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1 Introduction

It is well known that harmonic functions i.e. solutions of the Laplace equation ∆u = 0,

where ∆ =
∑d

i=1
∂2

∂x2
i
, possess the mean value property. Namely, if u is harmonic on a

domain Ω ⊂ Rd, then for every closed ball Br(x) ⊂ Ω of a center x ∈ Ω and radius r > 0

the average of u over Br(x) equals to the value of x, i.e.,

1

|Br(x)|
∫

Br(x)

u(y)dy = u(x),

where |Br(x)| is the volume of the ball Br(x). There is a similar statement for mean

values on spheres. More generally, if u is not assumed harmonic but ∆u is a continuous

function, then

lim
r→0

1

r2
(

1

|Br(x)|
∫

Br(x)

u(y)dy − u(x)) = cn∆u(x) (1.1)

for the appropriate dimensional constant cn.

What are the fractal analogs of these results? The analytic theory on p.c.f. fractals

was developed by Kigami [2, 3, 4] following the work of several probabilists who con-

structed stochastic processes analogous to Brownian motion, thus obtaining a Laplacian
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indirectly as the generator of the process. See the book of Barlow [1] for an account of

this development. Since analysis on fractals has been made possible by the analytic defi-

nition of Laplacian, it is natural to explore the properties of these fractal Laplacians that

are natural analogs of results that are known for the usual Laplacian. As for the fractal

analog of the mean value property, we do not want to specify in advance the nature of

the sets on which we do the averaging. So if K is a fractal and x ∈ K, we would like to

know that there is a sequence of sets Bk(x) containing x with
⋂

k Bk(x) = {x} such that

1

µ(Bk(x))

∫

Bk(x)

u(y)dy = u(x)

for every harmonic function u. Moreover, for general u not assumed harmonic, is there a

formula analogous to (1.1)?

In the present paper, we will mainly deal with the Sierpinski gasket SG. This set is a

key example of fractals on which a well established theory of Laplacian exists [1, 2, 3, 4, 5, 6].

Since the mean value property plays a very important role in the usual theory of harmonic

functions, it is of independent interest to understand the similar property of harmonic

functions on the Sierpinski gasket. We will prove that for each point x ∈ SG \ V0, (V0 is

the boundary of SG.) there is a sequence of mean value neighborhoods Bk(x) depending

only on the location of x in SG. {Bk(x)} forms a system of neighborhoods of the point

x satisfying
⋂

k Bk(x) = {x}. On such sequences, we get the fractal analogs of the mean

value properties of both the harmonic functions and the general functions which belong

to the domain of the fractal Laplacian satisfying some natural continuity assumption. We

also investigate the extent to which our method can be applicable to other p.c.f. self-

similar sets, but it seems that it strongly depends on the symmetric properties of both

the geometric structure and the harmonic structure of the fractals.

The paper is organized as follows: In Section 2 we briefly introduce some key notions

from analysis on the Sierpinski gasket. In Section 3 and Section 4, we prove the mean

value property for harmonic functions and general functions on SG respectively. Section

5 contains a further extension of the mean value property to p.c.f. self-similar fractals

with Dihedral-3 symmetry. An interesting open question is to what extent the results of

Section 4 can be extended to this class of fractals.

2 Analysis on the Sierpinski gasket

For the convenience of the reader, we collect some key facts from analysis on SG that

we need to state and prove our results. These come from Kigami’s theory of analysis
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on fractals, and may be found in [2, 3, 4]. An elementary exposition may be found in

[5, 6]. Recall that SG is the attractor of the ifs (iterated function system) in the plane

consisting of three homotheties {F0, F1, F2} with contraction ratio 1/2 and fixed points

equal to the three vertices {q0, q1, q2} of an equilateral triangle. Then SG is the unique

nonempty compact set satisfying

SG =
2⋃

i=0

Fi(SG). (2.1)

We refer to the sets Fi(SG) as cells of level one, and by iterating (2.1) we obtain the

splitting of SG into cells of higher level. For a word w = (w1, w2, · · · , wm) of length m,

the set Fw(SG) = Fw1 ◦ Fw2 ◦ · · · ◦ Fwm(SG) with wi ∈ {0, 1, 2}, is called a m-cell. The

fractal SG can be realized as the limit of a sequence of graphs Γ0, Γ1, · · · with vertices

V0 ⊆ V1 ⊆ · · · . The initial graph Γ0 is just the complete graph on V0 = {q0, q1, q2}, which

is considered the boundary of SG. See Fig. 2.1. Note that SG is connected, but just

barely: there is a dense set of points J , called junction points, defined by the condition

that x ∈ J if and only if U \ {x} is disconnected for all sufficiently small neighborhoods

U of x. It is easy to see that J consists of all images of {q0, q1, q2} under iterates of the

ifs. The vertices {q0, q1, q2} are not junction points. All other points in SG will be called

generic points. In the SG case, J = V∗ \ V0, where V∗ =
⋃

m Vm. However, it is not true

for general p.c.f. self-similar sets. In all that follows, we assume that SG is equipped with

Fig. 2.1. The first 3 graphs, Γ0,Γ1,Γ2 in the approximation to the Sierpinski gasket.

the probability measure µ that assigns the measure 3−m to each m-cell.

We define the unrenormalized energy of a function u on Γm by

Em(u) =
∑

x∼my

(u(x)− u(y))2.

The energy renormalization factor is r = 3
5
, so the renormalized graph energy on Γm is

Em(u) = r−mEm(u),
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and we can define the fractal energy E(u) = limm→∞ Em(u). We define domE as the space

of continuous functions with finite energy. Then E extends by polarization to a bilinear

form E(u, v) which serves as an inner product in this space.

The standard Laplacian may then be defined using the weak formulation: u ∈ dom∆

with ∆u = f if f is continuous, u ∈ domE , and

E(u, v) = −
∫

fvdµ

for all v ∈ dom0E , where dom0E = {v ∈ E : v|V0 = 0}. There is also a pointwise formula

(which is proven to be equivalent in [6]) which, for points in V∗ \ V0 computes

∆u(x) =
3

2
lim

m→∞
5m∆mu(x),

where ∆m is a discrete Laplacian associated to the graph Γm, defined by

∆mu(x) =
∑

y∼mx

(u(y)− u(x))

for x not on the boundary.

