

2yn + 1
2zn

)
(1 + o(1)),

zn−1 =
(3

2zn + 1
2yn

)
(1 + o(1)),

where o(1) is an error term that tends to 0 as n→ ∞. Therefore we obtainyn �
3
4yn−1 −

1
4zn−1,

zn �
3
4zn−1 −

1
4yn−1.

This together with (2.11) contradicts the assumption that {zn}n≥0 are positive. Therefore
we must have y0 = z0, and this completes the proof. �

Lemma 2.2. Let x0 ≥ y0 = z0 > 0 be fixed, then for n ≥ 1,
xn = 1

15

(
14xn−1 + 3yn−1 − 2

√
4x2

n−1 + 6xn−1yn−1 + 6y2
n−1

)
,

yn = 1
5

(
−2xn−1 + yn−1 +

√
4x2

n−1 + 6xn−1yn−1 + 6y2
n−1

)
.

Also for x0 = y0 = z0, then xn = yn = zn =

(
3
5

)n

x0, and for x0 > y0 = z0,

xn �

(
2
3

)n

, yn = zn �

(
1
2

)n

.

Proof. Similar to (2.5), we can solve equations (1.4) for xn and yn as the above. It follows

that if x0 = y0 = z0, then xn = yn = zn =

(
3
5

)n

x0. By Lemma 2.1, we see that x0 > y0 =

z0 > 0 implies xn > yn = zn inductively. Also from (2.10), we see that for all n ≥ 0,
yn
xn
≤ Cδn for some constant C > 0 and 0 < δ < 1 (depending only on y0

x0
). Combining this

with

xn

xn−1
=

1
15

14 + 3
yn−1

xn−1
− 2 ·

√
4 + 6

yn−1

xn−1
+ 6

(
yn−1

xn−1

)2
 ,

we can find C1 > 0 such that for large n,
2
3
−C1δ

n ≤
xn

xn−1
≤

2
3

+ C1δ
n.
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Therefore we havexn �
(

2
3

)n
. Similarly, we have

yn

yn−1
=

1
5

−2
xn−1

yn−1
+ 1 +

√
4
(

xn−1

yn−1

)2

+ 6
xn−1

yn−1
+ 6

 ,
=

2 xn−1
yn−1

+ 1

2 xn−1
yn−1
− 1 +

√
4
(

xn−1
yn−1

)2
+ 6 xn−1

yn−1
+ 6

,

=
2 +

yn−1
xn−1

2 − yn−1
xn−1

+

√
4 + 6 yn−1

xn−1
+ 6

(
yn−1
xn−1

)2
,

and we can find C2 > 0 such that for large n,
1
2
−C2δ

n ≤
yn

yn−1
≤

1
2

+ C2δ
n.

This implies that yn �
(

1
2

)n
.

�

Proof of Proposition 1.1. It follows readily from Lemmas 2.1 and 2.2. �

It follows from the compatibility of {(xn, yn, zn)}n≥0 and the ∆-Y transform that {E(a0,b0)
n }n≥0

are compatible. Hence for a function u ∈ `(Vn), we can construct inductively har-
monic extensions um on Vm, m > n and E(a0,b0)

m (um) = E
(a0,b0)
n (u); also for u ∈ `(V∗),

En(u|Vn) is an increasing sequence. We define E(u) := E(a0,b0)(u) = limn→∞ E
(a0,b0)
n (u|Vn) for

u ∈ `(V∗). Recall that the (effective) resistance metric R := R(a0,b0) on V∗ × V∗ is defined
by R(a0,b0)(x, x) = 0 for any x ∈ V∗ , and for any two distinct points x, y ∈ V∗,

R(x, y)−1 := inf{E(u) : u ∈ `(V∗), u(x) = 1, u(y) = 0}.

Note that for a0 = b0 = c0, then R(x, y) � |x − y|γ where γ =
log(5/3)

log 2 [18, 29].

Proposition 2.3. For a0 > b0 = c0, the completion of the (V∗,R(a0,b0)) is K, and

C−1|x − y| ≤ R(a0,b0)(x, y) ≤ C|x − y|γ
′

, x, y ∈ K (2.12)

where γ′ =
log 3
log 2 − 1 and C > 0 is a constant depending on a0 and b0.

Furthermore R(a0,b0) is a bounded metric with

sup
{
R(a0,b0)(x, y) : x, y ∈ K

}
≤ C′b−1

0 . (2.13)

where C′ > 0 is independent of a0 and b0.

