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1 Introduction

The main object of this paper is the p-adic Laplacian on Qn
p . To construct this operator,

one need to consider the problem of how to define derivative operators on Qp, which

is an important topic in the study of p-adic analysis[1,2]. Many mathematicians, such as

J.E. Gibbs[3], P.L. Butzer[4], C.W. Onneweer[5], W.X. Zheng[6] and V. S. Vladimirov[7] paid

their great attention to this topic. However, the test function class D(Qp) are not invariant

under the actions of their definitions of derivatives. In the 90’s, W.Y. Su[8,9] has given a

definition of derivatives and integrals, denoted by T s, for general locally compact Vilenkin

group G, using the pseudo-differential operators, including derivatives and integrals of

fractional orders. The test function class D(Qp), together with its distribution class

D′(Qp) are invariant under the actions of these fractional operators. For each s ∈ R, T s

is a pseudo-differential operator with the symbol 〈ξ〉s owing to the formula that

T sf = (〈ξ〉sf∧)∨,

where 〈ξ〉 = max{1, |ξ|p}. These operators can be used to study many interesting topics

in harmonic analysis[10,11], approximation theory[12−14], fractal analysis[15−18] and other

scientific fields.

In [19], the convolution kernel κs of the pseudo-differential operator T s is given and

some important properties of κs are obtained which play a key role in considerations re-

lated to fractional differential operators. A fundamental solution of the pseudo-differential

equation

P (T s)f = g, g ∈ D′(Qp), s ∈ R,

with respect to an unknown distribution f ∈ D′(Qp) is obtained, where P is a polynomial

of finite order.

In this paper, firstly, we extend the definition of the fractional differential operators

to the multi-dimensional space Qn
p . A family of multi-dimensional operators Tα and

their corresponding pseudo-differential equations are investigated. The test function class

D(Qn
p ) and distribution class D′(Qn

p ) are invariant under these operators. Secondly, we

give the definition of the p-adic Laplacian ∆p, analogous to that in the Euclidean case. A

fundamental solution of the Laplace equation is constructed. Spectral properties of the

Laplacian ∆p are studied, and an orthonormal basis of eigen-functions of ∆p in L2(Qn
p ) is

obtained. Finally, we investigate the Cauchy problems for the wave and heat equations

on the p-adic fields related to ∆p, and obtain solutions of these equations.
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2 A brief review of the p-adic analysis

In this section, we make a brief review of the p-adic analysis[1−4]. Let p be a prime

number. Recall that the field Qp of p-adic numbers is defined as the completion of the

field of rational numbers Q with respect to the non-Archimedean p-adic norm | · |p. This

norm is defined as follows: |0|p = 0; if a nonzero rational number x is represented as

x = pr m
n

, where r = ordpx ∈ Z, and m and n are not divisible by p, then |x|p = p−r.

This norm satisfies the strong triangle inequality that |x + y|p ≤ max(|x|p, |y|p) for any

x, y ∈ Qp.

Every element x in Qp can be thought as a unique formal series

∞∑
i=m

xip
i, 0 ≤ xi ≤ p− 1, xm 6= 0.

The set B0 = {x ∈ Qp : |x|p ≤ 1} is a subring of Qp called the ring of p-adic integers.

It is well known that Qp is locally compact and B0 is compact. There is a Haar measure

dx on Qp, normalized that
∫
B0
dx = 1. For any r ∈ Z, denote by Br the disc of radius pr

with center 0 ∈ Qp and by Sr its boundary:

Br = {x ∈ Qp : |x|p ≤ pr},

Sr = {x ∈ Qp : |x|p = pr}.

It is clear that
∫
Br
dx = pr and

∫
Sr
dx = pr(1− 1

p
).

The space Qn
p , consisting of points x = (x1, x2, · · · , xn), where xj ∈ Qp, is a locally

compact metric measure space. The p-adic norm on Qn
p is defined by

|x|p = max
1≤j≤n

|xj|p, x ∈ Qn
p .

Denote by Bn
r = {x ∈ Qn

p : |x|p ≤ pr} the ball of radius pr with the center 0 ∈ Qn
p , r ∈ Z.

In fact,

Bn
r = Br ×Br × · · · ×Br.

The Haar measure dx on the field Qp can be extended to a product measure dnx =

dx1dx2 · · · dxn on Qn
p in the usual way.

A complex-valued function ϕ defined on Qn
p is called locally-constant, if for any x ∈ Qn

p

there exists an integer l(x) ∈ Z such that

ϕ(x+ x′) = ϕ(x), ∀x′ ∈ Bn
l(x).
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We denote by E(Qn
p ) the linear space of locally-constant functions, D(Qn

p ) the linear space

of locally-constant functions with compact supports, on Qn
p , respectively, and D = D(Qp),

E = E(Qp) for short. Convergence in E(Qn
p ) is defined in the following way: ϕk → 0 in

E(Qn
p ) as k → ∞ if and only if for any compact set E ⊂ Qn

p , ϕk → 0 uniformly in E.

Convergence in D(Qn
p ) is defined that: ϕk → 0 in D(Qn

p ) as k → ∞ if and only if all ϕk

assume constant values on cosets of a ball Bn
l and are supported in a ball Bn

N , where N ,

l are two numbers, not depending on k, and ϕk → 0 uniformly. D(Qn
p ) is called the test

function class on Qn
p .

We denote by D′(Qn
p ) the distribution space on D(Qn

p ), D′ = D′(Qp). D′(Qn
p ) is

a complete topological space. Convergence in D′(Qn
p ) is defined in the following way:

fk → 0 as k →∞ in D′(Qn
p ) if and only if (fk, ϕ)→ 0 for any ϕ ∈ D(Qn

p ).

For a compact set E, denote by 1E the characteristic function of E. There is a canonical

δ-sequence δnk = pnk1Bn−k , and a canonical 1-sequence ∆n
k = 1Bnk , k ∈ Z, in D(Qn

p ). It is

easy to check δnk → δ in D′(Qn
p ) and ∆n

k → 1 in E(Qn
p ), as k →∞. Obviously, if we denote

δk = δ1
k and ∆k = ∆1

k, then

δnk (x) = δk(x1)δk(x2) · · · δk(xn), x = (x1, x2, · · · , xn),

and

∆n
k(x) = ∆k(x1)∆k(x2) · · ·∆k(xn), x = (x1, x2, · · · , xn).

The Fourier transform and inverse Fourier transform of ϕ ∈ D(Qn
p ) is defined by the

formule

ϕ∧(ξ) =

∫
Qnp
ϕ(x)χp(−ξ · x)dnx, ξ ∈ Qn

p ,

ϕ∨(x) =

∫
Qnp
ϕ(ξ)χp(ξ · x)dnξ, x ∈ Qn

p ,

where χp(ξ ·x) = χp(ξ1x1)χp(ξ2x2) · · ·χp(ξnxn) = e2πi
∑n
j=1{ξjxj}p , ξ ·x is the scalar product

of ξ and x, and the function χp(x) is a fixed non-trivial additive character on Qp which is

trivial on B0. It is known that the Fourier transform and the inverse transform are linear

isomorphisms from D(Qn
p ) onto D(Qn

p ). The transforms could be extended to distribution

space. For each f ∈ D′(Qn
p ), f∧ and f∨ are defined by the relations

(f∧, ϕ) = (f, ϕ∧), ∀ϕ ∈ D(Qn
p ),

(f∨, ϕ) = (f, ϕ∨), ∀ϕ ∈ D(Qn
p ).

