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Abstract. We consider translation invariant Dirichlet forms (not necessarily self-similar)
on a class of p.c.f. self-similar sets possessing certain homogeneity. This class of forms
may have distinct conductance growth ratio on different directions. Such examples in-
clude the asymptotically one-dimensional diffusions on the Sierpinski gasket [18] and its
natural generalizations on certain nested fractals [14]. We obtain sharp eigenvalue as-
ymptotic law of the associated Laplacians. For the examples considered in [14], we show
that the construction succeeds on all the generalized Sierpinski gaskets but fails on the
Vicsek checkerboards. Another example is the translation invariant Dirichlet form on the
eyebolted Vicsek cross constructed in [11]. Further, we construct a new class of Dirichlet
forms with 3 different types of conductances on the 3-dimensional Sierpinski gasket. As
application, we obtain the explicit spectral asymptotics for these examples.

1. Introduction

Dirichlet forms play a central role in the analysis on fractals. There is a large literature
on the topic based on Kigami’s analytic approach on the post-critically finite (p.c.f.) self-
similar sets, and the probabilistic approach of Lindstrøm on the nested fractals as well
as Barlow and Bass on the Sierpinski carpet (see [1, 2, 16, 24, 29, 30, 31, 34] and the
references therein).

For the p.c.f. fractals, usually we obtain a local Dirichlet form through finding a har-
monic structure, which is some non-degenerate fixed point of certain nonlinear map be-
tween consecutive levels of resistance networks approximating the fractal. Thus the form
has a self-similar property[30, 31]. The detailed spectral distribution for regular self-
similar Dirichlet forms on p.c.f. fractals with a self-similar measure was obtained by
Kigami and Lapidus [26]. In particular, the spectral dimension dS is given as the unique
solution of

N∑
i=1

(riµi)
dS
2 = 1, (1.1)

where ri is the resistance renormalization factor and µi is the weight of the self-similar
measure. The explicit heat kernel estimates for self-similar Dirichlet forms on p.c.f. frac-
tals with the canonical self-similar measure (i.e., the measure with weights µi = rδi ) was
obtained by Hambly and Kumagai [15].

The situation is quite different if one considers degenerate fixed point of the resistance
map. The first consideration is by Hattori, Hattori and Watanabe [18]. The basic idea
is to use the resistance renormalization map to iterate backwards to construct a sequence
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of compatible networks on the approximating graphs converging to some diffusion on
the Sierpinski gasket (SG) (and more general abc-gaskets). The Dirichlet forms associ-
ated with these diffusions have the translation invariant property but do not have the self-
similar property. Recently, the authors showed that there are only two kinds of translation
invariant energy forms on the SG [12], one is the standard fully symmetric self-similar
Dirichlet form and the other is the forms given in [18]. Hambly and Kumagai [14] ex-
plored the construction on a class of nested fractals including the class of generalized SGs
and Vicsek checkerboards, they studied the corresponding heat kernel estimates. Later,
Hambly and Jones [13] gave a more detailed heat kernel estimate of the asymptotically
one-dimensional diffusions on the SG. As a consequence, they obtained the spectral di-
mension of the associated Laplacian, which was recently improved by the authors [12]
by showing that the lower bound of the spectral has the same asymptotic as upper bound
(removing a logarithmic term in the lower bound obtained in [13]). Usually we shall not
expect the existence of a translation invariant Dirichlet form for any degenerate fixed point
of a given resistance renormalization map of certain p.c.f. fractal. In [10], the first two au-
thors constructed an example called the eyebolted Vicsek cross which possesses one class
of such translation invariant Dirichlet forms which can not be self-similar, but they also
constructed an example called the Sierpinski sickle which can not possess a translation
invariant form at a degenerate fixed point. The knowledge of this type of Dirichlet forms
on self-similar sets is much less than the well-studied self-similar Dirichlet forms, and
even we do not have any further examples in this direction and the study of the associated
Laplacians is still far from complete.

The purpose of this paper is two-folds: first is to give a scheme describing the trans-
lation invariant Dirichlet forms discussed above, and study their spectral asymptotics;
second is to construct more examples of such Dirichlet forms. As supplement to the work
[14], we confirm the existence of the forms for the class of generalized Sierpinski gas-
kets by computing the explicit conductance growth ratios (or equivalently, reciprocals of
the resistance decay ratios) and confirming that they are strictly greater than 1 (or satisfy
[14, Assumption 4.3]). We also show that the construction of such form fails on all the
Vicsek checkerboards by showing that they do not satisfy Assumption 4.3 in [14]. We
also construct a new example which is a class of asymptotically 2-dimensional diffusions
depending on two parameters on the 3-dimensional SG. For all these examples, we study
their spectral asymptotic behavior by using the first result.

We organize the paper as follows. In Section 2, we give some preliminaries about self-
similar sets and Dirichlet forms (or resistance forms in particular). In Section 3, we give
a scheme for constructing the translation invariant Dirichlet forms, and prove our main
result about the spectral asymptotics. In Section 4, we study in detail the examples con-
structed in previous works and construct a new example of asymptotically 2-dimensional
diffusion with 3 different types of conductance on 3-dimensional SG. As a corollary, we
give the spectral asymptotics of all the examples.

2. Preliminaries

Let {Fi}
N
i=1 be an iterated function system (IFS) on Rd such that

Fi(x) = %(x − bi) + bi, 1 ≤ i ≤ N, (2.1)
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where 0 < % < 1 and bi ∈ R
d. Let K =

⋃N
i=1 Fi(K) be the corresponding self-similar

set, and let µ be the self-similar measure on K defined by µ = 1
N

∑N
i=1 µ ◦ F−1

i . If the IFS
satisfies the open set condition (OSC), i.e., there is a nonempty bounded open set O such
that Fi(O) ⊂ O and Fi(O) ∩ F j(O) = ∅ for i , j, then the Hausdorff dimension of K is
dimH(K) = α =

log N
| log %| , and µ is the α-dimensional Hausdorff measure normalized on K,

which is α-regular in the sense that

µ
(
B(x, r)

)
� rα,

for 0 < r < diam(K) and x ∈ K with B(x, r) := {y ∈ K : |x − y| < r}. (Note that we use
f � g to mean C−1 f ≤ g ≤ C f for some C > 0.)

We always assume that K is connected. We define the symbolic space of K as usual. Let
Σ = {1, · · ·N} be the alphabet, Σn be the set of all the words with length n, and Σ∞ be the set
of infinite wordsω = ω1ω2 · · · ; let π : Σ∞ → K be defined by {x} = {π(ω)} =

⋂
n≥1 Kω1···ωn ,

a symbolic representation of x ∈ K by ω, where Kω1···ωn = Fω1 ◦ · · · ◦ Fωn(K).

Following Kigami [24], we define the critical set C and the post-critical set P for K
by

C = π−1
(⋃

1≤i< j≤N

(
Ki ∩ K j

))
, P =

⋃
m≥1

τm(C),

where Ki = Fi(K), τ : Σ∞ → Σ∞ is the left shift by one index. If P is a finite set, we call
{Fi}

N
i=1 a post-critically finite (p.c.f.) IFS, and K a p.c.f. self-similar set. The boundary of

K is defined to be V0 = π(P). (We always assume #(V0) ≥ 2 to avoid triviality.) We also
define

Vn =
⋃

i∈{1,...,N}

Fi(Vn−1), V∗ =
⋃
n≥1

Vn.

It is clear that {Vn}
∞
n=0 is an increasing sequence of sets, and K is the closure of V∗. For

any ω ∈ Σn, we call Kω := Fω(K) a cell of K and denote by Vω := Fω(V0) the boundary
of Kω, where Fω = Fω1 ◦ · · · ◦ Fωn .

It is known that a p.c.f. IFS in (2.1) satisfies the OSC [6]. (More generally, this is true
if the associate similar matrices Ai of Fi (instead of the % in (2.1)) are commensurable,
i.e., there exists a matrix A and integers ni such that Ai = Ani; but it is not true without this
assumption [35].) Hence the p.c.f. self-similar set K has dimension α, and is associated
with a self-similar measure µ that is α-regular.

It is also known in [10] that a p.c.f. IFS in (2.1) satisfies the following separation
property:
(H): there exists C0 > 0 such that for any integer n ≥ 1 and any two words ω and τ with
length n and Kω ∩ Kτ = ∅, dist(Kω,Kτ) ≥ C0%

n.

2.1. Resistance forms. ([25, Chapter 3]) Let X be a set and `(X) be the space of functions
on X. A pair (E,F ) is called a resistance form on X if it satisfies the following conditions.

(RF1). F is a linear subspace of `(X) containing constant functions and E is a nonnegative
symmetric bilinear form on F . In addition, E(u) := E(u, u) = 0 if and only if u is constant.
(RF2). Let ∼ be an equivalent relation on F defined by that u ∼ v if and only if u − v is
constant on X. Then (F / ∼,E) is a Hilbert space.
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(RF3). If x , y, then there is u ∈ F such that u(x) , u(y).
(RF4). For any p, q ∈ X,

sup
{
|u(p) − u(q)|2

E(u)
: u ∈ F ,E(u, u) > 0

}
(2.2)

is finite.
(RF5). ū ∈ F and E(ū) ≤ E(u) for any u ∈ F , where ū = (u ∨ 0) ∧ 1.