It is not necessary to invoke the measure to define harmonic functions, although it is

true that these are just the solutions of ∆h = 0. The more direct definition is that

h(x) =
1

4

∑
y∼mx

h(y)

for every nonboundary point and every m. This can be viewed as a mean value property of

h at the junction points. The space of harmonic functions is 3-dimensional and the values

at the 3 boundary points may be freely assigned. Moreover, there is a simple efficient

algorithm, the “1
5
− 2

5
rule”, for computing the values of a harmonic function exactly at

all vertex points in terms of the boundary values. The harmonic functions satisfy the

maximum principle, i.e., the maximum and minimum are attained on the boundary and

only on the boundary if the function is not constant. We call a continuous function h a

piecewise harmonic spline of level m if h ◦ Fw is harmonic for all |w| = m.

The Laplacian satisfies the scaling property

∆(u ◦ Fi) =
1

5
(∆u) ◦ Fi

and by iteration

∆(u ◦ Fw) =
1

5m
(∆u) ◦ Fw

4



for Fw = Fw1 ◦ Fw2 ◦ · · · ◦ Fwm .

Although there is no satisfactory analogue of gradient, there is normal derivative

∂nu(qi) defined at boundary points by

∂nu(qi) = lim
m→∞

∑
y∼mqi

r−m(u(qi)− u(y)),

the limit existing for all u ∈ dom∆. The definition may be localized to boundary points

of cells. For each point x ∈ Vm \ V0, there are two cells containing x as a boundary point,

hence two normal derivatives at x. For u ∈ dom∆, the normal derivatives at x satisfy

the matching condition that their sum is zero. The matching conditions allow us to glue

together local solutions to ∆u = f .

As is shown in [2, 3], the Dirichlet problem for the Laplacian can be solved by in-

tegrating against an explicitly given Green’s function. Recall that the Green’s function

G(x, y) is a uniform limit of GM(x, y) as M goes to the infinity, with GM defined by

GM(x, y) =
M∑

m=0

∑

z,z′∈Vm+1\Vm

g(z, z′)ψ(m+1)
z (x)ψ

(m+1)
z′ (y)

and
{

g(z, z) = 9
50

rm for z ∈ Vm+1 \ Vm,

g(z, z′) = 3
50

rm for z, z′ ∈ Vm+1 \ Vm with z, z′ ∈ Fw(SG) for |w| = m, and z 6= z′,

where ψm
z (x) denotes a piecewise harmonic spline of level m satisfying ψ

(m)
z (x) = δzx for

x ∈ Vm.

3 Mean value property of harmonic functions on SG
Lemma 3.1. (a) Let C be any cell with boundary points p0, p1, p2, and h any harmonic

function. Then
1

µ(C)

∫

C

hdµ =
1

3
(h(p0) + h(p1) + h(p2)).

(b) Let p be any junction point, and C1, C2 the two m-cells containing p. Then

1

µ(C1 ∪ C2)

∫

C1∪C2

hdµ = h(p).
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Proof. (a) follows by symmetry. (b) follows by combining (a) for C = C1 and C = C2

with the mean value property of h at p. 2

Note that (b) gives a trivial solution to the problem of finding mean value neighbor-

hoods for junction points.

Fig. 3.1. Cw and its three neighboring cells.

Given a point x in SG \ V0, consider any cell Fw(SG) = Cw containing the point x,

with boundary points Fwqi = pi. Choose the cell Cw small enough, such that it does not

intersect V0. Then it must have three neighboring cells C0, C1 and C2 of the same level

with Ci intersecting Cw at pi. Denote by Dw the union of Cw and its three neighbors. See

Fig. 3.1. In this section, we will describe a method to find a subset B of Dw, containing

Cw, such that for any harmonic function h, the mean value of h over B is equal to it’s

value at x, i.e., MB(h) = h(x) where MB(h) is defined by

MB(h) =
1

µ(B)

∫

B

hdµ.

Then we call the set B a k level mean value neighborhood of x associated to Cw where k

is the length of w. Let k0 be the smallest value of k such that there exists a k level cell

Cw containing x but not intersecting V0. (k0 depends on the location of x in SG.) Then

we can find a sequence of words w(k) of length k (k ≥ k0) and a sequence of mean value

neighborhoods Bk(x) associated to Cw(k) . Obviously, {Bk(x)}k≥k0 will form a system of

neighborhoods of the point x satisfying
⋂

k≥k0
Bk(x) = {x}.

Let h be a harmonic function on SG. The harmonic extension algorithm implies that

there exist coefficients {ai(x)} depending only on the relative position of x and Cw such

that

h(x) =
∑

i

ai(x)h(pi).
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Moreover, since constants are harmonic we must have

∑
i

ai(x) = 1

and by the maximum principle all ai(x) ≥ 0. Let W denote the triangle in R3 with

boundary points (1, 0, 0), (0, 1, 0) and (0, 0, 1) and πW the plane containing W . See Fig.

3.2. So {ai(x)} ∈ W for any x ∈ Cw. Of course, not every point in W occurs in this way.

Fig. 3.2. The triangle W with 3 boundary points P0, P1, P2.

On the other hand, given a set B such that Cw ⊂ B ⊂ Dw, by linearity we have

MB(h) =
∑

i

aih(pi)

for some coefficients (a0, a1, a2) depending only on the relative geometry of B and Cw.

Again we must have
∑

ai = 1 by considering h ≡ 1. So (a0, a1, a2) ∈ πW . (Later we will

show that (a0, a1, a2) does not have to belong to W for some sets B.) Thus we have a

map, denoted by T from the collection of B’s to πW . If we can show that the image of

the map T covers the triangle W for some reasonable class of sets B, then we can get a

set B over which the mean value property holds for all harmonic functions. Moreover, if

we can prove T is one-to-one, then we get a mean value neighborhood B of x associated

to Cw, that is unique within the collection of sets we are considering.

This is the basic idea of our method. Hence the remaining task in this section is to

find a suitable class of sets B on which T is one-to-one and such that the image of the

map T covers the triangle W . Comparing with the usual mean value neighborhoods,

(they are just balls in Euclidean case) it is reasonable to require B to be as simple as

possible. They should be connected, possess some symmetry properties, depend only on
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the relative geometry of x and Cw, and be independent of the level of Cw and the location

of Cw.

