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Abstract The p-adic numbers field Qp and the p-adic analogue of the complex numbers

field Cp have a rich algebraic and geometric structure that in some ways rivals that of the

corresponding objects for the real or complex fields. In this paper, we attempt to find

and understand geometry structures of general sets in a p-adic setting. Several kinds of

fractal measures and dimensions of sets in Cp are studied. Some typical fractal sets are

constructed. It is worthwhile to note that, there exist some essential differences between

p-adic case and classical case.

Keywords: p-adic, algebraic extension, Hausdorff dimension, box-counting

dimension, packing dimension, self-similar.

1 Introduction

Fractal measures and dimensions of sets in Euclidean spaces are fundamental objects of

geometry measure theory[1,2], such as Hausdorff measures and dimensions, box-counting

dimensions, packing measures and dimensions. In this paper we investigate whether

there are analogous notions in the field Qp of p-adic numbers and the field Cp of p-adic

analogue of the complex numbers[3−11]. The main aim is to study the geometric structure

of general sets and measures in the p-adic case. It is worthwhile to note that, there
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exist some essential differences which come from the different topological and algebraic

structures between classical case and p-adic case.

Let p be a prime number, recall that the field Qp of p-adic numbers is defined as

the completion of the field of rational numbers Q with respect to the non-Archimedean

p-adic norm | · |p. This norm is defined as follows: |0|p = 0; if an arbitrary rational

number x 6= 0 is represented as x = pr m
n

, where r = ordpx ∈ Z, and m and n are not

divisible by p, then |x|p = p−r. This norm in Qp satisfies the strong triangle inequality

|x+ y|p ≤ max(|x|p, |y|p).
Every element x of Qp can be thought of as a unique formal series

∞∑
i=m

bip
i, 0 ≤ bi ≤ p− 1.

The set Zp = {x ∈ Qp : |x|p ≤ 1} is a subring of Qp called the ring of p-adic integers.

It is well known that Qp is locally compact and Zp is compact. There is a unique Haar

measure µ on Qp, such that µ(Zp) = 1, µ(pnZp) = p−n for any n ∈ Z.

The familiar construction of the real numbers R and the complex numbers C from

the rational numbers can be imitated in the p-adic context. This give rise to the field of

p-adic numbers Qp and after taking algebraic closure and then completions we get Cp,

the p-adic analogue of the complex numbers.

Let K be an algebraic extension of Qp of degree n, then n = e · f , where e is the

index of ramification and f is the residue field degree. We say that the extension of K

over Qp is unramified if e = 1, ramified if e > 1, and totally ramified if e = n. Let

AK = {x ∈ K : |x|p ≤ 1}, MK = {x ∈ K : |x|p < 1}. Then AK is a ring, which is the

integral closure of Zp in K. MK is its unique maximal ideal. The field AK/MK is called

the residue field of K. It’s a field extension of Fp of degree f , where Fp is the finite field

of integers modulo the prime p. An element π ∈ K is called an uniformizer if |π|p = p−
1
e .

Every x ∈ K can be written in one and only one way as

+∞∑
i=m

aiπ
i,

where each ai satisfies ap
f

i = ai, i.e., the ai’s are Teichmüller digits. There is a unique

Haar measure µK on K, such that µ(AK) = 1, µ(πnAK) = p−nf for any n ∈ Z.
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Let Cp be the completion of Qp with respect to the p-adic norm, where Qp is the

algebraic closure of Qp. Let A = {x ∈ Cp : |x|p ≤ 1} be the valuation ring of Cp, and

M = {x ∈ Cp : |x|p < 1} be its maximal ideal. The residue field A/M is the algebraic

closure Fp of Fp. Any nonzero element of Cp is a product of a fractional power of p, a root

of unity, and an element in the open unit disc about 1. Cp is called the p-adic analogue of

the complex numbers. The possible values of | · |p on Cp is the set of all rational powers

of p. Cp is not locally compact and A is not compact. There is no Haar measure on Cp.

We define Da(r) = {x ∈ Cp : |x − a|p ≤ r} be the disc of radius r about a point

a ∈ Cp. Let D(r) = D0(r) for brevity.

Now we start to study the fractal analysis in Cp.

2 Hausdorff measures and dimensions

We define the diameter of any subset E of Cp as |E|p = sup{|x− y|p : x, y ∈ E}. It is

easy to see that |E|p takes value from {pk : k ∈ Q}.

