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Summary. Inthis paper, we consider analytic perturbations of an integrable Hamiltonian
system in a given resonant surface. Itis proved that, for most frequencies on the resonant
surface, the resonanttorus foliated by nonresonant lower dimensional toriis not destroyed
completely and that there are some lower dimensional tori which survive the perturbation
if the Hamiltonian satisfies a certain nondegenerate condition. The surviving tori might
be elliptic, hyperbolic, or of mixed type. This shows that there are many orbits in the
resonant zone which are regular as in the case of integrable systems. This behavior might
serve as an obstacle to Arnold diffusion. The persistence of hyperbolic lower dimensional
tori has been considered by many authors [5], [6], [15], [16], mainly for multiplicity one
resonant case. To deal with the mechanisms of the destruction of the resonant tori of
higher multiplicity into nonhyperbolic lower dimensional tori, we have to deal with some
small coefficient matrices that are the generalization of small divisors.

Key words. Hamiltonian systems, resonant invariant tori, KAM-type theorem

MSC numbers. 58F05, 58F27, 58F30

1. Introduction

Consider a Hamiltonian system

H(X,y) = Ho(y) + ¢P(x, y), 1D
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wherey € G C R", x € T", Hp, and P are real analytic functions defined on a
complex neighborhood of the closed bounded re@aand the toru§ "(= RY2x Z"),
respectively;Hy satisfies the standard nondegeneracy condltloﬁ&é«y) #0inG.

P is a perturbation and > 0 is a small parameter.

For the unperturbed HamiltoniaHy(y), o = aHO (y) is called nonresonant if it
satisfiegk, w) # 0 for anyk € Z™\0. Otherwise it |s resonarm is called a multiplicity
mp resonant frequency if there is a ramlg subgroupg of Z" generated by independent
integer vectorsy, ..., Ty, such that(k, ) = 0 for allk € g and (k, w) # O for all
k e Z"/g.

For any given subgroug,

0(.G) ={y e G: (k,o(y)) =0.k € g}

is anm = n — mg dimensional surface, which is calledgaresonant surface. Locally
it is diffeomorphic toR""™. In a typical way (see [1]), by passing to a finite covering
which will also lead to the global result g, we may assume th&(g, G) is globally
diffeomorphic to a subdomain iR"~™ without loss of generality.

For the trivial subgrougy = 0, according to the celebrated KAM (Kolmogorov-
Arnold-Moser) theory (see [1], [8], [10]), most of the nonresonant tori of the integrable
system persist under a small perturbation. This paper deals with the perturbation of the
resonant tori. More precisely, for a gived(g, G) of multiplicity my > 0, we will
investigate what happens to the resonant torus of the unperturbed system with frequency
3H° (y) fory € O(g, G) under a small perturbation. The perturbation of the resonant tori
|s more complicated. In general, it will be destroyed [11] by the perturbation. Note that if
y € O(g, G), the invariant torus oHy with frequency’HO (y) is foliated bym = n—mg
dimensional tori. We will prove thafpr most of ye O(g G) in the measure sense
there are some lower dimensional tori on the resonant torus which sugeiveral
perturbations.

We will work out a KAM-type theorem in a resonant surfgoég, G) for any given
subgroupg of Z". We first set up the problem. Similar to [16], by group theory, there
are integer vectors,, . .., 7, € Z" such thatZ" is generated by, ..., Tm,, 71, ..., Ty
and detKg) = 1, whereKg = (K, K"), K, = (11, ..., ), K' = (71, ..., Tiy,) are
n x n,n x m, andn x mg, respectively.

We sayHy is g-nondegenerate ¥l is nondegenerate and dét’ " H° (Y)K’ #£ 0O for
y € O(g, G).

SinceP(x, y) is a real analytic function defined on some complex neighborhood of
T" x G, using Fourier's expansion yields

P(x.y)= Y PV 2k,
kezn
For the subgroug of Z", let
holp.y) = Pe/~1X = 3™ pyeV=29), (12

keg lezMo

wherep = K'Tx. Clearly,hg has at leastny + 1 critical points oriT ™. Moreover, there
are at least critical points if all of them are nondegenerate (see [9]).
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Let ¢ be a nondegenerated critical point laf(e, y), i.e., %
8%ho
g2

(¢o,y) = 0, and

(¢o, ¥) is nonsingular.