It is easy to see ∆n∧
k = δnk , k ∈ Z.
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For distributions f ∈ D′(Qn
p ), g ∈ D′(Qm

p ), the direct product of them is defined by

(f(x)× g(y), ϕ) = (f(x), (g(y), ϕ(x, y))), ∀ϕ ∈ D(Qn+m
p ),

since any test function ϕ ∈ D(Qn+m
p ) can be represented in a finite sum of the form

ϕ(x, y) =
∑
k

ϕk(x)ψk(y), ϕk ∈ D(Qn
p ), ψk ∈ D(Qm

p ).

Thus f(x)× g(y) ∈ D′(Qn+m
p ). Moreover, the direct product is commutative, that is

f(x)× g(y) = g(y)× f(x).

Particularly, for g = 1, the above equality implies that

(f(x),

∫
Qmp

ϕ(x, y)dmy) =

∫
Qmp

(f(x), ϕ(x, y))dmy, ϕ ∈ D(Qn+m
p ).

The convolution f ∗ g for distributions f, g ∈ D′(Qn
p ) is defined[1,2] that:

(f ∗ g, ϕ) = lim
k→∞

(f(x)× g(y),∆k(x)ϕ(x+ y))

if the limit exists for all ϕ ∈ D(Qn
p ), where f(x)×g(y) is the direct product of distributions

f, g. The formula

(f ∗ g)∧ = f∧g∧

holds if the convolution f ∗ g exists. If f, g ∈ D′(Qn
p ) and suppg ⊂ Bn

N for some N ∈ Z,

then the convolution f ∗ g exists and

(f ∗ g, ϕ) = (f(x)× g(y),∆n
N(y)ϕ(x+ y)), ϕ ∈ D(Qn

p ).

Moreover, if g = ϕ ∈ D(Qn
p ), then f ∗ ϕ ∈ E(Qn

p ) and f ∗ ϕ takes the form

(f ∗ ϕ)(x) = (f(y), ϕ(x− y)), x ∈ Qn
p .

3 n-dimensional pseudo-differential operator T α

In [8, 9], W.Y. Su made a definition of derivatives and integrals, of fractional orders, for

general locally compact Vilenkin group G, by using of pseudo-differential operators. The

test function class D and the distribution class D′ are invariant under these fractional

operators.
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For ξ ∈ Qp, denote 〈ξ〉 = max{1, |ξ|p}. Obviously, 〈ξ〉 ∈ E . For s ∈ R, T s is defined

to be a pseudo-differential operator with the symbol 〈ξ〉s owing to the formula that

T sϕ = (〈ξ〉sϕ∧)∨, ϕ ∈ D.

It is easy to check that T sϕ exists in D. The definition domain of T s can be extended to

the distribution space D′ by the relation

(T sf, ϕ) = (f, T sϕ), f ∈ D′, ϕ ∈ D.

So for f ∈ D′, we still have

T sf = (〈ξ〉sf∧)∨.

We call the operator T s the derivative operator on D′ of order s for s > 0, and the integral

operator on D′ of order −s for s < 0. For s = 0, T 0f = f for all f ∈ D′, T 0 is the identity

operator.

In [19], the convolution kernel κs of the pseudo-differential operator T s is given and

some important properties of κs are revealed which play a key role in problems related to

fractional operator T s.

κs = (
1− ps

1− p−s−1
|x|−s−1

p +
ps − 1

ps+1 − 1
)∆0, for s 6= 0,−1,

and κ0 = δ, κ−1 = (1− 1
p
)(1− logp |x|p)∆0, where |x|−s−1

p is a distribution[2,19] in D′(Qp),

(|x|−s−1
p , ϕ) =

∫
Qp
|x|−s−1

p (ϕ(x)− ϕ(0))dx, ϕ ∈ D, s 6= 0.

The convolution kernel κs has the following properties:

κs ∗ κt = κs+t, ∀s, t ∈ R.

Moreover, κs is continuous on s ∈ R.

We now consider the n-dimensional case.

Firstly, we give the definition of the partial differential operator T sxj for distributions

in D′(Qn
p ), 1 ≤ j ≤ n. For ϕ ∈ D(Qn

p ), it can be represented as a finite sum of the form

ϕ(x) =
∑
k

ϕk1(x1)ϕk2(x2) · · ·ϕkn(xn), ϕkj ∈ D.

We define

T sxjϕ(x) =
∑
k

ϕk1(x1) · · ·T sϕkj(xj) · · ·ϕkn(xn).
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Obviously, the partial differential operator T sxj is well-defined and T sxj(D(Qn
p )) = D(Qn

p ).

We can extend the definition domain of the operator T sxj to D′(Qn
p ) by the relation

(T sxjf, ϕ) = (f, T sxjϕ), f ∈ D′(Qn
p ), ϕ ∈ D(Qn

p ).

And we have T sxj(D
′(Qn

p )) = D′(Qn
p ).

Secondly, we investigate the n-dimensional pseudo-differential operator Tα on D′(Qn
p ).

Let α = (α1, α2, · · · , αn) be a multi-index, αj ∈ R, with |α| = α1 + α2 + · · · + αn.

For α, β ∈ Rn, denote α + β = (α1 + β1, α2 + β2, · · · , αn + βn). For x ∈ Rn, α ∈ Rn,

denote xα = xα1
1 x

α2
2 · · ·xαnn . For example, for ξ = (ξ1, ξ2, · · · , ξn) ∈ Qn

p , if we denote

〈ξ〉 = (〈ξ1〉, 〈ξ2〉, · · · , 〈ξn〉), then

〈ξ〉α = 〈ξ1〉α1〈ξ2〉α2 · · · 〈ξn〉αn .

We write

κα(x) = κα1(x1)× κα2(x2)× · · · × καn(xn),

where × is the direct product operation. In particular, for α = (0, 0, · · · , 0),

κ0(x) = δ(x) = δ(x1)× δ(x2)× · · · × δ(xn).

We define the n-dimensional fractional operator Tα on the distribution class D′(Qn
p )

by the following convolution form,

Tαf = κα ∗ f,

and call κα the n-dimensional convolution kernel of Tα. In particular, for ϕ ∈ D(Qn
p ), we

have

Tαϕ(x) = (κα1(y1)× κα2(y2)× · · · × καn(yn), ϕ(x− y)), x ∈ Qn
p .

The following are some basic properties of the pseudo-differential operators Tα and

their convolution kernels κα.

Proposition 3.1. Let α, β ∈ Rn. Then

κα ∗ κβ = κα+β.

Proof.

κα ∗ κβ = (κα1 ∗ κβ1)× (κα2 ∗ κβ2)× · · · × (καn ∗ κβn)

= κα1+β1 × κα2+β2 × · · · × καn+βn = κα+β. ]
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Proposition 3.2. Let α ∈ Rn. Then κ∧α = 〈ξ〉α.

Proof.