Proof. Fix x0 > y0 = z0 > 0, then xn > yn = zn. As in (2.2), rn = xnyn + ynzn + znxn =

2xnyn + y2
n. By (2.2) and Lemma 2.2,

an =
xn

rn
=

xn

2xnyn + y2
n
� 2n, bn = cn =

yn

rn
=

yn

2xnyn + y2
n
�

(3
2

)n
.
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Let us write R(x, y) = R(a0,b0)(x, y). To estimate R(x, y) on V∗, we first consider x ∼n y,
and let ψ(n)

x (z) = δx(z), x, z ∈ Vn where δx is the Dirac measure on Vn. It follows that

R−1(x, y) ≤ E(ψ(n)
x ) ≤ C12n = C1|x − y|−1.

On the the other hand, we have

R−1(x, y) ≥ min{an, bn} ≥ C2

(3
2

)n
= C2|x − y|− log(3/2)/ log 2.

For the estimate of R(x, y) with any distinct x, y ∈ V∗. Let n be the maximal integer such
that both x, y belong to either an n-level cell or a union of two adjacent n-level cells. Then

using a similar argument as above, we have R(x, y) ≤ C
(2
3

)n
and R(x, y) ≥ C−12−n. This

gives that R(x, y) satisfies the required estimate since |x − y| � 2−n. This completes the
proof of (2.12) for x, y ∈ V∗, thus it follows that the completion of (V∗,R) is K, and the
same estimate holds for x, y ∈ K.

To prove (2.13), we only need to estimate R(x, p1) from above with x ∈ K since for any
two points x, y in K, R(x, y) ≤ R(x, p1) + R(y, p1). We can find a chain of points {xn}

∞
n=0 in

V∗ with x0 = p1 and xn → x as n → ∞ such that xn, xn+1 are two of the boundary points
of some (n + 1)-cell. Thus by triangle inequality, we have

R(x, p1) ≤
∞∑

n=0

R(xn, xn+1) ≤
∞∑

n=0

b−1
n . (2.14)

On the other hand, we see that

bn−1

bn
=

2xn + yn

2xn−1 + yn−1
≤ max

{
xn

xn−1
,

yn

yn−1

}
= max

{
1
15

(
14 + 3

yn−1

xn−1
− 2

√
4 + 6

yn−1

xn−1
+ 6

( yn−1

xn−1

)2
)
,

1
5

(
−2

xn−1

yn−1
+ 1 +

√
4
( xn−1

yn−1

)2
+ 6

xn−1

yn−1
+ 6

)}
≤max

{
1
15

(14 + 3 − 2
√

4),
1
5

(
−2

xn−1

yn−1
+ 1 + 2

xn−1

yn−1
+ 3

)}
=

13
15

< 1.

Therefore the series in (2.14) converges and is bounded above by Cb−1
0 .

�

It follows that under the resistance metric, u ∈ `(Vn) can be extended harmonically on
V∗, then continuously on K, and we call this an n-piecewise harmonic function on K. As
a special case, consider the harmonic function that takes value 1, 0, 0 on p1, p2, p3. It is
direct to check, using the harmonicity of u at V1 \ V0, that

u(p12) = u(p13) =
a1 + b1

3a1 + 2b1
, u(p23) =

b1

3a1 + 2b1
. (2.15)

For the special case that a0 = b0 = c0, it is the 1
5 - 2

5 -law in the standard Dirichlet form on
SG [18, 29].
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Proof of Theorem 1.2. Fix x0 > y0 = z0 > 0, it follows from the proof in Proposition 2.3

that an � 2n, bn = cn �
(3
2

)n
. For u ∈ C(K) and n ≥ 0, let

E(a0,b0)
n (u) =

∑
ω∈Wn

bn

(
uω(p1) − uω(p2)

)2
+ bn

(
uω(p1) − uω(p3)

)2
+ an

(
uω(p2) − uω(p3)

)2
,

where uω(x) = u ◦ Fω(x). Define

E(a0,b0)(u) = lim
n→∞
E(a0,b0)

n (u|Vn), F (= F (a0,b0)) = {u ∈ C(K) : E(a0,b0)(u) < ∞}.

In view of the compatibility of the sequence {(an, bn, cn)}n, we have E(a0,b0)
n (u) =

∑3
i=1 E

(a1,b1)
n−1 (u◦

Fi). By taking limit, we obtain

E(a0,b0)(u) =

3∑
i=1

E(a1,b1)(u ◦ Fi).