Consider a set B containing Cw and contained in Dw. B must be made up of four

parts, i.e.,

B = Cw ∪ E0 ∪ E1 ∪ E2

where Ei = B ∩ Ci. Suppose the height of Cw is ρ. Due to the above consideration, we

restrict each Ei to be a triangle obtained by cutting Ci symmetrically with a line at any

height ciρ below the top vertex pi with 0 ≤ ci ≤ 1. Write the set B = B(c0, c1, c2). See

Fig. 3.3. for a sketch of B. For example, B(0, 0, 0) = Cw and B(1, 1, 1) = Dw. Denote by

B = {B(c0, c1, c2) : 0 ≤ ci ≤ 1}

the family of all such sets.

Fig. 3.3. The relative geometry of B and Cw.

Then on B the map T described above can be viewed as a nonlinear vector valued

function from [0, 1]3 to πW . For simplicity, we may write T (c0, c1, c2) = (a0, a1, a2) for each

set B(c0, c1, c2). The following lemma shows that the value T (c0, c1, c2) is independent

of the particular choice of Cw, which benefits from the symmetric properties of the set

B(c0, c1, c2).

Lemma 3.2. T (c0, c1, c2) is independent of the particular choice of Cw.

Proof. Let h be a harmonic function. First we consider the integral
∫

Ei
hdµ. Denote

by {si, ti, pi} the boundary points of Ci. By linearity, 1
µ(Cw)

∫
Ei

hdµ can be expressed as

a non-negative linear combination of {h(si), h(ti), h(pi)}, which by symmetry must have

the form ∫

Ei

hdµ = (mih(pi) + ni(h(si) + h(ti)))µ(Cw), (3.1)
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for some appropriate non-negative coefficients mi, ni. Notice that in (3.1), the coefficients

mi, ni are independent of the location of Ci in SG. Actually, they only depend on the

relative position of Ei in Ci, i.e., mi, ni depend only on ci. Using the mean value property

at pi, namely

4h(pi) = h(pi−1) + h(pi+1) + h(si) + h(ti),

we obtain
∫

Ei

hdµ = (mih(pi) + ni(4h(pi)− h(pi−1)− h(pi+1)))µ(Cw)

= ((4ni + mi)h(pi)− ni(h(pi−1) + h(pi+1)))µ(Cw).

Notice that the ratio of µ(Ei) to µ(Ci) also depends only on ci. Combined with Lemma

3.1(a), we see that (a0, a1, a2) = T (c0, c1, c2) is independent of the particular choice of Cw,

depending only on (c0, c1, c2).2

We will show the image of the map T covers the triangle W . More precisely, T (c0, c1, c2)

will fill out a set W̃ which is a bit larger than W . Denote by P0 = (1, 0, 0), P1 = (0, 1, 0)

and P2 = (0, 0, 1) the three boundary points of the triangle W in R3 and by O the center

point of W .

Fig. 3.4. a 1/6 region of W̃ surrounded by OQ0, OP2 and P̂2Q0.

Lemma 3.3. T (0, 0, 1) = P2 and T (0, 1, 1) = Q0 where Q0 = {−1
9
, 5

9
, 5

9
} is a point in

πW located outside of W .

Proof. This follows by a direct computation. We omit it. 2

Lemma 3.4. T ({(0, c, 1) : 0 ≤ c ≤ 1}) is a continuous curve lying outside of W ,

joining P2 and Q0. (See Fig. 3.4.)

Proof. From Lemma 3.3, by varying c continuously between 0 and 1 we trace a

continuous curve P̂2Q0 joining P2 and Q0. So we only need to prove the curve P̂2Q0 lies
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outside of W . To prove this, we consider the set B = B(0, c, 1) for 0 ≤ c ≤ 1. In this case

B = Cw ∪ E1 ∪ C2.

Given a harmonic function h, by the proof of Lemma 3.2, we have
∫

E1

hdµ = ((4n1 + m1)h(p1)− n1(h(p0) + h(p2)))µ(Cw),

for some appropriate non-negative coefficients m1, n1 depending only on c.

On the other hand, we have
∫

Cw∪C2

hdµ = 2h(p2)µ(Cw),

by Lemma 3.1(b).

Hence
∫

B

hdµ =

∫

E1

hdµ +

∫

Cw∪C2

hdµ

= (−n1h(p0) + (4n1 + m1)h(p1) + (2− n1)h(p2))µ(Cw).

The coefficient of h(p0) is always less than 0. Moreover, it equals to 0 if and only if

E1 = ∅ (c=0). Hence T (0, c, 1) will always lie on the outside of the triangle W as c varies

between 0 and 1. 2

Now we come to the main result of this section.

Theorem 3.1. The map T from B to πW fills out a region W̃ which contains the

triangle W .

Proof. We only need to prove the map T from B to πW fills out a 1/6 region surrounded

by the line segments OQ0, OP2 and the curve P̂2Q0 as shown in Fig. 3.4. Then we will

get the desired result by exploiting the symmetry.

Consider a subfamily B1 = {B(0, 0, c) : 0 ≤ c ≤ 1} of B. If we restrict the map T
to B1, by varying c continuously between 0 and 1 we trace a curve (it is a line segment,

which follows from the symmetry of E2) in W joining the center O and the vertex point

P2.

Consider another subfamily B2 = {B(0, c, c) : 0 ≤ c ≤ 1} of B. If we restrict the map

T to B2, by varying c continuously between 0 and 1 we trace a curve (it is also a line

segment, which follows from the symmetric effect of E1 and E2) in W joining the center

O and the point Q0 across the boundary line P1P2 with Q0 located outside of W , where

Q0 is the point defined in Lemma 3.3.
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Fix a number 0 ≤ y ≤ 1. Consider a subfamily Cy = {B(0, c, y) : 0 ≤ c ≤ y} of B. If

we restrict the map T to Cy, by varying c continuously between 0 and y we trace a curve

Γy joining the two points T (0, 0, y) and T (0, y, y). The first endpoint T (0, 0, y) lies on

the line segment OP2 and the second endpoint T (0, y, y) lies on the line segment OQ0.