If {Uj}∞j=1, Uj ⊂ Cp is a collection of sets of diameters at most r that cover E ⊂ Cp,

i.e., E ⊂
⋃+∞
j=1 Uj with |Uj|p 6 r, j = 1, 2, ..., then we say that {Uj} is a r-cover of E.

Here r is a rational power of p.

We now discuss the Hausdorff measures and dimensions in Cp.

Definition 2.1. Let E ⊂ Cp be any subset in Cp, for s ≥ 0 and r > 0, we call

Hs
r(E) = inf{

+∞∑
j=1

|Uj|sp : {Uj} is a r-cover of E} (1)

the s-dimensional approximate Hausdorff measure of E, and call the limit(obviously, it

exists)

lim
r→0
Hs
r(E) = Hs(E) (2)

the s-dimensional Hausdorff measure of E.

Similar to the classical case, we immediately get:
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Proposition 2.1. Hs
r and Hs are outer measures; and Hs is an ultra-metric outer mea-

sure.

Theorem 2.1. Hausdorff measures behave nicely under translations and dilations in Cp:

for E ⊂ Cp, λ ∈ Cp,

Hs(E + λ) = Hs(E), Hs(λE) = |λ|spHs(E), (3)

where E + λ = {x+ λ : x ∈ E}, λE = {λx : x ∈ E}.

Proof. For the first equality in (3). Let {Uj} be a r-cover of E, then {Uj + λ} is a

r-cover of E + λ, which leads to Hs
r(E + λ) 6 Hs

r(E). So

Hs(E + λ) 6 Hs(E). (4)

Similarly, we can also get Hs(E − λ) 6 Hs(E). Replacing E by E + λ, combining with

(4), we get the first equality in (3).

The similar argument gives the second equality in (3).

Proposition 2.2. Let 0 6 s < t < +∞, then

Hs(E) < +∞⇒ Ht(E) = 0; Ht(E) > 0⇒ Hs(E) = +∞.

From this proposition, we can define the Hausdorff dimensions.

Definition 2.2. The Hausdorff dimension of a set E ⊂ Cp is defined by

dimH E = sup{s : Hs(E) > 0} = sup{s : Hs(E) = +∞}

= inf{t : Ht(E) <∞} = inf{t : Ht(E) = 0}. (5)

Proposition 2.3. Let A = {x ∈ Cp : |x|p ≤ 1}, then dimH A = +∞.

Proof. Let {Uj} be any countable r-cover of A with r < 1. We suppose that each Uj

is contained in A. With out lose of generality, the cover {Uj} can be ordered so that

|U1|p ≥ |U2|p ≥ · · · ≥ |Uj|p ≥ · · · .
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Then there must exist a positive real number r0, such that there are infinite many

Uj satisfying |Uj|p = r0. Otherwise, there must be a positive real sequence {ri}, with

1 > r1 > r2 · · · , and a positive integer sequence {ni}, such that |U1|p = · · · |Un1|p = r1,

|Un1+1|p = · · · |Un2|p = r2, · · · . From the topological structure of Cp, each Uj is contained

in a disc with diameter |Uj|p. Then there must exist a disc |V1| ⊂ A, |V1|p = r1, but V1

is disjoint with each U1, · · · , Un1 . Moreover, in the disc V1, there must exist a disc V2,

|V2|p = r2, but V2 is disjoint with each Un1+1, · · · , Un2 . Inductively, we get a set sequence

{Vi}, satisfying V1 ⊃ V2 ⊃ · · · . Here each Vi is disjoint with the set
⋃ni

1 Uj. Clearly,

A ⊃
⋂+∞
i=1 Vi 6= ∅, but for each point x ∈

⋂+∞
i=1 Vi, x is not contained in any Uj, which is

impossible. Hence, there exist a real number r0, and there are infinite many Uj satisfying

|Uj|p = r0, which easily implies that
∑+∞

j=1 |Uj|sp = +∞ for any s ≥ 0. The proof is

completed.

Remark 2.1. This proposition is quite different with the C case at first sight. The reason

is that Cp is not locally compact and A is not compact. However, we have dimH Zp = 1,

which is similar as the R case.

Theorem 2.2. The Hausdorff dimensions of sets in Cp has the following properties:

1) monotony property: E ⊂ F ⊂ Cp ⇒ dimH E 6 dimH F ;

2) countable stabilization property: dimH

⋃
k>1Ek = supk>1{dimH Ek};

3) For E ⊂ Cp, then 0 ≤ dimH E ≤ +∞; if E contains a disc in Cp, then dimH E =

+∞;

4) dimH E = sup{dimH F : compact F ⊂ E}.