It is standard to check that (E(a0,b0),F ) is a Dirichlet form on L2(K, µ). It is regular by
observing that the piecewise harmonic functions are continuous functions in F and are
dense in C(K), and C(K) ∩ F (= F ) is trivially (E(a0,b0))1/2 + || · ||L2(K,µ)-dense in F . By
using the above identity repeatedly, we obtain that for any n ≥ 1,

E(a0,b0)(u) =
∑
ω∈Wn

E(an,bn)(u ◦ Fω), (2.16)

which leads to the strong locality of (E(a0,b0),F ).
Finally, we see that (E(a0,b0),F ) does not satisfy the energy self-similar identity (1.2). It

is because if it satisfies the identity for some ri, then by our construction, all the ri in (1.1)
should be equal. However, by the uniqueness result of Sabot [28], (E(a0,b0),F ) should be
the standard one defined by (1.1), a contradiction. �

The following dichotomic result follows directly from Theorem 1.2.

Corollary 2.4. For the recursive construction of the Dirichlet form with initial data
(a0, b0, c0), there are only two cases, either

(i) a0 = b0 = c0, and in this case E is the standard Dirichlet form as in (1.1),
or

(ii) a0 > b0 = c0 (or the symmetric alternates), and the Dirichlet form satisfies

E(u) �

sup
n≥0

2n
∑
ω∈Wn

((
uω(p2) − uω(p3)

)2
+

(
3
4

)n (
uω(p1) − uω(p2)

)2
+

(
3
4

)n (
uω(p1) − uω(p3)

)2
) .

It is well-known that a regular strongly local Dirichlet form associates with a continu-
ous diffusion process [5]. In fact, this probability counter part of E(a0,b0) had been studied
by Hattori et al [9] as an asymptotically one-dimensional diffusion processes on the SG.
To conclude this section, we give a brief discussion of their study in comparison with our
consideration.

For a random walk {Z(n,α)
k }k on Vn with α = (α1, α2, α3), the probability that the walk

goes to the four neighbors (except at V0) in the three directions (counting the opposite
10



direction as one), define the (n − 1)-decimated walk {Z′`}` on Vn−1 that records the visit of
Z(n,α)

k in Vn−1 in the `-th time (with a state distinct from Z′`−1). Then it is direct to show
that for {Z(n,α)

k }k with starting point on Vn−1, {Z′`}` obeys the same law as {Z(n−1,Tα)
k }k where

Tα = C
(
α1 +

α2α3

3
, α2 +

α3α1

3
, α3 +

α1α2

3

)
,

and C is a normalized constant [9]. This sets up the compatible condition by letting
αn−1 = Tαn (renormalization group), the exact analog of (1.4). Then they define the
random walk using

αn = (αn,1, αn,2, αn,3) := C′(1,wn,wn),
where 0 < w0 < 1, C′ is a normalized constant, and wn, n ≥ 1, are defined inductively by

wn =
(
− 2 + 3wn−1 +

√
4 + 6wn−1 + 6w2

n−1

) / (
6 − wn−1

)
.

For xn, yn in Lemma 2.2, it can be shown that yn/xn has the same expression as the above
wn.

Note that in this case limn→∞ αn = (1, 0, 0). Let Xt(n) = Z[6nt](n, αn), then with some
more work, they proved that {Xt(n)}∞n=0 converges weakly to a continuous, strongly Markov
processes Xt on K, and the moves are asymptotically one-dimensional, dominated in the
direction parallel to p2 p3, and of order O(3/4)n in the other two directions. This is in line
with the expression of E(a0,b0) in Corollary 2.4(ii), as the energy has two scaling exponents
and is concentrated in the p2 p3 direction.

3. Spectral asymptotics

Let ∆(a0,b0) be the Laplacian, the infinitesimal generator of the Dirichlet form
(
E(a0,b0),F

)
on L2(K, µ). In both cases a0 = b0 and a0 > b0, by using the resistance estimates in
Proposition 2.3 and a standard argument, we see that F is compactly imbedded in C(K)
and hence in L2(K, µ). Therefore the eigenvalues of −∆(a0,b0) with the Dirichlet or Neu-
mann boundary condition are nonnegative, countable and have no limit point. Denote by
ρ(a0,b0)(t) the eigenvalue counting function of −∆(a0,b0) with the Dirichlet boundary con-
dition as in (1.6), and by ρ(a0,b0)

N (t) the eigenvalue counting function of −∆(a0,b0) with the
Neumann boundary condition, where in both cases, each eigenvalue is counted accord-
ing to its multiplicity. We are interested in the asymptotic growth rate of ρ(a0,b0)(t) and
ρ(a0,b0)

N (t) as t → ∞. It is known that (see [19, Lemma 2.3(2)])

ρ(a0,b0)(t) ≤ ρ(a0,b0)
N (t) ≤ ρ(a0,b0)(t) + 3, (3.1)

where 3 is the dimension of the space of all the harmonic functions on K. Hence ρ(a0,b0)(t)
and ρ(a0,b0)

N (t) have the same asymptotic behavior.