(See Fig. 3.4. for Γy.) When y = 0, the curve Γ0 draws back to the single center point

O. When y = 1, by Lemma 3.4, the curve Γ1 is a continuous curve located outside of

the triangle W . Moreover, P2 is the only common points of Γ1 and W . Hence if we vary

y continuously between 0 and 1, we can fill out the 1/6 region surrounded by the line

segments OQ0, OP2 and the curve P̂2Q0. 2

Remark. In the proof of the above theorem, we actually only consider those sets B

in B which are contained in the union of Cw and subsets of only two neighbors. See Fig.

3.5. Of course, the map T restricted to this subfamily is one-to-one, which can be easily

seen from the proof. Hence instead of B, the map T is one-to-one from B∗ onto W̃ , where

B∗ = {B(0, c1, c2) : 0 ≤ ci ≤ 1} ∪ {B(c0, 0, c2) : 0 ≤ ci ≤ 1} ∪ {B(c0, c1, 0) : 0 ≤ ci ≤ 1}.

Fig. 3.5. The 3 shapes of B ∈ B∗ associated to Cw shown in Fig. 3.1.

Based on the discussion in the beginning of this section, we then have

Theorem 3.2. For each point x ∈ SG \ V0, there exists a system of mean value

neighborhoods Bk(x) with
⋂

k Bk(x) = {x}.

4 Mean value property of general functions on SG
In this section, we extend the mean value property to more general functions on SG.

Given a point x in SG \V0 and a cell Cw containing x, for each mean value neighborhood
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B of x associated to Cw, we assign a constant cB to B. We want

MB(u)− u(x) ≈ cB∆u(x)

for u in dom∆. More precisely, let {Bk(x)}k≥k0 be the system of mean value neighborhoods

of the point x; we want

lim
k→∞

1

cBk(x)

(MBk(x) − u(x)) = ∆u(x) (4.1)

for appropriate functions in the domain of ∆, which is the desired fractal analog of (1.1).

For this purpose, let v be a function on SG satisfying ∆v ≡ 1. For each point x in

SG \ V0, and each mean value neighborhood B of x, define cB by

cB = MB(v)− v(x).

Note that the result is independent of which v, because any two such functions differ by

a harmonic function and the equality MB(h) − h(x) = 0 always holds for any harmonic

function h. So we can choose

v(x) = −
∫

G(x, y)dµ(y),

which vanishes on the boundary of SG. Here G is the Green’s function.

We will prove that cB depends only on the relative geometry of B and Cw and the size

of Cw, not on the location of x or Cw in SG. More precisely, we will prove:

Theorem 4.1. Let x ∈ SG \ V0 and B be a k level mean value neighborhood of x.

Then

c0
1

5k
≤ cB ≤ c1

1

5k

for some constant c0, c1 which are independent of x.

On the other hand, given a point x and Cw a k level neighborhood of x, for any

u ∈ dom∆2, we write

u = h(k) + (∆u(x))v + R(k)

on Cw, where h(k) is a harmonic function defined by

h(k) + (∆u(x))v|∂Cw = u|∂Cw .

It is not hard to prove the following estimate:

Lemma 4.1. The remainder R(k) satisfies

R(k) = O((
3

5
· 1

5
)k)
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on Cw(hence also on Bk(x)).

This looks like a Taylor expansion remainder estimate of u at x. See more details on

this topic in [7].

Proof of Lemma 4.1.

It is easy to check that ∆yR
(k)(y) = ∆yu(y) − ∆yu(x) and R(k)(y) vanishes on the

boundary of Cw. Hence R(k) is given by the integral of ∆yu(y)−∆yu(x) on Cw against a

scaled Green’s function. Since the scaling factor is (1
5
)k, and

|∆yu(y)−∆yu(x)| ≤ c(3/5)k

(∆u satisfies a Holder condition with γ = 3
5
), we get the desired result. 2

A more general version of Lemma 4.1 is the following:

Lemma 4.1.’ Let u ∈ dom∆ with g = ∆u satisfying the following Holder condition

|g(y)− g(x)| ≤ cγk, (0 < γ < 1)

for all y ∈ Cw. Then the remainder satisfies

R(k) = O((
γ

5
)k)

on Cw(hence also on Bk(x)).

Using the Taylor expansion of u at x and Theorem 4.1, we have

1

cBk(x)

(MBk(x)(u)− u(x))−∆u(x)

=
1

cBk(x)

(MBk(x)(R
(k))−R(k)(x))

=
1

cBk(x)

O((
γ

5
)k) = O(γk).

Hence we get (4.1) by letting k go to infinity.

Thus Theorem 4.1 implies the following result:

Theorem 4.2. Let u ∈ dom∆ with g = ∆u satisfying the Holder condition |g(y) −
g(x)| ≤ cγk for some γ with 0 < γ < 1, for all x, y belonging to the same k level cell.

Then

lim
k→∞

1

cBk(x)

(MBk(x)(u)− u(x)) = ∆u(x).

To prove Theorem 4.1, we need the explicit expression for the function v. Recall from

Section 2 that v(x) is the uniform limit of vM(x) for

vM(x) = −
∫

GM(x, y)dµ(y).
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Interchanging the integral and summation,

vM(x) = −
M∑

m=0

∑

z,z′∈Vm+1\Vm

g(z, z′)
∫

ψ
(m+1)
z′ (y)dµ(y)ψ(m+1)

z (x).

Since an easy computation shows that for each z ∈ Vm+1 \ Vm,
∫

ψ
(m+1)
z (y)dµ(y) = 2

3m+2 ,

we find

vM(x) = −2

9

M∑
m=0

1

3m

∑

z,z′∈Vm+1\Vm

g(z, z′)ψ(m+1)
z (x).

Substituting the exact value of g(z, z′) into it, we get

vM(x) = −2

9

M∑
m=0

1

3m

∑

z∈Vm+1\Vm

(
9

50
rm + 2

3

50
rm)ψ(m+1)

z (x)

= − 1

15

M∑
m=0

1

5m
φm(x)

for

φm(x) =
∑

z∈Vm+1\Vm

ψ(m+1)
z (x).

Thus

v(x) = − 1

15

∞∑
m=0

1

5m
φm(x).

Remark. The function v is invariant under Dihedral-3 symmetry.

This is a direct corollary of the fact that each φm(x) is invariant under D3 symmetry.