Treshchev [16] proved that for aiyy € O(g, G), there is am€mm-dimensional torus on
the resonant torus which persists and only undergoes a small deformatién=f
KJw(yo) as anm-vector satisfies the Diophantine condition and no eigenvalue of

HK/T%(yO)K/ is positive or zero (for simplicity, the later condition will be called

Treshchev’s hyperbolicity condition), whefé = i’;—h;’(goo, Vo). Eliasson [6], Chierchia
and Gallavotti [5], and Rudnev and Wiggins [15f also obtained a similar result for the
multiplicity one resonant case. Actually, Treshchev’s condition implies that the Hamil-
tonian equations of motion with HamiltonialHy(y) + eho(y, ¢) have a hyperbolic
m-dimensional torus for any € O(g, G) close toyy. By a series of symplectic changes

of variables, he reduced (1.1) to the following Graff's form [7], with a small parameter:

H = (o y)+ §<y, TY) +&(z_. Qo(x. Y)z,) +£0(2%).  z,.z_ € C™,

wherex € T™ y € R™, I is a nonsingular symmetric matrix, and ®eQy) > oy |?,
for someo > 0 and for ally € C™. By a modified Graff’s iteration scheme, he proved
that there exists a canonical change of varialdlesich that

Hod(X,Y,2) = (oY) + %(Y, TY) +e(Z_, Q(X,Y)Zs) + eO(IY| + 1Z])?),

where

' =Tr+0(), Q=w+0@), Z=(Z_ 7).

Hence the perturbed system under consideration admits a hyperbolic invariant torus with
the same frequenay*.
Eliasson [6] considered the following case:

(C1) g = {lko: | € Z} with (kg, ) = 0, for somekg € Z™\0,

(C2) [(k, ®)| = =, fork € Z™\g,

(C3) kJ Zx2 (Yoko > O,

wherey, t > 0. (C1) corresponds to the multiplicity one resonance; the frequency
o with (C2) is called the relative Diophantine to the grogip(C3) represents the g-
nondegeneracy dflp at yp. Indeed, at this situations” = ko, and hence

_ K/T aZHO
= 8y2

0 ’

9?H 9°H
detK’Ta—yz(yo)K (Yo K' = kOTWZO(yo)ko > 0.

Under his hyperbolicity assumption of the perturbat®(x, 0), Eliasson deduced the
persistence problem to the perturbation of the following integrable system:

, 1 1 1, ,
(KSo(Yo).Y) + é;fsyf—58a><%+0<yf)+eo<xi’)+§<y,My>,

wherea > 0,8 = kgi,z—y*’;’(yo)ko. Note [T = —ea, and henceHK’%(yo)K’ =
—eaB < 0. This shows that, locally, Eliasson’s result coincides with Tvreshchev’s.
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These approaches do not work when the torus is not hyperbolic. Here we consider
the system on a whole resonant surface and prove the persistence result in a measure
sense.

We will prove that, for general nondegenerate perturbations, thereistimensional
torus born from the resonant torus no matter if Treshchev’s hyperbolicity condition holds
or not. Certainly, in this case, the obtained torus might be elliptic, hyperbolic, or of mixed
type.

The main result of this paper is the following:

Theorem 1. Supposethat H is analytic. Moreoveg, 14 g-nondegenerate for a given g,
and hy(¢, y) has an analytic family of nondegenerate critical points for a# YO (g, G).

Then there is amg > 0 (depending on bl g, hg) and a Cantor set\,, C O(g, G) such

that for0 < ¢ < &g, the system (1.1) admits a smooth family (in Whitney's sense) of
m-dimensional invariant tori,} parametrized by ¢ € A.. Moreover, the measure of
A, relative to O(g, G) tendsto 1 ag — 0.

Here a map defined on a Cantor set is said to be smooth in Whitney’s sense if its
Whitney extension is smooth. For details, see [13].

Remark 1. It is well-known that for a nearly integrable Hamiltonian system with many
degrees of freedom, the dynamical behavior (for example Arnold diffusion) of nearly
integrable systems in the resonant zone is very complicated if the stability of orbits is
destroyed. Hence it is important to study the mechanisms which lead to the destruction
of resonant tori under perturbations. Theorem 1 provides some further description of
those mechanisms, which shows that many orbits in the resonant zone are still quite as
regular as in the integrable case for nondegenerate (typical) small perturbations. Those
orbits might be hyperbolic, linearly stable, or of mixed type, which will influence the
Arnold diffusion.

Since Treshchev’s hyperbolicity condition is dropped in Theorem 1, the following
stronger result is an immediate consequence, which can be compared with &sincar”
famous theorem [12] (See also [3], page 105).

Theorem 2. Under the assumptions of Theorem 1, if all critical points gf¢hy)
are nondegenerate, there is ag > 0 (depending on bl g, hg) and a Cantor set
A, € O(g, G) such that for0 < ¢ < &g, the system (1.1) admig&™ smooth families
of m-dimensional invariant tori parametrized by ¢ A’,. Moreover, the measure of,
relative to O(g, G) tendsto 1 ag — O.