For a resistance form (E,F ), if we denote by

R(p, q)−1 := inf {E(u) : u ∈ F , u(p) = 1, u(q) = 0}

for any distinct p, q ∈ X, and set R(p, p) = 0 for any p ∈ X, we have by [24] that R(·, ·) is
a metric on X, which is call the effective resistance metric. It is known [24] that a regular
harmonic structure on a p.c.f. self-similar set gives a resistance form on the fractal.

Kigami and Lapidus [26] obtained the spectral asymptotics of Laplacians defined on
general p.c.f. self-similar sets admitting a regular harmonic structure under self-similar
measures. To be precise, let ({Fi}

N
i=0,K,V0) be a p.c.f. self-similar set with boundary V0.

Assume that there exists a regular harmonic structure which gives a resistance form (E,F )
on K satisfying the self-similar property, i.e., for any u ∈ F and 1 ≤ i ≤ N, u ◦ Fi ∈ F

and

E(u) =

N∑
i=1

1
ri
E(u ◦ Fi), (2.3)

where 0 < ri < 1 for 1 ≤ i ≤ N. Let µ be a self-similar measure on K with weights {µi}
N
i=1.

Let ρ(t) be the eigenvalue counting function of the corresponding Laplacian on K, with
Dirichlet or Neumann boundary conditions. Then

ρ(t) � t
dS
2

for sufficiently large t, where dS is the spectral dimension defined in (1.1).
In this paper, we consider a class of not necessarily self-similar resistance forms on

p.c.f. self-similar sets defined by (2.1), which can be viewed as degenerate fixed points of
the associated resistance renormalizing maps. They have the translation invariant property
and satisfy another type of identity instead of (2.3), which may allow different conduc-
tance growth ratio on different “directions”. We will discuss the details in the next section.

3. Spectral asymptotics

In this section, we consider a certain kind of resistance forms on a p.c.f. self-similar set
(K, {Fi}

N
i=1,V0) satisfying (2.1). We consider the form (E,F ) defined on V∗ as following:

E(u) = lim
n→∞

En(u), ∀u ∈ `(V∗),

where

En(u) =
∑
ω∈Σn

∑
p,q∈V0

c
(
Fω(p), Fω(q)

)(
u
(
Fω(p)

)
− u

(
Fω(q)

))2
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are compatible discrete resistance forms on Vn, with c
(
Fω(p), Fω(q)

)
≥ 0, the conductance

between points Fω(p) and Fω(q). Here “compatible” means that for any n ≥ 1, u ∈
`(Vn−1), it always holds that

En−1(u) = min{En(v) : v ∈ `(Vn), v|Vn−1 = u}.

In addition, we call the function v which attains the minimal energy the harmonic exten-
sion of u in Vn. A function h ∈ `(V∗) is called harmonic if it minimizes the energy at each
level of Vn. The domain F is defined to be

F = {u ∈ `(V∗) : E(u) < ∞}.

We consider the forms with the following assumptions:
(A1): Assume that for any n ≥ 0, and any p, q ∈ V0, c

(
Fω(p), Fω(q)

)
is independent of

ω ∈ Σn, that is
c(Fω(p), Fω(q)) = cn(p, q).

(A2): Assume that for any distinct p, q ∈ V0, either cn(p, q) = 0 for all n ≥ 0 or there exists
a constant κ(p, q) > 1 such that cn(p, q) � κ(p, q)n. In addition, assume that

(
V0, κ(p, q)

)
is irreducible, that is, for any pair p, q ∈ V0, there is a chain p = p1, p2, · · · , pm−1, pm = q
on V0 such that κ(pi, pi+1) , 0 for i = 1, 2, · · · ,m − 1.

We call a resistance form (E,F ) satisfying (A1) and (A2) a homogeneous form. It is
natural that the form can be extended to the completion of V∗ under R(·, ·). In our situation,
the completion is the same with K, provided property (H), see Proposition 3.2. Intersect-
ing the self-similar forms, we have a typical class of homogeneous forms, which are
the forms with exactly one essential conductance growth ratio, including the Lindstrøm’s
construction on nested fractals [29], of which the asymptotic ratios of eigenvalue counting
functions are known [26] since they belong to the self-similar forms. Besides this case,
we here want to focus more on the non-self-similar case. Known examples include the
so-called asymptotically one-dimensional diffusions on SG [18] and their generalizations
[14]. In [12], the authors characterized all homogeneous forms on SG. It is proved that
there is a dichotomy situation: either (E,F ) is asymptotically one-dimensional as in [18],
or (E,F ) is the standard self-similar form established by Kigami in [23]. It is seen that
such a form always behaves invariant under translation but not necessarily invariant under
the scaling maps Fi. The forms display local anisotropy, i.e., there are some preferred
directions of motion which dominate at small scales.

We denote by
κmax := max

{
κ(p, q) : p, q ∈ V0

}
,

and let

κ0 = max
{

s : ∀p , q in V0, ∃ a chain p = p1, p2, · · · , pm = q in V0
3 κ(pi, pi+1) ≥ s, 1 ≤ i ≤ m − 1

}
.

We write V0 into equivalent classes. For p, q ∈ V0, set p ∼ q if p = q or there is a chain
p = p1, p2, · · · , pm = q in V0 such that κ(pi, pi+1) > κ0 for 1 ≤ i ≤ m − 1. It is clear that
“ ∼ ” gives an equivalent relation on V0. If there is no p, q such that κ(p, q) > κ0, then set
“ ∼ ” to be the trivial relation that each equivalent class consists of only one singleton in
V0.
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For n ≥ 1, the equivalence relation “∼” on V0 induces an equivalent relation “∼n” on
Vn: Let x, y be two distinct points in Vn, we say x ∼n y if and only if there is a chain
x = x1, x2, · · · , xm = y such that for each 1 ≤ i ≤ m − 1, there is a word ωi ∈ Σn such that
xi = Fωi(pi) and xi+1 = Fωi(qi) for some pi, qi ∈ V0 with pi ∼ qi. For p ∈ Fω(V0) with
some |ω| = n, denoted by [p]n the equivalent class of p under ∼n.

We will need an additional assumption on (E,F ) to estimate the eigenvalue asymptotic
ratio of its associated Laplacian with respect to the measure µ.
(A3): Assume that there exists some ω ∈ Σn0 for some n0 ≥ 1 such that for all p ∈ Fω(V0),
we have

[p]n0 ∩ V0 = ∅.

Proposition 3.1. Assume (A1), for k ≥ 0, let E(k)(u) be the form with conductances
cn+k(p, q) on Vn, n ≥ 0. Then E(u) = E(0)(u) satisfies the following identity

E(u) =

N∑
i=1

E(1)(u ◦ Fi),

and consequently for any n ≥ 1,

E(u) =
∑
ω∈Σn

E(n)(u ◦ Fω). (3.1)

Let µ be the normalized Hausdorff measure on K, i.e. µ satisfies µ = 1
N

∑N
i=1 µ ◦ F−1

i .

Proposition 3.2. Let (E,F ) be the form satisfying the assumption (A1) and (A2). Then
the resistance metric R(·, ·) on V∗ satisfies the estimate

C−1|x − y|−
log κmax

log % ≤ R(x, y) ≤ C|x − y|−
log κ0
log % , ∀x, y ∈ V∗. (3.2)

Moreover, R(·, ·) is a bounded on V∗ with

R(x, y) ≤ C

 ∑
p,q∈V0:κ(p,q)=κ0

1
c0(p, q)

 , ∀x, y ∈ V∗. (3.3)

Consequently, R(·, ·) can be continuously extended to K, and (E,F ) turns out to be a local
regular Dirichlet form on L2(K, µ).

Proof. For distinct points x, y in V∗, let n be the integer such that C0%
n+1 ≤ |x − y| < C0%

n,
where C0 is a positive constant has the same value as that in property (H). We may assume
that n ≥ 0. Let ω and τ be two words with length n such that x ∈ Kω and y ∈ Kτ, then by
(H), we have that

Kω ∩ Kτ , ∅.

For the upper bound of (3.2), pick z ∈ Kω ∩ Kτ = Vω ∩Vτ, we will estimate R(x, z). We
can find a sequence of decreasing cells {Kωk}k≥0 such that ω0 = ω, ωk ∈ Σn+k, k ≥ 0, and
x ∈

⋂
k≥0

Kωk . Choose an infinite chain z = z0, z1, · · · such that limk→∞ zk = x and zk and zk+1

are contained in Fωk(V0), ∀k ≥ 0. Then for any u ∈ F with E(u) , 0, we have

|u(x) − u(z)| ≤
∑
k≥0

|u(zk) − u(zk+1)| ≤ C
∑
k≥0

∑
p,q∈V0: κ(p,q)=κ0

√
E(u)

cn+k(p, q)
6



≤ C′
∑

p,q∈V0: κ(p,q)=κ0

√
E(u)

κn
0c0(p, q)

.

So we have

R(x, z) ≤ κ−n
0

C′ ∑
p,q∈V0: κ(p,q)=κ0

√
1

c0(p, q)


2

. (3.4)

Similarly, we have the same bound for R(y, z). Hence

R(x, y) ≤ R(x, z) + R(y, z) ≤ Cκ−n
0 ≤ C|x − y|−

log κ0
log % .