Remark 2.2. Any open set in Cp has infinity Hausdorff dimension.

Theorem 2.3. Let K be a n-degree algebraic extension of Qp, E ⊂ K, s ≥ 0, r > 0, then

Hs
r(E) = inf{

+∞∑
j=1

|Uj|sp :
⋃

Uj ⊃ E,Uj ⊂ K, |Uj|p ≤ r} (6)

Proof. Denote inf{
∑+∞

j=1 |Uj|sp :
⋃
Uj ⊃ E,Uj ⊂ K, |Uj|p ≤ r} by Hs,K

r (E). Hs
r(E) ≤

Hs,K
r (E) is obvious.
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Take any r-cover {Uj} of E in Cp. Let Vj = Uj
⋂
K. Since E ⊂ K, we have

⋃
Vj ⊃ E,

|Vj|p ≤ |Uj|p. Hence, {Vj} is a r-cover of E in K, and∑
j

|Vj|sp ≤
∑
j

|Uj|sp,

which leads to Hs
r(E) ≥ Hs,K

r (E). The proof is completed.

Remark 2.3. Theorem 2.3 shows that the Hausdorff measures and dimensions of a set

E do not depend on the algebraic extension fields where E lives in.

Now we turn to study the Hausdorff net measures and dimensions in Cp.

Definition 2.3. Let F be a family of subsets in Cp, if ∀r > 0, ∀x ∈ Cp, there exists

A ∈ F , such that x ∈ A and |A|p 6 r, then F is called a net in Cp.

Denote by N (Cp) the collection of all nets in Cp, D the net consisted of all discs, and

2Cp the net consisted of all subsets in Cp.

Definition 2.4. Let s > 0, E ⊂ Cp, F a net in Cp, then

Hs
F(E) = lim

r→0
inf{

+∞∑
j=1

|Uj|sp : {Uj} ⊂ F , |Uj|p ≤ r,
⋃
j≥1

Uj ⊃ E}

is the s-dimensional Hausdorff net measure of E about the net F .

Let F1, F2 ∈ N (Cp), if there exist positive constants c1, c2 > 0, such that ∀E ⊂ Cp,

∀s > 0,

c1Hs
F1

(E) 6 Hs
F2

(E) 6 c2Hs
F1

(E), (7)

then F1 and F2 are called equivalent, denoted by F1 w F2, and the s-dimensional Haus-

dorff net measures Hs
F1

and Hs
F2

are equivalent, denoted by Hs
F1

w Hs
F2

. Moreover, if

Hs
F1

(E) = Hs
F2

(E) (8)

for all E ⊂ Cp and s > 0, then F1 and F2 are called strong equivalent, denoted by

F1 ≡ F2.

Theorem 2.4. 2Cp ≡ D.
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Proof. Let E ⊂ Cp, s ≥ 0. Take any r-cover {Uj}(finite or countable) of E. We assume

that |Uj|p = rj, where rj is a rational power of p. Take xj ∈ Uj, and let Vj = xj +D(rj),

then we get Vj ⊃ Uj, and |Vj|p = |Uj|p = rj. So∑
j

|Uj|sp =
∑
j

|Vj|sp.

Since {Vj} ⊂ D, and the arbitrariness of {Uj}, we have

inf(
∑
|Uj|sp) = inf(

∑
|Vj|sp),

which leads to Hs(E) > Hs
D(E). The opposite inequality is obvious. The proof is com-

pleted.

Theorem 2.4 tell us when we calculate the Hausdorff measure and dimension of some

set in Cp, we just need to consider the covers contained in the disc net. Moreover,

combining with Theorem 2.3, if we know E is a subset of some algebraic extension field

K first, we only need to consider the covers contained in the discs net of K.

3 Iterated function systems and self-similar sets

Let D be a closed subset of Cp. A mapping f : D → Cp is called a contraction if there is

a number c with 0 < c < 1 such that

|f(x)− f(y)|p ≤ c|x− y|p

for all x, y ∈ D. If the equality holds, i.e. if |f(x) − f(y)|p = c|x − y|p, then we call f a

contracting similarity.

A finite family of contractions {fi}mi=1 with m ≥ 2, is called an iterated function system

or IFS. A non-empty compact subset E of D is called an attractor of the IFS if

E =
m⋃
i=1

fi(E).