In the case a0 = b0 = c0 for the standard Dirichlet form, it is known that (e.g. [6], [19])

ρ(a0,b0)(t) � tlog 3/ log 5, t → ∞.

In the following, our concentration is on the case a0 > b0 = c0. First we provide a
general result on the dimension of some linear subspaces. Recall that a linear subspace L
of L2(K, µ) is called a sublattice if u ∈ L implies |u| ∈ L.
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Proposition 3.1. Let K be a compact connected set and µ be a Borel measure on K with
full support, and let (E,F ) be a regular Dirichlet form on L2(K, µ) with F ⊂ C(K).
Denote by {Pt}t≥0 the associated semigroup of operators of (E,F ). Suppose L ⊂ F is a
closed linear sublattice of L2(K, µ), and there exists C > 0 such that

Ptu ≤ Cu, ∀ t > 0, u ≥ 0, u ∈ L. (3.2)

Then L has dimension at most one.

Proof. The essentially idea of the proof comes from [4, Theorems 7.2, 7.3]. Suppose L
is nontrivial, let u ≥ 0 be any non-zero element in L, then u ∈ C(K). Let U = {x ∈ K :
u(x) , 0}. We claim that U = K, modulo a µ-null set. If v ∈ C(K) and |v| ≤ αu for some
α ≥ 0, then by the Markovian property of {Pt}t>0 and (3.2), we have

|Ptv| ≤ Pt|v| ≤ αPtu ≤ αCu.

Hence for
G = {v ∈ C(K) : |v| ≤ αu for some α ≥ 0},

then Pt(G) ⊆ G for all t ≥ 0. As U is an open set by definition, G contains all the
continuous functions that are compactly supported in U. The L2-closure of G is the set of
all v ∈ L2(K, µ) with v = 0 on K \ U. So U is an invariant set of the semigroup {Pt}t>0.
(A µ-measurable set B ⊂ K is said to be Pt–invariant if Pt(1B f ) = 1BPt f µ-a.e. for any
f ∈ L2 and t > 0.) Hence by [5, Theorem 1.6.1], 1U ∈ F . However, as K is connected,
this holds if and only if U = K or U = ∅. Since u is nonzero, we conclude that U = K,
and the claim follows.

Now, if u ∈ L, then u+ and u− are in L and have disjoint supports. It follows from
the claim that one of them must vanish. Hence u ∈ L implies u ≥ 0 or (−u) ≥ 0. If u, v
are two distinct positive elements of L, then u + ηv is either positive or negative for all
η ∈ R. But the sum must change sign as η increases through R. Hence there is η such that
u + ηv = 0. This is a contradiction, and hence L is one dimensional. �

Lemma 3.2. Let K be the Sierpiński gasket and µ be the normalized Hausdorff measure
on K. Let (E(a,b),F ) be the Dirichlet form defined in Theorem 1.2. Let Λ1 be the eigen-
function space of λ1, the first eigenvalue of −∆ with Dirichlet boundary condition. Then
Λ1 is of dimension one.

Proof. We make use of the Rayleigh quotient for the first eigenvalue:

λ1 = inf
u∈F0,u,0

E(u)
||u||22

, (3.3)

where F0 := {u ∈ F : u|V0 = 0}. There exists a function u ∈ F attains the infimum, and all
such functions must be eigenfunctions with eigenvalue λ1. Therefore by the Markovian
property of the Dirichlet form, we see that Λ1 is a closed sublattice, hence also u+, u− are
contained in Λ1. For any u ∈ Λ1, we have

Ptu =

∞∑
n=0

tn

n!
∆nu =

∞∑
n=0

tn

n!
(−λ1)n u = e−tλ1u ≤ u.

By using Proposition 3.1 with L = Λ1, we see that Λ1 is of dimension at most one, and
thus Λ1 is one dimensional since Λ1 is nontrivial. �
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Lemma 3.3. There exists C > 0 such that for any initial data a > b = c > 0 on Γ0, we
have

C−1b ≤ λ(a,b)
1 ≤ Cb, (3.4)

where λ(a,b)
1 is the first eigenvalues of −∆(a,b) with the Dirichlet boundary condition.

