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Abstract: In this paper, one-dimensional (1D) nonlinear wave equations

utt − uxx + V (x)u = f (u),

with periodic boundary conditions are considered;V is a periodic smooth or analytic
function and the nonlinearityf is an analytic function vanishing together with its deriva-
tive atu = 0. It is proved that for “most” potentialsV (x), the above equation admits
small-amplitude periodic or quasi-periodic solutions corresponding to finite dimensional
invariant tori for an associated infinite dimensional dynamical system. The proof is based
on an infinite dimensional KAM theorem which allows for multiple normal frequencies.

1. Introduction and Results

In the 90’s the celebrated KAM (Kolmogorov–Arnold–Moser) theory has been success-
fully extended to infinite dimensional settings so as to deal with certain classes of partial
differential equations carrying a Hamiltonian structure, including, as a typical example,
wave equations of the form

utt − uxx + V (x)u = f (u), f (u) = O(u2); (1.1)

see Wayne [17], Kuksin [10] and Pöschel [15]. In such papers, KAM theory for lower
dimensional tori [14,13,8] (i.e., invariant tori of dimension lower than the number of
degrees of freedom), has been generalized in order to prove the existence of small-
amplitude quasi-periodic solutions for (1.1) subject to Dirichlet or Neumann boundary
conditions (on a finite interval for odd and analytic nonlinearitiesf ). The technically
more difficult periodic boundary condition case has been later considered by Craig and

? This research was partly supported by NNSF of China, by the Italian CNR grant # 211.01.31 and by
MURST (Project “Metodi Variazionali ed Equazioni Differenziali Non Lineari”).



498 L. Chierchia, J. You

Wayne [7] who established the existence of periodic solutions. The techniques used
in [7] are based not on KAM theory, but rather on a generalization of the Lyapunov-
Schmidt procedure and on techniques by Fröhlich and Spencer [9]. Recently, Craig and
Wayne’s approach has been significantly improved by Bourgain [3–5] who obtained the
existence of quasi-periodic solutions for certain kind of 1D and, most notably, 2D partial
differential equations with periodic boundary conditions.

The technical reason why KAM theory has not been used to treat the periodic bound-
ary condition case is related to the multiplicity of the spectrum of the associated Sturm-
Liouville operatorA = − d2

dx2 + V (x). Such multiplicity leads to some extra “small
denominator” problems (related to the so called normal frequencies), which make the
KAM analysis particularly delicate.

The purpose of this paper is to show that, improving the KAM machinery, one can
indeed use KAM techniques to deal also with the multiple normal frequency case arising
in PDE’s with periodic boundary conditions (e.g., 1D wave equations).

The advantage of the KAM approach is, from one side, to possibly simplify proofs
and, on the other side, to allow the construction of local normal forms close to the
considered torus, which could be useful for a better understanding of the dynamics. For
example, in general, one can easily check linear stability and the vanishing of Liapounov
exponents.

A rough description of our results is as follows. Consider the periodic boundary
problem for (1.1) with an analytic nonlinearityf and a real analytic (or smooth enough)
potentialV . Such a potential will be taken in ad-dimensional family of functions pa-
rameterized by a reald-vectorξ , V (x) = V (x, ξ), satisfying general non-degenerate
(“non–resonance–of–eigenvalue”) conditions. Then for “most” potentials in the family
(i.e. for mostξ in Lebesgue measure sense), there exist small-amplitude quasi-periodic
solutions for (1.1) corresponding tod-dimensional KAM tori for the associated infinite
dimensional Hamiltonian system. Moreover (as usual in the KAM approach) one ob-
tains, for the constructed solutions, a local normal form which provides linear stability
in case the operatorA is positive definite.

Finally we hope that the technique used in this paper can be generalized so as to deal
with more general situations such as, for example, 2D wave equations.

The paper is organized as follows: In Sect. 2 we formulate a general infinite dimen-
sional KAM Theorem designed to deal with multiple normal frequency cases; in Sect. 3
we show how to apply the preceding KAM Theorem to the nonlinear wave Eq. (1.1) with
periodic boundary conditions. The proof of the KAM Theorem is provided in Sects. 4−6.
Some technical lemmata are proved in the Appendix.

2. An Infinite Dimensional KAM Theorem

In this section we will formulate a KAM Theorem in an infinite dimensional setting
which can be applied to some 1D partial differential equations with periodic boundary
conditions.

We start by introducing some notations.

2.1. Spaces.For n ∈ N, let dn ∈ Z+ be positiveevenintegers1. Let Z ≡ ∏
n∈N C

dn :

the coordinates inZ are given byz = (z0, z1, z2, · · · ) with zn ≡ (z1
n, · · · , z

dn
n ) ∈ C

dn .

1 We use the notationsN = {0, 1, 2, · · · }, Z+ = {1, 2, · · · }.
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Given two real numbersa, ρ, we consider the (Banach) subspace ofZ given by

Za,ρ = {z ∈ Z : |z|a,ρ < ∞},
where the norm| · |a,ρ is defined as

|z|a,ρ = |z0| +
∑

n∈Z+

|zn|naenρ,

(and the norm inCdn is taken to be the 1–norm|zn| = ∑dn

j=1 |zj
n|).

In what follows, we shall consider eithera = 0 and ρ > 0 or a > 0 and ρ = 0
(corresponding respectively to the analytic case or the finitely smooth case).

The role of complex neighborhoods in phase space of KAM theory will be played
here by the set

Pa,ρ ≡ T̂
d × C

d × Za,ρ,

whereT̂
d is the complexification of the real torusTd = R

d/2πZ
d .

For positive numbersr, s we denote by

Da,ρ(r, s) = {(θ, I, z) ∈ Pa,ρ : |Im θ | < r, |I | < s2, |z|a,ρ < s}, (2.1)

a complex neighborhood ofTd × {I = 0} × {z = 0}. Finally, we denote byO a given
compact set inRd with positive Lebesgue measure:ξ ∈ O will parameterize a selected
family of potentialV = V (x, ξ) in (1.1).

2.2. Functions .We consider functionsF onDa,ρ(r, s)×O having the following prop-
erties: (i)F is real for real arguments; (ii)F admits an expansion of the form

F =
∑
α

Fαzα, (2.2)

where the multi-indexα runs over the setα ≡ (α0, α1, ...) ∈ ∏
n∈N N

dn with finitely
many non-vanishing components2 αn; (iii) for eachα, the functionFα = Fα(θ, I, ξ)

is real analytic in the variables(θ, I ) ∈ {|Imθ | < r, |I | < s2}; (iv) for eachα, the
dependence ofFα upon the parameterξ is of classCd̄2

W (O) for somed̄ > 0 (to be fixed
later): hereCm

W(O) denotes the class of functions which arem times differentiable on
the closed setO in the sense of Whitney [18] (and the appearance of the square is due
to later notational convenience).

The convergence of the expansion (2.2) inDa,ρ(r, s) × O will be guaranteed by
assuming the finiteness of the following weighted norm:

‖F‖Da,ρ(r,s),O ≡ sup
|z|a,ρ≤s

∑
α

‖Fα‖ |zα|, (2.3)

2 Thus∃ n0 > 0 such thatzα ≡
n0∏

n=0

z
αn
n ≡

n0∏
n=0

dn∏
j=1

(z
j
n)α

j
n .
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where, ifFα =
∑

k∈Zd ,l∈Nd

Fklα(ξ)I lei〈k,θ〉 , (〈·, ·〉 being the standard inner product in

C
n), ‖Fα‖ is short, here, for

‖Fα‖ ≡
∑
k,l

|Fklα|O s2|l|e|k|r , |Fklα|O ≡ max
|p|≤d̄2

|∂
pFklα

∂ξp
|, (2.4)

(the derivatives with respect toξ are in the sense of Whitney).
The set of functionsF : Da,ρ(r, s) × O → C verifying (i) - (iv) above with finite

‖ · ‖Da,ρ(r,s),O norm will be denoted byFDa,ρ(r,s),O.

2.3. Hamiltonian vector fields and Hamiltonian equations.To functions F ∈
FDa,ρ(r,s),O, we associate a Hamiltonian vector field defined as

XF = (FI , −Fθ , {iJdnFzn}n∈N),

whereJdn denotes the standard symplectic matrix

(
0 Idn/2

−Idn/2 0

)
and i = √−1; the

derivatives ofF are defined as the derivatives term–by–term of the series (2.2) defining
F . The appearance of the imaginary unit is due to notational convenience and will be
justified later by the use of complex canonical variables.

Correspondingly we consider the Hamiltonian equations3

θ̇ = FI , İ = −Fθ , żn = iJdnFzn, n ∈ N. (2.5)

A solution of such equation is intended to be just aC1 map from an interval to the domain
of definition ofF , Da,ρ(r, s), satisfying(2.5).