For the lower bound of (3.2), we may find a positive integer m0 such that, the n + m0

cell Kω̃ containing x does not intersect any n + m0 cell which contains y. Then let u be the
(n + m0)-piecewise harmonic function with values 1 on Kω̃ and 0 on any other points in
Vn+m0 . Hence u = 0 on y, and we have

E(u) ≤ C max
p,q∈V0

cn+m0(p, q) ≤ C′κn
max,

where C and C′ are constants independent of n and x, y. Thus

R(x, y) ≥ E(u)−1 ≥ C′−1κ−n
max ≥ C−1|x − y|−

log κmax
log % .

A slight modification of identity (3.4) gives the estimate (3.3).
The regularity of (E,F ) can be seen by using piecewise harmonic functions to approx-

imate any u ∈ C(K), and the locality follows from identity (3.1). �

Let ∆ be the Laplacian (infinitesimal generator) of the Dirichlet form (E,F ) on L2(K, µ),
then F is compactly imbedded in C(K), and hence the ∆ has a discrete spectrum which
has the only limit point +∞. Let ρ(x) and ρN (x) be the Dirichlet and Neumann eigenvalue
counting functions of the Laplacian ∆ defined by (E,F ) under µ.

Proposition 3.3. Let K be a compact connected set and ν be a Borel measure on K with
full support, and let (E,F ) be a regular Dirichlet form on L2(K, ν) with F ⊂ C(K).
Denote by {Pt}t≥0 the associated semigroup of heat operators of (E,F ). Suppose L ⊂ F
is a closed linear sublattice of L2(K, ν), and there exists C > 0 such that

Ptu ≤ Cu, ∀ t > 0, u ≥ 0, u ∈ L. (3.5)

Then L has dimension at most one.

Proof. The essentially idea of the proof comes from [5, Theorems 7.2, 7.3]. Suppose L
is nontrivial, let u ≥ 0 be any non-zero element in L, then u ∈ C(K). Let U = {x ∈ K :
u(x) , 0}. We claim that U = K, modulo a ν-null set. If υ ∈ C(K) and |υ| ≤ αu for some
α ≥ 0, then by the Markovian property of {Pt}t>0 and (3.5), we have

|Ptυ| ≤ Pt|υ| ≤ αPtu ≤ αCu.

Hence for
G = {υ ∈ C(K) : |υ| ≤ αu for some α ≥ 0},

Pt(G) ⊆ G for all t ≥ 0. As U is an open set by definition, G contains all the continuous
functions that are compactly supported in U. The L2-closure of G is the set of all υ ∈
L2(K, ν) with υ = 0 on K \ U. So U is an invariant set of the semigroup {Pt}t>0. (A
ν-measurable set B ⊂ K is said to be Pt-invariant if Pt(1B f ) = 1BPt f ν-a.e. for any f ∈ L2
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and t > 0.) Hence by [8, Theorem 1.6.1], 1U ∈ F . However, as K is connected, this holds
if and only if U = K or U = ∅. Since u is nonzero, we conclude that U = K, and the
claim follows.

Now, if u ∈ L, then u+ and u− are in L and have disjoint supports. It follows from
the claim that one of them must vanish. Hence u ∈ L implies u ≥ 0 or (−u) ≥ 0. If u, v
are two distinct positive elements of L, then u + ηv is either positive or negative for all
η ∈ R. But the sum must change sign as η increases through R. Hence there is η such that
u + ηv = 0. This is a contradiction, and hence L is one dimensional. �

Lemma 3.4. Let K be a p.c.f. self-similar set satisfying (2.1) and µ be the normalized
Hausdorff measure on K. Let (E,F ) be the Dirichlet form satisfying (A1) and (A2). Let
Λ1 be the eigenfunction space of λ1, the first eigenvalue of −∆ with Dirichlet boundary
condition. Then Λ1 is of dimension one.

Proof. We make use of the Rayleigh quotient for the first eigenvalue:

λ1 = inf
u∈F0,u,0

E(u)
||u||22

, (3.6)

where F0 := {u ∈ F : u|V0 = 0}. There exists a function u ∈ F attains the infimum, and all
such functions must be eigenfunctions with eigenvalue λ1. Therefore by the Markovian
property of the Dirichlet form, we see that Λ1 is a closed sublattice, hence also u+, u− are
contained in Λ1 (here u± means the positive and negative parts of u). For any u ∈ Λ1, we
have

Ptu =

∞∑
n=0

tn

n!
∆nu =

∞∑
n=0

tn

n!
(−λ1)n u = e−tλ1u ≤ u.

By using Proposition 3.3 with L = Λ1, we see that Λ1 is of dimension at most one, and
thus Λ1 is one dimensional since Λ1 is nontrivial. �

Lemma 3.5. Let K be a p.c.f. self-similar set satisfying (2.1) and µ be the normalized
Hausdorff measure on K. Let (E,F ) be a Dirichlet form on L2(K, µ) satisfying (A1), (A2)
and (A3). There exists C > 0 such that for any initial conductance {c0(p, q)}p,q∈V0 , we
have

C−1

 ∑
p,q∈V0: κ(p,q)=κ0

1
c0(p, q)


−1

≤ λ1 ≤ C
∑

p,q∈V0: κ(p,q)=κ0

c0(p, q), (3.7)

where λ1 is the first eigenvalues of −∆ with the Dirichlet boundary condition.

Proof. We will make use of the Rayleigh quotient in (3.6) again. We will choose a piece-
wise harmonic function u0 ∈ F0. By (A3), we can find an n0-level cell Kω such that for
any p ∈ Fω(V0), [p]n0 ∩ V0 = ∅. Set u0 be 1 on

⋃
p∈Fω(V0)[p]n0 , 0 on other points in Vn0 ,

and harmonic in each n0 level cell. Then

||u0||
2
2 ≥

∫
Fω(K)

u2
0dµ = µ(Kω) = N−n0 .
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Also observe that E(u0) ≤ C
∑

p,q∈V0: κ(p,q)=κ0

cn0(p, q) for some C > 0. Therefore

λ1 ≤
E(u0)
||u0||

2
2

≤ C
∑

p,q∈V0: κ(p,q)=κ0

cn0(p, q) · Nn0 ≤ C′
∑

p,q∈V0: κ(p,q)=κ0

c0(p, q)

for some C′ > 0.

To estimate the lower bound, we let u ∈ F , then

|u(x) − u(y)|2 ≤ R(x, y)E(u), x, y ∈ K.

It follows that for u ∈ F0 =
{
u ∈ F : u|V0 = 0

}
, u , 0, by choosing y to be some p ∈ V0,

we have
|u(x)|2 ≤ R(x, p)E(u), ∀x ∈ K.

Integrating both sides with respect to µ, we obtain

||u||22 ≤
∫

K
R(x, p)dµ(x) · E(u).

Using (3.3), we have C1 > 0 such that

C1

 ∑
p,q∈V0: κ(p,q)=κ0

1
c0(p, q)


−1

≤
E(u)
||u||22

.

Since u is arbitrary, this implies that C1

( ∑
p,q∈V0: κ(p,q)=κ0

1
c0(p,q)

)−1

≤ λ1. This completes the

proof of the lemma. �

Lemma 3.6. For all t ≥ 0 and n ≥ 0,

Nnρ(n)
( t
Nn

)
≤ ρ(0)(t), and ρ(0)

N
(t) ≤ Nnρ(n)

N

( t
Nn

)
. (3.8)

Here ρ(n)(t)
(
ρ(n)
N

(t)
)

is the eigenvalue counting function of the Dirichlet (Neumann)
Laplacian associated with E(n) with respect to the Hausdorff measure µ. We refer to the
similar proof in [26, Propsitions 6.2, 6.3]. The technique is that first we restrict E(0)

on the sub-domain F1 := {u ∈ F : u|V1 = 0}. Denote by ρ
(
t;E(0),F1

)
the corresponding

eigenvalue counting function, then by making use of the identity (3.1) we have the relation

ρ
(
t;E(0),F1

)
= Nρ(1)

( t
N

)
,

where 1
N in the bracket is the scaling factor of µ. Using this repeatedly and that ρ

(
t;E(n)

0 ,F1

)
≤

ρ(n)(t), we obtain the first inequality in (3.8). The second inequality can be shown by con-
structing another Dirichlet form which has domain F2 := {u ∈ `(K \ V1) : u ◦ Fi =

fi on K \ V0 for some fi ∈ F , i = 1, 2, · · · ,N} and using a similar argument.

Theorem 3.7. Assume that (A1), (A2) and (A3) hold, then for t0 = inf{t : ρ(t) > 0},

ρ(t) � t
log N

log(Nκ0) , t > t0.

Similarly, the same inequality holds when ρ(t) is replaced by ρN (t) and for any t0 > 0.
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Proof. By Lemma 3.4, we see that if we denote by λ(n)
1 the first eigenvalue of the Dirichlet

Laplacian associated with E(n), then we have ρ(n)
(
λ(n)

1

)
= 1, and ρ(n)

N

(
λ(n)

1

)
≤ ρ(n)

(
λ(n)

1

)
+N =

N + 1. Then by Lemma 3.6, we have

ρ(0)
N

(
Nnλ(n)

1

)
≤ C · Nn.