Proof. We will make use of the Rayleigh quotient in (3.3) again. Let u1 be the 1-piecewise
harmonic function on K with prescribed values u1(p1) = u1(p2) = u1(p3) = u1(p23) = 0,
u1(p12) = u1(p13) = 1, where pi j is the vertex in V1 opposite to pk for distinct i, j, k ∈
{1, 2, 3} (see Figure 3 for the values of u1). Then by (2.14)

Figure 3. The value of u1

||u1||
2
2 ≥

∫
F21(K)∪F31(K)

u2
1dµ ≥

2
9
·

(
a2 + b2

3a2 + 2b2

)2

≥
2

81
,

where a2, b2 are the second iterations of a (= a0), b (= b0) respectively. Also observe that
E(a,b)(u1) = 6b1. Therefore

λ(a,b)
1 ≤

E(a,b)(u1)
||u1||

2
2

≤ C′b1 ≤ Cb

for some C′,C > 0.

To estimate the lower bound, we let u ∈ F , then

|u(x) − u(y)|2 ≤ R(a,b)(x, y)E(a,b)(u), x, y ∈ K.

It follows that for u ∈ F0 =
{
u ∈ F : u|V0 = 0

}
, u , 0, by choosing y = p3, we have

|u(x)|2 ≤ R(a,b)(x, p3)E(a,b)(u), ∀x ∈ K.

Integrating both sides with respect to µ, we obtain

||u||22 ≤
∫

K
R(a,b)(x, p3)dµ(x) · E(a,b)(u).

Recall that the resistance R(x, y), x, y ∈ K has the expression R(x, y) = sup
{ |u(x)−u(y)|2

E(u) :
u ∈ F ,E(u) , 0

}
. Using (2.13), we have C1 > 0 such that

C1b ≤
E(a,b)(u)
||u||22

.
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Since u is arbitrary, this implies that C1b ≤ λ(a,b)
1 . This completes the proof of the lemma.

�

Lemma 3.4. Let a0 > b0 = c0, then for all t ≥ 0 and n ≥ 0,

3nρ(an,bn)
( t
3n

)
≤ ρ(a0,b0)(t), and ρ(a0,b0)

N (t) ≤ 3nρ(an,bn)
N

( t
3n

)
. (3.5)

Here ρ(anbn)(t) is the eigenvalue counting function using an > bn = cn as initial data on
V0. We refer to the similar proof in [19, Propsitions 6.2, 6.3]. The technique is that first
we restrict E(a0,b0) on the sub-domain F1 := {u ∈ F : u|V1 = 0}. Denote by ρ

(
t;E(a0,b0),F1

)
the corresponding eigenvalue counting function, then by making use of the identity (1.5)
we have the following relation

ρ
(
t;E(a0,b0),F1

)
= 3ρ(a1,b1)

( t
3

)
.

where 1
3 in the bracket is the scaling factor of µ. Using this repeatedly and that ρ

(
t;E(a,b)

0 ,F1

)
≤

ρ(a,b)(t), we obtain the first inequality in (3.5). The second inequality can be shown by con-
structing another Dirichlet form which has domain F2 := {u : K \ V1 → R : u ◦ Fi =

fi on K \ V0 for some fi ∈ F , i = 1, 2, 3} and using a similar argument.

Theorem 3.5. Assume that a0 > b0 = c0 on Γ0, then for t0 = inf{t : ρ(a0,b0)(t) > 0},

ρ(a0,b0)(t) � t
log 3

log(9/2) , t > t0.

Similarly, the same inequality holds when ρ(a0,b0)(t) is replaced by ρ(a0,b0)
N (t) and for any

t0 > 0.

Proof. By Lemma 3.2, we see that if we use an > bn = cn as initial data on Γ0, then we
have ρ(an,bn)

(
λ(an,bn)

1

)
= 1, and ρ(an,bn)

N

(
λ(an,bn)

1

)
≤ ρ(an,bn)

(
λ(an,bn)

1

)
+ 3 = 4. Then by Lemma

3.4, we have
ρ(a0,b0)

N

(
3nλ(an,bn)

1

)
≤ 4 · 3n.