κ∧α = κ∧α1
× κ∧α2

· · ·κ∧αn = 〈ξ1〉α1〈ξ2〉α2 · · · 〈ξn〉αn = 〈ξ〉α. ]

From the above two propositions, we obtain

Proposition 3.3. Let α ∈ Rn, f ∈ D′(Qn
p ). Then

Tαf = κα ∗ f = (〈ξ〉αf∧)∨.

Proof. (κα ∗ f)∧ = κ∧αf
∧ = 〈ξ〉αf∧. ]

Proposition 3.4. Let α, β ∈ Rn, f ∈ D′(Qn
p ). Then

Tα+βf = TαT βf = T βTαf.

Proof. Tα+βf = κα+β ∗ f = κα ∗ κβ ∗ f = TαT βf. ]

Proposition 3.5. Let α ∈ Rn, f ∈ D′(Qn
p ), ϕ ∈ D(Qn

p ). Then

(Tαf, ϕ) = (f, Tαϕ).

Proof. Since Tαf = (〈ξ〉αf∧)∨, we have

(Tαf, ϕ) = (〈ξ〉αf∧, ϕ∨) = (f∧, 〈ξ〉αϕ∨) = (f, (〈ξ〉αϕ∨)∧) = (f, (〈ξ〉αϕ∧)∨) = (f, Tαϕ). ]

Proposition 3.6. D(Qn
p ), E(Qn

p ) and D′(Qn
p ) are invariant under the operators Tα.

Proof. We only prove the D(Qn
p ) case, since the others can be obtained by similar

arguments. For ϕ ∈ D(Qn
p ), we have ϕ∧ ∈ D(Qn

p ). then 〈ξ〉αϕ∧ ∈ D(Qn
p ), since 〈ξ〉α ∈

E(Qn
p ). Thus Tαϕ = (〈ξ〉αϕ∧)∨ ∈ D(Qn

p ). Hence Tα(D(Qn
p )) ⊂ D(Qn

p ).

On the other hand, let ψ ∈ D(Qn
p ), consider the equation Tαϕ = ψ. Let ϕ = T−αψ =

κ−α ∗ ψ, then from Proposition 3.1,

Tαϕ = κα ∗ ϕ = κα ∗ κ−α ∗ ψ = δ ∗ ψ = ψ.

Hence, Tα(D(Qn
p )) ⊃ D(Qn

p ). ]

Theorem 3.1. Let α = (α1, α2, · · · , αn), f ∈ D′(Qn
p ). Then

Tα = Tα1
x1
◦ Tα2

x2
◦ · · · ◦ Tαnxn ,

where ◦ denotes the composition operation. Moreover, the compositions are commutable.
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Proof. Let ϕ ∈ D(Qn
p ). It must have a finite sum form that

ϕ(x) =
∑
k

ϕk1(x1)ϕk2(x2) · · ·ϕkn(xn), ϕkj ∈ D.

Then

Tαϕ =
∑
k

Tαϕk1(x1)ϕk2(x2) · · ·ϕkn(xn)

=
∑
k

(κα1 ∗ ϕk1)(κα2 ∗ ϕk2) · · · (καn ∗ ϕkn)

=
∑
k

Tα1
x1
ϕk1T

α2
x2
ϕk2 · · ·Tαnxn ϕkn

=
∑
k

Tα1
x1
◦ Tα2

x2
◦ · · · ◦ Tαnxn ϕk1(x1)ϕk2(x2) · · ·ϕkn(xn)

= Tα1
x1
◦ Tα2

x2
◦ · · · ◦ Tαnxn ϕ.

Let f ∈ D′(Qn
p ). Then for ϕ ∈ D(Qn

p ), using Proposition 3.5, we have

(Tαf, ϕ) = (f, Tαϕ) = (f, Tα1
x1
◦ Tα2

x2
◦ · · · ◦ Tαnxn ϕ) = (Tα1

x1
◦ Tα2

x2
◦ · · · ◦ Tαnxn f, ϕ). ]

Taking α = (0, · · · , 0, αj, 0, · · · , 0) in the above theorem, we immediately get

Corollary 3.1. Let 1 ≤ j ≤ n, αj ∈ R, f ∈ D′(Qn
p ). Then

Tαjxj f = T (0,··· ,0,αj ,0,··· ,0)f.

Finally, we give some examples.

Example 3.1. Tα1 = 1.

Proof. Since 1∧ = δ, ∀ϕ ∈ D(Qn
p ), we have

(Tα1, ϕ) = ((〈ξ〉αδ)∨, ϕ) = (〈ξ〉αδ(ξ), ϕ∨(ξ)) = (δ(ξ), 〈ξ〉αϕ∨(ξ)) = ϕ∨(0) = (1, ϕ). ]

Example 3.2. Tαδ = κα.

Proof. Tαδ = κα ∗ δ = κα. ]

Example 3.3. Let α = (−1,−1, · · · ,−1), ϕ ∈ D(Qn
p ). Then

Tαϕ(x) = T (−1,−1,··· ,−1)ϕ(x) = (1− 1

p
)n

∫
x+Bn0

n∏
j=1

(1− logp |yj − xj|p)ϕ(y)dny.

9



Proof. Since ϕ can be represented as a finite sum of the form

ϕ =
∑
k

ϕk1(x1)ϕk2(x2) · · ·ϕkn(xn), ϕkj ∈ D,

Tαϕ = κα ∗ ϕ =
∑
k

κ−1 ∗ ϕk1(x1)κ−1 ∗ ϕk2(x2) · · ·κ−1 ∗ ϕkn(xn)

=
∑
k

n∏
j=1

(1− 1

p
)

∫
xj+B0

(1− logp |yj − xj|p)ϕkj(yj)dyj

= (1− 1

p
)n

∑
k

∫
x+Bn0

n∏
j=1

(1− logp |yj − xj|p)ϕk1(y1)ϕk2(y2) · · ·ϕkn(yn)dy1dy2 · · · dyn

= (1− 1

p
)n

∫
x+Bn0

n∏
j=1

(1− logp |yj − xj|p)ϕ(y)dny. ]

Example 3.4. Let α ∈ Rn, η ∈ Qn
p . Then

Tαχp(η · x) = 〈η〉αχp(η · x).

Proof. Since T
αj
xj χp(ηjxj) = 〈ηj〉αjχp(ηjxj)[19],

Tαχp(η · x) = Tαχp(η1x1 + η2x2 + · · ·+ ηnxn)

= Tα1
x1
χp(η1x1)Tα2

x2
χp(η2x2) · · ·Tαnxn χp(ηnxn)

= 〈η1〉α1χp(η1x1)〈η2〉α2χp(η2x2) · · · 〈ηn〉αnχp(ηnxn)

= 〈η〉αχp(η · x). ]

4 the Laplacian ∆p

Now we introduce the Laplacian ∆p on Qn
p . ∆p is an operator that

∆pf(x) =
n∑
j=1

T 2
xj
f(x), f ∈ D′(Qn

p ).

If we denote by ej = (0, · · · , 0, 1, 0, · · · , 0), the j-th unit vector of Rn, then

∆pf(x) =
n∑
j=1

T 2ejf(x).

Since
∑n

j=1 T
2ejf = (

∑n
j=1〈ξj〉2f∧)∨, the Laplacian ∆p is a pseudo-differential operator

with the symbol
∑n

j=1〈ξj〉2.
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Example 4.1. Let ψ(x) = χp(p
−1e · x)∆n

0 , with e = (1, 1, · · · , 1). Then ψ(x) is an

eigen-function of the Laplacian ∆p,

∆pψ(x) = np2ψ(x).