Letting t = Nnλ(n)
1 , by Lemma 3.5, we have t � Nnκn

0 and Nn � tlog N/ log(Nκ0). It follows that

ρ(t) = ρ(0)(t) ≤ ρ(0)
N

(t) ≤ Ct
log N

log(Nκ0)

for some C > 0. The same argument yields the other inequality. �

4. Examples

In this section, we present several examples to illustrate Theorem 3.7. The first class
of examples is the one-parameter family of diffusions on a class of generalized Sierpinski
gaskets (on SG is constructed in [18] and on generalized SGs is considered in [14]). We
then give two more examples, one is the translation invariant forms on the eyebolted
Vicsek cross [11]; the other is a new class of forms with 3 different types of conductance
on the 3-dimensional SG.

The asymptotically one-dimensional diffusion on the 2-dimensional SG was firstly con-
structed by Hattori, Hattori and Watanabe [18] using a probabilistic method. Then Ham-
bly and Kumagai [14] extended this construction of Dirichlet forms to some nested frac-
tals and obtained their heat kernel estimates. It was proved that under an assumption ([14,
Assumption 4.3]) on the explicit conductance growth ratio, their construction will suc-
cessfully yield a one-parameter family of local regular Dirichlet forms on those fractals.
There are two classes of nested fractals considered in [14], one is the generalized SGs,
the other is the Vicsek checkerboards. We will prove that this assumption does HOLD
for all the generalized SGs, but it does NOT HOLD for all the Vicsek checkerboards.
Hambly and Jones [13] obtained the heat kernel estimates and spectral asymptotics (as a
byproduct) for the standard SG, and recently the authors improved their lower bound in
[12] by using a purely analytic method.

Then we will recall another example, the eyebolted Vicsek cross (constructed by two of
the authors in [11]), on which they proved that there exist two kinds of resistance forms.
One of them is self-similar; the other satisfies the conditions (A1)-(A3) in Section 3.

In the next, we will give a construction of a resistance form on the 3-dimensional SG,
whose conductances (resistances) are of 3 different types. Note that in [14], it is men-
tioned without detail that the multi-parameter diffusions would exist.

4.1. Example: one-parameter diffusions on the generalized Sierpinski gaskets. We
consider a class of nested fractals which is generalized from the SG, see Figure 1. Take
a d-dimensional level-` Sierpinski gasket as K for d, ` ≥ 2. The set V0 consists of d + 1
points denoted by p1, p2, . . . , pd+1 which are vertices of a d-dimensional tetrahedron.

In [14], it is shown that the effective conductivity map α : [0,w∗]→ [0,w∗] is a strictly
increasing map with two fixed points 0 and 1(= w∗), where the case w = w∗ = 1 is
corresponding to the standard resistance form on K, and the existence of such form was
proved by Lindstrøm [29]. Following [14], for w ∈ (0, 1), for each n ≥ 0, we denote by

10



Figure 1. The d-dimensional level-` Sierpinski gaskets with (d, `) =

(2, 2), (2, 3), (2, 4), (3, 2).

an := Rn(w) and bn := Rn(w)α−n(w) the two kinds of conductances on Vn, where an is
assigned to be the conductance of each of the edges of a (d − 1)-dimensional face (call it
the bottom face of K) and its parallel hyperplanes, while other edges are of conductance
bn. Then by [14, Lemmas 3.9 and 3.11] we have

an � Rn
G, bn � (RGβ)n,

where RG(> 1) is the reciprocal of the standard resistance renormalization factor of the
(d − 1)-dimensional level-` SG, and β ∈ (0, 1). By [14, Theorem 4.4], if the condition
RGβ > 1 holds (See [14, Assumption 4.3]), then the compatible conductance sequence
{(an, bn)}n≥0 will give a regular local Dirichlet form (E,F ) on L2(K, µ), where µ is the
normalized Hausdorff measure on K.

As a supplement to [14], for all the generalized SGs, we compute the explicit value
of RGβ and show that indeed RGβ > 1. As a result, the construction of asymptotically
one-dimensional diffusions truly exist on all the generalized SGs.

To this end, we fist give some notations. Let d ≥ 2, i ≥ 1 be integers, define H(d, i)
inductively:

H(1, i) = 1 for all i ≥ 1;
H(d, 1) = 1 for all d ≥ 2;

H(d, i) =

i∑
j=1

H(d − 1, j) for all d ≥ 2 and i ≥ 1.

Let d ≥ 2 and ` ≥ 2, then for a d-dimensional level-` SG, denoted by K, for 1 ≤ i ≤ `,
H(d, i) is the number of i-th layer level-1 cells of K that parallel to the bottom face. In
particular, H(d, `) is the number of level-1 cells in a (d − 1)-dimensional level-` SG.

Proposition 4.1. Let K be a d-dimensional level-` SG, let 0 < w < 1 and (a0, b0) = (1,w)
be the conductances on V0. Then

an � Rn
G, bn �

∑̀
i=1

1
H(d, i)

n

.

Consequently, Assumption 4.3 in [14] holds in this case.

Proof. The asymptotic of an that an � Rn
G is shown in [14], and RG > 1 is also provided

therein. We will study the asymptotic of bn.
On the one hand, we consider V0 with conductance (an, bn) and V1 with conductance

(an+1, bn+1). Note that they are compatible. The effective conductance between the top
vertex P and the union set of d points in V0 contained in the bottom face is clearly

11



Dn := dbn by the parallel law. By the monotonicity law [7], Dn becomes larger if we
replace each conductance an+1 by ∞. Denote by D′n the effective conductance with an+1

replaced by ∞, then by computation using the series law and parallel law, it gives that
D′n = dbn+1

(∑`
i=1

1
H(d,i)

)−1
. Hence by Dn ≤ D′n, we have

dbn+1

∑̀
i=1

1
H(d, i)

−1

≥ dbn,

which implies that for all n ≥ 0,

bn+1

bn
≥

∑̀
i=1

1
H(d, i)

. (4.1)

On the other hand, we still let V1 be equipped with conductance (an+1, bn+1), consider
the harmonic function u on V1 with values 1 at the top vertex P and 0 at the d points in
V0 contained in the bottom face. Then the graph energy E(u) = dbn by the compatibility
of {(an, bn)}∞n=0. Consider each (d − 1)-dimensional layer of level-1 edges, denoted by
H, we then have an+1|u(x) − u(y)|2 ≤ E(u) for x, y ∈ H connected by a edge, and hence
|u(x) − u(y)|2 ≤ dbn/an+1. As a consequence, |u(x) − u(y)|2 is of order at most O(βn) for
any x, y ∈ H.

(
In particular, on the bottom face, u is of order at most O(βn/2).

)
Write E(u) into the summation of horizontal energies E(h)

i (u) on each (d−1)-dimensional
layer Hi for i = 1, . . . , `, and the vertical energies E(v)

i (u) between two neighboring layers
Hi−1 and Hi for i = 1, . . . , `, then

E(u) =
∑̀
i=1

E(h)
i (u) +

∑̀
i=1

E(v)
i (u)

≥
∑̀
i=1

E(v)
i (u) =

∑̀
i=1

∑
x∈Hi−1,y∈Hi

x∼y

bn+1
(
u(x) − u(y)

)2
, (4.2)

where x ∼ y means that x and y are connected by conductance bn.
Fix some xi ∈ Hi, we obtain E(u) is no less than∑̀

i=1

∑
x∈Hi−1,y∈Hi

x∼y

bn+1
(
u(xi−1) − u(xi) + u(x) − u(xi−1) + u(xi) − u(y)

)2
. (4.3)

By counting the numbers of the pairs x ∼ y for x ∈ Hi−1 and y ∈ Hi, and using the estimate
|u(x) − u(y)|2 for x, y belonging to the same layer Hi, we have

E(u) ≥
∑̀
i=1

dH(d, i)bn+1

((
u(xi−1) − u(xi)

)2
− |u(xi−1) − u(xi)| · O(βn/2)

)
− bn+1 · O(βn)

≥
∑̀
i=1

dH(d, i)bn+1
(
u(xi−1) − u(xi)

)2
− bn+1 · O(βn/2)

≥ dbn+1

∑̀
i=1

1
H(d, i)


−1

− bn+1 · O(βn/2). (4.4)
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By E(u) = dbn and (4.4), we see that

bn

bn+1
≥

∑̀
i=1

1
H(d, i)


−1

− O(βn/2). (4.5)

Combining (4.1), (4.5) and β ∈ (0, 1), we have that

bn �

∑̀
i=1

1
H(d, i)


n

.

As a result, since
∑`

i=1
1

H(d,i) >
1

H(d,1) = 1, we have that RGβ > 1, proving the Assumption
4.3 in [14]. �

We then apply Theorem 3.7 to obtain the spectral asymptotics for this class of Dirichlet
forms as following.

Corollary 4.2. Let d ≥ 2 and ` ≥ 2 be two integers, K be a d-dimensional level-` SG, and
µ be the normalized Hausdorff measure on K. Let the Dirichlet form (E,F ) be defined as
above on L2(K, µ). Let ∆ be the generator of the form and ρ(t) be its eigenvalue counting
function, then for t large enough,

ρ(t) � t
log H(d+1,`)

log(H(d+1,`)S (d,`)) ,

where S (d, `) =
∑`

i=1
1

H(d,i) .

Proof. Given the conductances {(an, bn)}n≥0 for (E,F ) on K, it is easy to check that con-
ditions (A1), (A2) and (A3) are all satisfied. By Theorem 3.7 with N = H(d + 1, `) and
κ0 = S (d, `), we have

ρ(t) � t
log H(d+1,`)

log(H(d+1,`)·S (d,`)) .

