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Abstract: In this paper, one-dimensional (1D) nonlinear wave equations
Uy —uxx + Vu = fu),

with periodic boundary conditions are consider&dis a periodic smooth or analytic
function and the nonlinearity is an analytic function vanishing together with its deriva-
tive atu = 0. It is proved that for “most” potential® (x), the above equation admits
small-amplitude periodic or quasi-periodic solutions corresponding to finite dimensional
invariant tori for an associated infinite dimensional dynamical system. The proof is based
on an infinite dimensional KAM theorem which allows for multiple normal frequencies.

1. Introduction and Results

In the 90’s the celebrated KAM (Kolmogorov—Arnold—Moser) theory has been success-
fully extended to infinite dimensional settings so as to deal with certain classes of partial
differential equations carrying a Hamiltonian structure, including, as a typical example,
wave equations of the form

U — tex + VU = f), fu) = 0w?; (1.1)

see Wayne [17], Kuksin [10] and Pdschel [15]. In such papers, KAM theory for lower
dimensional tori [14,13,8] (i.e., invariant tori of dimension lower than the number of
degrees of freedom), has been generalized in order to prove the existence of small-
amplitude quasi-periodic solutions for (1.1) subject to Dirichlet or Neumann boundary
conditions (on a finite interval for odd and analytic nonlinearitfgs The technically

more difficult periodic boundary condition case has been later considered by Craig and

* This research was partly supported by NNSF of China, by the Italian CNR grant # 211.01.31 and by
MURST (Project “Metodi Variazionali ed Equazioni Differenziali Non Lineari”).
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Wayne [7] who established the existence of periodic solutions. The techniques used
in [7] are based not on KAM theory, but rather on a generalization of the Lyapunov-
Schmidt procedure and on techniques by Fréhlich and Spencer [9]. Recently, Craig and
Wayne's approach has been significantly improved by Bourgain [3-5] who obtained the
existence of quasi-periodic solutions for certain kind of 1D and, most notably, 2D partial
differential equations with periodic boundary conditions.

The technical reason why KAM theory has not been used to treat the periodic bound-
ary condition case is related to the multiplicity of the spectrum of the associated Sturm-

Liouville operatorA = — 2 + V(x). Such multiplicity leads to some extra “small
denominator” problems (related to the so called normal frequencies), which make the
KAM analysis particularly delicate.

The purpose of this paper is to show that, improving the KAM machinery, one can
indeed use KAM techniques to deal also with the multiple normal frequency case arising
in PDE’s with periodic boundary conditions (e.g., 1D wave equations).

The advantage of the KAM approach is, from one side, to possibly simplify proofs
and, on the other side, to allow the construction of local normal forms close to the
considered torus, which could be useful for a better understanding of the dynamics. For
example, in general, one can easily check linear stability and the vanishing of Liapounov
exponents.

A rough description of our results is as follows. Consider the periodic boundary
problem for (1.1) with an analytic nonlineariyand a real analytic (or smooth enough)
potential V. Such a potential will be taken in&dimensional family of functions pa-
rameterized by a real-vectoré, V(x) = V(x, &), satisfying general non-degenerate
(“non-resonance—of—eigenvalue”) conditions. Then for “most” potentials in the family
(i.e. for mostt in Lebesgue measure sense), there exist small-amplitude quasi-periodic
solutions for (1.1) corresponding tbdimensional KAM tori for the associated infinite
dimensional Hamiltonian system. Moreover (as usual in the KAM approach) one ob-
tains, for the constructed solutions, a local normal form which provides linear stability
in case the operatot is positive definite.

Finally we hope that the technique used in this paper can be generalized so as to deal
with more general situations such as, for example, 2D wave equations.

The paper is organized as follows: In Sect. 2 we formulate a general infinite dimen-
sional KAM Theorem designed to deal with multiple normal frequency cases; in Sect. 3
we show how to apply the preceding KAM Theorem to the nonlinear wave Eq. (1.1) with
periodic boundary conditions. The proof of the KAM Theorem is provided in See®. 4
Some technical lemmata are proved in the Appendix.

2. An Infinite Dimensional KAM Theorem

In this section we will formulate a KAM Theorem in an infinite dimensional setting
which can be applied to some 1D partial differential equations with periodic boundary
conditions.

We start by introducing some notations.

2.1. SpacesForn € N, letd, € Z, be positiveevenintegers. Let Z = [,y C%
the coordinates i€ are given byz = (zo, z1, z2, - - ) With z,, = (z} zﬁ”) € Cén,

R

1 We use the notatiorl = {0,1,2, -}, Zy = {1,2,---}.
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Given two real numbers, p, we consider the (Banach) subspaceZajiven by
Za,p ={zeZ: |Z|u,p < 00},

where the norm- |, , is defined as

Izla.p = lzol + Y lzaln®e™,

l’lEZ+

(and the norm irC% is taken to be the 1-nora,| = Z?”Zl |z{;|).

In what follows, we shall consider either= Oandp > Oora > Oandp =0
(corresponding respectively to the analytic case or the finitely smooth.case)

The role of complex neighborhoods in phase space of KAM theory will be played
here by the set

Pap=T¢xC x 2, ,,

whereT“ is the complexification of the real tor® = R? /2774,
For positive numbers s we denote by

Dy p(r,s) ={0,1,2) € Pup : IIMO| <1, |I] < 52 Nzla,p < s} (2.1)

a complex neighborhood @ x {I = 0} x {z = 0}. Finally, we denote by a given
compact set ifR? with positive Lebesgue measutes O will parameterize a selected
family of potentialV = V(x, &) in (1.1).

2.2. Functions .We consider functiong on D, ,(r, s) x O having the following prop-
erties: (i) F is real for real arguments; (il admits an expansion of the form

F =Y Fo" (2.2)

where the multi-indext runs over the sat = (xo, a1, ...) € [[,en N% with finitely

many non-vanishing componefts,; (iii) for eacha, the functionF, = F,(, I, &)
is real analytic in the variable®, I) € {|Im8| < r, |I| < s2}; (iv) for eache, the

dependence af,, upon the parametéris of cIasst (O) for somed > 0 (to be fixed
later): hereCy;, (O) denotes the class of functlons which ardimes differentiable on
the closed seCD in the sense of Whitney [18] (and the appearance of the square is due
to later notational convenience).