Remark 2. Recall Poincag’s theorem on the resonant torus foliated by periodic solu-
tions, i.e.,;rankg = n — 1, mg = 1 case. There it is proved that the perturbed system
has at least two periodic solutions if all critical pointshef(¢, y) are nondegenerate.
Theorem 2 can be regarded as a generalization of P@sdi€orem to the invariant

tori case on a Cantor set. Actually, Theorem 1 provides a positive answer to a conjecture
about a higher dimensional version of Poireatheorem in [3].
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Remark 3. Cheng [4] considered the multiplicity one resonant case and proved that
there is am — 1 dimensional torus born from each resonant torus under a convexity
condition of the unperturbed system without imposing any restriction on the perturbation.

It seems that his approach does not work for higher resonant cases since it strongly
depends on the restriction of the dimension. It is believed that for the resonant case of
higher multiplicity, Cheng’s result is also true, i.e., the nondegeneracy condition of the
critical points is not essential although it has not been proved so far. Recently, Wang
[17] discussed general cases and gave a persistence theorem similar to Theorem 1 under
some additional assumptions.

After reduction to a suitable normal form at the nondegenerate critical point, Theo-
rem 1 is obtained as a consequence of the following theorem for the special Hamiltonian
system,

H=(w,y)+ %(z, M(w)z) + P(X, Y, 2), 1.3)

defined on the complex neighborho@r,s) = {(X,y,z, w) | |ImX| < r,]y| <
%1zl <s,we O} of T" x {0} x {0} x O C T™ x R™ x R?M™ x R™; where® c R™
is a bounded closed region with positive measileis a symmetric matrix smoothly
depending om. For system (1.3) we prove

Theorem 3. Suppose that P is real analytic on some complex neighborho@dsp
of the phase space™x {0} x {0} and O with |detM(w)| > d > 0. Then for a given
parametery, there are sufficiently smally, 5o such that if§ < 8o, u < uo, and

2

IP| < s?y*Mosp,

there exist a Cantor s&?, c O, a (Whitney) smooth family of symplectic changes

o: D (r, ;) — D(,s),

and a smooth map,,: O, — R™, such that

Ho® = (wx(@),y) + %(Z, M. (@)Z) + Pu(X, Y, Z, ®),

with

3;,31‘) Pil(y.2=00 =0,
for |I| + |p| < 2, wherew,, —id = O(u), M, — M = O(u). Thus for eactw € O,,
the perturbed system (1.3) admits an invariant torus with frequengyw). Moreover,

|O\O.| = O(y).

Remark 4. In Treshchev’s and Eliasson’s cases,

(0
M‘(sza o)'
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Hence
Q 0
IM = < 0 —90> ’
whereJ = ( |° *(')mo), Is denotes the unity matrix of order Then for each eigenvalue
mo
A of IM,

|IReA| > o.

However, in Theorem 3, we only require tHdtis nonsingular, and hence some eigen-
values of JM might be purely imaginary and multiple. This shows that Theorem 1
can conclude the existence of some nonhyperbolic invariant tori. Hence, Theorem 1
generalizes Treshchev’s and Eliasson’s results.

On the other hand, for a general system without small pararbeter

1
N = (w,y)+ E(z, M;12), 1.9

if by a smooth symplectic change of variables
_ u _ Up _
()< (2)- o

)
No®d = (w,y)+ 5(21, M,zy) + O(|z%),

one has

wheresM, = & (0) " M1 (0), then

1

g detMy, (15)

1
detM, = —— det(@®(0) 9P (0)) detM; =
52m0
sinced®(0) " Jod(0) = J implies detd® (0) 'ad(0)) = 1. (1.5) shows that, generally,
one cannot deduce (1.4) to the problem considered in Theorem 3. Itis well-known that if
8 is not small, say = 1, one has to require more restrictions on the frequencies such as

I(k, w) + (I, )| # 0, =<2,
for (z, M(®)z) = 3™, Qi (0)zz_; (see ®schel [14]), and

|detv/~1(k, @) lom, + M J)| # O,
|det(v/=1(K, ) Lz + (MJ) ® lom, — lam, ® (IM))| #0,

for generalM (see You [19]). For sufficiently smadl, Theorem 3 does not need the
above conditions, and thus it has a special advantage \@h};‘m/l (w)z) in (1.3) arises
from the perturbation. Sinc®l may be nondiagonal and in general, since there is no
symplectic transformation depending smoothly@which turnsM (w) in (1.3) into a
diagonal one unles3M has distinct eigenvalues, Bourgain’s theorem [2] also cannot be
directly applied here.
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Asiswellknown, the set of all®y x 2my symmetric matrices with distinct eigenvalues
is open and dense in the space of aflp2x 2mg symmetric matrices. However, in our
problem, we do not know if the seé¥! = {w € O: M(w) has distinct eigenvalugss
nonempty. It is possible that! has a zero measure. Even\if has a positive measure,
one cannot use perturbation technique to study such systems in the KAM theory. Actually,
many systems in physical science, such as decoupled oscillators, admit such multiplicity,
and this kind of multiplicity has been one of the difficult problems in the perturbation
theory (see [2]).