�

4.2. Example: Vicsek checkerboards (fails). Let k ≥ 1 be an integer. The family
of (2k + 1)-Vicsek checkerboards was also considered in [14], see Figure 2. Let V0 =

p1 p2

p3p4

p1 p2

p3p4

Figure 2. The (2k + 1)-Vicsek checkerboard with k = 1, 2.

{p1, p2, p3, p4} be the set of 4 vertices of a unit square. As in [14], let a0 be the conductance
on the two diagonals on V0, and b0 be the conductance on each side on V0. Put a0 = 1
and b0 = w such that w ∈ (0,w∗) where w∗ > 0 is the fixed point for the conductivity map
α. Let {(an, bn)}n≥0 be the compatible sequence on the approximating graphs of K. Then
it is known in [14] that an � Rn

G = (2k + 1)n and bn � (RGβ)n with some β ∈ (0, 1). We
13



will show that RGβ ≤ 1 for all the (2k + 1)-Vicsek checkerboards. Thus in this case, the
Assumption 4.3 in [14] does not hold.

Proposition 4.3. For the (2k + 1)-Vicsek checkerboards, Assumption 4.3 in [14] fails.

Proof. On V1 we put conductance (an+1, bn+1), and by the compatibility, its trace on V0 is
(an, bn). Let u be the harmonic function on V1 such that u(p1) = u(p3) = 0 and u(p2) =

u(p4) = 1, then it is clear that E(u) = 4bn. By the monotonicity law, if we remove the
cells that are not located on the two diagonals, then the new harmonic function, denoted
by υ, satisfies E(υ) ≤ E(u). By computation, we have that

E(υ) =
4(an+1 + bn+1)bn+1

(an+1 + bn+1) + 4kbn+1
. (4.6)

By (4.6) and that E(υ) ≤ E(u) = 4bn, we obtain
bn+1

bn
≤ 1 +

4kbn+1

an+1 + bn+1
= 1 + O(βn).

This shows that RGβ ≤ 1, and hence [14, Assumption 4.3] fails for the Vicsek checker-
boards. �

4.3. Example: translation invariant forms on the eyebolted Vicsek cross. In R2, let
{p1, p2, p3, p4} be the four vertices of the unit square S , and let p0 be the center of S , that is,
p0 = (0, 0) and p1 = (−1/2,−1/2), p2 = (1/2,−1/2), p3 = (1/2, 1/2), p4 = (−1/2, 1/2).
Divide S into a mesh of sub-squares of size 1/9, and pick 21 sub-squares as shown in
Figure 3.

Figure 3. The eyebolted Vicsek cross.

For each sub-square Q, let FQ : S → S be given by

FQ(x) = x/9 + pQ

where pQ is chosen so that FQ(S ) = Q. Renumber the maps FQ by {Fi}
21
i=1. Let K be

the unique nonempty compact set such that K =
⋃21

i=1 Fi(K). Then
(
K, {Fi}

21
i=1

)
is a p.c.f.

self-similar set with boundary V0 = {p1, p2, p3, p4}. We call this modified Vicsek cross
an eyebolted Vicsek cross. The Hausdorff dimension of K is α = log 21/ log 9, and the
self-similar measure with the natural weight is the normalized α-dimensional Hausdorff
measure µ on K.

It is shown in [10, Theorem 5.1] that on the eyebolted Vicsek cross, there are two local
regular Dirichlet forms that can be constructed. One satisfies the energy self-similar iden-
tity (2.3), the other one is from a reverse recursive construction and does not satisfy (2.3)
but satisfies (3.1). We now consider the second construction. The details can be found in
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[10].

Figure 4. the � − X transform.

p1 p2

p3p4

s

t s

t

p1 p2

p3p4

Let {sn}n≥0 and {tn}n≥0 be two positive sequences such that sn = 9−n and tn−1 = 9tn−
t2n

9−n+tn
for n ≥ 1 with t0 = 1, and let the conductances cn(x, y) on Vn be given by

cn
(
Fω(pi), Fω(pi+1)

)−1
= 2(sn + tn), i = 1, 2, 3, 4, (p5 = p1)

cn
(
Fω(p1), Fω(p3)

)−1
= 2(sn +

s2
n

tn
),

cn
(
Fω(p2), Fω(p4)

)−1
= 2(tn +

t2
n

sn
),

for any ω ∈ Σn, using the �− X transform illustrated in Figure 4. For u ∈ C(K) and n ≥ 0,
let

En(u) =
∑
ω∈Σn

∑
p,q∈V0

cn
(
Fω(p), Fω(q)

)(
u
(
Fω(p)

)
− u

(
Fω(q)

))2
.

By the compatibility of En and En−1, we see that
{
En(u)

}
n≥0 is an increasing sequence on

n, and define

E(u) = lim
n→∞

En(u), F = {u ∈ C(K) : E(u) < ∞}.

Note that F is dense in C(K) by approximating u ∈ C(K) through the piecewise harmonic
functions applied to the subcells. Hence it is not hard to see that (E,F ) is a local regular
Dirichlet form on K.

Lemma 4.4. Let tn−1 = 9tn −
t2n

9−n+tn
with t0 = 1 be a positive sequence as above, then

tn � 8−n.

Proof. Let xn = 8ntn, then we have

xn−1 = xn +
1
8
·

xn

1 + (9/8)nxn
. (4.7)

Thus {xn} is a non-increasing sequence and bounded from below, hence lim
n→∞

xn exists.
On the other hand, let yn = 9ntn, then we have

yn−1 = yn −
1
9
·

y2
n

1 + yn
. (4.8)
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Hence yn is a non-decreasing sequence and we will show that lim
n→∞

yn = ∞. Indeed, if

lim
n→∞

yn = y is finite, then letting n→ ∞ in (4.8), we should have y = y − 1
9 ·

y2

1+y , this gives
y = 0, a contradiction because y0 = 1 and yn is non-decreasing.

Pick n0 large enough, and for n ≥ n0, we see by (4.7) that

xn = xn0 +

n−1∑
k=n0

(xk+1 − xk)

= xn0 −
1
8
·

n−1∑
k=n0

xk+1

1 + yk+1

≥ xn0

1 − 1
8
·

∞∑
k=n0

1
yk+1

 . (4.9)

By (4.8), we have

yn

yn−1
=

(
1 −

1
9
·

yn

1 + yn

)−1

>

(
1 −

1
9
·

1
2

)−1

=
18
17
,

and hence yn ≥
(

18
17

)n
. Substituting this into (4.9), we have for some n0 large that

xn ≥
1
2

xn0 ,

proving that tn � 8−n. �

Corollary 4.5. Let K be the eyebolted Vicsek cross, µ be the normalized Hausdorff mea-
sure on K. Let the Dirichlet form (E,F ) be defined as above on L2(K, µ). Let ∆ be the
generator of the form and ρ(t) be its eigenvalue counting function, then for t large enough,

ρ(t) � t
log 21

log 168 .

Proof. By Lemma 4.4, we have

cn
(
Fω(pi), Fω(pi+1)

)
� 8n, i = 1, 2, 3, 4. (p5 = p1)

cn
(
Fω(p1), Fω(p3)

)
� 9n,

cn
(
Fω(p2), Fω(p4)

)
�

(
64
9

)n

,

for ω ∈ Σn. Then it is easy to check that conditions (A1), (A2) and (A3) are all satisfied.
By Theorem 3.7 with N = 21 and κ0 = 8, we have

ρ(t) � t
log 21

log 168 .

�
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4.4. Example: a new class of diffusions on the 3-dimensional SG. Let p1, p2, p3, p4

be the four vertices of a unit tetrahedron in R3. We define the 3-dimensional Sierpinski
gasket K to be the unique nonempty compact set in R3 with the contractions {Fi}

4
i=1 on R3

such that Fi(x) = 1
2 (x− pi)+ pi, 1 ≤ i ≤ 4. It is not hard to see that K is a p.c.f. self-similar

set in the sense of Kigami[24] with the boundary points V0 = {p1, p2, p3, p4}. For n ≥ 1,
let Vn =

⋃4
i=1 Fi(Vn−1). Denote by Gn the graph with vertices Vn and edges between each

pair of two distinct points p, q ∈ Vn such that p, q ∈ Fω(V0) for some |ω| = n.

Assign conductance on the edges of Gn in the following way. For any n ≥ 0, let
an, bn, cn be positive real numbers. For each word ω with |ω| = n, set conductance an on
the edge Fω(p2)Fω(p3) and cn on the edge Fω(p1)Fω(p4), then set conductance bn on the
rest, i.e. the four edges Fω(p1)Fω(p2), Fω(p1)Fω(p3), Fω(p4)Fω(p2) and Fω(p4)Fω(p3).
See Figure 5.

p1

p2

p3

p4
a0

c0b0

p1

p2

p3

p4

a1

c1

b1

Figure 5. The conductances on G0 and G1.