Proof. We can easily get that,

ψ∧(ξ) =

∫
Qnp
χp(p

−1e · x)∆n
0χp(−ξ · x)dnx =

∫
Bn0

χp(x · (p−1e− ξ))dnx = 1p−1e+Bn0
,

and
n∑
j=1

〈ξj〉2ψ∧(ξ) =
n∑
j=1

〈ξj〉21p−1e+Bn0
= np21p−1e+Bn0

.

Hence,

∆pψ(x) = (
n∑
j=1

〈ξj〉2ψ∧(ξ))∨(x) = np2

∫
p−1e+Bn0

χp(ξ · x)dnξ

= np2

∫
Bn0

χp(p
−1e · x)χp(ξ · x)dnξ = np2χp(p

−1e · x)∆n
0 = np2ψ(x). ]

Example 4.2. Let ψ(x) = χp(p
−1e · x)∆n

0 , a ∈ Qp, a 6= 0, b = (b1, b2, · · · , bn) ∈ Qn
p . Then

∆pψ(ax+ b) =

{
np2|a|2pψ(ax+ b), for |a|p > p−1,

nψ(ax+ b), for |a|p ≤ p−1.

Proof. The Fourier transform of ψ(ax+ b) is

(ψ(ax+ b))∧(ξ) = |a|−np χp(
b · ξ
a

)ψ∧(
ξ

a
) = |a|−np χp(

b · ξ
a

)1a(p−1e+Bn0 ).

Hence,

∆pψ(ax+ b) = (
n∑
j=1

〈ξj〉2(ψ(ax+ b))∧(ξ))∨(x)

=

∫
Qnp

n∑
j=1

〈ξj〉2|a|−np χp(
b · ξ
a

)1a(p−1e+Bn0 )χp(ξ · x)dnξ

=

∫
a(p−1e+Bn0 )

n∑
j=1

〈ξj〉2|a|−np χp((x+
b

a
) · ξ)dnξ.

11



For |a|p ≤ p−1, we have a(p−1e+Bn
0 ) ⊂ Bn

0 , then

∆pψ(ax+ b) = n

∫
a(p−1e+Bn0 )

|a|−np χp((x+
b

a
) · ξ)dnξ

= n

∫
Bn0

χp((x+
b

a
) · (ap−1e+ aξ))dnξ

= n

∫
Bn0

χp(p
−1e · (ax+ b))χp(ξ · (ax+ b))dnξ

= nχp(p
−1e · (ax+ b))∆n

0 (ax+ b) = nψ(ax+ b).

For |a|p > p−1, noticing that ∀ξ ∈ a(p−1e+Bn
0 ), |ξj|p = p|a|p > 1, we have

∆pψ(ax+ b) =

∫
a(p−1e+Bn0 )

n∑
j=1

|ξj|2|a|−np χp((x+
b

a
) · ξ)dnξ

= np2|a|2p
∫
a(p−1e+Bn0 )

|a|−np χp((x+
b

a
) · ξ)dnξ = np2|a|2pψ(ax+ b). ]

Let

P (x) =
∑
r

arx
r =

∑
r1,r2,··· ,rn

ar1,r2,··· ,rnx
r1
1 x

r2
2 · · ·xrnn

be a polynomial defined on Rn, where r = (r1, r2, · · · , rn) ∈ Rn are multi-indexes and

ar ∈ C are constants. Let P be a pseudo-differential operator on D′(Qn
p ), with the kernel

P (〈ξ〉), i.e.,

Pf = (P (〈ξ〉)f∧)∨, f ∈ D′(Qn
p ).

In particular, if P (〈ξ〉) =
∑n

j=1〈ξj〉2, then P = ∆p.

Let us consider the equation

Pf = g, g ∈ D′(Qn
p ). (4.1)

Theorem 4.1. If P (x) 6= 0 when all xi ≥ 1, then the equation (4.1) has a unique solution

in D′(Qn
p ) that

f = (P−1(〈ξ〉)g∧)∨.

Proof. Since P (x) 6= 0 when all xi ≥ 1, the functions P (〈ξ〉) and P−1(〈ξ〉) are both

belong to E(Qn
p ). Let f = (P−1(〈ξ〉)g∧)∨. Then

Pf = (P (〈ξ〉)f∧)∨ = (P (〈ξ〉)P−1(〈ξ〉)g∧)∨ = g.

For the uniqueness, we need to investigate solutions of the homogeneous equation

Pf = 0. (4.2)

12



By applying to the equation (4.2) the Fourier transform, we get

P (〈ξ〉)f∧ = 0.

As P (x) 6= 0 when all xi ≥ 1, we have P (〈ξ〉) 6= 0, then f∧ = 0, so f = 0. Thus the

homogeneous equation (4.2) has only a trivial solution. ]

A fundamental solution of (4.1) is a distribution f such that Pf = δ.

Theorem 4.2. The equation (4.1) has a fundamental solution

fP(x) = (P−1(〈ξ〉))∨, i.e., PfP = δ.

Proof.

PfP = (P (〈ξ〉)P−1(〈ξ〉))∨ = 1∨ = δ. ]

This theorem shows that the solution of equation (4.1) can be represented as

f = fP ∗ g.

Corollary 4.1. If there exists a function of finite sum Q(x) =
∑
s

bsx
s defined on Rn,

bs ∈ C, s ∈ Rn, such that Q(x) = P−1(x), then the fundamental solution of (4.1) is

fP =
∑
s

bsκs.

Proof. Using Proposition 3.2, we obtain

fP = (Q(〈ξ〉))∨ = (
∑
s

bs〈ξ〉s)∨ =
∑
s

bs(〈ξ〉s)∨ =
∑
s

bsκs. ]

Corollary 4.2. The Poission equation ∆pf = g, g ∈ D′(Qn
p ) has a fundamental solution

f∆p = ( 1
〈ξ1〉2+〈ξ2〉2+···+〈ξn〉2 )∨, which is a distribution with support contained in Bn

0 .

Proof. Noticing that the function P (x) = x2
1 + x2

2 + · · ·+ x2
n, we have

f∆p = (P−1(〈ξ〉))∨ = (
1

〈ξ1〉2 + 〈ξ2〉2 + · · ·+ 〈ξn〉2
)∨.

suppfα ⊂ B0 is a direct corollary of the fact that P−1(〈ξ〉) ∈ E , taking constant values on

cosets of Bn
0 . ]
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5 Special properties of the Laplacian ∆p

The Laplacian ∆p is a pseudo-differential operator with the symbol
∑n

j=1〈ξj〉2,

∆ψ = (
n∑
j=1

〈ξj〉2ψ∧)∨, ∀ψ.

It can be defined on those functions ψ in the Hilbert space L2(Qn
p ), satisfying

∑n
j=1〈ξj〉2ψ∧ ∈

L2(Qn
p ). We denote the collection of these functions by D(∆p), and call it the domain of

the Laplacian ∆p in L2(Qn
p ).

Lemma 5.1. (
∑n

j=1〈ξj〉2)ρ ∈ L2(Qn
p ) if and only if ρ < −n

4
.