Given a real number̄a, we define also a weighted norm forXF by letting4

‖XF ‖ā,ρ
Da,ρ (r,s),O ≡ (2.6)

‖FI‖Da,ρ (r,s),O + 1

s2‖Fθ‖Da,ρ (r,s),O + 1

s
(‖Fz0‖Da,ρ (r,s),O +

∑
n∈Z+

‖Fzn‖Da,ρ (r,s),Onāenρ).

Notational Remark. In what follows, only the indicesr, s and the setO will change
while a, ā, ρ will be kept fixed, therefore we shall usually denote‖XF ‖ā,ρ

Da,ρ(r,s),O by
‖XF ‖r,s,O, Da,ρ(r, s) by D(r, s) andFDa,ρ(r,s),O by Fr,s,O.

3 Dot stands for the time derivativesd/dt .
4 The norm‖ · ‖Da,ρ (r,s),O for scalar functions is defined in (2.3). For vector (or matrix–valued) functions

G : Da,ρ(r, s) × O → C
m, (m < ∞) is similarly defined as‖G‖Da,ρ (r,s),O = ∑m

i=1 ‖Gi‖Da,ρ (r,s),O (for
the matrix–valued case the sum will run over all entries).
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2.4. Perturbed Hamiltonians and the KAM result.The starting point will be a family of
integrable Hamiltonians of the form

N = 〈ω(ξ), I 〉 + 1

2

∑
n∈N

〈An(ξ)zn, zn〉, (2.7)

whereξ ∈ O is a parameter,An is a dn × dn real symmetric matrix and〈·, ·〉 is the
standard inner product; here the phase spacePa,ρ is endowed with the symplectic form

dI ∧ dθ + i
∑
n

dn/2∑
j=1

z
j
n ∧ dz

j+dn/2
n .

For simplicity, we shall take, later,ω(ξ) ≡ ξ .
For eachξ ∈ O, the Hamiltonian equations of motion forN , i.e.,

dθ

dt
= ω,

dI

dt
= 0,

dzn

dt
= iJdnAnzn, n ∈ N, (2.8)

admit special solutions(θ, 0, 0) → (θ +ωt, 0, 0) corresponding to an invariant torus in
Pa,ρ .

Consider now the perturbed Hamiltonians

H = N + P = 〈ω(ξ), I 〉 + 1

2

∑
n∈N

〈An(ξ)zn, zn〉 + P(θ, I, z, ξ) (2.9)

with P ∈ Fr,s,O.
Our goal is to prove that, for most values of parameterξ ∈ O (in Lebesgue measure

sense), the HamiltonianH = N + P still admits an invariant torus provided‖XP ‖ is
sufficiently small.

In order to obtain this kind of resultwe shall need the following assumptions onAn

and the perturbationP :

(A1) Asymptotics of eigenvalues.There existd̄ ∈ N, δ > 0 andb ≥ 1 such thatdn ≤ d̄

for all n, and

An = λn

(
0 Idn/2,

Idn/2 0

)
+ Bn, Bn = O(n−δ), (2.10)

whereλn are real and independent ofξ while Bn may depend onξ ; furthermore,
the behaviour ofλn’s is assumed to be as follows

λn = nb + o(nb),
λm − λn

mb − nb
= 1 + o(n−δ), n < m. (2.11)

(A2) Gap condition.There existsδ1 > 0 such that

dist
(
σ(Jdi

Ai), σ (Jdj
Aj )

)
> δ1 > 0, ∀i 6= j ;

(σ(·) denotes “spectrum of·”).
Note that for largei, j , thegap conditionfollows from the asymptotic property.

(A3) Smooth dependence on parameters.All entries of Bn are d̄2 Whitney–smooth
functions ofξ with Cd̄2

W -norm bounded by some positive constantL.
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(A4) Non-resonance condition.

meas{ξ ∈ O : 〈k, ω(ξ)〉(〈k, ω(ξ)〉 + λ)(〈k, ω(ξ)〉 + λ + µ) = 0} = 0,

(2.12)

for each 0 6= k ∈ Z
d and for anyλ, µ ∈ ⋃

n∈N σ(JdnAn); meas≡ Lebesgue
measure.

(A5) Regularity of the perturbation. The perturbationP ∈ FDa,ρ(r,s),O is regular in the
sense that‖XP ‖ā,ρ

Da,ρ (r,s),O < ∞ with ā > a. In fact, we assume that one of the
following holds:

(a) ρ > 0, ā > a = 0; (b) ρ = 0, ā > a > 0,

(such conditions correspond, respectively, to analytic or smooth solutions).

Now we can state our KAM result.

Theorem 1.Assume thatN in (2.7) satisfies (A1)–(A4) andP is regular in the sense of
(A5) and letγ > 0. There exists a positive constantε = ε(d, d̄, b, δ, δ1, ā − a, L, γ )

such that if‖XP ‖ā,ρ
Da,ρ (r,s),O < ε, then the following holds true. There exists a Cantor set

Oγ ⊂ O with meas(O \ Oγ ) → 0 asγ → 0, and two maps (real analytic inθ and
Whitney smooth inξ ∈ O)

9 : T d × Oγ → Da,ρ(r, s) ⊂ Pa,ρ, ω̃ : Oγ → Rd,

such that for anyξ ∈ Oγ andθ ∈ T d the curvet → 9(θ + ω̃(ξ)t, ξ) is a quasi-periodic
solution of the Hamiltonian equations governed byH = N +P . Furthermore,9(Td , ξ)

is a smoothly embeddedd-dimensionalH -invariant torus inPa,ρ .

Remarks.(i) For simplicity we shall in fact assume thatall eigenvaluesλi of An are
positive for alln’s. The case of some non-positive eigenvalues can be easily dealt
with at the expense of a (even) heavier notation.

(ii) In the above case (i.e. positive eigenvalues), Theorem 1 yieldslinearly stableKAM
tori.

(iii) The parameterγ plays the role of the Diophantine constant for the frequencyω̃ in
the sense that there isτ > 0 such that∀k ∈ Z

d\{0},

〈k, ω̃〉 >
γ

2|k|τ .

Notice also thatOγ is claimed to be nonempty and big only forγ small enough.
(iv) The regularity propertȳa > a is used only in estimating the measure ofO\Oγ .

Such regularity requirement is not necessary for for constructing periodic solutions,
i.e.,d = 1. Thusthe above theorem applies to the construction of periodic solutions
for 1-D nonlinear Schrödinger equations.

(v) The non-degeneracy condition (2.12) (which is stronger than Bourgain’s non-
degenerate condition [4] but weaker than Melnikov’s one [13]) covers the multiple
normal frequency case: this is the technical reason that allows to treat PDE’s with
periodic boundary conditions.
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3. Application to 1D Wave Equations

In this section we show how Theorem 1 implies the existence of quasi-periodic solutions
for 1D wave equations with periodic boundary conditions.

Let us rewrite the wave equation (1.1) as follows:

utt + Au = f (u), Au ≡ −uxx + V (x, ξ)u, x, t ∈ R,

u(t, x) = u(t, x + 2π), ut (t, x) = ut (t, x + 2π), (3.1)

whereV (·, ξ) is a real–analytic(or smooth) periodic potential parameterized by some
ξ ∈ R

d (see below) andf (u) is a real–analyticfunction nearu = 0 with f (0) =
f ′(0) = 0.

As it is well known, the operatorA with periodic boundary conditions admits an or-
thonormal basis of eigenfunctionsφn ∈ L2(T), n ∈ N, with corresponding eigenvalues
µn satisfying the following asymptotics for largen

µ2n−1, µ2n = n2 + 1

2π

∫
T

V (x)dx + O(n−2).

For simplicity, we shall consider the case of vanishing mean value of the potentialV

and assume that all eigenvalues are positive:∫
T

V (x)dx = 0 , µn ≡ λ2
n > 0 , ∀ n. (3.2)

Following Kuksin [10] and Bourgain [3], we consider a family of real analytic (or
smooth) potentialsV (x, ξ), wherethed-parametersξ = (ξ1, · · · , ξd) ∈ O ⊂ R

d are
simply taken to be a given set ofd frequenciesλni

≡ √
µni

:

ξi ≡ √
µni

≡ λni
, i = 1, · · · , d (3.3)

whereµni
are (positive) eigenvalues of5 A.

We may also (and shall) require that there exists a positiveδ1 > 0 such that

|µk − µh| > δ1 , (3.4)

for all k > h except whenk is even andh = k − 1 (in which caseµk andµh might even
coincide).

Notice that, in particular, havingd eigenvalues asindependentparameters excludes
the constant potential caseV ≡ constant (where, of course, all eigenvalues are double:
µ2j−1 = µ2j = j2 + V ). In fact, this case seems difficult to be handled by KAM
approach even in the finite dimensional case. Such difficulty does not arise, instead, in
the remarkable alternative approach developed by Craig, Wayne [7] and Bourgain [3,4].