In order that {Gn}n≥0 are compatible with conductances {an, bn, cn}n≥0, we need compu-
tations to obtain the conditions on {an, bn, cn}n≥0. By [24], assume on G0, the conductance
is {A, B,C}, and the associated Laplacian matrix is

H0 =


−2B −C B B C

B −A − 2B A B
B A −A − 2B B
C B B −2B −C

 ,
then on G1, we assume conductance to be {a, b, c}, and its trace on G0 can be written as
H1|V0 = T − JtX−1J, where

T =


−2b − c

−a − 2b
−a − 2b

−2b − c

 ,

J =



0 a a 0
b 0 b 0
b b 0 0
c 0 0 c
0 b 0 b
0 0 b b


,
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and

X =



−2a − 4b b b 0 b b
b −a − 4b − c an b 0 c
b a −a − 4b − c b c 0
0 b b −4b − 2c b b
b 0 c b −a − 4b − c a
b c 0 b a −a − 4b − c


.

By solving H1|V0 = H0, we have that

A =
(a + b)

(
b2(4b + c) + a2(3b + 2c) + ab(9b + 5c)

)
2(a + 2b)(3ab + 4b2 + 2ac + 3bc)

, (4.10)

B =
2b(a + b)(b + c)

3ab + 4b2 + 2ac + 3bc
, (4.11)

C =
(b + c)

(
a(b2 + 5bc + 2c2) + b(4b2 + 9bc + 3c2)

)
2(2b + c)(3ab + 4b2 + 2ac + 3bc)

. (4.12)

For all n ≥ 1, by viewing (an−1, bn−1, cn−1) = (A, B,C), (an, bn, cn) = (a, b, c), and setting
vn = an

cn
and wn = bn

cn
, we obtain

(vn−1,wn−1) = T (vn,wn),

where T : R2
+ → R

2
+ such that T = T (v,w) =

(
T1(v,w),T2(v,w)

)
with T1,T2 given by

T1(v,w) :=
(1 + 2w)

(
v3(2 + 3w) + w3(1 + 4w) + v2w(7 + 12w) + vw2(6 + 13w)

)
(1 + w)(v + 2w)

(
v(2 + 5w + w2) + w(3 + 9w + 4w2)

) ,

T2(v,w) :=
4w(v + w)(1 + 2w)

v(2 + 5w + w2) + w(3 + 9w + 4w2)
.

We list some basic properties of the map T in the following.

Lemma 4.6. The map T has the following properties:
(i). T (v, 0) = (v, 0) for v ∈ [1,∞);
(ii). T ({1} × [0, 1]) ⊆ {1} × [0, 1], in particular, T (1, 1) = (1, 1);
(iii). if w > 0 and v > 1, then T1(v,w) < v.

Proof. The proof of (i),(ii) and (iii) are direct calculations. For example, (iii) is by the fact
that given w > 0, v > 1,

T1(v,w) − v =
(1 − v)w3(1 + v2 + 6w + 8w2 + v(2 + 6w)

)
(1 + w)(v + 2w)

(
v(2 + 5w + w2) + w(3 + 9w + 4w2)

) < 0.

�

We will give a criteria for the existence of the positive sequence {an, bn, cn}n≥0 by first
studying the dynamical behavior of mapping T on the following three different cases.

Proposition 4.7. There exists a nondecreasing function f mapping [1,+∞) onto
[
1, 3+

√
17

2

)
such that for v0 ≥ 1,
(i). if 0 < w0 < f (v0), then there exists a unique sequence of positive pairs {(vn,wn)}n≥0

such that for all n ≥ 1, (vn−1,wn−1) = T (vn,wn) and wn < f (vn). Moreover lim
n→∞

vn exists
and is finite;
(ii). if w0 = f (v0), then there exists a unique sequence of positive pairs {(vn,wn)}n≥0 such
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that for all n ≥ 1, (vn−1,wn−1) = T (vn,wn) and vn ≥ 1, wn = f (vn);
(iii). if w0 > f (v0), then there does not exist any sequence of positive pairs {(vn,wn)}n≥0

such that for all n ≥ 1, (vn−1,wn−1) = T (vn,wn).

Proof. Our proof is based on studying the dynamical property of map T . We will first
give some claims with proofs. In the following, we will always set θ = 1

2 (3 +
√

17).

Claim 1: T is a one-to-one map from [1,∞) × [0, θ] to its image.

Proof of Claim 1: Denote by T = (T1,T2) and ∂Ti
∂v , ∂Ti

∂w , i = 1, 2 the partial derivatives.
Then we have

∂T1

∂v
=(1 + 2w)

(
v4(4 + 16w + 17w2 + 3w3) + 2v3w(14 + 59w + 69w2 + 18w3)

+ w4(29 + 139w + 200w2 + 80w3) + 2vw3(40 + 185w + 251w2 + 92w3)

+ v2w2(73 + 323w + 409w2 + 131w3)
)
/(

(1 + w)(v + 2w)2(v(2 + 5w + w2) + w(3 + 9w + 4w2)
)2)
,

∂T1

∂w
=2(1 − v)w2(3v2 + 6v3 + 3v4 + 7vw + 45v2w + 45v3w + 7v4w + 3w2 + 82vw2

+ 198v2w2 + 82v3w2 + 3v4w2 + 36w3 + 304vw3 + 304v2w3

+ 36v3w3 + 131w4 + 430vw4 + 131v2w4 + 184w5 + 185vw5 + 80w6)/(
(1 + w)2(v + 2w)2(2v + 3w + 5vw + 9w2 + vw2 + 4w3)2),

and
∂T2

∂v
=

4w2(1 + 2w)(1 + 4w + 3w2)(
v(2 + 5w + w2) + w(3 + 9w + 4w2)

)2 ,

∂T2

∂w
=

4(v2(2 + 8w + 9w2) + w2(3 + 12w + 14w2) + 2vw(2 + 7w + 6w2 − 3w3))(
v(2 + 5w + w2) + w(3 + 9w + 4w2)

)2 .

It is not hard to check that on [1,∞)×[0, θ], we have ∂T1
∂v > 0, ∂T1

∂w ≤ 0 and ∂T2
∂v > 0, ∂T2

∂w >
0. Suppose that there are two points (v,w) and (̃v, w̃) in [1,∞) × [0, θ] such that T (v,w) =

T (̃v, w̃). Without loss of generality, assume that v ≤ ṽ. Let η : [0, 1] → [1,∞) × [0, θ] be
the straight line connecting these two points, that is η(s) =

(
s̃v + (1 − s)v, sw̃ + (1 − s)w

)
.

Then there exists s1, s2 ∈ (0, 1) such that dT1(η(s))
ds |s=s1 = 0 and dT2(η(s))

ds |s=s2 = 0. We then
show that we must have (v,w) = (̃v, w̃) case by case.
Case 1: v = ṽ or w = w̃. By dT2(η(s))

ds (s2) = 0 and the chain rule, we have

∂T2

∂v
(η(s2))(̃v − v) +

∂T2

∂w
(η(s2))(w̃ − w) = 0.

By using the fact that ∂T2
∂v > 0 and ∂T2

∂w > 0, we must have v = ṽ and w = w̃.
Case 2: v < ṽ and w < w̃. Similar to Case 1, we have

∂T2

∂v
(η(s2))(̃v − v) +

∂T2

∂w
(η(s2))(w̃ − w) = 0,
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which is impossible since ∂T2
∂v > 0 and ∂T2

∂w > 0.
Case 3: v < ṽ and w > w̃. By dT1(η(s))

ds (s1) = 0 and the chain rule, we have

∂T1

∂v
(η(s1))(̃v − v) +

∂T1

∂w
(η(s1))(w̃ − w) = 0,

which is impossible since ∂T1
∂v > 0 and ∂T1

∂w ≤ 0.
Above all, we conclude that T is a one-to-one map between [1,∞)×[0, θ] and its image.

Let S 0 = [1,+∞) × [0, 1] and S 1 = T (S 0) be the image of S 0 under T . For n ≥ 1, let
S n = T (S n−1). Let S∞ =

⋃
n≥0

S n.

Claim 2: S 0 $ S 1. Moreover, T is homeomorphic between S∞ and S∞.
Proof of Claim 2: Firstly, by Lemma 4.6(i), (ii), T maps the line segment {1} × [0, 1]

into {1} × [0, 1] and T (1, 1) = (1, 1), T (1, 0) = (1, 0), and hence by the continuity of T we
see that T maps {1} × [0, 1] onto itself. Secondly, each point in [1,∞) × {0} is fixed under
the map T . Thirdly, let γ0(t) = (t, 1), t ∈ [1,∞) be a straight horizontal line in R2. Let
γ1 = T (γ0) be the image of the curve γ0(t), then we have by T that

γ1(t) =

(
3(5 + 19t + 19t2 + 5t3)

16(2 + t)2 ,
3 + 3t
4 + 2t

)
, t ∈ [1,∞).

The curve γ1 is located strictly over the curve γ0 for t > 1 by that the second coordinate
3+3t
4+2t > 1. Also for (v,w) ∈ S 0,

T1(v,w) =
(1 + 2w)

(
v3(2 + 3w) + w3(1 + 4w) + v2w(7 + 12w) + vw2(6 + 13w)

)
(1 + w)(v + 2w)

(
v(2 + 5w + w2) + w(3 + 9w + 4w2)

)
≥

v3

8(2 + v)2 → ∞ as v→ ∞.

By Claim 1 and using the invariance of domain theorem, we conclude from above that
S 0 $ T (S 0), and also S 0 and S 1 are homeomorphic under the map T . Consequently,
T (S∞) = S∞ and T is a homeomorphism between S∞ and S∞.