Due to the above remark, we may assume that Dw associated to Cw has a fixed shape

as shown in Fig. 3.1 without loss of generality. We now show that cB depends only on

the relative geometry of B and Cw and the size of Cw, not on the location of x or Cw in

SG.

Lemma 4.2. Let x, x′ be two distinct points in SG \ V0. Let Cw and Cw′ be two k

and k′ level neighboring cells of x and x′ respectively. Denote by B and B′ two mean

value neighborhoods of x and x′ respectively. If B and B′ have the same shapes (the same

relative locations associated to Cw and Cw′ respectively), then

cB = 5k′−kcB′ .

In particular, if B and B′ have the same levels and same shapes, then cB = cB′.
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Proof. Dw can be decomposed into a union of a k level cell D
(1)
w and a (k − 1) level

cell D
(2)
w as shown in Fig. 3.1. Denote by q the junction point connecting D

(1)
w and D

(2)
w .

Similarly, Dw′ can also be written as a union of a k′ cell D
(1)
w′ and a (k′− 1) cell D

(2)
w′ with

a junction point q′ connecting them.

Let τ be the linear function mapping Dw onto Dw′ . Suppose D
(1)
w = Fα(SG) and

D
(2)
w = Fβ(SG) where α and β are the corresponding words of D

(1)
w and D

(2)
w respectively.

Similarly, denote by α′ and β′ the corresponding words of D
(1)
w′ and D

(2)
w′ . Hence we can

write τ as τ(z) = Fα′ ◦ F−1
α (z) if z ∈ D

(1)
w , and τ(z) = Fβ′ ◦ F−1

β (z) if z ∈ D
(2)
w . In

particular, τ(q) = q′ and τ(x) = x′.

Consider the function (v ◦ Fα − 5k′−kv ◦ Fα′) defined on SG. Noting that |α| = k and

|α′| = k′, we have

∆(v ◦ Fα − 5k′−kv ◦ Fα′) = r|α|µα∆v ◦ Fα − 5k′−kr|α
′|µα′∆v ◦ Fα′ = 0,

which shows that the difference between v ◦ Fα and 5k′−kv ◦ Fα′ is a harmonic function.

Hence the difference between v and 5k′−kv ◦ τ on D
(1)
w is harmonic. A similar discussion

will show that the difference between v and 5k′−kv ◦ τ on D
(2)
w is also harmonic. Since the

matching condition on normal derivatives of (v− 5k′−kv ◦ τ) at q holds obviously, we have

proved that ∆(v − 5k′−kv ◦ τ) = 0 on Dw, i.e., the function (v − 5k′−kv ◦ τ) is harmonic

on Dw.

By the definition cB = MB(v) − v(x) and cB′ = MB′(v) − v(x′). Notice that for the

second equality, by changing variables we can write cB′ = MB(v ◦ τ)− v ◦ τ(x). Hence

cB − 5k′−kcB′ = MB(v − 5k′−kv ◦ τ)− (v − 5k′−kv ◦ τ)(x) = 0,

since (v − 5k′−kv ◦ τ) is a harmonic function on Dw. 2

Proof of Theorem 4.1.

Estimate of cB from above.

From Lemma 4.2, since cB depends only on the relative geometry of B and Cw and

the size of Cw, but not on the location of Cw, we may assume that Dw is contained in a

(k − 2) level cell C in SG without loss of generality.

By the definition of cB, we may write

cB = MB(v)− v(x) = lim
M→∞

(
1

µ(B)

∫

B

vMdµ− vM(x)).

Substituting the exact formula of vM into it, we get

cB = − 1

15

∞∑
m=0

1

5m
(MB(φm)− φm(x)),
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for

φm =
∑

z∈Vm+1\Vm

ψ(m+1)
z .

Notice that each φm is a piecewise harmonic spline of level m+1. So when m+1 ≤ k−2,

φm is harmonic in the cell C, which yields that MB(φm)− φm(x) = 0. So the first k − 2

terms in the infinite series of v will contribute 0 to cB. Hence

cB = − 1

15

∞∑

m=k−2

1

5m
(MB(φm)− φm(x)).

It is easy to see that this implies

|cB| ≤ 1

15

∞∑

m=k−2

1

5m

1

µ(B)

∫

B

|φm(y)− φm(x)|dµ(y).

Then by the maximum principle, we finally get

|cB| ≤ 1

15

∞∑

m=k−2

1

5m
=

25

12
· 1

5k
.

Estimate of cB from below.

Fig. 4.1. a 1/3 region of Cw.

Without loss of generality, we assume that x is located in the 1/3 region of Cw as

shown in Fig. 4.1, i.e., x is contained in the triangle Tp1,p2,o, where o is the geometric

center of Cw. Then by the proof of Theorem 3.1, B is a subset of the union of Cw and two

of its neighbors C1 and C2. Hence we can write B = Cw ∪ E1 ∪ E2, where Ei = B ∩ Ci.

Claim 1. Let B̃ = F0(SG)∪Ẽ1∪Ẽ2, where Ẽi is a triangle obtained by cutting Fi(SG)

symmetrically with a line below the top vertex Fiq0.(see Fig. 4.2.) If B̃ and B have the

same shapes, then

cB = 51−kcB̃.
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Fig. 4.2. a sketch of B̃.

This is a direct corollary of Lemma 4.2.

We only need to prove that cB̃ for B̃ defined in Claim 1 has a positive lower bound.

For simplicity of notation, in all that follows, we write B instead of B̃. In other words,

we only need to consider B whose associate cell Cw is F0(SG). In this setting, pi = F0qi,

C1 = F1(SG) and C2 = F2(SG).

We write v = − 1
15

ṽ where ṽ is the non-negative function defined by

ṽ(y) =
∞∑

m=0

1

5m
φm(y).

We have the following two claims on ṽ.

Claim 2. For each x contained in the triangle Tp1,p2,o, ṽ(x) ≥ 24
25

.

Proof. Denote by

ṽM(y) =
M∑

m=0

1

5m
φm(y)

the partial sum of the first M + 1 terms of ṽ. A direct computation shows that

ṽ(Fuq0) = ṽ2(Fuq0) =
24

25
,

and

ṽ(Fuq1) = ṽ2(Fuq1) = ṽ(Fuq2) = ṽ2(Fuq2) = 1,
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for u = (0, 1, 1), (0, 1, 2), (0, 2, 1) and (0, 2, 2). (In fact, ṽ takes the constant value 1 along

the line segment joining p1 and p2.) Notice that for each point x in the triangle Tp1,p2,o,

x is contained in one of the four 3 level cells F011(SG), F012(SG), F021(SG) and F022(SG).