The convergence of the expansion (2.2)0p ,(r, s) x O will be guaranteed by
assuming the finiteness of the following weighted norm:

1Flp, 0.0 = SUp Y [IFall 2%, (2.3)

1zla,p<s o

ng dp

2 Thus3ng > Osuchthat® = [ [ zp" = [ | ]_[(zn)“”
n=0;=1
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where, if F,, = Z Fra&)1'e%? | ((-, ) being the standard inner product in

keZd 1eNd
C™"), || Fx |l is short, here, for

P F

- 21| Ik — kla

IFall =) 1 Fualo s?"e"", | Fualo = max | ——
o pl<d? 9§

[ (2.4)

(the derivatives with respect toare in the sense of Whitney).
The set of functiong : D, ,(r,s) x O — C verifying (i) - (iv) above with finite
I - I b, (r.5).0 Norm will be denoted byFp, (.5).0-

2.3. Hamiltonian vector fields and Hamiltonian equatiofi® functions F €
Fp, ,rs5).0, WE associate a Hamiltonian vector field defined as

Xr = (F1,—Fg, {iJq, Fz, }neN),

whereJ;, denotes the standard symplectic ma ri)ilg B Ia’6/2 and i= +/—1; the
derivatives ofF are defined as the derivatives term—by—term of the series (2.2) defining
F. The appearance of the imaginary unit is due to notational convenience and will be
justified later by the use of complex canonical variables.

Correspondingly we consider the Hamiltonian equafions
0=F;, [=—Fp, z,=iJyF,, neN. (2.5)

A solution of such equation is intended to be juéttamap from an interval to the domain
of definition ofF, D, ,(r, s), satisfying(2.5).

Given a real numbet, we define also a weighted norm f&t- by letting®

a,p
IXFIS? (0

1 1 p
a np
1F1 b, p0.0 + 2 1Folb, 0 + = Faoll, 0+ D 1Pl 0 0n"e™):

nely

= (2.6)

Notational Remark. In what follows, only the indices, s and the se© will change
while a, a, p will be kept fixed, therefore we shall usually denqjtiépn‘;)’ﬁp(r’s)v by
”XF”r,s,(’)v Da,p(ra s) by D(r, s) andj:D,,,p(r,s),O by }—r,s,(/)-

3 Dot stands for the time derivativelyd:.

4 The norm| - ||Dﬂ,,,(r,s),o for scalar functions is defined in (2.3). For vector (or matrix—valued) functions
G: Da’p(r, 5) x O — C™, (m < o0) is similarly defined a$G||Davﬂ(,,S)’@ = Z;n:l G ||Da’ﬂ(r,3.)’(9 (for
the matrix—valued case the sum will run over all entries).
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2.4. Perturbed Hamiltonians and the KAM resufhe starting point will be a family of
integrable Hamiltonians of the form

1
N = (@), 1)+ 5 D (AnE)zn, 2n), (2.7)

neN

whereé € O is a parameterd,, is ad, x d, real symmetric matrix ang, -) is the
standard inner product; here the phase sfacgeis endowed with the symplectic form
dn /2

dIAd+iY Y z) Adz 2,
n j=1
For simplicity, we shall take, latet (&) = .
For eactt € O, the Hamiltonian equations of motion fof, i.e.,

do dl dz, .

pu— s _— = O’ = |] A , N, 28

a Y @ dr  dnfinfne S 28)
admit special solution®, 0, 0) — (¢ + wt, 0, 0) corresponding to an invariant torus in

Pap-
Consider now the perturbed Hamiltonians

H=N+P =@ D5 Y@ ) +POL2E  (29)
neN

with P € F, 5 0.

Our goal is to prove that, for most values of paraméterO (in Lebesgue measure
sense), the HamiltoniaH = N + P still admits an invariant torus providgX p || is
sufficiently small.

In order to obtain this kind of resulte shall need the following assumptions4n
and the perturbatiorP:

(A1) Asymptotics of eigenvalueEhere exist/ € N, § > 0 andb > 1 such thatl, < d
for all n, and

0 I/, _

An = (Id,,/z an/Z ) + By, By=0@"), (2.10)
where),, are real and independent ®fvhile B, may depend o§; furthermore,
the behaviour of.,,'s is assumed to be as follows

)\m - An

b = 1+o0n™%, n<m. (2.112)
mb —n

Ap = nb + o(nb),

(A2) Gap conditionThere exist$; > 0 such that
diSt(a(Jdl.Ai),a(deAj)) >81>0, Vi#£j;
(o () denotes “spectrum of).

Note that for large, j, thegap conditiorfollows from the asymptotic property.

(A3) Smooth dependence on parametéids.entries of B, are d? Whitney—smooth
functions of¢ with C;ivz-norm bounded by some positive constant
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(A4) Non-resonance condition.

meags € O:  (k, w(E))((k, () + Mk, 0(E)) + 1 +p) =0} = (()2 12)

for each 0# k € 7% and for anyi, u € Upen @ (Ja,Ay); meas= Lebesgue
measure.
(A5) Regularity of the perturbatiarThe perturbatior? € Fp, (.50 isregularin the

sense thaﬂXp||g’p( o < with a > a. In fact, we assume that one of the
a,p(r,s),
following holds:

(a p>0, a>a=0;, b) p=0, a>a>0,

(such conditions correspond, respectively, to analytic or smooth solutions).

Now we can state our KAM result.

Theorem 1.Assume thad in (2.7) satisfies (A1)—(A4) andl is regular in the sense of
(A5) and lety > 0. There exists a positive constant= ¢(d, d, b, 8,81,a —a, L, y)

such that if|| X p ||L“;*ﬂp(m)0 < ¢, then the following holds true. There exists a Cantor set

0, C O with meagO \ 0,) — O0asy — 0, and two maps (real analytic i and
Whitney smooth i € O)

v T % Oy = Dy p(r,s) CPup, @:0, — RY,

suchthatforanyg € O, andd e T4 the curve — W (0 +a(&)r, £) is a quasi-periodic

solution of the Hamiltonian equations governed®y= N + P. Furthermore W (T, &)
is a smoothly embeddeddimensionalH -invariant torus inP, ,.

Remarks.(i) For simplicity we shall in fact assume thall eigenvalues.; of A, are
positive for alln’s. The case of some non-positive eigenvalues can be easily dealt
with at the expense of a (even) heavier notation.

(i) Inthe above case (i.e. positive eigenvalues), Theorem 1 Viieleiarly stableKAM
tori.

(iii) The parametey plays the role of the Diophantine constant for the frequehay
the sense that theredis> 0 such thavk e Z%\{0},

%
20k|7

(k, @) >

Notice also that),, is claimed to be nonempty and big only fprsmall enough.