Claim 3: S∞ j [1,∞) × [0, θ).
Proof of Claim 3: Let 0 < w0 < θ, v0 > 1. For n ≥ 1, let (v−n,w−n) = T (v−(n−1),w−(n−1)).

We see by computation that v−1 > 1. Let h(x) =
4x(1+2x)
2+5x+x2 be a function on [0,∞). Note that

θ is a fixed point of h and h(t) < θ for 0 < t < θ. Then

w−1 =
4w0(v0 + w0)(1 + 2w0)

v0(2 + 5w0 + w2
0) + w0(3 + 9w0 + 4w2

0)
<

4w0(1 + 2w0)
2 + 5w0 + w2

0

= h(w0) < θ.

Therefore by induction, v−n > 1 and w−n < θ and the claim holds.

For n ≥ 1, let γn(t) = T
(
γn−1(t)

)
and write γn(t) =

(
αn(t), βn(t)

)
, t ∈ [1,∞).

Claim 4: α′n(t) > 0, β′n(t) > 0 and
(
αn
βn

)′
(t) > 0 for any t ∈ (1,∞).

Proof of Claim 4: We show this by induction. First we have

α′1(t) =

(
3(5 + 19t + 19t2 + 5t3)

16(2 + t)2

)′
(t) =

3(28 + 57t + 30t2 + 5t3)
16(2 + t)3 > 0.
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and β′1(t) =
(

3+3t
4+2t

)′
= 3

2(2+t)2 > 0, and moreover we have(
α1

β1

)′
(t) =

(
5 + 14t + 5t2

8(2 + t)

)′
(t) =

23 + 20t + 5t2

8(2 + t)2 > 0.

Assume inductively that for some k ≥ 1, β′k(t) > 0 and
(
αk
βk

)′
(t) > 0. we will show that

β′k+1(t) > 0 and
(
αk+1
βk+1

)′
(t) > 0.

Since by product rule, α′k =
(
βk ·

αk
βk

)′
= β′k ·

αk
βk

+ βk ·
(
αk
βk

)′
> 0. Then by chain rule we have

β′k+1 =
(
T2(αk, βk)

)′
=
∂T2

∂v
· α′k +

∂T2

∂w
· β′k > 0.

Next we show that
(
αk+1
βk+1

)′
=

(
T1(αk ,βk)
T2(αk ,βk)

)′
> 0, which is equivalent to2α2

k + 5αkβk + 3α2
kβk + β2

k + 9αkβ
2
k + 4β3

k

4βk(1 + βk)(αk + 2βk)

′ > 0. (4.13)

By rearranging and using product rule, (4.13) is equivalent to

(βkα
′
k − αkβ

′
k)(2α

2
k + 8αkβk + 4α2

kβk + 9β2
k + 14αkβ

2
k + 3α2

kβ
2
k + 12β3

k + 12αkβ
3
k + 14β4

k)

+ (α2
kβ

2
k + 6αkβ

3
k + 11β4

k)α′k + 6β4
kβ
′
k > 0.

In fact this is true by αk > 0, βk > 0, α′k > 0, β′k > 0, and βkα
′
k − αkβ

′
k > 0 from

(
αk
βk

)′
> 0

which is by the inductive assumption.
Thus β′n(t) > 0 and

(
αn
βn

)′
(t) > 0 for all n ≥ 1 and t ∈ (1,∞), and hence α′n(t) > 0 by

product rule. This completes the proof of Claim 4.

For n ≥ 1, let α−1
n be the inverse of αn, and define fn(v) = βn

(
α−1

n (v)
)
, then fn is a strictly

increasing bounded continuous function on [1,∞). Also by Claim 4, we have that

(βn − δαn)′ =

(
βn

(
1 − δ ·

αn

βn

))′
=

(
1 − δ ·

αn

βn

)
· β′n − δ · βn ·

(
αn

βn

)′
≤ 0,

if we chose δ such that δ ≥ βn
αn

, and hence we have

0 <
d fn(v)

dv
=
β′n

(
α−1

n (v)
)

α′n
(
α−1

n (v)
) ≤ δ. (4.14)

Since αn ≥ 1 and βn < θ, we have f ′n(v) is uniformly bounded for v and n.

For fixed v > 1, fn(v) is increasing on n by the fact that S n $ S n+1. Let

f (v) = lim
n→∞

fn(v). (4.15)

Since { fn}n≥1 are uniformly bounded by Claim 3 and equi-continuous by (4.14), f (v) is
continuous and nondecreasing for v ∈ [1,∞).

Let Γ :=
(
v, f (v)

)
, v ∈ [1,∞) be the graph of f .

Claim 5: T is a bijection between Γ and Γ.
Proof of Claim 5: Denote by S∞ the closure of S∞. Since by Claim 2, T is a home-

omorphism on S∞, and hence T (S∞) = S∞. That is to say T (∂S∞) = ∂S∞. Since
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∂S∞ = ({1} × [0, 1]) ∪ ([1,∞) × {0}) ∪ Γ and T is invariant on the other two subsets by
Lemma 4.6, we should have T (Γ) = Γ. Since Γ ⊆ [1,∞) × [0, θ), T is one-to-one on Γ.

Claim 6: For (v0,w0) ∈ S∞ with (v0,w0) , (1, 1), we have {(vn,wn)}n≥0 exists and
wn � 2−n, lim

n→∞
vn exists and is finite.

Proof of Claim 6: The existence follows from Claim 2. Since S∞ =
⋃
n≥0

S n, we may

assume that (v0,w0) ∈ S 0 by that T is bijective on S∞. Suppose v0 > 1, then vn is strictly
increasing by Lemma 4.6. Assume that 0 < w0 ≤ 1, then wn ≤ 1 by Claim 2. We first
show that {vn}n≥0 is uniformly bounded. If it is not true, that is vn → ∞ as n → ∞. By
using map T , for any small ε > 0, we see that for all n large enough,

wn >
(4 − ε)wn+1(1 + 2wn+1)

2 + 5wn+1 + w2
n+1

.

Then we get wn+1 <
8

12−3εwn, and we have wn → 0 as n→ ∞ if we pick small ε. By using
map T , we have for n large enough,

vn

vn−1
=

vn(1 + wn)(vn + 2wn)
(
vn(2 + 5wn + w2

n) + wn(3 + 9wn + 4w2
n)
)

(1 + 2wn)
(
v3

n(2 + 3wn) + w3
n(1 + 4wn) + v2

nwn(7 + 12wn) + vnw2
n(6 + 13wn)

)
≤

vn(1 + wn)(vn + 2wn)(vn + 4wn)(2 + 5wn + w2
n)

v3
n(1 + 2wn)(2 + 3wn)

≤ (1 + wn)
(
1 + 2

wn

vn

) (
1 + 4

wn

vn

)
·

(2 + 5wn + w2
n)

(1 + 2wn)(2 + 3wn)

≤ (1 + 4wn)3 ,

and thus {vn}n≥0 is uniformly bounded since {wn}n≥0 has exponential decay, a contradiction.
This proves that lim

n→∞
vn exists and is finite.

Next we will show that lim
n→∞

wn = 0.
If lim

n→∞
wn = 0 is not true, then there exists ε > 0 such that there is a subsequence {nk}k≥0

such that wnk ≥ ε. By using T again, we have for n = nk,

vn − vn−1 =
(vn − 1)w3

n(1 + v2
n + 6wn + 8w2

n + 2vn + 6vnwn)
(1 + wn)(vn + 2wn)

(
vn(2 + 5wn + 2w2

n) + wn(3 + 9wn + 4w2
n)
)

≥ C0(vn − 1),

where C0 depends only on ε. We then have lim
n→∞

vn ≥
∑

k C0(vnk−1)→ ∞. This contradicts
the fact that lim

n→∞
vn is bounded. Hence wn → 0 as n→ ∞.

Thus, by substituting wn → 0 and vn � 1 as n→ ∞ into the expression of T , we easily
see that there is δ ∈ (0, 1) such that wn . δ

n for large n. As a consequence,

wn−1

wn
=

4(vn + wn)(1 + 2wn)
vn(2 + 5wn + w2

n) + wn(3 + 9wn + 4w2
n)
, (4.16)

gives that 2 −Cδn ≤ wn−1/wn ≤ 2 + Cδn. Therefore we have wn � 2−n.

Claim 7: For (v0,w0) ∈ Γ, if v0 = 1, then (vn,wn) = (1, 1); if v0 > 1, then lim
n→∞

wn = θ,

vn �
(

4+4θ
2+3θ

)n
=

(
7−
√

17
2

)n
.
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Proof of Claim 7: The v0 = 1 case is trivial. So we assume v0 > 1. We first show
that lim

n→∞
wn = θ. By that vn is increasing and f is nondecreasing, we see that wn is

nondecreasing, and by Claim 5, wn ≤ θ, thus lim
n→∞

wn = θ0 ≤ θ exists. If θ0 < θ, we see
from (4.16) that for vn large enough,

wn−1

wn
�

4(1 + 2wn)
2 + 5wn + w2

n
> δ0 > 1,

where δ0 only depends on θ0. We then have wn ≤ Cδ−n
0 → 0, a contradiction. Thus we

must have lim
n→∞

wn = θ. By this, we have from

vn

vn−1
�

(1 + wn)(2 + 5wn + w2
n)

(1 + 2wn)(2 + 3wn)
> 1

that there is some δ > 1 such that for n large enough,

vn ≥ C−1δn. (4.17)

From (4.17), we then show that θ − wn ≤ Cδ−n for n large enough.
Indeed, By (4.17) and the fact that wn is bounded above by θ, we have wn/vn ≤ Cδ−n.