Remark 5. To obtain the persistence of lower dimensional tori on the resonant torus, we
will separate the resonant frequency into two parts: the relative diophantine one and the
complementary one. This process is similar to Treshchev’s. In that way, we can reduce
(1.1) to the form (1.3). Note that the part related to the normal variables is not of the usual
diagonal form, and that there is no symplectic change that transforms the nondiagonal
form into the diagonal one. For that reason, some new linearized equations and small
divisor conditions similar to [19] have to be taken into account.

Remark 6. We give an example to illustrate our result in an explicit way. Consider an
analytic Hamiltonian

1,
H =§;yi + eF (%),

in B(1, 0) x T" whereB(1, 0) is a unit ball inR" centered at the origin with radius 1. Let
g be the subgroup generatedddy= (0,0, ...,0,1), ..., fr/no =(0,...,0,1,0,...,0.
Then

0(9,G) = {(y.0) € B(1,0),y € R"™, |y| <1},

which can be regarded as a unit ball R*~™. Suppose thaF (Xn_m+1, - - -» Xn) =

foz” F(x)dx; ... dX,—m, hasl nondegenerate critical points. By applying Theorem 1, we
know H has at leadtCantor families of invariant tori of dimension— my parametrized

by y’ in a Cantor set. Moreover, treating the Cantor set as a set in the unit it &f,

it has positive measure which tends to the full measure-as0.

We note that, by Treshchev's result, one can obtain the persistence of a lower dimen-
sional torus only if} et VP F has a nondegeneratgperboliccritical point.
Generally there are some other types of critical points (see [9]). By our Theorem 2, we
can get at least™ tori if all critical points of F are nondegenerate.

Let us outline the proof of the theorems. In Section 2, we reduce (1.1) to the normal
form. This process is similar to [16]. After the reduction, Theorem 1 is a consequence
of Theorem 3. A detailed proof of Theorem 3 is given in Section 3 by a KAM-type
iteration. In Section 3, we describe one cycle of KAM steps. Section 4 provides an
iteration lemma, which shows the validity of each step. Finally in Section 5, we give
the proof of Theorem 3. Then we focus our attention on the measure estimate of the
Cantor set.
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2. Reduction to Normal Form

For the given subgrougin Theorem 1, following Treshchev’s transformation technique
[16], we reduce (1.1), near a nondegenerate critical poing,afto the following normal
form:

H = No+ Py,
where

No = (. y) + §(<u, Vou) + (v, Ugv)),  |Pol = O(e?),

andx € T™ y e R", u,v € R™, w varies in somen-dimensional subset with positive
measurely, Ug are nonsingular matrices depending smoothlywomhen we will show
that Theorem 3 implies Theorem 1.

Let

1 9%Ho

I = K] 11 F12) ’

-2’0 Kn —
ay2 (Yo) Ko (F21 Ty

wherel'11, 12, a1, T2z @rem x m, mx mp, Mg x M, Mg X Mg matrices, respectively, and
Mp=T3,Tn= K/”:%(yo)K’(s f). For anyyy € O(g, G), by Taylor's formula,
we expand the Hamiltonian (1.1) into the following form:

2

1/0°Hp
H(X’ Y) = <w(y0)v y_YO>+§<

ayz YO =Y.y = yo>+e P(x, y)+O(ly—Yol*),

up to a constant. By the symplectic coordinate transformatiery, = Kop, g = K X,
the above Hamiltonian is changed to

1 _
H@, p) = (@, P)+ 5(P. T(Y0)P) +£P(@, P) + O( pI®)

= (0", p) + %<p”, T22p") + £P(q. p) + O(Ip®) + O(p'1%)
+Odp|-1p"D, (2.1)
whereo* = Kl o(yo), P'= (P ... Pm) ", P' = (Pms1. -, P07,
P, p) = P((Kg)d, Yo+ Kop). (2.2)