Letting t = 3nλ(an,bn)
1 , by Lemma 3.3, we have t � 3nbn � 3n(3/2)n = (9/2)n and 3n �

tlog 3/ log(9/2). It follows that

ρ(a0,b0)(t) ≤ ρ(a0,b0)
N (t) ≤ Ct

log 3
log(9/2)

for some C > 0. The same argument yields the other inequality. �

Recall that the spectral dimension ds of a Dirichlet form is defined to be lim
t→∞

2 log ρ(t)
log t

if the limit exists. Heuristically, ds/2 = d f /dw where d f is the Hausdorff dimension of
K, and dw is the walk dimension of K. The walk dimension is the space-time relation
Ex(|Xt − x|2) ≈ t2/dw of the associate diffusion process [29], which is also the critical
exponent of the Besov space corresponding to the domain of the Dirichlet form [7, 8, 15]
(see Section 4). From Theorem 3.5, we see that for a0 > b0,

ds =
log 9

log(9/2)
, dw =

log 9
log 2

− 1.
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4. Other examples and remarks

In this section, we consider two more examples. The first one is a modification of the
SG such that for a0 > b0 = c0, the closure of V∗ under the resistance metric is different
from the SG; the second one is detailed in [8], it is a p.c.f. set constructed by an IFS of
17 maps with three boundary points, of which the recursive construction does not yield a
compatible sequence of Dirichlet forms En, n ≥ 0.

Let p0 = 0, p1 = 1, p3 = exp
(
π
√
−1

3

)
. We define the twisted Sierpiński gasket [23]

to be the unique nonempty compact set K on R2 with the contractions {Ti}
3
i=1 such that

F1(x) =
x−p1

2 · exp
(
π
√
−1

3

)
+ p1, F2(x) =

x−p2
2 · exp

(
−π
√
−1

3

)
+ p2, and F3(x) = −

x−p3
2 + p3,

(i.e., Fi reflects the sub-triangle Ki along the angle bisection at pi). Then the attractor K
is still the Sierpiński gasket. In [23], Mihai and Strichartz investigated the self-similar
energy forms on this twisted SG.

Similar to the standard SG, by using the ∆-Y transform (see Figure 4), the compatibility
of {(xn, yn, zn)}n≥0 must satisfy the following equations:

xn−1 = xn + ψ(xn; yn, zn),
yn−1 = yn + ψ(yn; zn, xn),
zn−1 = zn + ψ(zn; xn, yn),

n ≥ 1, (4.1)

where ψ(xn; yn, zn) =
2ynzn

xn+yn+zn
, and symmetrically for ψ(yn; zn, xn) and ψ(zn; xn, yn).

Figure 4. ∆-Y transform for the twisted maps

Lemma 4.1. For x0, y0, z0 > 0, in order for (4.1) to have positive solution (xn, yn, zn), n ≥
1, it is necessary and sufficient that x0 ≥ y0 = z0 > 0 (or the symmetric alternates). In this
case, {(xn, yn, zn)}∞n=0 is uniquely determined by (x0, y0, z0).

Furthermore, for x0 > y0 = z0, we have the estimate xn � 1, yn = zn �
(1

3

)n, and hence
an � 3n, bn = cn � 1.

Proof. The proof for the first part is the same as Lemma 2.1. For the sufficiency, assuming
that x0 ≥ y0 = z0, we can solve

x1 = 1
10

(
x0 + 2y0 + 3

√
9x2

0 − 4x0y0 − 4y2
0

)
,

y1(= z1) = 1
5

(
3x0 + y0 −

√
9x2

0 − 4x0y0 − 4y2
0

)
,

(4.2)
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and x1 ≥ y1 = z1, then proceed inductively. For the necessity, we need to change ρ = 2− 1
λ0

for the estimation in (2.6), and make some obvious readjustments on the calculations.
For the second part, we note that xn, yn can be expressed in terms of xn−1, yn−1 as in (4.2).

By the same estimation as in Lemma 2.2, we have xn � 1, yn �
(1

3

)n, and the estimate of
an, bn follows. �

It follows from the estimation of the an � 3n, bn = cn � 1 that

En(u) �
∑
ω∈Wn

{
3n

(
uω(p2) − uω(p3)

)2
+

(
uω(p1) − uω(p2)

)2
+

(
uω(p1) − uω(p3)

)2}
(4.3)

and the compatibility of {En}n≥0 implies that for u ∈ `(V∗), E(u) = limn→∞ En(u|Vn) exists.

Let R := R(a0,b0) denote the resistance metric on V∗ × V∗, and let Ω be the completion
of V∗ with respect to R. We will give a description of the topology and the completion
of (Ω,R). Let U0 = {p2, p3}, Un =

⋃3
i=1 Fi(Un−1) for n ≥ 1 and U∗ =

⋃
n≥0 Un; also let

W0 = {p1}, Wn =
⋃3

i=1 Fi(Wn−1) for n ≥ 1 and W∗ =
⋃

n≥0 Wn (see Figure 5).