Since ṽ2 is harmonic in each such cell, by using the maximal principle, we get that

ṽ2(x) ≥ 24

25
.

Hence ṽ(x) ≥ 24
25

since each term in the infinite series of ṽ is non-negative. 2

Claim 3. MB(ṽ) ≤ 17
18

.

Proof. First of all, we prove that
∫

F0(SG)

ṽ(y)dµ(y) =
5

18
.

We need to compute
∫

F0(SG)
φm(y)dµ(y) for each non-negative integer m. When m = 0,

∫

F0(SG)

φm(y)dµ(y) =

∫

F0(SG)

φ0(y)dµ(y) = 2 · 1

3
· 1

3
=

2

9
.

When m ≥ 1, also an easy computation shows that
∫

F0(SG)

φm(y)dµ(y) = 3m · 2

3
· 1

3m+1
=

2

9
.

Hence ∫

F0(SG)

ṽ(y)dµ(y) =
2

9

∞∑
m=0

1

5m
=

5

18
.

By our assumption, the mean value neighborhood B can be written as

B = F0(SG) ∪ E1 ∪ E2,

where Ei = B ∩ Ci. Hence we have

MB(ṽ) =
1

µ(F0(SG)) + µ(E1) + µ(E2)
(

∫

F0(SG)

ṽ(y)dµ(y) +

∫

E1

ṽ(y)dµ(y) +

∫

E2

ṽ(y)dµ(y))

≤ 1

µ(F0(SG)) + µ(E1) + µ(E2)
(

∫

F0(SG)

ṽ(y)dµ(y) +

∫

E1

1 · dµ(y) +

∫

E2

1 · dµ(y))

=
5/18 + µ(E1) + µ(E2)

1/3 + µ(E1) + µ(E2)
.

Since 0 ≤ µ(E1) + µ(E2) ≤ 2
3
, an easy calculation shows that

5/18 + µ(E1) + µ(E2)

1/3 + µ(E1) + µ(E2)
≤ 5/18 + 2/3

1/3 + 2/3
=

17

18
.

18



Hence we always have

MB(ṽ) ≤ 17

18
. 2

Now we turn to estimate cB. Obviously,

cB = MB(v)− v(x) = − 1

15
(MB(ṽ)− ṽ(x)).

By Claim 2 and Claim 3, we notice that MB(ṽ)− ṽ(x) ≤ 17
18
− 24

25
= − 7

450
. Hence

cB ≥ 1

15
· 7

450
> 0. 2

5 p.c.f. fractals with Dihedral-3 symmetry

The results for SG should extend to other p.c.f. fractals which possess symmetric prop-

erties of both the geometric structure and the harmonic structure. We assume that a

regular harmonic structure is given on a p.c.f. self-similar fractal K. The reader is re-

ferred to [3, 6] for exact definitions and any unexplained notations. We assume now that

]V0 = 3 and all structures possess full D3 symmetry. This means there exists a group

G of homeomorphisms of K isomorphic to D3 that acts as permutations on V0, and G
preserves the self-similar and harmonic structures and the self-similar measure. We must

have r0 = r1 = r2 and µ0 = µ1 = µ2, but in general it is not necessary that all r’s and all

µ’s be the same.

We begin by assuming that the fractal K is the invariant set of a finite iterated function

system of contractive similarities. We denote these maps {Fi}i=1,··· ,N with N ≥ 3. We

denote V0 = {q0, q1, q2} the set of boundary points.

Examples. (i) The Sierpinski gasket SG. In this case all ri = 3/5 and all µi = 1/3.

(ii) The hexagasket, or fractal Star of David, can be generated by 6 maps with simul-

taneously rotate and contract by a factor of 1/3 in the plane. Thus V0 consists of 3 points

of an equilateral triangle, and V1 consists of the vertices of the Star of David, as shown in

Fig. 5.1. Although the same geometric fractal can be constructed by using contractions

which do not rotate, this gives rise to a different self-similar structure (in particular with

]V0 = 6). Our choice of self-similar structure destroys the D6 symmetry of the geometric

fractal, but it has the advantage of easier computation. In this case, all ri = 3/7 and all

µi = 1/6. Note that in this example there exist points in V1 that are not junction points.

(iii) The level 3 Sierpinski gasket SG3, obtained by taking 6 contractions of ratio 1/3

as shown in Fig. 5.2. Here we have all ri = 7/15 and µi = 1/6. Note that all seven
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Fig. 5.1. The first 2 graphs, Γ0,Γ1 in the approximation to the hexagasket.

vertices in V1 \ V0 are junction points, but the one in the middle intersects three 1-cells.

In a similar manner we could define SGn for any value of n ≥ 2.

Fig. 5.2. The graph of the V1 vertices of the level 3 Sierpinski gasket.

We prove that there are results analogous to Theorem 3.1, which yield the existence

of mean value neighborhoods associated to K.

Given a point x in K \V0, consider any cell FwK = Cw with boundary points p0, p1, p2

containing the point x. Without losing of generality, we may require that the cell Cw

does not intersect V0. For each i, denote by Ci,1, · · · , Ci,li the neighboring cells of Cw of

the same size, intersecting Cw at pi, where li is the number of such cells. It is possible

that li = 0 for some i since pi may be a non-junction point. If this is true, the matching

condition says that the normal derivative of any harmonic function h must be zero at this

point, which yields that the value of h at this point is the mean value of the values of

h at the other two boundary points of Cw. In other words, the restriction of all global
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harmonic functions in Cw is two dimensional. Denote by Dw the union of Cw and all its

neighboring cells, i.e.,

Dw = Cw ∪
⋃
i,j

Ci,j.

Two cells Cw and Cw′ are said to have the same neighborhood type if they have the same

relative geometry with respect to Dw and Dw′ respectively. It is obvious that there only

exist finitely many distinct types. For example, for SG, all cells have exactly only one

neighborhood type. For SG3, the number of the finite types is 3. For SGn(n ≥ 4), the

number of the finite types becomes 4. For the hexagasket gasket, the number of the finite

types is 2.