Denote by?(g, G) = {0* € R™: y € O(g, G)}. We know thatO(g, G) is a bounded
region inR™. SinceO(g, G) is diffeomorphic to then-dimensional surfac®(g, G),

we will usew™ as a parameter instead wf in the following. This approach has been
used by many authors [1], [14], [15], to simplify the proofs. In the following, we work
with

1 _
H(, p) = (0", p) + §<p”, Coa(w™)p”) +eP(Q, p, ®)
+0(pl +03p1» + 0P| 1p"D, (2.3)

wherew* € O(g, G) serves as a parameter.
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Choosew € O(g, G) such that
Ik, ®)| > yolKk| 77, VO#kezZ™ (2.9

wherelk| = >, |ki|, andyy, T are fixed positive constants. Denote®@ythe set ofw
satisfying (2.4).

Forw € O, we separate the first-order resonant terms from the perturbation by a
canonical transformation of coordinates

98@.Y) | _ 95@.Y)

Y, X Tp=
(p, gmod 2r) —> (Y, Xmod 27): p g vy

where

—=1hg kg
S=(Y,q)+ " v =1(k.q')
(Y, q) Sk;zm\o (@K ", w)e )

with hy = /77 P(q, 0)eV X&) dg’. Then

, v—=1h
P=Y+V—1e Y k§e/ Wd g =X X

S {, k)’
p” = Y+ O(e), X=q.

From (2.4) it follows thatSis real analytic. The new Hamiltonian function reads as

1
H(X,Y) = (w, Y/) + §<YH’ Fzz(w)Y”) + sho(X“, w)
+ O(eY) + O(e®) + O(Y]®) + O(Y'1Y) + O(Y'IY"]).  (2.5)

We have assumed thhg(X”, w) has a nondegenerate critical point, s&y. Without
loss of generality, we assum¢; = 0 up to a linear coordinate transformation. (2.5) is
then equivalent to the following:

7 1 " " 1 82ho " 4
HX,Y) = (@, Y) + (Y, To@Y") + ze{ — (0, 0) X", X
2 2\ 9¢?
+ 0(eY) 4+ 03 + O(Y PR + O(1Y' 1D
+ O(Y'| - [Y"]) + £O(X"}%), (2.6)
up to an irrelevant constanhg(0).

In the next step, we scalle_the variaMeo reduce some less significant terms to a
new perturbation. Tak¥ = ¢2Y; it arrives at

H(X,Y) = H(X, e2Y)le?

1
. . . 3%h
(C(), Y/> + ﬁ ((Y//s FZZ(G))Y//> + <X//, #(07 C())X//>>

2
P (8%0(\?) +0(e) +£20(YP)

+ O(Y'2) + OV - [Y']) + O(X")) . @27)
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We replaceX’, Y/, X", Y", e2, I'zp, and %‘;(O, w) by X, y,u, v, e, Uy, and Vp, re-
spectively. Then

H(X,y,u,v) = No+ Py, (2.8)
where
No = (. y) + §<<u, Vo(@)u) + (v, Ug())), (2.9)
and
Po = O(£2) 4 £0(|y|?) + £0(ly| - [v]) + £O(|u[?). (2.10)

This is the desired normal form.
By Whitney’s extension theorem, we can assume Hyas a smooth function ob
in O, and it coincides with our Hamiltonian only in the Cantor &&tg, G).

The Proof of Theorem 1Now we are in the position to prove that Theorem 3 implies
Theorem 1.
1 . . . .
For any smalk, lets = ¢3. We consider the Hamiltonian (2.8) in

D(r,s) = {(X,y,u,v): |[Imx| <r, |y| <S> |u| + |v] < S}

Itis a special case of (1.3) if we set= (u, v), M = (V) andO = O(g, G).
It is easy to see that in (2.8)

Pyl < Ce?, (211
L (t-0)
onD(r,s) x O if ¢ is sufficiently small. Sef =&,y =%~ ,u=¢",0 € (0, }).
Then
|Pol < 82y,

on D(r,s) x QO if ¢ is sufficiently small. By Theorem 3, the Hamiltonian system with
Hamiltonian (2.8) has a family ah-dimensional tori parametrized lyy € O,(g, G) C
O. Note that (2.8) coincides with our Hamiltonian (2.3) only in the Cantoxség, G).
It follows that the Hamiltonian system with Hamiltonian (2.3)ate O.(g, G) N
0'(g,G) C O(g, G)lhas a rotational torus. It is well-known thg® — O’| — 0 as

y — 0. Sincey = gm0 ” it follows that|© — (0, N ©')| — 0 ase — 0. Note that
O(g, G) is diffeomorphic toO(g, G). Going back toO(g, G), we have the conclusion
of Theorem 1.