Proof. If ρ < −n
4
, then∫

Qnp
(
n∑
j=1

〈ξj〉2)2ρdnξ =

∫
Bn0

n2ρdnξ +

∫
Qnp\Bn0

(
n∑
j=1

〈ξj〉2)2ρdnξ

= n2ρ +
∞∑
r=1

∫
|ξ|p=pr

(
n∑
j=1

〈ξj〉2)2ρdnξ

≤ n2ρ +
∞∑
r=1

(p2r)2ρprn(1− 1

pn
)

= n2ρ + (1− 1

pn
)
∞∑
r=1

p(n+4ρ)r

< ∞.

If ρ ≥ −n
4
, then∫

Qnp
(
n∑
j=1

〈ξj〉2)2ρdnξ = n2ρ +
∞∑
r=1

∫
|ξ|p=pr

(
n∑
j=1

〈ξj〉2)2ρdnξ

≥ n2ρ + min(n2ρ, 1)
∞∑
r=1

(p2r)2ρprn(1− 1

pn
)

= n2ρ + min(n2ρ, 1)(1− 1

pn
)
∞∑
r=1

p(n+4ρ)r

= ∞. ]

Theorem 5.1. D(∆p) ( L2(Qn
p ) and ∆p(D(∆p)) = L2(Qn

p ). Furthermore, D(∆p) is

dense in L2(Qn
p ).
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Proof. By Lemma 5.1 and the fact that the Fourier transform is a unitary operator in

L2(Qn
p ), there exists a ψ ∈ L2(Qn

p ), such that ψ∧ = (
∑n

j=1〈ξj〉2)−1−n
4 ∈ L2(Qn

p ).

Still by Lemma 5.1, we have

n∑
j=1

〈ξj〉2ψ∧ = (
n∑
j=1

〈ξj〉2)−
n
4 /∈ L2(Qn

p ).

Thus ψ ∈ L2(Qn
p ), but ψ /∈ D(∆p). So D(∆p) ( L2(Qn

p ).

Let ϕ ∈ L2(Qn
p ). Consider the solution of the equation ∆pψ = ϕ, i.e.,

ψ = ((
n∑
j=1

〈ξj〉2)−1ϕ∧)∨.

Then ϕ ∈ L2(Qn
p ) and |(

∑n
j=1〈ξj〉2)−1| ≤ n−1 implies that (

∑n
j=1〈ξj〉2)−1ϕ∧ ∈ L2(Qn

p ), so

ψ ∈ L2(Qn
p ). Hence, ∆p(D(∆p)) = L2(Qn

p ).

Noticing the fact that D(Qn
p ) ⊂ D(∆p) and D(Qn

p ) is dense in L2(Qn
p ), we get the

density of D(∆p) in L2(Qn
p ). ]

Theorem 5.2. The Laplacian ∆p is a non-negative self-adjoint operator on L2(Qn
p ).

Proof. Using the Parseval equality, we can easily get the following formule:

(∆pψ, ϕ) =

∫
Qnp

n∑
j=1

〈ξj〉2ψ∧(ξ)ϕ∧(ξ)dnξ = (ψ,∆pϕ), ∀ψ, ϕ ∈ D(∆p),

‖∆pψ‖2 = (∆pψ,∆pψ) =

∫
Qnp

(
n∑
j=1

〈ξj〉2)2|ψ∧(ξ)|2dnξ, ψ ∈ D(∆p).

Here (·, ·) is the scalar product in the Hilbert space L2(Qn
p ), and ‖ · ‖ is the L2-norm.

Moreover,

(∆pψ, ψ) =

∫
Qnp

n∑
j=1

〈ξj〉2|ψ∧(ξ)|2dnξ > 0, 0 6= ψ ∈ D(∆p). ]

There is a non-negative self-adjoint operator [20] ∆
1
2
p with the symbol (

∑n
j=1〈ξj〉2)

1
2 ,

associated with ∆p. The domain of ∆
1
2
p is

D(∆
1
2
p ) = {ψ ∈ L2(Qn

p ) : (
n∑
j=1

〈ξj〉2)
1
2ψ∧ ∈ L2(Qn

p )}.
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We have

D(∆p) = {ψ : ψ ∈ D(∆
1
2
p ) and ∆

1
2
pψ ∈ D(∆

1
2
p )}.

Furthermore, there is a non-negative quadratic form Q(·, ·) on L2(Qn
p ) with domain

D(∆
1
2
p )×D(∆

1
2
p ) such that

Q(ψ, ϕ) = (∆
1
2
pψ,∆

1
2
pϕ), ∀ψ, ϕ ∈ D(∆

1
2
p ).

If one define Q∗(ψ, ϕ) = Q(ψ, ϕ) + (ψ, ϕ) for any ψ, ϕ ∈ D(∆
1
2 ), then (D(∆

1
2
p ), Q∗(·, ·)) is

a Hilbert space.

Proposition 5.1. For any η ∈ Qn
p , the additive character χp(η · x) is an eigen-function

of the Laplacian ∆p with respect to the eigen-value
∑n

j=1〈ηj〉2.

Proof. Using Example 3.4, we have

∆pχp(η · x) =
n∑
j=1

T 2ejχp(η · x) =
n∑
j=1

〈η〉2ejχp(η · x) =
n∑
j=1

〈ηj〉2χp(η · x). ]

Let us consider the eigen-value problem in Qn
p ,

∆pψ = λψ, ψ ∈ L2(Qn
p ). (5.1)

From Theorem 5.2, the spectrum of the operator ∆p consists of non-negative eigen-

values.

Let λ = 0. Then ∆pψ = 0, which implies ψ = 0 from Theorem 5.1. Hence, λ = 0 is

not an eigen-value of ∆p.

Let λ > 0. Applying to the equation (5.1) the Fourier transform, we get

(
n∑
j=1

〈ξj〉2 − λ)ψ∧(ξ) = 0.

From here we conclude that the eigen-values of the Laplacian ∆p have the form

λN1,N2,··· ,Nn =
n∑
j=1

p2Nj , Nj ∈ Z+, j = 1, 2, · · · , n.

Now we construct an orthonormal basis of eigen-functions of the Laplacian ∆p in

L2(Qn
p ).

Recall that in the 1-dimensional case, an orthonormal basis of eigen-functions of T s

in L2(Qp) is given in [19].
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Lemma 5.2. [19] Let n = 1, s ∈ R. The set of test functions {ψNkε(x)} is an orthonormal

basis of eigen-functions of T s in L2(Qp), where

ψNkε(x) = p−
N
2 χp(p

N−1kx)∆0(pNx− ε), N ∈ Z, k = 1, 2, · · · , p− 1, ε ∈ Qp/B0.

Moreover,

T sψ1−N,k,ε(x) =

{
pNsψ1−N,kε(x), for N > 0,

ψ1−N,kε(x), for N ≤ 0.

The orthonormal basis {ψNkε(x)} is a p-adic wavelet basis in L2(Qp) constructed by

S.V. Kozyrev[21].