Substituting this into

1 ≥
wn−1

wn
=

4(vn + wn)(1 + 2wn)
vn(2 + 5wn + w2

n) + wn(3 + 9wn + 4w2
n)
, (4.18)

we have
4(1 + 2wn)

2 + 5wn + w2
n
≤ 1 + C′δ−n, (4.19)

which implies that
θ − wn ≤ Cδ−n. (4.20)

For n large enough, from vn/wn ≥ Cδn and (4.20), we have

vn

vn−1
=

(1 + wn)(2 + 5wn + w2
n)

(1 + 2wn)(2 + 3wn)
+ O(δ−n) =

4 + 4θ
2 + 3θ

+ O(δ−n),

which implies that vn �
(

4+4θ
2+3θ

)n
=

(
7−
√

17
2

)n
. This complete the proof of Claim 7.

Claim 8: For (v0,w0) such that v0 ≥ 1, w0 > f (v0), there is no {(vn,wn)}n≥0 as a solution.
Proof of Claim 8: Assume that (v0,w0) has a solution {(vn,wn)}n≥0 with f (v0) < w0.

Then w0 ≤ h(n)(wn) → θ where h is defined in Claim 3, and thus wn ≤ θ for all n ≥ 1 by
the same reason. Thus we must have f (vn) < wn ≤ θ for all n ≥ 0. Since wn ≥ 1, by the
mapping T , vn → ∞ as n→ ∞, we may assume that v0 is large enough.

Now we define a sequence of positive numbers dn := |wn− f (vn)| = wn− f (vn) for n ≥ 0.
We want to show that there is δ ∈ (0, 1) such that

dn+1 > δ
−1dn. (4.21)

Denote by p = (vn,wn), q =
(
vn, f (vn)

)
. Consider T (p) and T (q), we have T (p) =

(vn−1,wn−1) by definition. By Claim 5, T (q) is on the curve w = f (v). Then on one hand,
we have

T2(vn,wn) − T2
(
vn, f (vn)

)
=

∫ wn

f (vn)

∂T2

∂w
dw ≤ sup

wn≤w≤ f (vn)

∣∣∣∣∣∂T2

∂w
(vn,w)

∣∣∣∣∣ (wn − f (vn)
)
. (4.22)
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We observe that as v→ ∞ and w→ θ, we have
∂T2

∂w
→

4(2 + 8w + 9w2)
(2 + 5w + w2)2 →

20 + 35θ
4(1 + 2θ)2 . (4.23)

On the other hand, by ∂T1
∂w ≤ 0,

T1(vn,wn) − T1
(
vn, f (vn)

)
=

∫ wn

f (vn)

∂T1

∂w
dw ≤ 0, (4.24)

and hence T1
(
vn, f (vn)

)
≥ vn−1. We then turn to estimate f

(
T1(vn, f (vn))

)
− f (vn−1). We

see that for m large enough,

fm
(
T1(vn, f (vn))

)
− fm(vn−1) =

∫ T1(q)

T1(p)
f ′m(x)dx

≤

(
sup

x≥vn−1

f ′m(x)
)
·
(
T1(q) − T1(p)

)
≤

θ

vn−1

∫ wn

fm(vn)

(
−
∂T1

∂w

)
dw

(
using (4.14)

)
≤

θ

vn−1
sup

w≥ fm(vn),v=vn

∣∣∣∣∣∂T1

∂w

∣∣∣∣∣ · (wn − fm(vn)
)

≤
θ

vn−1
· vn · sup

w≥ fm(vn)

2(3 + 7w + 3w2)w2

(1 + w)2(2 + 5w + w2)2 ·
(
wn − fm(vn)

)
.

Observe that as n→ ∞ and w→ θ, we have vn
vn−1
→ 4+4θ

2+3θ , and thus

θ

vn−1
· vn ·

2(3 + 7w + 3w2)w2

(1 + w)2(2 + 5w + w2)2 →
32 + 57θ

2(1 + θ)(1 + 2θ)2 . (4.25)

By using that fm(x)→ f (x) uniformly as m→ ∞, we see that for n large enough,

T2
(
vn, f (vn)

)
− f (vn−1) = f

(
T1(vn, f (vn))

)
− f (vn−1)

≤

(
32 + 57θ

2(1 + θ)(1 + 2θ)2 + o(1)
) (

wn − f (vn)
)
. (4.26)

Now since
20 + 35θ

4(1 + 2θ)2 +
32 + 57θ

2(1 + θ)(1 + 2θ)2 =
137θ + 77
146θ + 82

< 1, (4.27)

and by using (4.22), (4.23), and (4.26), we see that there is δ ∈ (0, 1) such that for n large
enough,

wn−1 − f (vn−1) = T2(vn,wn) − T2
(
vn, f (vn)

)
+ T2

(
vn, f (vn)

)
− f (vn−1) < δ

(
wn − f (vn)

)
.

Thus (4.21) holds and this contradicts the fact that wn is bounded from above by θ. Hence
Claim 8 is true.

Above all, (i) follows from Claim 6; (ii) follows from Claims 5 and 7; (iii) follows from
Claim 8. The proof is complete. �

Corollary 4.8. Suppose a0 ≥ c0 > 0, Then
(i). if 0 < b0

c0
< f

(
a0
c0

)
, then there exists a unique positive solution {an, bn, cn}n≥0 satisfying

an ≥ cn, bn
cn
< f

(
an
cn

)
and an � cn � 2n, bn � 1;
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(ii). if b0
c0

= f
(

a0
c0

)
, then there exists a unique positive solution {an, bn, cn}n≥0 satisfying

an ≥ cn, bn
cn

= f (an
cn

); moreover, if a0 = c0, then an = bn = cn =
(

3
2

)n
· a0, otherwise if

a0 > c0, then an � 2n, bn � cn �
(

7+
√

17
8

)n
;

(iii). if b0
c0
> f

(
a0
c0

)
, then there does not exist any positive solution.

Proof. (i). By Proposition 4.7 (i) and (4.11), we have
bn−1

bn
=

2(vn + wn)(1 + wn)
3wnvn + 4w2

n + 2vn + 3wn
= 1 + O(2−n),

which implies that bn � 1 and hence cn = bn/wn � 2n and an = vncn � 2n.

(ii). In the case a0 = b0 = c0, we have vn = wn = 1 and hence bn−1
bn

= 2
3 . Hence

an = bn = cn =
(

3
2

)n
· a0.

We then assume a0 > c0. By Proposition 4.7 (ii) and (4.11), we have
bn−1

bn
=

2(vn + wn)(1 + wn)
3wnvn + 4w2

n + 2vn + 3wn
=

2 + 2wn

2 + 3wn
+ o(δn) =

2 + 2θ
2 + 3θ

+ o(δn),

for some δ ∈ (0, 1), thus we obtain bn �
(

2+3θ
2+2θ

)n
, where θ = 1

2 (3 +
√

17). Hence cn =

bn/wn � bn �
(

2+3θ
2+2θ

)n
�

(
7+
√

17
8

)n
and an = vncn �

(
4+4θ
2+3θ

)n
·
(

2+3θ
2+2θ

)n
� 2n.

(iii). This is direct from Proposition 4.7 (iii). �

Corollary 4.9. Let K be the 3-dimensional Sierpinski gasket, µ be the normalized Haus-
dorff measure on K. Let (a0, b0, c0) be positive real numbers with a0 ≥ c0 such that b0

c0
=

f
(

a0
c0

)
, where f is defined in Proposition 4.7. Then the compatible sequence

{
(an, bn, cn)

}
n≥0

defines a Dirichlet form (E,F ) on L2(K, µ). Let ∆ be the generator of the form and ρ(t)
be its eigenvalue counting function, then for t large enough, we have

(i). if a0 = c0, then ρ(t) � t
log 4
log 6 ;

(ii). if a0 > c0, then ρ(t) � t

log 4

log
(

7+
√

17
2

)
.

Proof. (i). By Corollary 4.8, if a0 = c0, then an = bn = cn =
(

3
2

)n
· a0, and thus κ0 = 3

2 , and
the relation ∼ is the trivial relation that each point in V0 is a single equivalent class. We
see that conditions (A1)-(A3) hold. By Theorem 3.7, we obtain with N = 4 and κ0 = 3

2
that

ρ(t) � t
log 4
log 6 .

We note that for this case, we can apply the result in [26] to get a more delicate estimate

ρ(t) =

(
G

(
log t

2

)
+ o(1)

)
t

log 4
log 6 ,

where G(x) is a periodic bounded function with period T = 1
2 log 6.

(ii). If a0 > c0, then by Corollary 4.8, an � 2n, bn � cn �
(

7+
√

17
8

)n
, and thus κ0 = 7+

√
17

8 ,
and the relation ∼ is given by V0 = {p1} ∪ {p2, p3} ∪ {p4}. We can check that conditions
(A1)-(A3) hold. By Theorem 3.7, we obtain with N = 4 and κ0 = 7+

√
17

8 that

ρ(t) � t

log 4

log
(

7+
√

17
2

)
.
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