Here and later we uge | to denote norms of vector and functions (sometimes with
subscripts), and the measure of sets, gadlways denote the constants independent of
the iteration process.

In the following, we will give a detailed proof for Theorem 3.

3. The KAM Step
The KAM iteration process consists of infinitely many KAM steps. From each cycle

of KAM steps, one can find the constructions and estimates of the desired symplectic
changes and their domains, perturbed frequencies, and new perturbations.
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We start from Hamiltonian (1.3),
H=N+P,

defined inD(r, s), where
8
N = e+ (0), y> + 5(2’ MZ>7
with

1
WTSSZ|P| <u<Kl

Since there is a detailed description of the KAM steps in [14], we only outline the
proof from thev-step to the 4+ 1-step. We also refer to [19] for a detailed proof of the
case’ = 1 with an additional nondegenerate condition. For simplicity, we omit the index
of thev-step and denote by and “—" the v 4 1-step and — 1-step respectively. Here
we also would like to point out some differences between the usual approach and ours.
The linearized equations are not the usual ones. This framework seems to be necessary
for the problem under consideration, because the normal form we obtain is not of the
norm>_ Qizz_;, and in general, it is also impossible to turn it into such a form by a
symplectic change of variables. This leads to the use of another nonresonant condition.

3.1. Approximating the Perturbation

Due to the presence of small divisors, one cannot remove all angle-variable-dependent
terms in one step. Following the main idea of KAM theory, we will find a symplectic
coordinate transformation such that thelependent term of the transformed system is
much smaller at each KAM step. First, we truncate the perturba&i@nd keep the
higher order terms to the next KAM step since they are already small enough.

Let R be the truncation oP of the form

R= > (Pwoo+ (Pao. ¥) + (Po1. 2) + (2. Puoaz))e’ 2k, @31

K=K+

K. will be specified below. Then

P—R

K=Ky IKI<Ks,2[] |1 +]ql=3

= 1411, (3.2)

We estimated® — R on a smaller domaiD (r, aS), « = M% € (0,1),r, <r. First,

2
[lprs =< Z |p|D(r.S)eflk|<rfr+> < 8y4moszﬂzlmefl(rfr+)
k=K =K

IA

oo
3y4m§SZM/ AMe T d) < 5y Mos?2, (3.3)
K

+
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provided
/KOO AMe D gy <y (3.4)
Hence by (3.3)

[P —1lprs < IPlpoas + Il ba.s < 25y*Mos? .

Second,
glil+1pl S
b, as = / 2P Z queﬁ( Xyl dy dz
[k|<K4,2[j|+lq|=3 D(ry,as)
glil+lpl
= / i (P—-1)dydz
ay'azP D(r+,as)
glil+lpl
< /‘a'ap - dydz
yoz D(r.3) D(r.,as)
< C18y ey = ci8y s, (3.5)
where 2i| + p| = 3and[ = [)---f5 [y [y With 2i| + |p|-times. Thus on
D(r+a as)y
IP — R| <G8y Ms?2. (3.6)
Thus
IRIpes < 38y Msu 3.7

3.2. Linearized Equations

We have to find a HamiltoniaR such that the time 1-maf generated byKr carries
H into a new normal form with a smaller perturbation.
Formally we assumé is of the form,

> (Fioo+ (Fiao. Y) + (Fior. 2) + (2, Fio22))e’ 2% + (Foo1, 7). (3.9)
0£IKI=K .,

{N,F}+ R+ (Py1.2) =0, (3.9
then
Ho¢t = (N+Rogt +(P—-Rogpt

1
N +[R] —<P001,z>+/0 (R, F} o ¢ dt + (P — R) o gL
Ny + Py, (3.10)
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where
[R] = /m R(x, -) dx,
R=R—-[RL,R=-t)(R —R—(Po1,2)+R,
Ny = N +[R] - (Poos, 2), P+=/01{Rt,F}o¢tF dt + (P — R)opf. (3.11)

Putting (3.1) and (3.8) into (3.9) yields

=Y V=L o) (Froo+ (Fiao, ¥) + (Fior. 2) + (2 Fiozz))e? ¥
k50

+8) ((Mz, I Foy) +2(Mz, I Rpz))e¥ % + §(Mz, J Fopy)
k0

=~ Y (Poo+ (Puao. Y) + (Pow 2) + (2, Proaz))e? 1)
O#|kI<K
— (Poo1, 2). (3.12)

Note that we have to solvEyg, with Fygo = Fsz- Hence comparing coefficients we
have