For the Laplacian ∆p, we have

Theorem 5.3. The set of test functions {
∏n

j=1 ψNjkjεj(xj)} is an orthonormal basis of

eigen-functions of the Laplacian ∆p in L2(Qn
p ), where Nj ∈ Z, kj = 1, 2, · · · , p − 1, εj ∈

Qp/B0, j = 1, 2, · · · , n. Moreover,

∆p

n∏
j=1

ψ1−Nj ,kj ,εj(x) =
n∑
j=1

p2 max{0,Nj}
n∏
j=1

ψ1−Nj ,kj ,εj(x).

Proof. Taking ψ(x) =
∏n

j=1 ψNjkjεj(xj), using Lemma 5.2, we have

∆pψ(x) = ∆p

n∏
j=1

ψNjkjεj(xj) =
n∑
j=1

T 2
xj

n∏
j=1

ψNjkjεj(xj)

=
n∑
j=1

∏
1≤j′≤n,j′ 6=j

ψNj′kj′εj′ (xj′)T
2
xj
ψNjkjεj(xj)

=
n∑
j=1

∏
1≤j′≤n,j′ 6=j

ψNj′kj′εj′ (xj′)p
2 max{0,1−Nj}ψNjkjεj(xj)

=
n∑
j=1

p2 max{0,1−Nj}ψ(x).

For the orthogonality of {
∏n

j=1 ψNjkjεj(xj)}, consider the scalar product (ψ, ϕ) in

L2(Qn
p ), where ψ(x) =

∏n
j=1 ψNjkjεj(xj) and ϕ(x) =

∏n
j=1 ψN ′jk′jε′j(xj).

(ψ(x), ϕ(x)) = (
n∏
j=1

ψNjkjεj(xj),
n∏
j=1

ψN ′jk′jε′j(xj))

=
n∏
j=1

(ψNjkjεj(xj), ψN ′jk′jε′j(xj)) =
n∏
j=1

δNjN ′jδεjε′jδkjk′j .
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For the completeness of {
∏n

j=1 ψNjkjεj(xj)}, consider the Fourier coefficient of ∆n
0 .

(∆n
0 ,

n∏
j=1

ψNjkjεj) =
n∏
j=1

p−
Nj
2

∫
B0∩p−Nj εj

χp(−pNj−1kjxj)dxj =
n∏
j=1

p−
Nj
2 δεj ,B0γ(Nj),

where γ is a function defined as γ(t) = 0 if t ≤ 0, γ(t) = 1 if t ≥ 1.

Hence, ∑
|(∆n

0 ,

n∏
j=1

ψNjkjεj)|2 =
∑ n∏

j=1

p−Njδεj ,B0γ(Nj)

= (p− 1)n
∑

1≤Nj<+∞,j=1,2,··· ,n

n∏
j=1

p−Nj = (p− 1)n
n∏
j=1

+∞∑
Nj=1

p−Nj = 1 = ‖∆0‖2.

Thus the Parserval equality of ∆n
0 holds, which proves the completeness of {

∏n
j=1 ψNjkjεj(xj)}. ]

6 Cauchy problem for wave equations on Qn
p

In this section, we consider the initial value problem

∂2u
∂t2
− a∆s

pu = f(x, t), x ∈ Qn
p , 0 < t ≤ T,

u(x, 0) = ϕ(x), x ∈ Qn
p ,

ut(x, 0) = ψ(x), x ∈ Qn
p ,

(6.1)

where a 6= 0, s ∈ R, T > 0, the function f and the initial function ϕ and ψ are complex

valued.

Theorem 6.1. The homogeneous equation

∂2u
∂t2
− a∆s

pu = 0, x ∈ Qn
p , 0 < t ≤ T,

u(x, 0) = 0, x ∈ Qn
p ,

ut(x, 0) = ψ(x), x ∈ Qn
p ,

(6.2)

has a fundamental solution

E(x, t) =


( e
√
a(

∑n
j=1〈ξj〉

2)
s
2 t−e−

√
a(

∑n
j=1〈ξj〉

2)
s
2 t

2
√
a(
∑n
j=1〈ξj〉2)

s
2

)∨(x), for a > 0,

(
sin(
√
−a(

∑n
j=1〈ξj〉2)

s
2 t)

√
−a(

∑n
j=1〈ξj〉2)

s
2

)∨(x), for a < 0,

where E(x, t) ∈ D′(Qn
p ) has a compact support in Bn

0 for any t ∈ [0, T ]. Moreover, for

ψ ∈ D′(Qn
p ) the equation (6.2) has a solution

u(x, t) = E(x, t) ∗ ψ.
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Proof. Let ψ = δ, denote by E(x, t) the fundamental solution of (6.2). Applying to

(6.2) the Fourier transform, we get

∂2E∧(ξ, t)

∂t2
= a(

n∑
j=1

〈ξj〉2)sE∧(ξ, t),

E∧(ξ, 0) = 0, E∧t (ξ, 0) = 1.

If a > 0, then

E∧(ξ, t) = C1e
−
√
a(
∑n
j=1〈ξj〉2)

s
2 t + C2e

√
a(
∑n
j=1〈ξj〉2)

s
2 t,

where C1 and C2 are two constants satisfying

C1 + C2 = 0,

and

−C1

√
a(

n∑
j=1

〈ξj〉2)
s
2 + C2

√
a(

n∑
j=1

〈ξj〉2)
s
2 = 1.

So

−C1 = C2 =
1

2
√
a(
∑n

j=1〈ξj〉2)
s
2

.

Hence,

E∧(ξ, t) =
e
√
a(
∑n
j=1〈ξj〉2)

s
2 t − e−

√
a(
∑n
j=1〈ξj〉2)

s
2 t

2
√
a(
∑n

j=1〈ξj〉2)
s
2

,

and ∀t ∈ [0, T ], E∧(ξ, t) ∈ E(Qn
p ) assumes constant values on cosets of Bn

0 . So

E(x, t) = (
e
√
a(
∑n
j=1〈ξj〉2)

s
2 t − e−

√
a(
∑n
j=1〈ξj〉2)

s
2 t

2
√
a(
∑n

j=1〈ξj〉2)
s
2

)∨(x),

and ∀t ∈ [0, T ], E(x, t) ∈ D′(Qn
p ) with suppE(x, t) ⊂ Bn

0 .

If a < 0, then

E∧(ξ, t) =
sin(
√
−a(

∑n
j=1〈ξj〉2)

s
2 t)

√
−a(

∑n
j=1〈ξj〉2)

s
2

,

and also ∀t ∈ [0, T ], E∧(ξ, t) ∈ E(Qn
p ) assumes constant values on cosets of Bn

0 . So

E(x, t) = (
sin(
√
−a(

∑n
j=1〈ξj〉2)

s
2 t)

√
−a(

∑n
j=1〈ξj〉2)

s
2

)∨(x),

and we have ∀t ∈ [0, T ], E(x, t) ∈ D′(Qn
p ) with suppE(x, t) ⊂ Bn

0 .
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Hence ∀t ∈ [0, T ], E(x, t) ∗ ψ(x) exists. Let u(x, t) = E(x, t) ∗ ψ(x). Then we have

(
∂2

∂t
− a∆s

p)u(x, t) = (
∂2

∂t
− a∆s

p)(E(x, t) ∗ ψ(x))

= ((
∂

∂t
− a∆s

p)E(x, t)) ∗ ψ(x)

= 0 ∗ ψ(x) = 0,

and

ut(x, 0) = Et(x, 0) ∗ ψ(x) = δ(x) ∗ ψ(x) = ψ(x). ]

Hence, u(x, t) = E(x, t) ∗ ψ(x) is a solution of (6.2). ]

For the function f(x, t) defined on Qn
p × [0, T ], we say that f ∈ E(Qn

p ) uniformly with

respect to t, if its exponent of local constancy do not depend on t.