The fundamental property of an iterated system is that it determines an unique attractor,

which is usually a fractal. If each map of the IFS of E is a contracting similarity, then
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we call E a self-similar set. We say that the IFS satisfy the open set condition if there

exists a non-empty bounded open set V such that

V ⊃
m⋃
i=1

fi(V )

with the union disjoint. Then, as the classical case, we have

Theorem 3.1. If the IFS {fi}mi=1 of the self-similar set E ⊂ Cp satisfies the open set

condition with the ratios 0 < ci < 1 for 1 ≤ i ≤ m, then the Hausdorff dimension s of E

satisfies the equation:
m∑
i=1

csi = 1.

Example 3.1. Cantor type sets in Cp

Let 2 ≤ q ≤ p, An IFS {fi}q−1i=0 is given by:

fi(x) = px+ i, i = 0, 1, · · · , q − 1.

Then Cqp = {x ∈ Zp : x =
∑+∞

j=0 xip
i, 0 ≤ xi < q} is the attractor of the IFS. Obviously,

the open set condition holds with open set V = A. Hence dimH Cqp = ln q
ln p
.

In the special case q = p, the IFS becomes {fi(x) = px+ i}p−1i=0 and the self-similar set

becomes Zp. Moreover, the IFS of Zp is not unique, which can be changed in {fi(x) =

px+ i}pi=1.

Example 3.2. Valuation ring of a finite degree algebraic extension of Qp

Let K be an algebraic extension of Qp of degree n, then n = e · f , where e is the

index of ramification and f is the residue field degree. Let π be an uniformizer. The map

g(x) = πx+ a, a ∈ Cp is a contracting similarity with ratio p−
1
e .

Take an IFS as {gi(x) = πx + ai}p
f

i=1 where each ai satisfies ap
f

i = ai, i.e., the ai’s are

Teichmüller digits. Then |ai|p = 1 for each i, and the attractor isAK = {x ∈ K : |x|p ≤ 1}.
The Hausdorff dimension s of AK satisfies the equation

∑pf

i=1(p
− 1

e )s = 1, which implies

dimH AK = e · f = n.

Example 3.3. Hausdorff dimensions of some basic sets in Cp
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From the above two examples we have

dimH Zp = dimH Qp = 1,

and

dimH AK = dimH K = n

if K is a n-degree algebraic extension of Qp.

Let Qunram
p be the maximal unramified extension of Qp, then Qunram

p is the union of

all the finite unramified extensions of Qp, and

Qunram
p ⊂ Qp ⊂ Cp.

Hence

dimH Qunram
p = dimH Qp = dimH Cp = +∞.

Proposition 3.1. Let E be a self-similar set in Cp with the IFS {fi(x) = aix + bi}mi=1,

then E ⊂ Qp(a1, a2, · · · , am, b1, b2, · · · , bm).

Lemma 3.1. Let f(x) = ax + b, g(x) = cx + d be two different contracting similarities,

then the IFS {f, g} satisfies the open set condition if and only if |b−d|p > max{|a|p, |c|p}.

Proof. Without losing generality, we suppose b, d ∈ A. then f(A) = D(|a|p) + b ⊂ A

and g(A) = D(|c|p) + d ⊂ A, f(A)
⋂
g(A) = ∅ if and only if |b − d|p > max{|a|p, |c|p}.

Moreover, |b − d|p ≤ max{|a|p, |c|p} implies f(A) ⊂ g(A) or g(A) ⊂ f(A). The proof is

completed.

Due to the Lemma 3.1, the following Theorem holds immediately.

Theorem 3.2. The IFS {fi(x) = aix+ bi}mi=1 satisfies the open set condition if and only

if |bi − bj|p > max{|ai|p, |aj|p}, ∀i 6= j.

Corollary 3.1. For the IFS f = {fi(x) = aix+bi}mi=1, if maxi{|ai|p} < mini 6=j{|bi−bj|p},
then f satisfies the open set condition.

Obviously, for Example 3.1 and Example 3.2, the condition in Corollary 3.1 are hold

naturally.
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4 Box-counting dimensions

First, we give some notations. Let E ⊂ Cp, r ∈ R, denote

Nr(E), the smallest number of discs of diameters r that cover E;

N∗r (E), the smallest number of discs of diameters at most r that cover E;

Mr(E), the largest number of disjoint discs of diameters r which have non-empty

intersections with E.