V=1(k, ®) Fxoo = Pxoo, (3.13)
V=1(k, ®)Fiao = Puo, (3.14)
—v/=1(k, ®) Fxo1 + M J Fo1 = —Pyot, (3.15)
—vV=1{k, w)Fxo2 + (M J) Fioz — §Fio2(IM) = — Pz, (3.16)
M Foo1 = — Pooa- (3.17)

(3.15) is equivalent to
[—v/=Ttk @) l2m, + M3 | Fior = —Pros. (318
and (3.16) is equivalent to
[V, ) lag + 5(MI) @ Loy + 8lam, ® (MI)| Fiz = ~Pecze (319

The above linear systems (3.13)—(3.16) are solvable if the coefficient matrices are
nonsingular. To control the norm &f, we solve them on the set

2mp 4m32

0, = la) € O; |k, )| > |detA| > |detAy| >

v e
k™ ko

|k|4rmg’
fork € Z™with 0 < |k| < K+} , (3.20)

whereA; and A, denote the coefficient matrices of (3.18) and (3.19) respectively. In the
following, we also will use similar notations.
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3.3. Coordinate Changes

We will give some estimates df and its derivatives, which are vital in proving the
convergence of the transformation sequence and in estimating the new perturbation at
each step. Set

3 i .
D = D(r++z(r—r+),‘—13>, i =123 4

By (3.13), (3.14), and Cauchy’s estimate, we have

k T
|Frool = ucS)/“"‘%szp,e""” < |k|T8s%ue kI
14
k T
[Fraol < ucS)/""“gy,e‘”"f < k|78 e K
14

From (3.18) and (3.19), it follows that adA(K ),
|Fiotl < Calkl?™ssue™ .|| Figall < calk|* ™86,
where||Fyoz|| is defined to be the maximum of the norm of the entries. By (3.17),
|Fooa| < CsSu.

From (3.8) and the above estimates together with, y <« 1, we obtain

1
?|F|D3 < Coul'(r —ry) + Cspt, (3.21)

where

L —ry =Y k*me M=
k=0

By Cauchy'’s estimate, oD,

— |Fl, S2IFyl, SIF,| < CeSul(r —ry) + CoS2u. (3.22)
— I+

SinceF is a polynomial ofy andz with orders 1 and 2 respectively, by (3.22) we
obtain

ID'Flp, < Ceul'(r —ry) +Cept, I <4 (3.23)

3.4. Estimates of the New Perturbation

From the last section we have

Hy =Hog¢t =N, +P,,
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where
)
Ny = N+[R] — (Poo1, 2) = € + (w4, y) + 5z M.2),
1
P, = / (R F)oghdt+ (P — R)ogt.
0
with
e = e+ Pogo,
oy = o+ Poio, |Potol < 8pu, (3.24)
M. = M + Poo, |Poo2l < du. (3.25)
Let
5 b i—1 i 1
Iia_ r++T(r—r+),§O{S N I =1 Z

For one single KAM step, everything has been done but the estimate of the new pertur-
bationP, on a smaller domain.
Note

t
Pr :id+/ Xg o ¢ d,
0
and
t t
DL = |2n+/ (DXp)Dgpf dr = |2n+/ J(D?F)Dgr: da. (3.26)
0 0

From (3.22) we have

PL: Di, — Do, O<t<l,

provided
M 1
C7 W r—rp+u) < E(r =Ty,
1
C7 (SPul(r —ry) + %) < Zazsz,
1
Cr(sul’(r —r) +sp) < Eas. (3.27)

It follows that¢¢: Dy, —> D
It follows from (3.23) that

A

IDgE — lanlpy, = 2ID*Flo,, < Cr(ul(r —14) + ),
ID%ptlp, < Cr(ul(r —ry) + p). (3.28)

A

e
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Now we estimateP, . By (3.6) and (3.22) we have that @,
Pl < a8y MSPpPT(r — 1) + 8y M52, (329
Thus, onD(ry,s;) = D%a,
1 am2 4
gl&l < gy o(I'(r —ry) + Dus.

Hence one cycle of KAM steps is completed.

4. lteration Lemma

The following Iteration Lemma checks the validity of the KAM iteration. For given
ro, S, andug, we define some sequences inductively:

-~ 1
ro(l—X;ﬁ),
i=

r, =
L
YV = VO(l—X;F),
i=
1
S, = éavflsu—l»
1
@y, = MS»

My = (16C(¥v—1)%,u'v—1,
1
[_} + la KO = 09
My
Dv = D(rw Su)a Ov = Oy.,(Kv)’ OO = Oyoa

Kv+1

wherec is 4™ times the biggest one of a’s, [-] denotes the integral part.