Figure 5. Un,Wn, n = 1, 2, 3; bold lines are the edges joining the neigh-
boring points in Un, and the bold dots forms Wn.

Proposition 4.2. On the twisted SG,

(i) the resistance metric R is a uniform discrete metric on W∗, and distR(U∗,W∗) > 0;

(ii) On U∗ , for x ∈ U∗, let Kx be the largest subcell of K that has x as a vertex, then

R(x, y) � |x − y|log 3/ log 2 for y ∈ U∗ ∩ Kx; (4.4)

on the other hand, let q ∈ Wk \ Wk−1 with two adjacent cells K′q,K
′′
q (as defined above),

then

R(x, y) �
(1
3

)k
for x ∈ Un ∩ K′q, y ∈ Un ∩ K′′q , n ≥ k. (4.5)

Consequently, the completion Ω = U∗∪W∗, where U∗ is pathwise connected and locally
connected, and is such that for each q ∈ Wk \ Wk−1, U∗ has two limit points p′q, p′′q with

R(p′q, p′′q ) �
(

1
3

)k
.

Remark 4.1: The completion U∗ can be realized as cutting up the SG at each q ∈ W∗, and
bend the two subcells K′q,K

′′
q apart at the cut points with the appropriate distance without

breaking the SG (see Figure 6 at q1).
16



Figure 6. Completion of U∗ at q1; similarly at other q ∈ Wn

Proof. Recall that R(x, y)−1 := inf{E(u) : u ∈ `(V∗), u(x) = 1, u(y) = 0}. For x, y ∈ Wn,
by using the tend functions, and observe that the effective resistance of the two nodes is
≥ b−1

n /4 � 1, we conclude the resistance metric R on W∗ has a uniform lower bound > 0.
This implies W∗ is a uniform discrete metric space. Also by the same reason, we see that
distR(W∗,U∗) > 0.

Next we consider the resistance metric on Un. Let Kn ⊂ Kx be the smallest subcell of
K that contains both x, y. By using a−1

n �
(

1
3

)n
, and the path property of Un, it is direct to

prove the estimation of (4.4).
To prove (4.5), it suffices to consider the case q = q1 ∈ W1 \W0, the midpoint of the line

segment p2 p3, then use the IFS to move the argument to other q ∈ W∗. Let p′n ∈ Un∩F2(K)
that is a neighbor (in Vn) of q1. Similarly, let p′′n ∈ Un ∩ F3(K) that is a neighbor (in Vn)
of q1. Then we have

R(p′n, p′′n ) � R(p2, p3) � 1.
(For the above estimation, note that the geodesic in Vn joining p′n(∈ F2(K)) and p′′n (∈
F3(K)) must pass through F1(K) (see Figure 6), so that R(p2, p3) ≥ R(p′n, p′′n ) ≥ 1

3R(p2, p3).)

Finally the statement of the completion U∗ follows from (4.4) and (4.5). �

From the probabilistic point of view, it will be interesting to understand the corre-
sponding diffusion process on U∗ and Ω. We also note that in [11], Hambly and Kumagai
studied this type of diffusions on several types of nested fractals( e.g. the higher dimen-
sional and higher level Sierpinski gaskets and also the Vicsek sets). On the variations of
gaskets they showed that there exist such Dirichlet forms, while on the Vicsek set, they
observed that if one assigns resistance a and b on the side and diagonal edges with a > b,
then the resistance between two diagonal lines on any n-cell has a uniform lower bound,
and thus a similar situation as the twisted SG occurs.

Next we list another example in [8] on which the recursive construction does not work.
Let K be a p.c.f. set as in Figure 7, which has three boundary points, and is generated by
an IFS of 17 similitudes with contraction ratio 1/7. We call it a Sierpiński Sickle.

Proposition 4.3. [8] For the Sierpiński sickle, the recursive construction for any (a0, b0, c0)
does not give a compatible sequence of {(an, bn, cn)}∞n=0. However, one can construct a
Dirichlet form satisfying the energy self-similar identity.