(iv) The regularity property: > «a is used only in estimating the measure®@{0,, .
Such regularity requirement is not necessary for for constructing periodic solutions,
i.e.,d = 1. Thusthe above theorem applies to the construction of periodic solutions
for 1-D nonlinear Schrédinger equations

(v) The non-degeneracy condition (2.12) (which is stronger than Bourgain’s non-
degenerate condition [4] but weaker than Melnikov’s one [13]) covers the multiple
normal frequency case: this is the technical reason that allows to treat PDE’s with
periodic boundary conditions.
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3. Application to 1D Wave Equations

In this section we show how Theorem 1 implies the existence of quasi-periodic solutions
for 1D wave equations with periodic boundary conditions.
Let us rewrite the wave equation (1.1) as follows:

uy +Au = f(u), Au=—uy +Vx,8u, x,t R,
u(t,x) =u(t,x +2m), u/(t,x)=u;{,x+ 2m), (3.1)

whereV (-, £) is areal-analytic(or smooth periodic potential parameterized by some
£ e R? (see below) andf (1) is areal-analyticfunction nearu = 0 with £(0) =
10 =0.

As it is well known, the operatat with periodic boundary conditions admits an or-
thonormal basis of eigenfunctiogs € L2(T), n € N, with corresponding eigenvalues
uy, satisfying the following asymptotics for large

1
M2n—1, U2n = n? + —/ V(x)dx + O(n_z).
27'[ T

For simplicity, we shall consider the case of vanishing mean value of the pot&ntial
and assume that all eigenvalues are positive:

/V(x)dx:O, tn=22>0, Va. (3.2)
T
Following Kuksin [10] and Bourgain [3], we consider a family of real analytic (or
smooth) potential® (x, &), wherethe d-parameterss = (£1, --- , &) € O c R? are
simply taken to be a given setdfrequencies.,, = /i,
éiE\//J“_niE)Lniv i=1-.-,d (3.3)

wherep,,, are (positive) eigenvalues OfA.
We may also (and shall) require that there exists a positive 0 such that

|k — mnl > 81, (3.4)

for all k > h except whert is even andi = k — 1 (in which casey; andu;, might even
coincide).
Notice that, in particular, having eigenvalues amdependenparameters excludes
the constant potential ca$e= constant (where, of course, all eigenvalues are double:
M2j—1 = p2j = j2 4 V). In fact, this case seems difficult to be handled by KAM
approach even in the finite dimensional case. Such difficulty does not arise, instead, in
the remarkable alternative approach developed by Craig, Wayne [7] and Bourgain [3,4].
Equation (3.1) may be rewritten as

u=v, v+ Au= f(u), (3.5)

which, as is well known, may be viewed as the (infinite dimensional) Hamiltonian
equations: = H,, v = —H, associated to the Hamiltonian

H = 1'(v, v) + 1-(Au, u) + / g(u) dx, (3.6)
2 2 T

5 Plenty of such potentials may be constructed with, e.g., the inverse spectral theory.
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whereg is a primitive of (— f) (with respect to the: variable) and(-, -) denotes the
scalar product ir.2.

As in [15], we introduce coordinates = (¢o, g1, -), p = (po, p1, - - -) through
the relations

u(x) = Z ¢n(x) v=2mpn¢n(X),

neN neN

wheré i, = /it,. System (3.5) is then formally equivalent to the lattice Hamiltonian
equations

. . G
Gn = AnPn, Pn = —Anqn — a’ / (Z I ¢,1)dx (3.7)
n

corresponding to the Hamiltonian functidh = ), . An (qn + p,,) + G(gq). Rather
than discussing the above formal equivalence, we shall, following [15], use the following
elementary observation (proved in the Appendix):

Proposition 3.1.Let V be analytic (respectively, smooth), lebe an interval and let
tel — (q@), p(t)) = ({qn(t)}nzo, {pn(t)}nzO)

be an analytic (respectively, smoé}tsolution of (3.7) such that

supY_ (lan (0] +1pa(0)]) n* € < o0 (38)

tel neN

for somep > 0 anda = 0 (respectively, fop = 0 anda big enough). Then

qn(t)
u(t,x) =y = (x),
neN\/_

is an analytic (respectively, smooth) solution of (3.1).

Before invoking Theorem 1 we still need some manipulations. We first switch to
complex variablesw, = %(‘]n +ipn), w, = %(q,, —ipy). Equations (3.7) read then

. G . _ 3G
Wy, = —iAw, —i——, w, =il,w, +i , (3.9)
owy, owy,

where the perturbatio@ is given by

~ +w

Gw) = / e 2 dx. (3.10)
Next we introduce standard action-angle varialdes) = ((01, - - - , 64), (I1, -+ -, 1z))
inthe (wyy, -+, Wny, Way, -+ -, Way)-SPace by letting,

Iizwn,-wn,-» i:]-a"'ad»

6 Recall that, for simplicity, we assume that all eigenvalugsare positive.
7 Regularity refers to the componemts and p;,.
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so that the system (3.9) becomes

do; dl;

J j .
— = j P's _=_P'a =1»"'»da
dt w] + I] dt 9/ J
dw . . dw, L .
LA —iAw, — 1Py, = iy, +iPy,, n #n1,n2,---,nq, (3.11)
dt dt
whereP is justG with the(wpy, - -+, Wny, Wny, -+, Wy,)-variables expressed in terms

of the (6, I) variables and thirequencies = (wy, ..., wg) coincide with the parameter
& introduced in (3.3):

w; = %‘,‘ = )‘n,- . (312)

The Hamiltonian associated to (3.11) (with respect to the symplectic darm do +
i), dw, Adw,) is given by

=(. 1)+ Y Awaidy+ PO, 1w, 1,£). (3.13)

nFENL, g

Remark.Actually, in place ofH in (3.13) one should consider thiaearizationof H
around a given poinfp and let/ vary in a small ballB (of radius 0 < s <« |Ig|)

in the “positive” quadran{/; > 0}. In such a way the dependence Bfupon/ is
obviously analytic. For notational convenience we shall however do not report explicitly
the dependence d@f on Ip.