Equation (3.1) may be rewritten as

u̇ = v, v̇ + Au = f (u), (3.5)

which, as is well known, may be viewed as the (infinite dimensional) Hamiltonian
equationṡu = Hv, v̇ = −Hu associated to the Hamiltonian

H = 1

2
(v, v) + 1

2
(Au, u) +

∫
T

g(u) dx, (3.6)

5 Plenty of such potentials may be constructed with, e.g., the inverse spectral theory.



504 L. Chierchia, J. You

whereg is a primitive of(−f ) (with respect to theu variable) and(·, ·) denotes the
scalar product inL2.

As in [15], we introduce coordinatesq = (q0, q1, · · · ), p = (p0, p1, · · · ) through
the relations

u(x) =
∑
n∈N

qn√
λn

φn(x), v =
∑
n∈N

√
λnpnφn(x),

where6 λn ≡ √
µn. System (3.5) is then formally equivalent to the lattice Hamiltonian

equations

q̇n = λnpn, ṗn = −λnqn − ∂G

∂qn

, G ≡
∫

T

g(
∑
n∈N

qn√
λn

φn)dx , (3.7)

corresponding to the Hamiltonian functionH = ∑
n∈N λn(q

2
n + p2

n) + G(q). Rather
than discussing the above formal equivalence, we shall, following [15], use the following
elementary observation (proved in the Appendix):

Proposition 3.1.LetV be analytic (respectively, smooth), letI be an interval and let

t ∈ I → (q(t), p(t)) ≡
(
{qn(t)}n≥0, {pn(t)}n≥0

)
be an analytic (respectively, smooth7) solution of (3.7) such that

sup
t∈I

∑
n∈N

(
|qn(t)| + |pn(t)|

)
na enρ < ∞ (3.8)

for someρ > 0 anda = 0 (respectively, forρ = 0 anda big enough). Then

u(t, x) ≡
∑
n∈N

qn(t)√
λn

φn(x),

is an analytic (respectively, smooth) solution of (3.1).

Before invoking Theorem 1 we still need some manipulations. We first switch to
complex variables:wn = 1√

2
(qn + ipn), w̄n = 1√

2
(qn − ipn). Equations (3.7) read then

ẇn = −iλnwn − i
∂G̃

∂w̄n

, ˙̄wn = iλnw̄n + i
∂G̃

∂wn

, (3.9)

where the perturbatioñG is given by

G̃(w) =
∫

T

g(
∑
n∈N

wn + w̄n√
2λn

φn)dx. (3.10)

Next we introduce standard action-angle variables(θ, I ) = ((θ1, · · · , θd), (I1, · · · , Id))

in the(wn1, · · · , wnd
, w̄n1, · · · , w̄nd

)-space by letting,

Ii = wni
w̄ni

, i = 1, · · · , d,

6 Recall that, for simplicity, we assume that all eigenvaluesµn are positive.
7 Regularity refers to the componentsqn andpn.
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so that the system (3.9) becomes

dθj

dt
= ωj + PIj

,
dIj

dt
= −Pθj

, j = 1, · · · , d,

dwn

dt
= −iλnwn − iPw̄n,

dw̄n

dt
= iλnw̄n + iPwn, n 6= n1, n2, · · · , nd, (3.11)

whereP is justG̃ with the(wn1, · · · , wnd
, w̄n1, · · · , w̄nd

)-variables expressed in terms
of the(θ, I ) variables and thefrequenciesω = (ω1, ..., ωd) coincide with the parameter
ξ introduced in (3.3):

ωi ≡ ξi = λni
. (3.12)

The Hamiltonian associated to (3.11) (with respect to the symplectic formdI ∧ dθ +
i
∑

n dwn ∧ dw̄n) is given by

H = 〈ω, I 〉 +
∑

n6=n1,··· ,nd

λnwnw̄n + P(θ, I, w, w̄, ξ). (3.13)

Remark.Actually, in place ofH in (3.13) one should consider thelinearizationof H

around a given pointI0 and letI vary in a small ballB (of radius 0 < s � |I0|)
in the “positive” quadrant{Ij > 0}. In such a way the dependence ofH upon I is
obviously analytic. For notational convenience we shall however do not report explicitly
the dependence ofH on I0.

Finally, to put the Hamiltonian in the form (2.9) we couple the variables(wn, w̄n)

corresponding to “closer” eigenvalues. More precisely, we letzn = (w2n−1, w2n, w̄2n−1,
w̄2n) for large8 n, sayn > n̄ > nd and denote byz0 = ({wn} 0≤n≤n̄

n 6=n1,...,nd

, {w̄n} 0≤n≤n̄
n 6=n1,...,nd

)
the remaining conjugated variables. The Hamiltonian (3.13) takes the form

H = 〈ω, I 〉 + 1

2

∑
n∈N

〈Anzn, zn〉 + P(θ, I, z, ξ), (3.14)

where

An = Diag(λ2n−1, λ2n, λ2n−1, λ2n)

(
0 I2
I2 0

)

= λ2n

(
0 I2
I2 0

)
+



0 0 λ2n−1 − λ2n 0
0 0 0 0

λ2n−1 − λ2n 0 0 0
0 0 0 0


 ,

for n > nd , whileA0 = Diag({λn}, {λn}; 1 ≤ n ≤ nd, n 6= n1, · · · , nd)

(
0 Id0

Id0 0

)
with

d0 = n̄ + 1 − d.
The perturbationP in (3.14) has the following (nice) regularity property.

8 Compare (A1).
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Lemma 3.1.Suppose thatV is real analytic inx (respectively, belongs to the Sobolev
spaceHk(T) for somek ∈ N). Then for small enoughρ > 0 (respectively,a > 0),
r > 0 ands > 0 one has

‖XP ‖a+1/2,ρ
Da,ρ (r,s),O = O(|z|2a,ρ) ; (3.15)

here the parametera is taken to be 0 (respectively, the parameterρ is taken to be 0).

A proof of this lemma is given in the Appendix. In fact,XP is even more “regular”
(a fact, however, not needed in what follows): (3.15) holds with 1 in place of 1/2.

The Hamiltonian (3.14) is seen to satisfy all the assumptions of Theorem 1 with:
dn = 4, n ≥ 1; d0 = n̄ + 1 − d; d̄ = max{d0, 4}; b = 1; δ = 2; δ1 chosen as in (3.4);
ā − a = 1

2. Thus Theorem 1 yields the following

Theorem 2.Consider a family of 1D nonlinear wave equation (3.1) parameterized by
ξ ≡ ω ∈ O as above withV (·, ξ) real-analytic (respectively, smooth). Then for any
0 < γ � 1, there is a subsetOγ of O with meas(O\Oγ ) → 0 asγ → 0, such that
(3.1)ξ∈Oγ

has a family of small-amplitude (proportional to some power ofγ ), analytic
(respectively, smooth) quasi-periodic solutions of the form

u(t, x) =
∑
n

un(ω
′
1t, · · · , ω′

d t)φn(x),

whereun : T
d → R andω′

1, · · · , ω′
d are close toω1, · · · , ωd .

Remark.As mentioned above, our KAM theorem (which applies only to the case that
not all the eigenvalues are multiple9 and under the hypothesis that allµn’s are positive)
implies that the quasi-periodic solutions obtained arelinearly stable. In the case that all
the eigenvalues are double (as in the constant potential case), one should not expect linear
stability (see the example given by Craig, Kuksin and Wayne [6]). We also notice that,
essentially with only notational changes, the proof of the above theorem goes through
in the case that some of the eigenvalues are negative.

4. KAM Step

Theorem 1 will be proved by a KAM iteration which involves an infinite sequence of
change of variables.

At each step of the KAM scheme, we consider a Hamiltonian vector field with

Hν = Nν + Pν,

whereNν is an “integrable normal form” andPν is defined in some set of the form10

D(sν, rν) × Oν .
We then construct a map11

8ν : D(sν+1, rν+1) × Oν+1 ⊂ D(rν, sν) × Oν → D(rν, sν) × Oν

9 Recall that we require that the torus frequencies are independent parameters.
10 Recall the notations from Section 2.
11 Recall that the parametersa, ρ and ā are fixed throughout the proof and are therefore omitted in the

notations.
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so that the vector fieldXHν◦8ν defined onD(rν+1, sν+1) satisfies

‖XHν◦8ν − XNν+1‖rν+1,sν+1,Oν+1 ≤ εκ
ν

with some new normal formNν+1 and for some fixedν-independent constantκ > 1.
To simplify notations, in what follows, the quantities without subscripts refer to

quantities at theνth step, while the quantities with subscripts+denotes the corresponding
quantities at the(ν + 1)th step. Let us then consider the Hamiltonian

H = N + P ≡ e + 〈ω, I 〉 + 1

2

∑
n∈N

〈Anzn, zn〉 + P, (4.1)

defined inD(r, s)×O; theAn’s are symmetric matrices.We assume thatξ ∈ O satisfies12

(for a suitableτ > 0 to be specified later)

|〈k, ω〉−1| <
|k|τ
γ

, ‖(〈k, ω〉Idi
+ AiJdi

)−1‖ < (
|k|τ
γ

)d̄ ,

‖(〈k, ω〉Ididj
+ (AiJdi

) ⊗ Idj
− Idi

⊗ (Jdj
Aj ))

−1‖ < (
|k|τ
γ

)d̄
2
, (4.2)

We also assume that

max
|p|≤d̄2

‖∂pAn

∂ξp
‖ ≤ L, (4.3)

onO, and

‖XP ‖r,s,O ≤ ε. (4.4)

We now let 0< r+ < r, and define

s+ = 1

2
sε

1
3 , ε+ = γ −c0(r − r+)ε

4
3 , (4.5)

where
0(t) ≡ sup

u≥1
uce− 1

4ut ∼ t−c

for t > 0. Here and later, the letterc denotes suitable (possibly different) constants that
do not depend on the iteration step13.