Remark 4.1. In the definitions of Nr(E) and N∗r (E), the discs cover E are disjoint

because of the topological structure of Cp.

On these three values, we have

Proposition 4.1. Let E ⊂ Cp, r ∈ R, then Nr(E) = N∗r (E) = Mr(E).

Proof. Firstly, we prove Nr(E) = N∗r (E).

N∗r (E) 6 Nr(E) is obvious.

To prove N∗r (E) ≥ Nr(E), let U1, U2, ..., UN∗
r (E) be the discs with diameters at most r

which cover E, Uj
⋂
E 6= ∅, 1 ≤ j ≤ N∗r (E). Without losing generality, let

|U1|p = |U2|p = ... = |Uk|p = r,

and

|Uj|p < r, k < j 6 N∗r (E),

where 0 6 k 6 N∗r (E).

Then for all i 6= j, k < i, j ≤ N∗r (E), we have

d(Ui, Uj) > r.

In fact, if their exist some i 6= j, k < i, j 6 N∗r (E) such that d(Ui, Uj) 6 r, then since

|Ui|p < r and |Uj|p < r, we have

|Ui
⋃

Uj|p 6 r.

Hence, there is a new disc U0 such that Ui
⋃
Uj ⊂ U0 and |U0|p = r, which is contradict

to the fact that N∗r (E) is the smallest number of discs of diameters at most r that cover

E. Thus, for all k < i, j 6 N∗r (E), d(Ui, Uj) > r.
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For any i with k < i 6 N∗r (E), fix some xi ∈ Ui
⋂
E. Then ∀i, j, i 6= j with k < i, j 6

N∗r (E), we have d(xi + D(r), Uj) > 0, so d(xi + D(r), xj) > 0. Hence, xj /∈ xi + D(r),

and (xj +D(r))
⋂

(xi +D(r)) = ∅, which results to d(xi +D(r), xj +D(r)) > 0 for all i, j

with k < i, j 6 N∗r (E). Thus,

U1, U2, ..., Uk, xk+1 +D(r), xk+2 +D(r), ..., xN∗
r (E) +D(r)

are disjoint discs with diameters r that cover E, which leads to Nr(E) 6 N∗r (E).

Secondly, we turn to prove Nr(E) = Mr(E).

Let U1, U2, ..., UNr(E) be the discs with diameters r which cover E, then each Uj has

a non-empty intersection with E. Combining with the fact that any two discs in Cp are

either disjoint or one containing another, we get Nr(E) 6Mr(E).

To prove Mr(E) ≤ Nr(E). Let U1, U2, ..., UNr(E) be the discs with diameters r which

cover E, Uj
⋂
E 6= ∅, j = 1, 2, ..., Nr(E). Let V1, V2, ..., VMr(E) be the disjoint discs

of diameters r which have non-empty intersection with E. Then ∀i, 1 6 i 6 Mr(E),

their exists a point xi with xi ∈ Vi
⋂
E. Therefore, ∀xi, there is some Uj such that

xi ∈ Uj, which leads to Vi = Uj. Moreover, ∀1 6 i 6 Mr(E), we can always find some j,

1 6 j 6 Nr(E), such that Vi = Uj. From the disjoint property of {Ui} and {Vj}, we can

conclude that Mr(E) 6 Nr(E).

The proof is completed.

Remark 4.2. In the classical case in R or C, we have not the above result.

Remark 4.3. Let K be an algebraic extension of Qp of degree n, n = e · f . e is the index

of ramification and f is the residue field degree. we may denote NK
r (E), N∗,Kr (E),MK

r (E)

in the similar way for discs all in K. But now r only takes values in {pm
e : m ∈ Z}. The

equality still holds that NK
r (E) = N∗,Kr (E) = MK

r (E).

Definition 4.1. Let E be a non-empty bounded subset in Cp, then the upper and lower

box-counting dimensions of E are respectively defined as

dimBE = lim sup
r→0

ln(Nr(E))

− ln r
, (9)
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dimBE = lim inf
r→0

ln(Nr(E))

− ln r
. (10)

If dimBE = dimBE, then the box-counting dimension of E exists, denoted by dimB E.

Theorem 4.1. Let K be a n-degree algebraic extension of Qp, E ⊂ K be a non-empty

subset, then

dimBE = lim sup
r→0

ln(NK
r (E))

− ln r
, (11)

dimBE = lim inf
r→0

ln(NK
r (E))

− ln r
. (12)

Proof. Let r > 0, there must exist a positive integer m, such that

p−
m
e ≤ r < p−

m−1
e .