Finally, to put the Hamiltonian in the form (2.9) we couple the varialjles, w,)
corresponding to “closer” eigenvalues. More precisely, wglet (w2,—1, wa,, W2,—1,
Wo,) for large® n, sayn > i > ng and denote byg = ({wn} e A} oens )

..... n#En,...ng

the remaining conjugated variables. The Hamiltonian (3. 13) takes the form

1
H = <CU, I>+EZN<A}’!Z}’I’ Z71>+P(01 I’ Zvé)’ (314)
ne

where

0 I
A, = Diag(A2,—1, 221, A2n—1, A2n) ( 02>

0 0 Agp—1—42, O
_ 05 0 0 0 0
= A2 (]2 O)+ Aop_1—A2, O 0 o)
0 0 0 0

forn > ng, while Ag = Diag({An}, (An}; 1 <n <ng,n #n1,---,nq) ( S do) with

, O
do=n+1-d.
The perturbatiorP in (3.14) has the following (nice) regularity property.

8 Compare (Al).
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Lemma 3.1.Suppose thaV is real analytic inx (respectively, belongs to the Sobolev
spaceHX(T) for somek e N). Then for small enougp > O (respectivelyg > 0),
r > 0ands > Oone has

IXplletY2r = 0(z[2 ) ; (3.15)

a,p(r,5),0 a
here the parameter is taken to be 0 (respectively, the parameiéas taken to be 0).

A proof of this lemma is given in the Appendix. In facfp is even more “regular”
(a fact, however, not needed in what follows): (3.15) holds with 1 in place of 1/2.

The Hamiltonian (3.14) is seen to satisfy all the assumptions of Theorem 1 with:
dy=4n>1dy=n+1-—d;d =maxdo, 4}; b =1;8 = 2; 51 chosen as in (3.4);
a—a= % Thus Theorem 1 yields the following

Theorem 2.Consider a family of 1D nonlinear wave equation (3.1) parameterized by
& = w € O as above withV (-, &) real-analytic (respectively, smooth). Then for any
0 < y < 1, there is a subsaD, of O with measO\O,) — 0asy — 0, such that
BD¢co, has a family of small-amplitude (proportional to some powey pfanalytic
(respectively, smooth) quasi-periodic solutions of the form

w(t, x) =Y up(@it, -, 0y)n(x),

whereu, : TY - R andw}, - - - , o, are close tavy, - - - , wg.

Remark.As mentioned above, our KAM theorem (which applies only to the case that
not all the eigenvalues are multifland under the hypothesis that alJ’s are positive)

implies that the quasi-periodic solutions obtainedlgx@arly stable In the case that all

the eigenvalues are double (as in the constant potential case), one should not expect linear
stability (see the example given by Craig, Kuksin and Wayne [6]). We also notice that,
essentially with only notational changes, the proof of the above theorem goes through
in the case that some of the eigenvalues are negative.

4. KAM Step

Theorem 1 will be proved by a KAM iteration which involves an infinite sequence of
change of variables.
At each step of the KAM scheme, we consider a Hamiltonian vector field with

Hvau+Pu7

whereN, is an “integrable normal form” an#, is defined in some set of the fotth
D(sy, ry) x O,.
We then construct a map

D, : D(sy41, rvt1) X Opg1 C D(ry, 5y) X Oy — D(ry, 5) x O,

9 Recall that we require that the torus frequencies are independent parameters.
10 Recall the notations from Section 2.

11 Recall that the parametess p anda are fixed throughout the proof and are therefore omitted in the
notations.
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so that the vector fiel g ., defined onD(r, 1, s,+1) satisfies

||XHU°¢'V - XNV+1||ru+1»5v+1xOu+l = 65

with some new normal fornv, 1 and for some fixea-independent constant> 1.

To simplify notations, in what follows, the quantities without subscripts refer to
quantities at the'" step, while the quantities with subscrigtsienotes the corresponding
guantities at thév + 1t step. Let us then consider the Hamiltonian

1
H=N+PE€+<w11)+—Z<Anvazn)+P» (41)
ZHGN

definedinD(r, s) x ©; theA,,’s are symmetric matrices. We assume that O satisfied?
(for a suitabler > 0 to be specified later)

1 |k|r -1 |k|r d
|<k7 (1)) | < ) ”((k1 C!))Idl + Ai‘ldi) ” < (_) )
Y 14
_ || 52
l((k, @} ga; + (Aidg;) @ la; — 1a; @ (Ja; Aj)) < (T)d ) (4.2)
We also assume that
0P A
max |——-|| < L, (4.3)
Ipl<a? 9P
on®, and
”XP”r,s,(’) < €. (44)
We now let O< r4 < r, and define
1 3 ¢ 4
s+=§se3, € =y T(r—rq)es, (4.5)

where L
I'(t) = supufe 3% ~ ¢
u>1
fort > 0. Here and later, the letterdenotes suitable (possibly different) constants that
do not depend on the iteration stép
We now describe how to construct a €2 C O and a change of variables :
Dy x Oy = D(ry,sy) x Oy — D(r,s) x O, such that the transformed Hamiltonian
H. = Ny + P = H o O satisfies all the above iterative assumptions with new
parameters,, €4, r4, y+, L+ and withé € O,.

12 The tensor product (or direct product) of twox n, k x I matricesA = (a;;), B is a(mk) x (nl) matrix
defined by

ai1B -+ ayy,B
ap1B -+ amnB
I - || for matrix denotes the operator norm, iM || = supy=1 [Myl. Recall thatw and theA;’s depend on

13 Actually, herec = d4t + d%t +d% + 1.
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4.1. Solving the linearized equatiofxpandP into the Fourier—Taylor series

P — Z Pklael(kg) 11 0[’
k,l,a

wherek € Z¢,1 € N? anda € ®,nyN% with finite many non-vanishing components.
Let R be the truncation of given by

RO, 1.)=Po+ Pit P2= ) Puoe™ I'

kll]<1
+ > Poae®? 2%+ 3" Proge 0 2%, (4.6)
k,Jor|=1 k,a|=2
with
2|l|+|a|—2 Z L+ eyl <2
jeN
It is convenient to rewritek as follows:
RO, 1.2)= Y Puoe™" I'
k<1
£ Y RE D) £ Y (REz 2B @)
k,i k,i,j
WhereR" R" are respectively theé; vector andid; x d;) matrix defined by
R: :/ﬁe—“k%m oso. RN = 1+_‘Sij/82_Pe—i<k’9>de| oi0. (4.8)
’ 3z e 2 32,0z T

Note thatr}; = (R}
Rewrite H asH = N + R + (P — R). By the choice ofs in (4.5) and by the
definition of the norms, it follows immediately that

1 X&llrs,0 < 1 XPllrs,0 <€ (4.9)
Moreovers_, €, are such that, in a smaller domainr, s), we have
||XP—R||r,s+ < Ceq. (410)

Then we look for a special, defined in domainD,. = D(ry, s1), such that the
time one map;b}p of the Hamiltonian vector fiel& » defines a map frond, — D and
transformsH into H, .