We now describe how to construct a setO+ ⊂ O and a change of variables8 :
D+ × O+ = D(r+, s+) × O+ → D(r, s) × O, such that the transformed Hamiltonian
H+ = N+ + P+ ≡ H ◦ 8 satisfies all the above iterative assumptions with new
parameterss+, ε+, r+, γ+, L+ and withξ ∈ O+.

12 The tensor product (or direct product) of twom × n, k × l matricesA = (aij ), B is a(mk) × (nl) matrix
defined by

A ⊗ B = (aij B) =

 a11B · · · a1nB

· · · · · · · · ·
an1B · · · amnB


 .

‖ · ‖ for matrix denotes the operator norm, i.e.,‖M‖ = sup|y|=1 |My|. Recall thatω and theAi ’s depend on
ξ .

13 Actually, herec = d̄4τ + d̄2τ + d̄2 + 1.
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4.1. Solving the linearized equation.ExpandP into the Fourier–Taylor series

P =
∑
k,l,α

Pklαei〈k,θ〉 I lzα,

wherek ∈ Z
d , l ∈ N

d andα ∈ ⊗n∈NN
dn with finite many non-vanishing components.

Let R be the truncation ofP given by

R(θ, I, z) ≡ P0 + P1 + P2 ≡
∑

k,|l|≤1

Pkl0e
i〈k,θ〉 I l

+
∑

k,|α|=1

Pk0αei〈k,θ〉 zα +
∑

k,|α|=2

Pk0αei〈k,θ〉 zα, (4.6)

with

2|l| + |α| = 2
∑

j=1,··· ,d
lj +

∑
j∈N

|αj | ≤ 2.

It is convenient to rewriteR as follows:

R(θ, I, z) =
∑

k,|l|≤1

Pkl0e
i〈k,θ〉 I l

+
∑
k,i

〈Rk
i , zi〉ei〈k,θ〉 +

∑
k,i,j

〈Rk
jizi, zj 〉ei〈k,θ〉 , (4.7)

whereRk
i , R

k
ji are respectively thedi vector and(dj × di) matrix defined by

Rk
i =

∫
∂P

∂zi

e−i〈k,θ〉dθ |z=0,I=0, Rk
ji = 1 + δ

j
i

2

∫
∂2P

∂zj ∂zi

e−i〈k,θ〉dθ |z=0,I=0. (4.8)

Note thatRk
ij = (Rk

ji)
T .

RewriteH asH = N + R + (P − R). By the choice ofs+ in (4.5) and by the
definition of the norms, it follows immediately that

‖XR‖r,s,O ≤ ‖XP ‖r,s,O ≤ ε. (4.9)

Moreovers+, ε+ are such that, in a smaller domainD(r, s+), we have

‖XP−R‖r,s+ < c ε+. (4.10)

Then we look for a specialF , defined in domainD+ = D(r+, s+), such that the
time one mapφ1

F of the Hamiltonian vector fieldXF defines a map fromD+ → D and
transformsH into H+.

More precisely, by second order Taylor formula, we have

H ◦ φ1
F = (N + R) ◦ φ1

F + (P − R) ◦ φ1
F

= N + {N, F } + R

+1

2

∫ 1

0
ds

∫ s

0
{{N + R, F }, F } ◦ φt

F dt + {R, F } + (P − R) ◦ φ1
F .

= N+ + P+
+{N, F } + R − P000 − 〈ω′, I 〉 −

∑
n∈N

〈R0
nnzn, zn〉, (4.11)
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where

ω′ =
∫

∂P

∂I
dθ |I=0,z=0, R0

nn =
∫

∂2P

∂z2
n

dθ |I=0,z=0,

N+ = N + P000 + 〈ω′, I 〉 +
∑
n∈N

〈R0
nnzn, zn〉,

P+ = 1

2

∫ 1

0
ds

∫ s

0
{{N + R, F }, F } ◦ Xt

F dt + {R, F } + (P − R) ◦ φ1
F .

We shall find a functionF of the form

F(θ, I, z) = F0 + F1 + F2 =
∑

|l|≤1,|k|6=0

Fkl0e
i〈k,θ〉 I l +

∑
i∈N

〈Fk
i , zi〉ei〈k,θ〉

+
∑

|k|+|i−j |6=0

〈Fk
jizi, zj 〉ei〈k,θ〉 , (4.12)

satisfying the equation

{N, F } + R − P000 − 〈ω′, I 〉 −
∑
n∈N

〈R0
nnzn, zn〉 = 0. (4.13)

Lemma 4.1.Equation (4.13) is equivalent to

Fkl0 = (i〈k, ω〉)−1Pkl0, k 6= 0, |l| ≤ 1,

(〈k, ω〉Idi
+ Adi

Jdi
)F k

i = iRk
i ,

(〈k, ω〉Idi
+ Adi

Jdi
)F k

ij − Fk
ij (Jdj

Aj ) = iRk
ij , |k| + |i − j | 6= 0.

(4.14)

Proof. InsertingF , defined in (4.12), into (4.13) one sees that (4.13) is equivalent to the
following equations14:

{N, F0} + P0 − 〈ω′, I 〉 = 0,

{N, F1} + P1 = 0,

{N, F2} + P2 −
∑
n∈Z

〈R0
nnzn, zn〉 = 0. (4.15)

The first equation in (4.15) is obviously equivalent, by comparing the coefficients, to the
first equation in (4.14). To solve{N, F1} + P1 = 0, we note that15

{N, F1} = 〈∂IN, ∂θF1〉 + 〈∇zN, J∇zF1〉
= 〈∂IN, ∂θF1〉 +

∑
i

〈∇zi
N, iJdi

∇zi
F1〉

= i
∑
k,i

(〈 〈k, ω〉Fk
i , zi〉 + 〈Aizi, Jdi

F k
i 〉)ei〈k,θ〉

= i
∑
k,i

〈(〈k, ω〉Idi
+ AiJdi

)F k
i , zi〉ei〈k,θ〉 . (4.16)

14 Recall the definition ofPi in (4.6).
15 Recall the definition ofN in (4.1).
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It follows thatFk
i are determined by the linear algebraic system

i(〈k, ω〉Idi
+ AiJdi

)F k
i + Rk

i = 0, i ∈ N, k ∈ Z
d .

Similarly, from

{N, F2} = 〈∂IN, ∂θF2〉 +
∑

i

〈∇zi
N, iJdi

∇zi
F2〉

= i
∑

|k|+|i−j |6=0

(〈 〈k, ω〉Fk
jizi, zj 〉 + 〈Aizi, Jdi

(F k
ji)

T zj 〉 + 〈Ajzj , Jdj
F k

jizi〉)ei〈k,θ〉

= i
∑

|k|+|i−j |6=0

(〈 〈k, ω〉Fk
jizi, zj 〉 + 〈(AjJdj

F k
ji − Fk

jiJdi
Ai)zi, zj 〉)ei〈k,θ〉

= i
∑

|k|+|i−j |6=0

〈(〈k, ω〉Fk
ji + AjJdj

F k
ji − Fk

jiJdi
Ai)zi, zj 〉ei〈k,θ〉 (4.17)

it follows that,Fk
ji is determined by the following matrix equation:

(〈k, ω〉Idj
+ AjJdj

)F k
ji − Fk

ji(Jdi
Ai) = iRk

ji, |k| + |i − j | 6= 0, (4.18)

whereFk
ji, R

k
ji aredj × di matrices defined in (4.12) and (4.7). Exchangingi, j we get

the third equation in (4.14).ut

The first two equations in (4.14) are immediately solved in view of (4.2). In order
to solve the third equation in (4.14), we need the following elementary algebraic result
from matrix theory.

Lemma 4.2.Let A, B, C be respectivelyn × n, m × m, n × m matrices, and letX be
ann × m unknown matrix. The matrix equation

AX − XB = C, (4.19)

is solvable if and only ifIm ⊗ A − B ⊗ In is nonsingular. Moreover,

‖X‖ ≤ ‖(Im ⊗ A − B ⊗ In)
−1‖ · ‖C‖.

In fact, the matrix equation (4.19) is equivalent to the (bigger) vector equation given
by (I ⊗ A − B ⊗ I )X′ = C′, whereX′, C′ are vectors whose elements are just the list
(row by row) of the entries ofX andC. For a detailed proof we refer the reader to the
Appendix in [20] or [12], p. 256.