Let h be a harmonic function on K. Given a set B containing Cw, define

MB(h) =
1

µ(B)

∫

B

hdµ

the mean value of h over B. We are interested in an identity

MB(h) =
∑

i

aih(pi) (5.1)

for some coefficients (a0, a1, a2) satisfying
∑

ai = 1. Notice that this is true for SG. In

that setting, a harmonic function is uniquely determined by its values on the boundary of

any given cell Cw because the harmonic extension matrix associated with Cw is invertible.

However, in general case, the harmonic extension matrices may not be invertible. So we

can not prove (5.1) for every set B simply by linearity. However, it will suffice to show

that the equality (5.1) holds for certain specified sets B.

Consider a set B which is a subset of Dw, containing Cw. B must be made up of four

parts, i.e.,

B = Cw ∪ E0 ∪ E1 ∪ E2

where Ei = B ∩ Ci with Ci = ∪li
j=1Ci,j. It is possible that Ci may be empty since pi

may be a nonjunction point. We can also subdivide each Ei into li small pieces, i.e.,

Ei = ∪jEi,j for Ei,j = Ei ∩ Ci,j. For each i, we require that Ei,1, · · · , Ei,li be of the

same size and shape. Moreover, in analogy with the SG case, we require that each Ei,j to

be a symmetric (under the reflection symmetry that fixes pi) cutoff sub-triangle of Ci,j,

containing pi as one of its vertex points. This means that there is a straight line Li,j,

symmetric under the reflection symmetry fixing pi, cutting Ci,j into two parts, and Ei,j

is the one containing pi. For each Ei,j, define the distance between pi and the line Li,j

the height of Ei,j. Of course, for each fixed i, Ei,1, · · · , Ei,li have the same heights. We
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call the common value the height of Ei. Suppose the height of every Ci,j is ρ. (Of course,

they all equal.) Then for each i, the height of Ei is ciρ where the coefficient 0 ≤ ci ≤ 1.

Hence we can write the set B = B(c0, c1, c2). (If pi is a nonjunction point, then ci should

always be 0.) For example, suppose that the boundary points of Cw consist of junction

points, then B(0, 0, 0) = Cw and B(1, 1, 1) = Dw. Denote by

B = {B(c0, c1, c2) : 0 ≤ ci ≤ 1}

the family of all such sets. Then we can show that the formula (5.1) holds for each B ∈ B.

Proposition 5.1. Let B ∈ B, then for any harmonic function h, we have (5.1) for

some coefficients (a0, a1, a2) independent of h. Moreover,
∑

i ai = 1.

Proof. Each B ∈ B can be written as B = Cw ∪ E0 ∪ E1 ∪ E2. Given a harmonic

function h on K, for fixed i, we first consider the integral
∫

Ei
hdµ. Obviously,

∫

Ei

hdµ =
∑

j

∫

Ei,j

hdµ.

For each 1 ≤ j ≤ li, denote by {zi,j, wi,j, pi} the boundary points of Ci,j. Since each Ei,j is

contained in Ci,j,
1

µ(Cw)

∫
Ei,j

hdµ can be expressed as a linear combination of h(pi), h(zi,j)

and h(wi,j) with non-negative coefficients independent of the harmonic function h. Since

the set Ei,j is symmetric under the reflection symmetry fixing pi, the two coefficients with

respect to h(zi,j) and h(wi,j) must be equal. In other words, we can write
∫

Ei,j

hdµ = (mi,jh(pi) + ni,jh(zi,j) + ni,jh(wi,j))µ(Cw)

for mi,j, ni,j ≥ 0. Moreover, since for each fixed i, Ei,j are in the same relative position

associated to Ci,j for different j’s,
∫

Ei,j
hdµ can be expressed as a linear combination of

h(pi), h(zi,j), h(wi,j) with the same coefficients for different j’s. Hence we can write
∫

Ei

hdµ = (mih(pi) + ni

∑
j

(h(zi,j) + h(wi,j)))µ(Cw),

for suitable coefficients mi, ni ≥ 0. The mean value property at the point pi says that

∑
j

(h(zi,j) + h(wi,j)) = (2li + 2)h(pi)− (h(pi−1) + h(pi+1)).

Combining the above two equalities, we get
∫

Ei

hdµ = ((mi + 2lini + 2ni)h(pi)− nih(pi−1)− nih(pi+1))µ(Cw).
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On the other hand, by the linearities and symmetries of both the harmonic structure

and the self-similar measure,
∫

Cw

hdµ =
µ(Cw)

3
(h(p0) + h(p1) + h(p2)).

Since the ratio of µ(Ei,j) to µ(Cw) depends only on ci, we have proved that MB(h)

can be viewed as a linear combination of the values of h on the boundary points of Cw,

i.e.,

MB(h) =
∑

i

aih(pi),

where the combination coefficients are independent of h. Moreover, we must have
∑

ai = 1

by considering h ≡ 1. 2

Remark 1. This means that MB(h) is a weighted average of the values h(p0), h(p1)

and h(p2). Moreover, if one of the boundary points, for example p2, is a nonjunction

point, then by the fact that h(p2) = 1
2
(h(p0) + h(p1)), we have

MB(h) = a0h(p0) + a1h(p1) +
1

2
a2(h(p0) + h(p1)) = ã0h(p0) + ã1h(p1)

for ã0 = a0 + 1
2
a2 and ã1 = a1 + 1

2
a2. We also have ã0 + ã1 = 1. Hence in this case, we

can also view MB(h) as a weighted average of the values of h(p0) and h(p1).

Remark 2. The proof of Proposition 5.1 shows that (a0, a1, a2) depends only on the

neighborhood type of Cw and the relative position of B associated to Cw, and does not

depend on the particular choice of Cw. In other words, if we consider a cell Cw with a

given neighborhood type, then for each set B ∈ B with the expression B = B(c0, c1, c2),

the coefficients (a0, a1, a2) of B depend only on (c0, c1, c2).

To prove the desired result of this section, we classify the distinct neighborhood types

into three cases according to the number of nonjunction points in the set of boundary

points of Cw.

Case 1. All boundary points of Cw are junction points.