More precisely, by second order Taylor formula, we have

Hogp = (N +R)od} + (P —R)o¢p
=N+ {N,F}+R
1 s
+%/ ds/ {{N + R, F}, F} o ¢%-dt +{R, F} + (P — R) 0 ¢}..
0 0
=N++P+

+N, F} 4+ R — Pooo— (&, I) = Y (R, 2, 2n), (4.11)
neN
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where

oP 92p
;) 0 _
w —/deI:O,z:Oa Rnn _/ 32% del[:O’Z:O’

Ny =N+ Pooo+ (@, ) + Y (RO,zn. 2n),
neN

1 s
=}/ ds/ {{N 4+ R, F}, F} o X"-dt + {R, F} 4+ (P — R) o ¢%-.
0 0

2

We shall find a functiorf of the form

FO,1,0)=Fo+ Fi+ Fa= Y Fuoe™? I'+ ) (Ff, z;)e!®?

Py

|11 <1, k|0 ieN
+ Y (Fhzizpe®o (4.12)
Ik|+1i—j|#0
satisfying the equation
{(N.F}+ R = Pooo— (. I) = Y (RO, 24, 20) = O. (4.13)
neN

Lemma 4.1.Equation (4.13) is equivalent to

Fuo = (itk, o) " Pyo, k#0, 11| <1,
({k, )14, + Ag, Ja) FF = iRK, (4.14)

((k, @) La, + A, Ja) Ffy — Ff(Ja; Aj) =R, k| +1i — j| #0.

Proof. InsertingF, defined in (4.12), into (4.13) one sees that (4.13) is equivalent to the
following equation&*:

{N, Fo} + Po— (o', I) =0,
{N, Fi}+ P1 =0,
{N, F2} + P, — Z(Rgnzm zp) = 0. (415)

neZ

The first equation in (4.15) is obviously equivalent, by comparing the coefficients, to the
first equation in (4.14). To solveV, F1} + P1 = 0, we note thadP

{N, F1} = (3;N, 3 F1) + (V N, JV_ F1)
(91N, 9 F1) + Y (Ve N,iJg, V,, F1)

l
i (k@) Ff, zi) + (Aizi, Ja, FF)e! ™
ki

i > (k. o) g, + A Jg) FE zi)e®0) (4.16)
k,i

14 Recall the definition of; in (4.6).
15 Recall the definition ofV in (4.1).
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It follows thatFl." are determined by the linear algebraic system
i((k, )1y + A Jg)FF + RF =0, i eN kezd
Similarly, from

{N. F2} = (3N, 09 Fa) + Y (V,N.iJ4,V:, F2)

1

=i Y (ko) Flziz)) + (Aizi Jg, (Fi) ) + (A2, Jay Flizi)e! &9
[kl-+li— 10

=i Y (ko) Ffziz)) + (A g, Ff; = FjiJa Azi, zj)e! &%
[k|-+li— |0

=i Y ((k.o)Ff + Ajda, FY, — FlJg Az, zj)e' ™0 (4.17)
[kl-+1i—j |0

it follows that,F]’.‘l. is determined by the following matrix equation:

((k, w)la; + AjJa)F; — Ff,(Jg, Ai) = 1RY, |kl +1i — j| #0, (4.18)

whereF;, R}, ared; x d; matrices defined in (4.12) and (4.7). Exchangingwe get
the third equation in (4.14).0

The first two equations in (4.14) are immediately solved in view of (4.2). In order
to solve the third equation in (4.14), we need the following elementary algebraic result
from matrix theory.

Lemma 4.2.Let A, B, C be respectively x n, m x m,n x m matrices, and leX be
ann x m unknown matrix. The matrix equation

AX —XB=C, (4.19)
is solvable if and only if,, ® A — B ® I,, is nonsingular. Moreover,
IXI < I(In ® A— B® L) Y| - [IC].

In fact, the matrix equation (4.19) is equivalent to the (bigger) vector equation given
by(I® A— B®I)X = C’,whereX’, C’ are vectors whose elements are just the list
(row by row) of the entries oK andC. For a detailed proof we refer the reader to the
Appendix in [20] or [12], p. 256.

Remark. Taking the transpose ofthe third equationin (4.14), one see(sf;fjaﬁ satisfies
the same equation dTJ’.‘l.. Then (by the uniqueness of the solution) it follows tﬁﬁt =
(FT.



KAM Tori for 1D Nonlinear Wave Equations 511

4.2. Estimates on the coordinate transformatidfie proceed to estimatéy and<b,1p.
We start with the following

Lemma 4.3.LetD; = D(§s,ry + 5(r —r4)),0 < i < 4.Then
IXFlips,0 < Cy~°T(r —rye. (4.20)
Proof. By (4.2), Lemma 4.1 and Lemmata 7.4, 7.5 in the Appendix, we have

| Frolo < |(k, @) 7Y Pyl < ¢y Ck|Ce MU—roes2=21 £ 0,
IF o = 1k, @) Ig; + Ai Ja) " R < 11(k, ) 1y, + AiJa) 72 - IRE

< cy CkI°IRY,
||F,-]}||O < 1k, @) aa; + (Aidg) ® Lo, — Ia, @ (Ja; Ap) M - ||R I
< Cy OkICIRY I, Ikl + i — jI #0, (4.21)

where|| - ||o for matrix is similar to (2.4).
It follows that

1 1 ; ;
SlFoln0 < —(Zlszol ALk 1RO Y FR -zl - Tk 0

+ D NFEN - Lzil -z - Tk - 'S0 )
<cy °r(r—r+>||xR||
<Ccy °T'(r —ry)e, (4.22)

wherer' (- — r,.) = sug [k,
Similarly,

1FilIppo = Y [Fuol - [€47 | < ¢y T —rp)e.
17=1

Now we estimateé{ X -1 p, o. Note that

1 k —i<k,0
1F Do = 1Y Fre 5" Ip,0
k

<cy~°r Z IRFleM < ¢ y—°r||—|| (4.23)
k,i

It follows that

1 ca i
IXrillp0 < € Y NIFAIp,0i%e”
ieN

<cy °r Z || ||1“e’p <Cy Te,
ieN 4

by the definition of the weighted norm.
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Note that®

1F2Ip,0 = I 3o + (F Dz i 0
k.j

—cn P2
<Ccy °F||8—||. (4.24)
i
Similarly, we have
IXp2llp,.0 < cy “Te. (4.25)

The conclusion of the lemma follows from the above estimatas.