Remark.Taking the transpose of the third equation in (4.14), one sees that(F k
ij )

T satisfies

the same equation ofFk
ji . Then (by the uniqueness of the solution) it follows thatFk

ji =
(F k

ij )
T .
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4.2. Estimates on the coordinate transformation.We proceed to estimateXF and81
F .

We start with the following

Lemma 4.3.LetDi = D( i
4s, r+ + i

4(r − r+)), 0 < i ≤ 4. Then

‖XF ‖D3,O < c γ −c0(r − r+)ε. (4.20)

Proof. By (4.2), Lemma 4.1 and Lemmata 7.4, 7.5 in the Appendix, we have

|Fkl0|O ≤ |〈k, ω〉|−1|Pkl | < c γ −c|k|ce−|k|(r−r+)εs2−2|l|, k 6= 0,

‖Fk
i ‖O = ‖(〈k, ω〉Idi

+ AiJdi
)−1Rk

i ‖ ≤ ‖(〈k, ω〉Idi
+ AiJdi

)−1‖ · ‖Rk
i ‖

< c γ −c|k|c|Rk
i |,

‖Fk
ij‖O ≤ ‖(〈k, ω〉Ididj

+ (AiJdi
) ⊗ Idj

− Idi
⊗ (Jdj

Aj ))
−1‖ · ‖Rk

ij‖
< c γ −c|k|c‖Rk

ij‖, |k| + |i − j | 6= 0, (4.21)

where‖ · ‖O for matrix is similar to (2.4).
It follows that

1

s2‖Fθ‖D2,O ≤ 1

s2 (
∑

|fkl0| · |I l | · |k| · |ei〈k,θ〉 | +
∑

|Fk
i | · |zi | · |k| · |ei〈k,θ〉 |

+
∑

‖Fk
ij‖ · |zi | · |zj | · |k| · |ei〈k,θ〉 |)

< c γ −c0(r − r+)‖XR‖
< c γ −c0(r − r+)ε, (4.22)

where0(r − r+) = supk |k|ce−|k| 1
4 (r−r+).

Similarly,

‖FI‖D2,O =
∑
|l|≤1

|Fkl0| · |ei〈k,θ〉 | < c γ −c0(r − r+)ε.

Now we estimate‖XF 1‖D2,O. Note that

‖F 1
zi
‖D2,O = ‖

∑
k

F k
i e−i<k,θ>‖D2,O

< c γ −c0
∑
k,i

|Rk
i |e|k|r < c γ −c0‖∂P1

∂zi

‖. (4.23)

It follows that

‖XF 1‖D2,O < c
∑
i∈N

‖F 1
zi
‖D2,Oiaeiρ

< c γ −c0
∑
i∈N

‖∂P1

∂zi

‖iaeiρ < c γ −c0ε,

by the definition of the weighted norm.
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Note that16

‖F 2
zi
‖D2,O = ‖

∑
k,j

(F k
ij + (F k

ij )
T )zj e

i〈k,θ〉 ‖D2,O

< c γ −c0‖∂P2

∂zi

‖. (4.24)

Similarly, we have

‖XF 2‖D2,O < c γ −c0ε. (4.25)

The conclusion of the lemma follows from the above estimates.ut
In the next lemma, we give some estimates forφt

F . The following formula (4.26) will
be used to prove that our coordinate transformations is well defined. Inequality (4.27)
will be used to check the convergence of the iteration.

Lemma 4.4.Letη = ε
1
3 , D i

2η
= D(r+ + i−1

2 (r − r+), i
2ηs), i = 1, 2. We then have

φt
F : D 1

2η → Dη, 0 ≤ t ≤ 1, (4.26)

if ε � (1
2γ −c0−1)

3
2 . Moreover,

‖Dφ1
F − Id‖D 1

2η
< c γ −c0ε. (4.27)

Proof. Let

‖DmF‖D,O = max{| ∂ |i|+|l|+p

∂θi∂I l∂zα
F |D,O, |i| + |l| + |α| = m ≥ 2}.

Note thatF is polynomial inI of order 1, inz of order 2. From17 (4.25) and the
Cauchy inequality, it follows that

‖DmF‖D1,O < c γ −c0ε, (4.28)

for anym ≥ 2.
To get the estimates forφt

F , we start from the integral equation,

φt
F = id +

∫ t

0
XF ◦ φs

F ds

so thatφt
F : D 1

2η → Dη, 0 ≤ t ≤ 1, as it follows directly from (4.28). Since

Dφ1
F = Id +

∫ 1

0
(DXF )Dφs

F ds = Id +
∫ 1

0
J (D2F)Dφs

F ds,

it follows that

‖Dφ1
F − Id‖ ≤ 2‖D2F‖ < c γ −c0ε. (4.29)

The estimates of second order derivativeD2φ1
F follows from (4.28). ut

16 Recall (2.3), the definition of the norm.
17 Recall the definition of the weighted norm in (2.6).
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4.3. Estimates for the new normal form.The mapφ1
F defined above transformsH into

H+ = N+ + P+(see (4.11) and (4.13)) with

N+ = e+ + 〈ω+, y〉 + 1

2

∑
i∈Z+

〈A+
i zi , zi〉, (4.30)

where

e+ = e + P000, ω+ = ω + P0l0(|l| = 1), A+
i = Ai + 2R0

ii . (4.31)

Now we prove thatN+ shares the same properties withN . By the regularity ofXP

and by Cauchy estimates, we have

|ω+ − ω| < ε, ‖R0
ii‖ < εi−δ (4.32)

with δ = ā − a > 0. It follows that

‖(A+
i )−1‖ ≤ ‖A−1

i ‖
1 − 2‖A−1

i R0
ii‖

≤ 2‖A−1
i ‖,

‖(〈k, ω + P0l00〉Idi
− Jdi

A+
i )−1‖ ≤ ‖(〈k, ω〉Idi

+ AiJdi
)−1‖

1 − ‖(〈k, ω〉Idi
+ AiJdi

)−1‖ε ≤ (
|k|τ
γ+

)d̄ , (4.33)

provided|k|d̄τ ε < c (γ d̄ − γ d̄+).
Similarly, we have

‖(〈k, ω + P0l00〉Ididj
+ (A+

i Jdi
) ⊗ Idj

− Idi
⊗ (Jdj

A+
j ))−1‖ ≤ (

|k|τ
γ+

)d̄
2
, (4.34)

provided|k|d̄2τ ε < c (γ d̄2−γ d̄2

+ ). This means that in the next KAM step, small denomi-

nator conditions are automatically satisfied for|k| < K whereKd̄2τ ε < c (γ d̄2−γ 4d̄2

+ ).
The following bounds wil be used later for the measure estimates:

|∂
l(ω+ − ω)

∂ξ l
|O ≤ ε, |∂

l(A+
i − Ai)

∂ξ l
|O < c εi−δ, (4.35)

for |l| ≤ d̄2 (by definition of the norms).

4.4. Estimates for the new perturbation.To complete the KAM step we have to estimate
the new error term.

By the definition ofφ1
F and Lemma 4.4,

H ◦ φ1
F = N+ + P+

is well defined inD 1
2η. Moreover, we have the following estimates:

‖XP+‖D 1
2η

= ‖X∫ 1
0 dt

∫ s
0 {{N+R,F },F }◦φs

F +{R,F }+(P−R)◦φ1
F

‖D 1
2η

≤ ‖X
(
∫ 1

0 dt
∫ t

0 {{N+R,F },F }◦φs
F

‖D 1
2η

+ ‖X(P−R)◦φ1
F
‖D 1

2η

≤ ‖X{{N+R,F },F }‖Dη + ‖XP−R‖Dη

< c γ −c02ε
4
3 < c ε+ (4.36)

by (4.9) and Lemma 7.3.
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Thus, there exists a big constantc, independent of iteration steps, such that

‖XP+‖r+,s+ = ‖XP+‖ā,ρ
D 1

2η

≤ cγ −c02ηε = cε+. (4.37)

The KAM step is now completed.

5. Iteration Lemma and Convergence

For any givens, ε, r, γ , we define, for allν ≥ 1, the following sequences

rν = r(1 −
ν+1∑
i=2

2−i ),

εν = cγ −c
ν 0(rν−1 − rν)

2ε
4
3
ν−1,

γν = γ (1 −
ν+1∑
i=2

2−i ),

ην = 1

2
ε

1
3
ν , Lν = Lν−1 + εν−1,

sν = 1

2
ην−1sν−1 = 2−ν(

ν−1∏
i=0

εi)
1
3 s0,

Kν = c

2

(
ε−1
ν−1(γ

d̄2

ν−1 − γ d̄2

ν )
) 1

d̄2τ ,

Dν = Da,ρ(rν, sν), (5.1)

wherec is the constant in (4.37). The parametersr0, ε0, γ0, L0, s0, K0 are defined re-
spectively to ber, ε, γ, L, s, 1.