Lemma 6.1. Let ω(x, t) ∈ E(Qn
p ) uniformly with respect to t, and ω is continuous on t.

Then

∆s
p

∫ t

0

ω(x, τ)dτ =

∫ t

0

∆s
pω(x, τ)dτ.

Proof. It is easy to check that∫ t

0

ω(x, τ)dτ ∈ E(Qn
p ) and

∫ t

0

∆s
pω(x, τ)dτ ∈ E(Qn

p ).

Then for any φ ∈ D(Qn
p ), we have

(∆s
p

∫ t

0

ω(x, τ)dτ, φ(x)) = (

∫ t

0

ω(x, τ)dτ,∆s
pφ(x))

=

∫
Qnp
dnx

∫ t

0

ω(x, τ)∆s
pφ(x)dτ.

Using Fubini Theorem, we get

(∆s
p

∫ t

0

ω(x, τ)dτ, φ(x)) =

∫ t

0

dτ

∫
Qnp
ω(x, τ)∆s

pφ(x)dnx

=

∫ t

0

dτ

∫
Qnp

∆s
pω(x, τ)φ(x)dnx

=

∫
Qnp
dnx

∫ t

0

∆s
pω(x, τ)φ(x)dτ

= (

∫ t

0

∆s
pω(x, τ)dτ, φ(x)).

20



Hence,

∆s
p

∫ t

0

ω(x, τ)dτ =

∫ t

0

∆s
pω(x, τ)dτ. ]

Theorem 6.2. Denote by Mψ the solution of the homogenous equation (6.2), ϕ, ψ ∈
E(Qn

p ), f(x, t) ∈ E(Qn
p ) uniformly with respect to t ∈ [0, T ], f(x, t) ∈ C[0, T ]. Then the

inhomogeneous equation (6.1) has a solution u(x, t) ∈ E(Qn
p ), uniformly with respect to

t ∈ [0, T ], u(x, t) ∈ C2[0, T ], with

u = Mψ +
∂

∂t
Mϕ(x, t) +

∫ t

0

Mfτ (x, t− τ)dτ.

Proof. A solution of (6.1) is given by

u = u1 + u2 + u3,

where u2 is the solution of (6.2), and u1, u3 are solutions of the following two equations,

respectively.

∂2u
∂t2
− a∆s

pu = 0, x ∈ Qn
p , 0 < t ≤ T,

u(x, 0) = ϕ(x), x ∈ Qn
p ,

ut(x, 0) = 0, x ∈ Qn
p ,

(6.3)

and

∂2u
∂t2
− a∆s

pu = f(x, t), x ∈ Qn
p , 0 < t ≤ T,

u(x, 0) = 0, x ∈ Qn
p ,

ut(x, 0) = 0, x ∈ Qn
p .

(6.4)

Let u1 = ∂
∂t
Mϕ. Then

∂2u1

∂t2
− a∆s

pu1 =
∂

∂t
(
∂2Mϕ

∂t2
− a∆s

pMϕ) = 0,

u1(x, 0) =
∂

∂t
Mϕ(x, t)|t=0 = ϕ(x),

u1t(x, 0) =
∂2

∂t2
Mϕ(x, t)|t=0 = a∆s

pMϕ(x, t)|t=0 = 0.

So u1 = ∂
∂t
Mϕ solves the equation (6.3).

Let fτ = f(x, τ), u3 =
∫ t

0
Mfτ (x, t− τ)dτ . It is easy to check that u3(x, 0) = 0.
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Since f(x, t) ∈ E(Qn
p ) uniformly with respect to t ∈ [0, T ] and f(x, t) ∈ C[0, T ], we

have that ∀t ∈ [0, T ], Mfτ (x, t− τ) ∈ E(Qn
p ) uniformly with respect to τ and is continuous

on τ. Hence, u3(x, t) ∈ E(Qn
p ) uniformly with respect to t. So we have

∂u3

∂t
= Mfτ (x, t− τ)|τ=t +

∫ t

0

∂Mfτ (x, t− τ)

∂t
dτ =

∫ t

0

∂Mfτ (x, t− τ)

∂t
dτ.

Then

u3t(x, 0) =
∂u3

∂t
|t=0 = 0.

Using Lemma 6.1, we get

∂2u3

∂t2
=

∂Mfτ (x, t− τ)

∂t
|τ=t +

∫ t

0

∂2Mfτ (x, t− τ)

∂t2
dτ

= f(x, t) + a

∫ t

0

∆s
pMfτ (x, t− τ)dτ

= f(x, t) + a∆s
pu3.

So u3 =
∫ t

0
Mfτ (x, t− τ)dτ is a solution of (6.4).

Since ϕ, ψ ∈ E(Qn
p ), it is obvious that u1, u2 ∈ E(Qn

p ) uniformly with respect to t.

Hence, u(x, t) ∈ E(Qn
p ) uniformly with respect to t ∈ [0, T ]. ]

Lemma 6.2. If a < 0, s > n, then the fundamental solution E(x, t) is a continuous

function supported in Bn
0 for any 0 < t ≤ T.

Proof. If a < 0, s > n, then for any 0 < t ≤ T,∫
Qnp
|E∧(ξ, t)|dnξ =

∫
Qnp
|
sin(
√
−a(

∑n
j=1〈ξj〉2)

s
2 t)

√
−a(

∑n
j=1〈ξj〉2)

s
2

|dnξ

≤ 1√
−a

∫
Qnp

1

(
∑n

j=1〈ξj〉2)
s
2

dnξ

=
1√
−an s

2

+
1√
−a

+∞∑
r=1

∫
|ξ|=pr

1

(
∑n

j=1〈ξj〉2)
s
2

dnξ

≤ 1√
−an s

2

+
1√
−a

(1− 1

pn
)

+∞∑
r=1

p(n−s)r

< ∞.

So ∀t ∈ (0, T ], E∧(ξ, t) ∈ L1(Qn
p ). Hence E(x, t) is a continuous function supported in

Bn
0 for any 0 < t ≤ T. ]
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Theorem 6.3. If a < 0, s > n, ϕ, ψ ∈ E(Qn
p ), f(x, t) ∈ E(Qn

p ) uniformly with respect

to t ∈ [0, T ], f(x, t) ∈ C[0, T ], then the equation (6.1) has a solution u(x, t) ∈ E(Qn
p )

uniformly with respect to t ∈ [0, T ], u(x, t) ∈ C2[0, T ], with

u(x, t) =

∫
Qnp
E(x−η, t)ψ(η)dnη+

∫
Qnp

∂

∂t
E(x−η, t)ϕ(η)dnη+

∫ t

0

dτ

∫
Qnp
E(x−η, t−τ)f(η, τ)dnη.