In the next lemma, we give some estimatesgpr The following formula (4.26) will
be used to prove that our coordinate transformations is well defined. Inequality (4.27)
will be used to check the convergence of the iteration.

Lemma4.4.Letny = e%, D%n =D(ry + %(r —ry), %ns),i =1, 2. We then have
B Dy, — Dy, 0<t<1, (4.26)

if e < (%V_CI‘_l)%. Moreover,
IDg}: — Idlp, < cy °Te. (4.27)
21

Proof. Let

. glil+ll+p
D" F =maX| —————
l Ip.o K| 3079157

Note thatF is polynomial inI of order 1, inz of order 2. From’ (4.25) and the
Cauchy inequality, it follows that

Flpo,lil + Il + el =m = 2}.

ID"Fllp, o < €y °Te, 4.28
1,

foranym > 2.
To get the estimates fqf}., we start from the integral equation,

t

¢;:id+/o XFpodhds

so thatp. : D1, — D, 0=t <1, asitfollows directly from (4.28). Since

i
2

1

1
D¢t = 1d +/ (DXFp)D¢Sds = 1d +/ J(D*F)Dgs. ds,
0 0

it follows that
D¢} — Id|| < 2|ID*F|| < ¢y “Te. (4.29)
The estimates of second order derivativépl follows from (4.28). O

16 Recall (2.3), the definition of the norm.
17 Recall the definition of the weighted norm in (2.6).
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4.3. Estimates for the new normal forrithe mapp} defined above transforn#g into
Hi = N; + Pi(see (4.11) and (4.13)) with

1
Ni=ey+iopy)+5 > (Afziw). (4.30)
iEZ+
where
e =e+ Pooo, @y =+ Poo(l] =1), A =A; +2RP. (4.31)

Now we prove thatv, shares the same properties with By the regularity ofX p
and by Cauchy estimates, we have

loy —w| <€, |RY| <ei™® (4.32)

with § = a — a > 0. It follows that

IAH ™Y < At 21A7Y
T - 2aRy T
_ I ((k, ) g, + Aida) 2| k™ g
I((k, & + Paoo)la, — Ja;, A H < l ’ < (—)%, (4.33)
i 1— 1k, )y, + Aida) e = yy
provided|k|”7’e < c(yj — ij).
Similarly, we have
_ kI* g
1((k, @ + Poioo) Lasa; + (A Ja) ® La; — lay © (Ja; AN < (y—)“ . (439
+

provided|k|‘?2fe < C (y‘?2 —yfz). This means thatin the next KAM step, small denomi-

nator conditions are automatically satisfied/igr< K wherek?7e < ¢ (y’iz— j‘zz).
The following bounds wil be used later for the measure estimates:

¥ (wy — w) (Al — A
—O <€’ |—
JE! = dE!

for |/| < d? (by definition of the norms).

lo < cei™®, (4.35)

4.4. Estimates for the new perturbatiomo complete the KAM step we have to estimate
the new error term.
By the definition 0f¢}p and Lemma 4.4,

HO¢)};:N++P+

is well defined inD%n. Moreover, we have the following estimates:

||XP+||D%,, = ”Xfola’tfg{{N+R,F},F}o¢}+{R,F}+(P—R)o¢11,”D%,,
= 0X 2 ar frun+r.F) Frogs, ”D%n + ”X(P—R)oqsilln%n

< IXy~n+r.F),F}lID, + 1 XP-rlD,
4

<Ccy °T%3 < cey (4.36)

by (4.9) and Lemma 7.3.
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Thus, there exists a big constanindependent of iteration steps, such that

||XP+||V+,S+ = ||XP+ ”(Bl; S CV_CFZUE = C€+' (437)
21
The KAM step is now completed.
5. Iteration Lemma and Convergence

For any givers, ¢, r, y, we define, for alb > 1, the following sequences

v+1

ry=r(l-— ZZ_i),
i=2

4
—C 2.3
e =cy, T(r_1—r)%) 4,

v+1 _
w=yd-) 27,
i=2
11
Ny = Eel?v LV = Lv—l + €y—1,
-1
1 B Y 1
Sy = SMv-18y-1 = 2 V(H €i) 350,
i=0
C 72 72 %
-1 2t
K, = E (Evfl(yf—l - Vvd ))d ,
D, = Da,p(ru’ Sy, (51)

wherec is the constant in (4.37). The parameteyseo, 10, Lo, so, Ko are defined re-
spectively to be, ¢, y, L, s, 1.
Note that

o
V() = [Ir i — 29,
i=1
is a well defined finite function of.

5.1. Iteration LemmaThe preceding analysis may be summarized as follows.

Lemma 5.1.Suppose thatg = €(d, d, 8, 81, a — a, L, t, y) is small enough. Then the
following holds for allv > 0. Let

Ny =ey+ (0,&), 1)+ Y (A} &)z, 21),
ieN
be a normal form with parametegssatisfying
|k

_ . _ lk|™
[k, ) 7Y < ——, NGk, ) Iy + AV Jg) 2 < (—),

v v
. _ |k|F 72
1Gtk, @) g, + (A} Ja) ® la; — 1o, ® Jg, A TH < (=) (5.2)

Yv
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on a closed seD, of R" for all k # 0,1, j € Z. Moreover, suppose that, (§), A; (&)
are C%° smooth and satisfy

72 72 —
0 (wy — wy-1) A (A} — A]TH
— e, |—

agd agd

on O, (in Whitney’s sense).
Finally, assume that

.
| S 61)—11 ’

a,
||XPU||DﬁOU <€
Then, there is a subsé&t, .1 C O,,
1
Ovi1 = O\ U=k, .1 RZ;; (7)s
where

(kop) > B (ko) T+ (A1) 1= (A5 or

1 1y — a2
Rii o) = 16 € Oy i | 1Gk@vr>Lya; +(AT @10, ~ 14, @Ua AT =BT

with w11 = w, + Py, and a symplectic change of variables
be . Dv+l X OV—I—l g DU, (53)

such thatH, 1 = H, o ®,, defined orD, 11 x O, 41, has the form

Hyy1=eps1+ (01, 1)+ ) (AT 2, 20) + Poga, (5.4)
ieN
satisfying
3 (0y41(5) — 0y (8)) aN(AYTHE) — AY) s
23}3@ o] | < ev, max, gl 5e! | <ei™® (5.5)
1Xpeallp) s 000 < €t (5.6)

5.2. ConvergenceSuppose that the assumptions of Theorem 1 are satisfied. To apply
the iteration lemma witlv = 0, recall that

eo=¢,y0=y,50=5,Lo=L,No=N,Py=P,

I(k.) "L < B (k) g, + A T~ < (57 or
Oo=1£€0:] I« k,w>1d,.dl,.+<A,Jd,A)®1dj—Id,.®<deA,>> ARSI
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(with € andy small enough). Inductively, we obtain the following sequences:

OU-}—lCOl)v
U ==@r0---0®,:Dyy1 x O, = Dg,v >0,
HoW'=H, 1 =Ny1+ Pyi1.