Lemma 4.1 (Iteration Lemma). There is a sufficiently smally, 5o depending only on
ro andyyg, so that the following hold for alb. Let

1)
Hv= NU+PV1 Nv=ev+(a)a y>+§<zv Mvz>v

such that

1 4m2
?|Pv| S SVV OI’LV’

v

on D, x O,. Then there is a subsé,,; c O,,

Ov+1 = Ov - U REH(VV),

Ky <[k|<Ky 1
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where
R;()+1(J/V) = a)EOu |(k’a)>| = %’
2mg y4-rf—n§
: v
or |detA1’v| < |k|2—mof’ or |d8tA2,v| =< |k|4—mgf

and a symplectic change
®,: Dyy1 x Opy1 —> Dy,

such that
Hu+l = Hv o®, = Nv+1 + PU+la

andon D1 x Oy,

1

TDZ| Posal < o1

8yv+l SU+1

Proof. By induction, one verifies tha:gyfmg(l“(rv —ry1)+ 1)u§ < yfffuvﬂ for all

v > 0aswellas (3.4), (3.27). For simplicity, let = 1. Since the proof is standard—see
for example [14]—here we only verify the firstinequality. By the inductive assumptions,
it suffices to prove

1 4
c (F <2v+2) + 1) Uy < yi1. 4.1
It is equivalent to
5 1 1 1
QBT < 2v+2) < 1—6(1&:)%. (4.2)
Note
1 > m-+4rm2 n—A =te
r (W) < A A bg™ " 2+5 dA
< (M + 4rm})120+Om+demy) (4.3)

Here we assume that> 2m + 2 is an integer.
It is sufficient to prove

5 1
i (M 4 4rmd) 12 +9mHdemy) 1—6(16c)%. (4.4)

Itis true if uo is sufficiently small. In fact, taking > 1, such that

1

Mo < == 55183 =
(1601 %8)3

9
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then
i 1
u1 = (16cug)suo < PR 1
5
1 1 1
2 = (L6cus)suy < Eﬂl < Wﬂm
5 5
e 1
my = (L6CpS_ o,y < -+ < 18 Mo (4.5)
5
which implies (4.4). O

5. Proof of Theorem 3

Clearly, the Iteration Lemma can be applied to (1.3hfee 0 by assumptions. Induc-
tively we have the following sequences:

Dv X Ov C Dufl X vala
U =P 0Pro0---0d,: Dv+1XOv+1—> Do, v > 1,
HoW' =H,=N,+P,.

Let O, = (2, O,. By (3.28) and a typical argument similar to [14],, ¥,, andDW¥"”
converge uniformly orD(r, g) x O, with

8
Noo =& t+ <w’ y) + E(Zv Mooz) = Hom
Mo — Myo| < Copto. (5.1)
Let ¢}, be the flow ofXy. FromH o ¥* = H, we obtain
pryoV =V ogy .
Taking the limit yields
Py o WP =V®o gy
on D(%ro, 0,0) x O,. That means that for any € O,, (1.3) has an invariant torus.
We focus our attention on proving
[O0\ O] = O(y0).
Fix k € Z™\0. Let us estimate the measureRzT“(yv). Letg(s) = det(A,,(s)) and

01(8) = (Reg(s))? + (Img(s)).
Without loss of generality, we assume that= max{|k;|}. Let

4m2

s = ww=mw¢mmw@maﬁw
8m2
= (o1 0= (@1,...,om), |Gk ©))] < “zvsmgf
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Note that

9 8m2

Gu(k, @)| = [ki|P™ (14 O(5)) = A

8m’ 2
dw; °

whereO(9) is independent df. Hence for smals,

=

1
A> §|k1|8m5 > 2.

N

By [18], Lemma 2.1,

8mg y
N e

wherec = (2(1+ 2+ - - - + 8m3) + 2. Therefore,

1S =

|k|’
Clearly, by Fubini's theorem,

am2
{w: 9((k. o)) < 2 } < ColSy| < Cro-

|k|4m6r K
Similarly,
Vo
D [k
Hw [{k, w)| < Tk '<C10|k|f
)/2m° Yo
Hw: |detAy, ((k, ®))| < |k|2mof” = G (5.2)
Hence
Y0
; 3 3c 5.3
IR < ClO|k|T = Gy (5.3)
Thus, by (5.3),
1 Kyi1 1
U R0 <3000 Y, e = 31000 > 5
Ky <IKI<Kys1 K, </KI<K,_ 1 L i=x, !
Note
oo, cl) U R™o.
i=0 K <|K|<Ki 1
Therefore
<1
O\O.| = Bt ) | 5 = Oro). (5.4)
1

This shows thaO, is nonempty ifyy is sufficiently small. The proof of Theorem 3 is
completed. O
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