Let {U1, U2, · · · , UNr(E)} be the discs in Cp with diameters r which cover E. Then

for each Ui, Ui
⋂
E 6= ∅. Hence, there exists a point ai ∈ E ⊂ K, such that Ui =

Dai(r). Ui
⋂
K = {x ∈ K : |x − ai|p ≤ r} = {x ∈ K : |x − ai|p ≤ p−

m
e }. So,

{U1

⋂
K,U2

⋂
K, · · · , UNr(E)

⋂
K} is a discs cover of E with diameters p−

m
e . Hence we

have

N
p−

m
e

(E) ≤ NK

p−
m
e

(E) ≤ Nr(E).

The proof is completed.

Theorem 4.2. Let K be a n-degree algebraic extension of Qp, µK be the Haar measure

on K, E ⊂ K be a non-empty bounded subset, then

dimBE = lim sup
r→0

(n− lnµ(E(r))

ln r
), (13)

dimBE = lim inf
r→0

(n− lnµ(E(r))

ln r
), (14)

where E(r) = {x ∈ K : d(x,E) ≤ r}.

Proof. Using Theorem 4.1, we only need to verify

lim sup
r→0

ln(NK
r (E))

− ln r
= lim sup

r→0
(n− lnµ(E(r))

ln r
), (15)

for the case of the lower box-counting dimension is similar.
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Note that the Haar measure of any disc in K with diameter r is rn. If E ⊂ K can

be covered by NK
r (E)’s disjoint discs of diameters of r, then E(r) can also be covered by

them, and µ(E(r)) 6 NK
r (E)rn. On the other hand, all the NK

r (E)’s disjoint discs are

covered by E(r), and hence µ(E(r)) > NK
r (E)rn. Therefore, µ(E(r)) = NK

r (E)rn. The

proof is completed.

Remark 4.4. Theorem 4.1 and Theorem 4.2 give other definitions of the upper and lower

box-counting dimensions of a bounded set E. Notice that these definitions do not depend

on the choice of the algebraic extension field of Qp where E lives in.

Theorem 4.3. Let E be a non-empty bounded subset in Cp, then

(1) dimH E 6 dimBE;

(2) dimB(E), dimB(E) are monotone;

(3) for E ⊂ Cp, we have 0 ≤ dimBE, dimBE ≤ +∞; if E has open subset, then dimB E =

+∞;

(4) dimB(E
⋃
F ) = max{dimBE, dimBF};

(5) dimBE = dimBE, dimBE = dimBE, where E is the closure of E.

Proof. We prove the above properties in order.

(1) Let s < dimH E, then Hs(E) = +∞. Therefore, there is an r0 ∈ R such that

Hs
r(E) > 1 for all r < r0, r ∈ R.

Combining with Hs
r(E) 6 Nr(E)rs, we have

1 < Nr(E)rs (16)

for all r < r0, r ∈ R. Therefore, dimBE > s, and hence dimBE > dimH E since s is

arbitrary.

(2)

“E ⊂ F ⇒ Nr(E) ≤ Nr(F ), ∀r ∈ R”

leads to the monotone properties of dimBE and dimBE.

(3) From the definition, it is easy to get dimBA = dimBA = +∞. If E has open

subset, then E must contain a disc, which results to dimB E = +∞.

(4) From the monotony, it is easy to get dimB(E
⋃
F ) > max{dimBE, dimBF}.
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For the opposite side of the above inequality, let α > max{dimBE, dimBF}, then for

sufficiently small r ∈ R, Nr(E) 6 r−α, Nr(F ) 6 r−α,

Nr(E
⋃

F ) 6 Nr(E) +Nr(F ) 6 2r−α.

Hence, dimB(E
⋃
F ) 6 α, and so

dimB(E
⋃

F ) 6 max{dimBE, dimBF}.

(5) Let U1, U2, ..., Uk be a collection of discs of diameters r. If
⋃k
j=1 Uj ⊃ E, then⋃k

j=1 Uj ⊃ E due to the fact that discs in Cp are both open and closed. Hence, Nr(E) 6

Nr(E) leads to the result.

In order to deeply study the box-counting dimension, we construct a compact set

Cq1,q2p ⊂ Zp, such that dimBCq1,q2p < dimBCq1,q2p .