For the recursive construction, the basic reason for no compatible sequence is that the
solution similar to the system of equations (1.4) fails to be positive. For the self-similar
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Figure 7. The Sierpiński sickle K

case, we find the explicit renormalizing factors for E(u) =
∑17

i=1 ri
−1E(u ◦Fi). Let rL, rR, rT

on the cells of K be defined as follows:
r1 = r2 = · · · = r5 = rL on the left 5 sub-triangles F1(K), F2(K), · · · , F5(K);
r6 = r7 = τ8 = rT on the 3 top sub-triangles F6(K), F7(K), F8(K);
r9 = τ10 = · · · =17= rR on the right 9 sub-triangles F9(K), F10(K), · · · , F17(K).

Then we can solve a system of equations and obtain, for k ≥ 2,

rL =
k(k − 1)

5(k2 + 6k + 3)
, rR =

k2 − 1
(13k + 5)(k2 + 6k + 3)

, rT =
2(2k + 1)

k2 + 6k + 3
.

Remark 4.2. Note that if the Dirichlet form from the recursive construction is self-
similar, then all the renormalizing factors ri’s are equal. In [8, Section 4.2], we have a
p.c.f. set (the Vicsek eyebolted cross) that the Dirichlet forms from the recursive con-
struction cannot satisfy the condition, hence they are all non-self-similar. Nevertheless,
the self-similar Dirichlet forms can still be obtained similar to the above example.

Remark 4.3. We do not know to what extend the recursive construction and the di-
chotomy result can be extended to the other p.c.f. sets; also in view of the different situ-
ations on the SG and the previous examples, it will be nice to have some specific criteria
on the more general fractals.

The original usage of the above mentioned p.c.f sets was to study the critical exponents
σ∗ of the Besov spaces Bσ

2,∞ ⊂ L2(K, µ), σ > 0 (where K ⊂ Rd is closed, and µ is an
α-Ahlfors regular measure on K) in connection with the domain of the Dirichlet forms
and the walk dimension ([8, 20, 21]). Recall that Bσ

2,∞ has norm ||u||Bσ2,∞ = ||u||2 + [u]Bσ2,∞
where

[u]2
Bσ2,∞

= sup
0<r<1

r−2σ
∫

K

( 1
rα

∫
B(x,r)
|u(x) − u(y)|2dµ(y)

)
dµ(x).

The critical exponent of the Besov spaces {Bσ
2,∞}σ>0 is defined to be

σ∗ = sup{σ : Bσ
2,∞ ∩C(K) is dense in C(K)}.

For example, for the SG, σ∗ = log 5/ log 2 and Bσ∗

2,∞ = F [15] (see also [27] for some
nested fractals and [14] for p.c.f. fractals). In those cases, when σ > σ∗, then Bσ

2,∞ con-
tents only constant functions. In [8], we asked whether this is necessary, and investigate
the relevance with the Dirichlet forms. For this we introduce another critical exponent

σ# = sup{σ : Bσ
2,∞ contains non-constant functions}
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and constructed the above example. It was shown that σ∗ < σ# with the explicit expres-
sions of σ∗ and σ#. Also Bσ∗

2,∞ (⊂ C(K)) is dense in C(K), and Bσ#

2,∞ is dense in L2(K, µ)
(but not dense in C(K)). This Besov space Bσ∗

2,∞ does not support a local regular Dirichlet
for (E,F ) with E(u) � ||u||2

Bσ∗2,∞
for all u ∈ F .

In all the known examples, the critical exponent σ∗ of the Besov spaces on K equals to
the walk dimension dw of K. This heuristic relation is not very intuitive as σ∗ is defined
through the geometry of K, and the walk dimension is certain space-time exponent of the
walk. Some of these aspects had been studied in [7] in terms of the heat kernel. It will be
interesting to find out the more natural and direct connection of these exponents.

The existence of a Dirichlet form on a fractal set still posts a fundamental and challeng-
ing question. In [25], Peirone proved there is a large class of p.c.f. self-similar sets (not
necessary symmetric) possess self-similar energy forms, and more recently, he claimed
an example of a p.c.f. set that does not admit such energy forms [26]. It might be worth-
while to see if the recursive construction will produce a non-self-similar energy form in
his example. For the non-p.c.f sets, it remains largely unknown for the existence of the
Dirichlet forms. Even for the Sierpinśki carpet, the construction is to use a probabilistic
approach [2], which is technically quite complicated, and surprisingly, there is no clear
analytic approach on the discrete approximations yet.

Acknowledgement: The authors are indebted to Mr. Meng Yang for many helpful dis-
cussions, in particular on the the semigroup of operators which led to Proposition 3.1 and
Lemma 3.2. They also thank Professors Hambly and Strichartz for the valuable discus-
sions on the probabilistic counterpart, and brought their attention to the relevant references
during a conference in Cornell.
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