This case is similar to what we have described in the SG setting. Let W denote the

triangle in R3 with boundary points P0 = (1, 0, 0), P1 = (0, 1, 0) and P2 = (0, 0, 1) and

πW the plane containing W . Notice that from Proposition 5.1, (a0, a1, a2) ∈ πW for each

B. We use T to denote the map from B to πW . From Remark 2 of Proposition 5.1, the

map T is unique determined by the neighborhood type of Cw. Let B∗ be a subfamily

contained in B defined by

B∗ = {B(0, c1, c2) : 0 ≤ ci ≤ 1} ∪ {B(c0, 0, c2) : 0 ≤ ci ≤ 1} ∪ {B(c0, c1, 0) : 0 ≤ ci ≤ 1},
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i.e., those elements B in B which have the decomposition form B = Cw ∪ E1 ∪ E2 or

B = Cw ∪ E0 ∪ E2, or B = Cw ∪ E0 ∪ E1. Then we have

Claim 1. The map T from B to πW fills out a region W̃ which contains the triangle

W . Moreover, T is one-to-one from B∗ onto W̃ .

Proof. The proof is similar to the SG case. The only difference is the line segments

OQ0 and OP2 described in the proof of Theorem 3.1 may become continuous curves ÔQ0

and OP2 in the general setting. 2

Case 2. There is one nonjunction point (for example, p2) among the bound-

ary points of Cw.

In this case, there is no neighboring cell intersecting Cw at the point p2. Hence E2 will

always be empty. So B = {B(c0, c1, 0) : 0 ≤ ci ≤ 1} for this case.

As shown in Remark 1 of Proposition 5.1, for any harmonic function h on K, B ∈ B,

MB(h) is a weighted average of h(p0) and h(p1), i.e.,

MB(h) = a0h(p0) + a1h(p1)

with a0, a1 independent of h, satisfying a0 + a1 = 1. Let I denote the line segment in

R2 with endpoints P0 = (1, 0), P1 = (0, 1) and ρI the line containing I. Notice that from

Remark 1 of Proposition 5.1, (a0, a1) ∈ ρI for each B. We still use T to denote the map

from B to ρI . From Remark 2 of Proposition 5.1, the map T is unique determined by the

neighborhood type of Cw. For simplicity, we may write T (c0, c1) = (a0, a1) for each set

B(c0, c1, 0). We will show the image of the map T covers the line segment I. Similar to

Case 1, let B∗ be a subfamily contained in B defined by

B∗ = {B(c0, 0, 0) : 0 ≤ c0 ≤ 1} ∪ {B(0, c1, 0) : 0 ≤ c1 ≤ 1},

i.e., those elements B in B which have the decomposition form B = Cw ∪ E0 or B =

Cw ∪ E1. Then we have

Claim 2. The map T from B to ρI fills out the line segment I. Moreover, T is a

one-to-one map on B∗.
Proof. The proof is similar to Case 1. Denote by O = (1

2
, 1

2
) the midpoint of I. We

only prove the map T from B to ρI fills out half of the line segment I. Then we will get

the desired result by symmetry.

Let h be a harmonic function on K. We consider T ({(c, 0) : 0 ≤ c ≤ 1}). When c = 0,

B(0, 0, 0) = Cw and MCw(h) = 1
3
(h(p0) + h(p1) + h(p2)). Combining this with the fact

that

h(p2) =
1

2
(h(p0) + h(p1)),
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we get

MCw(h) =
1

2
(h(p0) + h(p1)).

Hence T (0, 0) is the midpoint O of I. When c = 1, B(1, 0, 0) = Cw ∪ C0, and an easy

calculation gives that MCw∪C0 = h(p0). Hence T (1, 0) is the endpoint P0. So if we vary c

continuously between 0 and 1, we can fill out the line segment joining O and P0, which is

half of I. 2

Case 3. There are two nonjunction points (for example, p1 and p2) among

the boundary points of Cw.

In this case, let h be any harmonic function on K. By the matching condition on both

points p1 and p2, h must be constant on the whole cell Cw. Hence for every point x ∈ Cw,

we could view Cw itself as the mean value neighborhood of x.

We now summarize what we have accomplished:

Theorem 5.1. Given a point x ∈ K\V0, let Cw be a cell containing x, not intersecting

V0, and let Dw be the union of Cw and its neighboring cells of the same size. Then there

exists a mean value neighborhood B of x satisfying Cw ⊂ B ⊂ Dw. (Note that B is unique

within the collection of sets described above.) Moreover, for each point x ∈ K \ V0, there

exists a system of mean value neighborhoods Bk(x) with
⋂

k Bk(x) = {x}.
We should mention here that the result can also be extended to some other p.c.f. frac-

tals including the 3-dimensional Sierpinski gasket. However, it seems that some strong

symmetric conditions of both the geometric and the harmonic structures should be re-

quired.

Acknowledgements. This work was done while the first author was visiting the

Department of Mathematics, Cornell University. He express his sincere gratitude to the

department for its hospitality.

References

[1] M. T. Barlow, Diffusion on fractals. In Lectures Notes in Mathematics, vol. 1690. Springer,
Berlin, 1998.

[2] J. Kigami, A harmonic calculus on the Sierpinski spaces, Japan J. Appl. Math., 6 (1989),
259-290.

[3] J. Kigami, Harmonic calculus on p.c.f. self-similar sets, Trans. Amer. Math. Soc., 335 (1993),
721-755.

25



[4] J. Kigami, Analysis on Fractals, Cambrideg University Press, New York, 2001.

[5] R. S. Strichartz, Analysis on fractals, Not. Am. Math. Soc., 46 (1999), 1199-1208.

[6] R. S. Strichartz, Differential equations on fractals: a tutorial. Princeton University Press,
Princeton, NJ, 2006.

[7] R. S. Strichartz, Taylor approximations on Sierpinski gasket type fractals, J. Func. Anal.,
174 (2000), 76-127.

(Hua Qiu) DEPARTMENT OF MATHEMATICS, NANJING UNIVERISITY, NAN-

JING, 210093, CHINA

E-mail address : huatony@gmail.com

(Robert S. Strichartz) DEPARTMENT OF MATHEMATICS, MALOTT HALL, COR-

NELL UNIVERSITY, ITHACA, NY 14853

E-mail address : str@math.cornell.edu

26