Note that

9(r) =
∞∏
i=1

[0(ri−1 − ri)]2( 3
4 )i ,

is a well defined finite function ofr.

5.1. Iteration Lemma.The preceding analysis may be summarized as follows.

Lemma 5.1.Suppose thatε0 = ε(d, d̄, δ, δ1, ā − a, L, τ, γ ) is small enough. Then the
following holds for allν ≥ 0. Let

Nν = eν + 〈ων(ξ), I 〉 +
∑
i∈N

〈Aν
i (ξ)zi, zi〉,

be a normal form with parametersξ satisfying

|〈k, ων〉−1| <
|k|τ
γν

, ‖(i〈k, ων〉Idi
+ Aν

i Jdi
)−1‖ < (

|k|τ
γν

)d̄ ,

‖(i〈k, ων〉Ididj
+ (Aν

i Jdi
) ⊗ Idj

− Idi
⊗ (Jdj

Aν
j ))

−1‖ < (
|k|τ
γν

)d̄
2

(5.2)
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on a closed setOν of Rn for all k 6= 0, i, j ∈ Z. Moreover, suppose thatων(ξ), Aν
i (ξ)

areCd̄2
smooth and satisfy

|∂
d̄2

(ων − ων−1)

∂ξ d̄2
| ≤ εν−1, |∂

d̄2
(Aν

i − Aν−1
i )

∂ξ d̄2
| ≤ εν−1i

−δ,

onOν (in Whitney’s sense).
Finally, assume that

‖XPν ‖ā,ρ

Dν,Oν
≤ εν.

Then, there is a subsetOν+1 ⊂ Oν ,

Oν+1 = Oν\ ∪|k|≥Kν+1 Rν+1
kij (γν),

where

Rν+1
kij (γν+1) =


ξ ∈ Oν : |

|〈k,ων+1〉−1|> |k|τ
γν

, ‖(〈k,ων 〉I2m+(Aν+1
i Jdi

)−1‖≥(
|k|τ
γν

)d̄ ,or
‖(〈k,ων+1>Ididj

+(Aν+1
j Jdi

)⊗Idj
−Idi

⊗(Jdj
Aν+1

j ))−1‖>(
|k|τ
γν

)d̄
2


 ,

with ων+1 = ων + P ν
0l0, and a symplectic change of variables

8ν : Dν+1 × Oν+1 → Dν, (5.3)

such thatHν+1 = Hν ◦ 8ν , defined onDν+1 × Oν+1, has the form

Hν+1 = eν+1 + 〈ων+1, I 〉 +
∑
i∈N

〈Aν+1
i zi , zi〉 + Pν+1, (5.4)

satisfying

max
l≤d̄2

|∂
l(ων+1(ξ) − ων(ξ))

∂ξ l
| ≤ εν, max|l|≤d̄2|∂

l(Aν+1
i (ξ) − Aν

i )

∂ξ l
| ≤ ενi

−δ, (5.5)

‖XPν+1‖ā,ρ

Dν+1,Oν+1
≤ εν+1. (5.6)

5.2. Convergence.Suppose that the assumptions of Theorem 1 are satisfied. To apply
the iteration lemma withν = 0, recall that

ε0 = ε, γ0 = γ, s0 = s, L0 = L, N0 = N, P0 = P,

O0 =


ξ ∈ O : |

|〈k,ω〉−1|< |k|τ
γ

,‖(〈k,ω〉Idi
+AiJdi

)−1‖<(
|k|τ
γ

)d̄ ,or

‖(〈k,ω〉Idi dj
+(AiJdi

)⊗Idj
−Idi

⊗(Jdj
Aj ))−1‖<(

|k|τ
γ

)d̄
2


 ,
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(with ε andγ small enough). Inductively, we obtain the following sequences:

Oν+1 ⊂ Oν,

9ν = 81 ◦ · · · ◦ 8ν : Dν+1 × Oν → D0, ν ≥ 0,

H ◦ 9ν = Hν+1 = Nν+1 + Pν+1.

Let Oγ = ∩∞
ν=0Oν . As in [16], thanks to Lemma 4.4, we may conclude that

Nν, 9
ν, D9ν, ων+1 converge uniformly onD∞ × Oγ = D(1

2r, 0, 0) × Oγ with

N∞ = e∞ + 〈ω∞, I 〉 + 〈A∞z, z〉 = e∞ + 〈ω∞, I 〉 +
∑
i∈N

〈A∞
i zi , zi〉.

Since
εν+1 = cγ −c

ν 0(rν − rν+1)εν ≤ (cγ −c9(r)ε)(
4
3 )ν .

It follows thatεν+1 → 0 providedε is sufficiently small.
Let φt

H be the flow ofXH . SinceH ◦ 9ν = Hν+1, we have that

φt
H ◦ 9ν = 9ν ◦ φt

Hν+1
. (5.7)

The convergence of9ν, D9ν, ων+1, XHν+1 implies that one can take limit in (5.7) so
as to get

φt
H ◦ 9∞ = 9∞ ◦ φt

H∞ , (5.8)

onD(1
2r, 0, 0) × Oγ , with

9∞ : D(
1

2
r, 0, 0) × Oγ → Pa,ρ × R

d .

From (5.8) it follows that

φt
H (9∞(Td × {ξ})) = 9∞φt

N∞(Td × {ξ}) = 9∞(Td × {ξ}),
for ξ ∈ Oγ . This means that9∞(Td × {ω}) is an embedded torus invariant for the
original perturbed Hamiltonian system atξ ∈ Oγ . We remark here the frequencies
ω∞(ξ) associated to9∞(Td × {ξ}) is slightly different fromξ . The normal behaviour
of the invariant torus is governed by the matrixA∞

i = ∑
ν∈N Aν

i . ut

6. Measure Estimates

At each KAM step, we have to exclude the following resonant set ofξ ’s:

Rν =
⋃

|k|>Kν,i,j

(Rν
k ∪ Rν

ki ∪ Rν
kij ) ,

the setsRν
k, Rν

ki , Rν
kij being, respectively,

{ξ ∈ Oν : |〈k, ων〉−1| >
|k|τ
γν

}, {ξ ∈ Oν : ‖M−1
1 ‖ > (

|k|τ
γν

)d̄},

and {ω ∈ Oν : ‖M−1
2 ‖ > (

|k|τ
γν

)d̄
2}, (6.1)
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where

M1 = 〈k, ων〉Idi
+ Aν

i Jdi
,

M2 = 〈k, ων〉Ididj
+ (Aν

jJdj
) ⊗ Idi

− Idj
⊗ (Jdi

Aν
i ). (6.2)

In the set{ξ ∈ O : ‖M(ω)−1‖ > C} are included also theξ ’s for which M is not
invertible. Recall thatων(ξ) = ξ +∑ν−1

j=0 P
j
000(ξ) with18 |∑P

j
000(ξ)|

Cd̄2 ≤ ε, Aν
i =

Ai + 2
∑

ν R
0,ν
ii with ‖∑ν R

0,ν
ii ‖ = O(εi−δ).

Lemma 6.1.There is a constantK0 such that, for anyi, j, and|k| > K0,

meas(Rν
k ∪ Rν

ki ∪ Rν
kij ) < c

γ

|k|τ−1 .

Proof. As it is well known

meas(Rν
k) ≤ γν

|k|τ .

The setRν
ki is empty if i > const |k|, while, if i ≤ const |k|, from Lemmata 7.6, 7.7

there follows that

meas(Rν
ki) < c

γν

|k|τ−1 .

We now give a detailed proof for the most complicated estimate, i.e., the estimate on
the measure of the setRν

kij . Note that the main part ofM2 is diagonal19. In fact M2

can be rewritten as

M2 ≡ Aij + Bν
ij ,

with

Aij = 〈k, ων+1〉Ididj
+ λj Diag(Idj /2, −Idj /2) ⊗ Idi

− λiIdj
⊗ Diag (−Idi/2, Idi/2).

(6.3)

The matrixAij is diagonal with entriesλkij = 〈k, ων〉 ± λi ± λj in the diagonal, where
λi, λj are given in (2.10) and± sign depends on the position.Bν

ij is a matrix of size

O(i−δ + j−δ) sinceAν
i = Ai + Bi + O(i−δ) = Ai + O(i−δ) by (2.11) and (4.32).