Let O, = N2,0,. As in [16], thanks to Lemma 4.4, we may conclude that
Ny, W, DWY, w, 11 converge uniformly orDo x O, = D(3r,0,0) x O, with

Noo = €00 + (@00, I) + (Acoz, 2) = €00 + (w00, I) + Y _(AT2, 2i).
ieN
Since 4
— ,,—C _ —c (3)
€1 = CY,, L(ry —ryp1)ey < (cy "W (r)e)'s’ .

It follows thate, 1 — O providede is sufficiently small.
Let ¢§{ be the flow ofX . SinceH o W' = H,;1, we have that

oW =V ody . (5.7)

The convergence of", DV, w11, Xp,,, implies that one can take limitin (5.7) so
as to get

P oWT =V ody | (5.8)
onD(3r,0,0) x O,, with
1
Wy . D(Er, 0,00 x 0, = Pup x RY.
From (5.8) it follows that
Pl (WP (T x {£}) = WXy (T x {£}) = WX(T x {£}),

for £ € O,. This means tha®>°(T? x {w}) is an embedded torus invariant for the
original perturbed Hamiltonian system ate O,. We remark here the frequencies
woo (£) associated ta > (T¢ x {£}) is slightly different froms. The normal behaviour
of the invariant torus is governed by the matA®® = )~y AY. O

6. Measure Estimates

At each KAM step, we have to exclude the following resonant sétsof

R'= |J RIURLURL).
k> Ko,

the setsk}, R};, R};; being, respectively,

J
T kT -

"Ll e 0 M= (E),

and {w € 0, : |M;Y] > ey (6.1)

v

£y tkw) >
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where

Ml = (k’ a)U)Id,' + Alv‘]dla

Mz = (k, 0v)Iga; + (A Jay) ® Iy, — 1a; ® (Ja, A)). (6.2)
Inthe set{s € O : IM(w) 1| > C} are mcluded also thes for which M is not
invertible. Recall thab, (§) = & + Y_/— Pooo(g) with8 | 37 Ploo(6)] o2 < €, A =
A +2%, RO with | Y, RS = 0(61_‘3).

Lemma 6.1.There is a constanKp such that, for any, j, and|k| > Ko,

Y
measR; URy URy;) < C——— s
Proof. As it is well known
Yv
meagR}) < .
RO = e

The setR}; is empty ifi > const|k|, while, if i < const|k|, from Lemmata 7.6, 7.7
there follows that

Vv
k|71

We now give a detailed proof for the most complicated estimate, i.e., the estimate on
the measure of the s&;,;. Note that the main part of1> is diagonat®. In fact M
can be rewritten as

measstl) < C

MZEAU +B\)

ij°’
with

Aij = (k, w1 Lg.a; + 2 j Diag(la; 2, —1a;j2) @ la; — Aila; ® Diag (—14;/2, 14;2)-
(6.3)

The matrixAl, is diagonal with entriesk,j = (k, w,) £ A; = A; in the diagonal, where
Ai, A; are given in (2.10) and- sign depends on the posmoﬁU is a matrix of size
0l + ;7% sinceA! = A; + B + 0(i™%) = A; + 0(i™°) by (2.11) and (4.32).

In the rest of the proof we drop in the notation the inditessince they are fixed.
Now either allAy;; < |k| or there are some diagonal elements; > |k|. We first
consider the latter case. By permuting rows and columns, we can find two non-singular
matricesQ1, Q2 with elements 1 or 0 such that

ouasm0,= (1 0 ) (B ), €

whereA;1, Ay are diagonal matrices an ; contains all diagonal elemeritg;; which
are bigger thaik|. Moreover, definings, Q4, D as

_ I 0 _(1 —(A11+1§11)_11§12>
Qs (—321(1‘\11+311)_1 1)’ Qs (0 1 ’

18 Recall (4.32), (5.5).
19 Recall (2.10), (6.2).
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and

D = Ap+ Bz — Bo1(A11+ B1) 1Bio = App+ OG % 4 j 79, (6.5)
we have

0501 (A+B"1) 0204 = (A“ o g) . (6.6)

For& € O such thatD is invertible, we have

—1
(Ark651=:Q2Q4<(A”4bB”) DEQ)QsQL ©.7)

Since the norm o021, Q», 03, Q4, (A11 + B11)~ T are uniformly bounded, it follows
from (6.7) that

T d_z - d_2
fecoursy = (E0) e fecop i - (B0) )

(6.8)

Ifall Arij < c |k| we simply takeD = A + B". Since all elements i are of size
O(lk|), by Lemma 7.6 in the Appendix, we have

T\ d? d?
{s €0, DY >c<|k| ) }c {g €0, :|detD| < C(Ikr:*) } (6.9)

Let N denote the dimension @b (which is not bigger thada?). SinceD = A, +
0% + j=9), the N™ order derivative of deb with respective to somg is bounded
away from zero byzid|k|N (provided thatk| is bigger enough). From (6.8), (6.9) and
Lemma 7.7, it follows that

(I
measR;;; = meas{s €O, ||<A+B") | > <—) }
Vv

622
smeas{geov:|detD| < c( il ) }

|k|f*1

a2

Yv LS Y
< C(|k|7_l) < C |k|ﬁ (610)

This proves the lemmano

Lemma6.2.If i > c |k|, thenR};, = @; If max(i, j} > c |k|lel,i # jforb > 1
or|i — j| > constlk| forb = 1, thenR,‘;ij = J, where the constart depends on the
diameter ofO.
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Proof. As above, we only consider the most complicated case, i.e., the cdégjof

Notice that mag, j} > const|k|ﬁ forb > 1or|i — j| > const|k| for b = 1 implies
hi £ 20 =GP =iHA+ 06 + %)