Example 4.1. Cantor type set Cq1,q2p in Zp

Take q1, q2 with 2 6 q1 < q2 6 p− 1, and s, t such that ln q1
ln p

< s < t < ln q2
ln p

.

We start constructing a Cantor type set Cq1p in first step. Thus, we have q1 discs

I1,1, I1,2, ..., I1,q1 with diameters p−1, which satisfy

q1(p
−1)s 6 1. (17)

Then in each I1,j perform the similar construction of Cq2p k1 times where k1 is so large that

q1q
k1
2 (p−1−k1)t = q1p

−t(q2p
−t)k1 > 1. (18)

After that, continue the construction of Cq1p k2 times again, where k2 is so large that

q1q
k1
2 q

k2
1 (p−1−k1−k2)s = q1q

k1
2 p
−(1+k1)s(q1p

−s)k2 6 1. (19)

Continue this process without ending. We get a sequence of positive integers {kj} and a

Cantor type set Cq1,q2p ⊂ Zp.

Theorem 4.4. Let 2 6 q1 < q2 6 p − 1, and ln q1
ln p

< s < t < ln q2
ln p

, then the Cantor set

Cq1,q2p ⊂ Zp constructed in Example 4.1 has the following property:

dimBCq1,q2p 6 s < t 6 dimBCq1,q2p .

14



Proof. From the above construction, it is easy to get

Np−1(Cq1,q2p ) = q1,

Np−(1+k1)(Cq1,q2p ) = q1q
k1
2 ,

Np−(1+k1+k2)(Cq1,q2p ) = q1q
k1
2 q

k2
1 ,

· · ·

N
p−(1+k1+k2+...+k2j−1)(Cq1,q2p ) = q1q

k1
2 q

k2
1 ...q

k2j−1

2 ,

N
p−(1+k1+k2+...+k2j)(Cq1,q2p ) = q1q

k1
2 q

k2
1 ...q

k2j
1 ,

· · · .

Hence,

dimBCq1,q2p 6 limj→∞
lnN1+k1+k2+...+k2j(Cq1,q2p )

(1 + k1 + k2 + ...+ k2j) ln p
= limj→∞

ln q1q
k1
2 q

k2
1 ...q

k2j
1

(1 + k1 + k2 + ...+ k2j) ln p
6 s,

dimBCq1,q2p > limj→∞
lnN1+k1+k2+...+k2j−1

(Cq1,q2p )

(1 + k1 + k2 + ...+ k2j−1) ln p
= limj→∞

ln q1q
k1
2 q

k2
1 ...q

k2j−1

2

(1 + k1 + k2 + ...+ k2j−1) ln p
> t.

The proof is completed.

5 Packing measures and dimensions

In this section, we discuss the packing measures and dimensions in Cp.

Definition 5.1. Let E ⊂ Cp, we call a family of disjoint discs of diameters at most r a

r-packing of E if each disc in this family has a non-empty intersection with E.

Let E be a non-empty subset of Cp, s > 0, r ∈ R, we define

P s
r (E) = sup{

+∞∑
j=1

|Uj|sp : {Uj} is r-packing of E}. (20)

Theorem 5.1. Let K be a n-degree algebraic extension of Qp, E ⊂ K, we can define a

r-packing of E in K in the similar way where all discs are in K, then

P s
r (E) = sup{

+∞∑
j=1

|Uj|sp : {Uj} is r-packing of E in K}. (21)
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The proof is similar to previous two cases. Obviously, P s
r (E) decreases as r → 0, and

hence we can define the pre-packing measures as follows.

Definition 5.2. Let E be a non-empty subset in Cp, s > 0, r ∈ R, then

P s(E) = lim
r→0

P s
r (E) (22)

is called the s-dimensional pre-packing measure of E.

It is easy to prove that for 0 6 s < t < +∞,

P s(E) < +∞⇒ P t(E) = 0,

P s(E) = +∞⇐ P t(E) > 0,

so we can give the definition of the pre-packing dimensions.

Definition 5.3. Let E be a non-empty subset in Cp, then

∆(E) = sup{s : P s(E) = +∞} = inf{s : P s(E) = 0} (23)

is called the pre-packing dimension of E.

For the pre-packing measures and dimensions, we have

Theorem 5.2. Let s > 0, E ⊂ Cp be any subset in Cp, then

Hs(E) 6 P s(E). (24)

Proof. Obviously, a r-disc cover of E is also a r-packing of E. So ∀r ∈ R, Hs
r(E) 6

P s
r (E), which result in Hs(E) 6 P s(E).