In the rest of the proof we drop in the notation the indicesi, j since they are fixed.
Now either allλkij ≤ |k| or there are some diagonal elementsλkij > |k|. We first
consider the latter case. By permuting rows and columns, we can find two non-singular
matricesQ1, Q2 with elements 1 or 0 such that

Q1(A + Bν)Q2 =
(

A11 0
0 A22

)
+
(

B̃11 B̃12

B̃21 B̃22

)
, (6.4)

whereA11, A22 are diagonal matrices andA11 contains all diagonal elementsλkij which
are bigger than|k|. Moreover, definingQ3, Q4, D as

Q3 =
(

I 0̃
−B̃21(A11 + B̃11)

−1 I

)
, Q4 =

(
I − (A11 + B̃11)

−1B̃12
0 I

)
,

18 Recall (4.32), (5.5).
19 Recall (2.10), (6.2).
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and

D = A22 + B̃22 − B̃21(A11 + B̃11)
−1B̃12 = A22 + O(i−δ + j−δ), (6.5)

we have

Q3Q1

(
A + Bν+1

)
Q2Q4 =

(
A11 + B11 0

0 D

)
. (6.6)

For ξ ∈ O such thatD is invertible, we have

(A + Bν)−1 = Q2Q4

(
(A11 + B11)

−1 0
0 D−1

)
Q3Q1. (6.7)

Since the norm ofQ1, Q2, Q3, Q4, (A11 + B11)
−1 are uniformly bounded, it follows

from (6.7) that

{
ξ ∈ Oν : ‖(A + Bν)−1‖ >

( |k|τ
γν

)d̄2}
⊂
{
ξ ∈ Oν : ‖D−1‖ > c

( |k|τ
γν

)d̄2}
.

(6.8)

If all λkij < c |k| we simply takeD = A + Bν . Since all elements inD are of size
O(|k|), by Lemma 7.6 in the Appendix, we have

{
ξ ∈ Oν : ‖D−1‖ > c

( |k|τ
γν

)d̄2}
⊂
{
ξ ∈ Oν : | detD| < c

(
γν

|k|τ−1

)d̄2}
. (6.9)

Let N denote the dimension ofD (which is not bigger than̄d2). SinceD = A22 +
O(i−δ + j−δ), theN th order derivative of detD with respective to someξi is bounded
away from zero by1

2d
|k|N (provided that|k| is bigger enough). From (6.8), (6.9) and

Lemma 7.7, it follows that

measRν
kij = meas

{
ξ ∈ Oν : ‖

(
A + Bν

)−1

‖ >

( |k|τ
γν

)d̄2}

≤ meas

{
ξ ∈ Oν : | detD| < c

(
γν

|k|τ−1

)d̄2}

< c

(
γν

|k|τ−1

) d̄2
N

< c
γ

|k|τ−1 . (6.10)

This proves the lemma.ut

Lemma 6.2.If i > c |k|, thenRν
ki = ∅; If max{i, j} > c |k| 1

b−1 , i 6= j for b > 1
or |i − j | > const|k| for b = 1, thenRν

kij = ∅, where the constantc depends on the
diameter ofO.
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Proof. As above, we only consider the most complicated case, i.e., the case ofRν
kij .

Notice that max{i, j} > const|k| 1
b−1 for b > 1 or |i − j | > const|k| for b = 1 implies

|λi ± λj | = (jb − ib)(1 + O(i−δ + j−δ))

≥ 1

2
|j − i|(ib−1 + jb−1)(1 + O(i−δ + j−δ)) ≥ const|k|. (6.11)

It follows thatAij defined in (6.3) is invertible and

‖(Aij )
−1‖ < |k|−1.

By Neumann series, we have‖(Aij + Bν
ij )

−1‖ < 2|k|−1 for largek (say|k| > K0), i.e,
Rν

kij = ∅. ut
Lemma 6.3.For b ≥ 1, we have

meas
(⋃

ν≥0

Rν
) = meas

⋃
ν,|k|>Kν,i,j

(Rν
k ∪ Rν

ki ∪ Rν
kij ) < c γ

δ
1+δ .

Proof. The measure estimates forR0 comes from our assumption (2.12). We then con-
sider the estimate

meas
(⋃

ν

⋃
|k|>Kν

⋃
i,j

Rν
kij

)
,

which is the most complicate one.
Let us consider separately the caseb > 1 and the caseb = 1. We first considerb > 1.

By Lemmata 6.1, 6.2, if|k| > K0 andi 6= j , we have

meas
(⋃

i 6=j

Rkij

) = meas
( ⋃

i 6=j ;i,j<C|k| 1
b−1

Rk
ij

)
< c

|k| 2
b−1 γ

|k|τ−1 = γ

|k|τ−1− 2
b−1

. (6.12)

Fori = j . As in Lemma 6.1, we can findQ1, Q2 so that (6.4) holds with the diagonal el-
ements ofA11 being< k, ων > ±2λi andA22 =< k, ων > I . Repeating the arguments
in Lemma 6.1, we get (6.9) and

Rν
kii ⊂ {

ξ : | detD| < c
( γν

|k|τ−1

)d̄2}
= {

ξ :
∏

|〈k, ων〉 + O
(
i−δ
)| < c

( γν

|k|τ−1

)d̄2}
⊂ {

ξ : |〈k, ων〉| < c
( γ

|k|τ−1 + 1

iδ

)} ≡ Qk
ii . (6.13)

SinceQk
ii ⊂ Qk

i0i0
for i ≥ i0, using (6.10), we find that

meas
(⋃

i

Rkii

) ≤
∑
i<i0

|Rkii | + |Qk
i0i0

| < c

(
i0γ

|k|τ−1 + 1

i−δ
0

)
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for anyi0. Following Pöschel ([16]), we choosei0 = ( |k|τ−1

γ

) 1
1+δ , so that

meas
(⋃

i

Rkii | < c
( γ

|k|τ−1

) δ
1+δ . (6.14)

Let τ > max{d + 2 + 2
b−1, (d + 1)

1+δ
δ + 1}. As in (6.12), (6.14), we find

meas
( ⋃

|k|>Kν

⋃
i,j

Rν
kij

(
γν

)) = meas
( ⋃

|k|>Kν

⋃
i 6=j

Rν
kij

(
γν

))

+meas
( ∪|k|>Kν

⋃
i

Rν
kii

(
γν+1

))
< c K−1

ν γ
δ

1+δ .

The quantity meas
(⋃

ν

⋃
|k|>Kν

⋃
i,j Rν

kij

)
is then bounded by

∑
ν≥1

meas
( ⋃

|k|>Kν

⋃
i,j

Rν
kij

(
γν

))
< c γ

δ
1+δ

∑
ν≥0

K−1
ν < c γ

δ
1+δ , (6.15)

providedτ > max{d + 2 + 2
b−1, (d + 1)

1+δ
δ + 1}. This concludes the proof forb > 1.

Consider nowb = 1. Without loss of generality, we assumej ≥ i andj = i + m.
Note that Lemma 6.2 impliesRk

ij = ∅ for m > C|k|. Following the scheme of the above
proof, we find ⋃

k,i,j

Rkij =
⋃
k,i,m

Rki,i+m =
⋃

k,m<C|k|

⋃
i

Rki,i+m

⊂
⋃

k,m<C|k|

( ⋃
i<i0

Rki0,i0+m ∪ Qki0,i0+m

)
, (6.16)

where

Qki0,i0+m = {
ξ : |〈k, ων〉 + m| < c

( γ

|k|τ−1 + 1

i−δ

)}
.

Again, takingi1+δ
0 = |k|τ−1

γ
, we have, for fixedk,

|
⋃
i,j

Rk
ij | < c

∑
m<C|k|

( i0γ

|k|τ−1 + i−δ
0

)

< c |k|( γ

|k|τ−1

) δ
1+δ . (6.17)

As in the caseb > 1, we have that meas(
⋃

ν

⋃
|k|>Kν

⋃
i,j Rν

kij ) is bounded byO(γ
δ

1+δ )

if τ > (d + 1)
1+δ
δ + 1. ut

Remark.In (6.13),| detD| = ∏ |〈k, ω〉 + O(i−δ)| (guaranteed by the regularity prop-
erty) is crucial for the proof.



KAM Tori for 1D Nonlinear Wave Equations 521

7. Appendix

Proof of Proposition 3.1.From the hypotheses there follows that the eigenfuctionsφn

are analytic (respectively, smooth) and bounded with, in particular,

sup
R

(|φ′
n| + |φ′′

n |) ≤ constµn.

Thus, the sum definingu(t, x) is uniformly convergent inI × [0, 2π ]. Since

∂G

∂qn

= − 1√
λn

∫
f (
∑

k

qk√
λk

φk)φn,

one has

|qn| ≤ const
e−nρ

na
, |q̇n| ≤ constλn

e−nρ

na
≤ const

e−nρ

na−1 ,

|q̈n| ≤ const
e−nρ

na+1 .

Thus (ifa is big enough, in the smooth case)u(t, x) is aC2 function and

utt + Au =
∑ q̈n√

λ
φn + qn√

λn

Aφn

=
∑(∫

f (u)φn

)
φn = f (u),

(7.1)

where in the last equality we used the fact thatf (u) is a smooth periodic function.ut

Lemma 7.1.

‖FG‖D(r,s) ≤ ‖F‖D(r,s)‖G‖D(r,s).