Proof. Using Theorem 6.2 and Lemma 6.2, we have

u(x, t) = Mψ +
∂

∂t
Mϕ(x, t) +

∫ t

0

Mfτ (x, t− τ)dτ

= E(x, t) ∗ ψ +
∂

∂t
E(x, t) ∗ ϕ+

∫ t

0

E(·, t) ∗ fτ (x, t− τ)dτ

=

∫
Qnp
E(x− η, t)ψ(η)dnη +

∫
Qnp

∂

∂t
E(x− η, t)ϕ(η)dnη

+

∫ t

0

dτ

∫
Qnp
E(x− η, t− τ)f(η, τ)dnη. ]

7 Cauchy problem for heat equations on Qn
p

In this section, we consider another initial value problem

∂u
∂t
− a∆s

pu = f(x, t), x ∈ Qn
p , 0 < t ≤ T,

u(x, 0) = ϕ(x), x ∈ Qn
p ,

(7.1)

where a 6= 0, s ∈ R, T > 0, the function f and the initial function ϕ are complex valued.

Theorem 7.1. The homogeneous equation

∂u
∂t
− a∆s

pu = 0, x ∈ Qn
p , 0 < t ≤ T,

u(x, 0) = ϕ(x), x ∈ Qn
p ,

(7.2)

has a fundamental solution

F (x, t) = (ea(
∑n
j=1〈ξj〉2)st)∨(x),

where F (x, t) ∈ D′(Qn
p ) has a compact support in Bn

0 , for any t ∈ [0, T ]. Moreover, for

ϕ ∈ D′(Qn
p ) the equation (7.2) has a solution

u(x, t) = F (x, t) ∗ ϕ.
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Proof. Let ϕ = δ, denote by F (x, t) the fundamental solution of (7.2). Applying to

(7.2) the Fourier transform, we get

∂F∧(ξ, t)

∂t
= a(

n∑
j=1

〈ξj〉2)sF∧(ξ, t), F∧(ξ, 0) = 1.

Thus,

F∧(ξ, t) = ea(
∑n
j=1〈ξj〉2)st,

and ∀t ∈ [0, T ], F∧(ξ, t) ∈ E(Qn
p ) assumes constant values on cosets of Bn

0 . So

F (x, t) = (ea(
∑n
j=1〈ξj〉2)st)∨(x),

and ∀t ∈ [0, T ], F (x, t) ∈ D′(Qn
p ) with suppF (x, t) ⊂ Bn

0 .

Hence ∀t ∈ [0, T ], F (x, t) ∗ ϕ(x) exists. Let u(x, t) = F (x, t) ∗ ϕ(x). Then

(
∂

∂t
− a∆s

p)u(x, t) = (
∂

∂t
− a∆s

p)(F (x, t) ∗ ϕ(x))

= ((
∂

∂t
− a∆s

p)F (x, t)) ∗ ϕ(x)

= 0 ∗ ϕ(x) = 0,

and

u(x, 0) = F (x, 0) ∗ ϕ(x) = δ(x) ∗ ϕ(x) = ϕ(x).

Hence, u(x, t) = F (x, t) ∗ ϕ(x) is a solution of (7.2). ]

Theorem 7.2. If we denote by Wϕ the solution of the homogenous equation (7.2), ϕ ∈
E(Qn

p ), f(x, t) ∈ E(Qn
p ) uniformly with respect to t ∈ [0, T ], f(x, t) ∈ C[0, T ], then the

inhomogeneous equation (7.1) has a solution u(x, t) ∈ E(Qn
p ) uniformly with respect to

t ∈ [0, T ], u(x, t) ∈ C1[0, T ], with

u = Wϕ +

∫ t

0

Wfτ (x, t− τ)dτ.

Proof. A solution of (7.1) is given by

u = u1 + u2,

where u1 is the solution of (7.2), and u2 is the solution of the following equation.

∂u
∂t
− a∆s

pu = f(x, t), x ∈ Qn
p , 0 < t ≤ T,

u(x, 0) = 0, x ∈ Qn
p .

(7.3)
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Let fτ = f(x, τ), u2 =
∫ t

0
Wfτ (x, t− τ)dτ . It is easy to get u2(x, 0) = 0.

Since f(x, t) ∈ E(Qn
p ) uniformly with respect to t ∈ [0, T ] and f(x, t) ∈ C[0, T ], we

have ∀t ∈ [0, T ], Wfτ (x, t− τ) ∈ E(Qn
p ) uniformly with respect to τ and is continuous on

τ. Hence, u2(x, t) ∈ E(Qn
p ) uniformly with respect to t. Using Lemma 6.1, we have

∂u2

∂t
= Wfτ (x, t− τ)|τ=t +

∫ t

0

∂Wfτ (x, t− τ)

∂t
dτ

= f(x, t) +

∫ t

0

a∆s
pWfτ (x, t− τ)dτ

= f(x, t) + a∆s
pu2.

So u2 =
∫ t

0
Wfτ (x, t− τ)dτ solves the equation (6.3).

Since ϕ ∈ E(Qn
p ) and suppF (x, t) ∈ Bn

0 , we get that u1(x, t) = F (x, t) ∗ ϕ(x) ∈ E(Qn
p )

uniformly with respect to t. Hence, u(x, t) ∈ E(Qn
p ) uniformly with respect to t ∈ [0, T ]. ]

Lemma 7.1. If a < 0, s > 0, then the fundamental solution F (x, t) is a non-negative

continuous function supported in Bn
0 for any 0 < t ≤ T.

Proof. If a < 0, s > 0, then for any 0 < t ≤ T,∫
Qnp
F∧(ξ, t)dnξ =

∫
Qnp
ea(

∑n
j=1〈ξj〉2)stdnξ

=

∫
Bn0

ean
stdnξ +

∫
Qnp\Bn0

ea(
∑n
j=1〈ξj〉2)stdnξ

= ean
st +

+∞∑
r=1

∫
|ξ|=pr

ea(
∑n
j=1〈ξj〉2)stdnξ

≤ ean
st +

+∞∑
r=1

∫
|ξ|=pr

eap
2rstdnξ

= ean
st + (1− 1

pn
)

+∞∑
r=1

eap
2rstpnr

< ∞.

So ∀t ∈ (0, T ], F∧(ξ, t) ∈ L1(Qn
p ), and hence F (x, t) is a continuous function supported

in Bn
0 for any 0 < t ≤ T. For the non-negative property of F (x, t), one can verify it by a

direct calculation. ]

Theorem 7.3. If a < 0, s > 0, ϕ ∈ E(Qn
p ), f(x, t) ∈ E(Qn

p ) uniformly with respect

to t ∈ [0, T ], f(x, t) ∈ C[0, T ], then the equation (7.1) has a solution u(x, t) ∈ E(Qn
p )
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uniformly with respect to t ∈ [0, T ], u(x, t) ∈ C1[0, T ], with

u(x, t) =

∫
Qnp
F (x− η, t)ϕ(η)dnη +

∫ t

0

dτ

∫
Qnp
F (x− η, t− τ)f(η, τ)dnη.

Proof. From Theorem 7.2 and Lemma 7.2, we have

u(x, t) = Wϕ +

∫ t

0

Wfτ (x, t− τ)dτ

= F (x, t) ∗ ϕ+

∫ t

0

F (·, t) ∗ fτ (x, t− τ)dτ

=

∫
Qnp
F (x− η, t)ϕ(η)dnη +

∫ t

0

dτ

∫
Qnp
F (x− η, t− τ)f(η, τ)dnη. ]
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