Theorem 5.3. Let E ⊂ Cp be any subset in Cp, then

(1) dimH E 6 ∆(E);

(2) dimBE = ∆(E).
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Proof. The conclusion (1) is the direct corollary of Theorem 5.2. We now prove (2).

Let s > 0, since Mr(E)rs 6 P s
r (E), then

lim sup
r→0

Mr(E)rs 6 P s(E).

If s > ∆(E), then P s(E) = 0, so lim supr→0Mr(E)rs = 0. Hence, s > dimBE, thus

dimBE 6 ∆(E).

For the opposite inequality, we only need to prove it providing ∆(E) > 0. Let 0 <

α < s < ∆(E). We define a real numbers sequence rj inductively.

First, since s < ∆(E), then P s(E) = +∞, we can choose r0 such that

sup{
∑
|Uj|sp : {Uj} is r0-packing of E} > 1.

If rj is defined, then we define rj+1 for j > 0. Choose an rj-packing such that
∑
|Uj|sp > 1.

Let nk = #{Ui : p−k−1 < |Ui|p ≤ p−k}, then∑
k>0

p−ksnk ≥
∑
|Uj|sp > 1. (25)

Hence, we can find k such that p−ksnk > p−kα(1− p−α), otherwise,
∑

k>0 p
−ksnk < 1. we

define rj+1 = p−(k+1).

From the above construction, for each rj, we have a packing {Vi : 1 6 i 6 nk},
|Vi|p = p−k−2, and nk > pk(s−α)(1− p−α), and so

Mp−(k+2)(E) > nk > pk(s−α)(1− p−α),

which results in dimBE > s− α, and dimBE > ∆(E).

The proof is completed.

We give a example to show that P s are not outer measures.

Example 5.1. non-negative integers Z+

It is easy to verify that P 1(n) = 0, ∀n ∈ Z+, but P 1(Z+) = 1 since Z+ is dense in Zp.

Definition 5.4. Let E ⊂ Cp, s > 0, then

Ps(E) = inf{
∑

P s(Ei) : E =
⋃

Ei},
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and

dimP E = inf{sup{∆(Ei) : E =
⋃

Ei}}

are called the s-dimensional packing measure and packing dimension of E, respectively.

Packing measures Ps are outer measures, with some similar properties as the Hausdorff

measures. dimP has also some properties similar to the Hausdorff dimensions, such as the

countable stabilization property. We omit them here.

Theorem 5.4. Let s > 0, E ⊂ Cp be any subset in Cp. Then

Hs(E) 6 Ps(E) 6 P s(E), (26)

and

dimH E 6 dimP E 6 ∆(E). (27)

Proof. The right sides of (26) and (27) are obvious from the definitions.

For the left side in (26), notice that Hausdorff measures are outer measures, we have

Hs(E) = inf{
∑
Hs(Ei) : E =

⋃
Ei}.

Combine with Theorem 5.2, we have

Hs(E) = inf{
∑
Hs(Ei) : E ⊂

⋃
Ei} ≤ inf{

∑
P s(Ei) : E ⊂

⋃
Ei} = Ps(E).

Using the same method, we also get the left side of (27). The proof is completed.

6 Comparison of different dimensions

The relations between the three kinds of dimensions have been discussed above. They

are

dimH E ≤ dimBE ≤ dimBE = ∆(E), (28)

dimH E ≤ dimP E ≤ ∆(E). (29)

Section 4 gives an example Cq1,q2p for dimBCq1,q2p < dimBCq1,q2p . We have also an example

for which the inequality dimH E ≤ dimBE holds strictly.
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Example 6.1. non-negative integers Z+

Since Z+ is a countable set, by Theorem 2.2, dimH Z+ = 0.

On the other hand, it is easy to see that Z+ is dense in Zp. Then by Theorem 4.3, we

get that

dimB Z+ = dimB Zp = 1.

Then we have

dimH Z+ = 0 < 1 = dimB Z+. (30)

This example also shows that the box-counting dimensions have no countable stabi-

lization property.

For the self-similar set we discussed in Section 3. As in the classical case, we also have

Theorem 6.1. If the IFS {fi}mi=1 of the self-similar set E ⊂ Cp satisfies the open set

condition with the ratios 0 < ci < 1 for 1 ≤ i ≤ m. Let s satisfies the equation
∑m

i=1 c
s
i = 1,

then

dimH E = dimB E = dimP E.
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