Proof. Since(FG)klp = ∑
l Fk−k′,l−l′,p−p′Gk′l′p′ , we have that

‖FG‖D(r,s) = sup
D

∑
klp

|(FG)klp| |y|l |zα|e|k|r

≤ sup
D

∑
klp

∑
l′

|Fk−k′,l−l′,p−p′Gk′l′p′ | |y|l |zα|e|k|r

= ‖F‖D(r,s)‖G‖D(r,s) (7.2)

and the proof is finished.ut
Lemma 7.2 (Cauchy inequalities).

‖Fθi
‖D(r−σ,s) ≤ cσ−1‖F‖D(r,s),

and

‖FI‖D(r, 1
2 s) ≤ 2

1

s2‖F‖D(r,s), ‖Fzn‖D(r, 1
2 s) ≤ 2

naenρ

s
‖F‖D(r,s).
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Let {·, ·} is Poisson bracket of smooth functions

{F, G} =
∑(

∂F

∂θi

∂G

∂Ii

− ∂F

∂Ii

∂G

∂θi

)
+
∑
i∈N

〈
∂F

∂zi

, iJdi

∂G

∂zi

〉
, (7.3)

whereJdi
are standard symplectic matrix inRdi .

Lemma 7.3.If

‖XF ‖r,s < ε′, ‖XG‖r,s < ε′′,

then

‖X{F,G}‖r−σ,ηs < c σ−1η−2ε′ε′′, η � 1.

Proof. Note that

d

dzn

{F, G} = 〈Fθzn, GI 〉 + 〈Fθ , GIzn〉 − 〈FIzn, Gθ 〉 − 〈FI , Gθzn〉

+
∑
i∈N

(〈Fzizn , Jdi
Gzi

〉 + 〈Fzi
, Jdi

Gzizn〉). (7.4)

Since

‖〈Fθzn, GI 〉‖D(r−σ,s) < c σ−1‖Fzn |‖ · ‖Gy‖,
‖〈Fθ , GIzn〉‖D(r−σ, 1

2 s) < c s−2‖Fθ‖ · ‖Gzn‖,
‖〈FIzn, Gθ 〉‖D(r, 1

2 s) < c s−2‖Fzn‖ · ‖Gθ‖,
‖〈FI , Gθzn〉‖D(r−σ,s) < c σ−1‖FI‖ · ‖Gzn‖,

‖〈Fzizn , Jdi
Gzi

〉‖D(r, 1
2 s) < c s−1‖Fzn‖ · ‖Gzi

‖iaeiρ,

‖〈Fzizn , Jdi
Gzi

〉‖D(r, 1
2 s) < c s−1‖Fzn‖ · ‖Gzi

‖iaeiρ, (7.5)

it follows from the definition of the weighted norm (see (2.6)), that

‖X{F,G}‖r−σ,ηs < c σ−1η−2ε′ε′′.

In particular, ifη ∼ ε
1
3 , ε′, ε′′ ∼ ε, we have‖X{F,G}‖r−σ,ηs ∼ ε

4
3 . ut

Lemma 7.4.LetO be a compact set inRd for which (4.2) holds. Suppose thatf (ξ) and
ω(ξ) areCm Whitney-smooth function inξ ∈ O with Cm

W norm bounded byL. Then

g(ξ) ≡ f (ξ)

〈k, ω(ξ)〉
is Cm Whitney-smooth inO with20

‖g‖O < c γ −c|k|cL.

Proof. The proof follows directly from the definition of Whitney’s differentiability.ut
20 Recall the definition in (2.4).
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A similar lemma for matrices holds:

Lemma 7.5.Let O be a compact set inRd for which (4.2) holds. Suppose thatB(ξ),
Ai(ξ) areCm Whitney-smooth matrices andω(ξ) is aWhitney-smooth function inξ ∈ O
bounded byL. Then

C(ξ) = BM−1,

is Cm Whitney-smooth with

‖F‖O < c γ −c|k|cL,

whereM stands for either〈k, ω〉Idi
+ AiJdi

if B is (di × di)-matrix, or 〈k, ω〉Ididj
+

(AiJdi
) ⊗ Idj

− Idi
⊗ (Jdj

Aj ) if B is (didj × didj )-matrix,

For aN × N matrix M = (aij ), we denote by|M| its determinant. ConsiderM
as a linear operator on(RN, | · |), where|x| = ∑ |xi |. Let ‖M‖ be its operator norm
and recall that‖M‖ is equivalent to the norm max|aij |; thus disregarding a constant
(depending only on dimensions) we will simply denote‖M‖ = max|aij |.
Lemma 7.6.LetM be aN × N non-singular matrix with‖M‖ < c |k|, then

{ω : ‖M−1‖ > h
} ⊂

{
ω : | detM| < c

|k|N−1

h

}
.

Proof. First, note that ifM is a nonsingularN × N matrix with elements bounded by
|mij | ≤ m, its inverse isM−1 = 1

|M|adjM so that

‖M−1‖ < c
mN−1

|detM|

with a constant depending onN . In particular, ifm = const|k|, |DetM| >
|k|N−1

h
, then

‖M−1‖ < c h.

This proofs the lemma.ut
In order to estimate the measure ofRν+1, we need the following lemma, which has

been proven in [19,21]. A similar estimate is also used by Bourgain [4].

Lemma 7.7.Suppose thatg(u) is a Cm function on the closurēI , where I ⊂ R1

is a finite interval. LetIh = {u : |g(u)| < h} , h > 0. If for some constantd > 0,

|g(m)(u)| ≥ d for all u ∈ I , thenmeas(Ih) ≤ ch
1
m , wherec = 2(2+3+· · ·+m+d−1).

For the proof of Lemma 3.1, we need the following

Lemma 7.8.∑
j∈Z

e−|n−j |r+ρ|j | ≤ Ceρ|n|,
∑

j,n∈Z

|qj |e−|n−j |r+|n|ρ ≤ C|q|ρ

if ρ < r, q ∈ Zρ whereC depends onr − ρ.
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Lemma 7.9.∑
j∈Z

(1 + |n − j |)−K |j |a < c |n|a,
∑

j,n∈Z

|qj |(1 + |n − j |)−k|n|a ≤ C|q|a

if K > a + 1, q ∈ Za,ρ=0, whereC depends onK − a − 1.

The proofs of the above two lemmata are elementary and we omit them.

A direct proof of Lemma 3.1.It is clearly enough to consider the case off (u) equal to
a monomialuN+1 for someN ≥ 1. From (3.10), one can see that the regularity ofG

implies the regularity ofG̃. In the following, we shall give the proof forG.
Suppose that the potentialV (x) is analytic in|Imx| < r (respectively, belongs to

Sobolev spaceHK ) then the eigenfunctions are analytic in|Imx| < r (respectively,
belong toHK+2). If we let φi(x) = ∑

an
i ei〈n,x〉 , then (see, e.g.,[7])

|an
i | < c e−|i−n|r respectively |an

i | < c (1 + |n − i|−K−2).

Recall that

G(q) =
∑

i0,··· ,iN
Ci0···iN

qi0 · · · qiN√
λi0 · · · λiN

,

where

Ci0···iN =
∫

T 1
φi0 · · · φiN dx =

∑
n0+n1+···+nN=0

(

N∏
s=0

a
ns

is
),

with |ans

is
| < c e−|is−ns |r (respectively,|ans

is
| < c (1 + |ns − is |−K−2).

In what follows, we assume eithera = 0, ρ > 0 ora > 0, ρ = 0. Since

Gqj
= (N + 1)

∑
i1,··· ,iN

Cji1···iN
qi1 · · · qiN√
λjλi1 · · · λiN

,

it follows that

‖Gq‖a+ 1
2 ,ρ = ‖Gq0‖ +

∑
j≥1

|Gqj
||j |a+ 1

2 ejρ

< c
∑

j,i1,··· ,iN ,

n0+···+nN =0

|an0
j |jae|j |ρ(

N∏
s=1

|ans

is
qis |)

< c
∑

j,i1,··· ,iN ;
n0+···+nN =0

(1+|j−n0|)−N |j |ae|j |ρ−|n0−j |r
(

N∏
s=1

(1 + |ns − is |)−K−2e−|ns−is |r |qis |
)

< c
∑

i1,··· ,iN ;
n0+···+nN =0

|n0|ae|n0|ρ
(

N∏
s=1

(1 + |ns − is |)−K−2e−|ns−is |r |qis |
)
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< c
∑

i1,··· ,iN ;
n1,··· ,nN

(|
N∑

s=1

ns |)ae|∑N
s=1 ns |ρ

(
N∏

s=1

(1+|ns −is |)−K−2e−|ns−is |r |qis |
)

< c
∑

i1,··· ,iN ;
n1,··· ,nN

(
N∏

s=1

(1 + |ns − is |)−K−2|ns |ae−|ns−is |r+|ns |ρ |qis |
)

< c
∑

i1,··· ,iN

(
N∏

s=1

|is |ae|is |ρ |qis |
)

< c
N∏

s=1


∑

is

|is |ae|is |ρ |qis |

 < c |q|Na,ρ. (7.6)
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