> %u — il Y+ A+ 0G% + j %) > constlk|. (6.11)
It follows that.4;; defined in (6.3) is invertible and

1AM < 1k~
By Neumann series, we haj{éA;; + Bg’j)‘1|| < 2|k|~1 for largek (say|k| > Ko), i.e,
R,ﬁl.j =¢. O
Lemma 6.3.For b > 1, we have

8
meaiUR”) = meas U (R URY; URZij) < CyTH,
v>0 v, |k|>Ky,i,j

Proof. The measure estimates f&° comes from our assumption (2.12). We then con-

sider the estimate
meatJ U URk).
v |k|>K, i,j

which is the most complicate one.
Let us consider separately the case 1 and the cask = 1. We first consideb > 1.
By Lemmata 6.1, 6.2, ifk| > Ko andi # j, we have

2
k |k|p=Ty 14
meas(URk,-j)zmeas( U Rf) < ¢ i A (6.12)
el i), j<ClK| T

Fori = j.AsinLemma6.1, we can find1, Q> so that (6.4) holds with the diagonal el-
ements ofA11 being< k, w, > +2X; andAz> =< k, w, > I. Repeating the arguments
in Lemma 6.1, we get (6.9) and

Ry, C {6 detD] < ¢ (-2 )%}

k[T
— (& :[]1tk wi) + 0(7) < c(|k|)’:_l)‘12}
1
C {1tk o)l < c(|k|Z_l+i—5)} = ok, (6.13)

SinceQy; c Q. fori > ip, using (6.10), we find that

ioy 1
meas(URkii) < Z IRuii | + |Q£{050| <C (|k|fl + I()T(s)
i

i<ip
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11
for anyio. Following Péschel ([16]), we choose= (X 5) ™, so that

§
meas URk,,| < C(|k|]: )T (6.14)

Lett > maxd + 2+ b 1 (d-|—1) + 1}. Asin (6.12), (6.14), we find
meas( ) (JRiy;(w))=meas( [J (JRi;(n)
k|>Ky i.j k|> K, i#]
+meas( Ulk|> K, URzii(VU-i-l)) < C Kv_lyl%é.
i

The quantity meddJ, Uy -, U; ; Ry;;) is then bounded by

mea: RY.(n) < cy™ Y K1 < cyt, (6.15)
% ()

v>1 |k|>K, i,j v>0

providedr > max{d + 2+ ;= 1, d+ 1) + 1}. This concludes the proof far > 1.
Consider nowb = 1. Without loss of generality, we assume> i andj =i + m.
Note that Lemma 6.2 impIieRfFj = ¢form > C|k|. Following the scheme of the above

proof, we find

URkij = Ruiiem= |J URkiitm

k,i,j k,i,m k,m<Clk| i

C U ( U Reiio.io+m Y kig.ig+m ) (6.16)

k,m<Clk| i<ig

where

1
Okig.iotm = {§ 1 Ik, wy) +m| < ¢C (|k|% + ITS)}

, we have, for fixed,

Again, takingi3™ = k';fl

|UR | < c Z l|0,y1 .76)

m<C|k|

<cC |k|( )1is . (6.17)

|k|T 1

Asinthe casé > 1, we have thatmeds), U -k, U, ;
ift>@+1% +1. O

Ryi;) is bounded by (y 1+a)

Remark.In (6.13),| detD| = [] |(k, w) + O(i~%)| (Quaranteed by the regularity prop-
erty) is crucial for the proof.
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7. Appendix

Proof of Proposition 3.1From the hypotheses there follows that the eigenfuctigns
are analytic (respectively, smooth) and bounded with, in particular,

sup(l¢,| + 1¢,1) < constu,.
R

Thus, the sum defining(z, x) is uniformly convergent i x [0, 2r]. Since

¢k)¢n,
Bqn
one has

e " . e P e "
lgn| < const , |gn| < consti, < const——,
na na—l

. e "f

Ign| < constm.

Thus (ifa is big enough, in the smooth cas&), x) is aC? function and

Uyt + Au =

Y et e
= ([ rwen)on = fa,

(7.1)
where in the last equality we used the fact tligk) is a smooth periodic functiono
Lemma 7.1.

IFGlpe.s) < IFIpes)I1GlDers)-

Proof. Since(FG)up = > Fx—k' i1, p—p'Grrp» We have that

IFG Dy = SUPY_ I(FGuapl Iyl [2%1eM"

klp
< SUPY Y | Fkei it p—p Grerpr| [y 1121
D wp 1
= ”F”D(r,s) ”G”D(r,s) (7.2)

and the proof is finished.o
Lemma 7.2 Cauchy inequalitids

I Fo I Do) < o I Fllp@rs)

and

a,np

1
IIFIIID(,_%S) < 2s_2||F||D(r,s)a IIanIID(,,%S) <2 I E N Ders)-
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Let{, -} is Poisson bracket of smooth functions
dF 0G 0F oG F . 0G
F,G} = _—— - — — iJg—), 7.3
{F. G} Z(ae,- ol ol 89i>+§<8zi d’az,»> (7.:3)

whereJ,, are standard symplectic matrix R .
Lemma 7.3.If
IXFllrs <€, 1XGllns <€,
then
IX(F.G)llr—ops < Cotn 2", n < 1.

Proof. Note that

d
e {F,G} = (Foz,, G1) + (Fo, Gyz,) — (Fiz,, Gg) — (FI, Ggz,)
n

+ Z((inz,n Jdi Gz,-) + (Fz,- , JdiGziz,,>)' (7-4)
ieN

Since
-1

o N F, I - 1Gylls
-2

s Fall - 1Ge, I,

o

I (Fazn Gl D(r—o,s) <

(¢]

1{Fo, GIZn>||D(r_O',%X) <
-2
sTONFL I - 1Gall,

(¢

I{Frz,, Godllpr 35y <
I{F1, Goz MD(r—0.5) <
IKFzizs Ja, Gaidl pir 35y <
I$Fzizs Ja, Gzidl pr 35y < C sTHF - 1G2 lli%e™, (7.5)

(o]

-1
o I F1ll - 11Gz, Il

-1 .a i
sTNF I 1G 1ie”,

(9]

it follows from the definition of the weighted norm (see (2.6)), that

-1 -2
”X{F,G}”r—a,ns < Co ™ e'e”.

Wi

. . 1
In particular, ifn ~ €3, €', €” ~ €, we havel| X(r,G)llr—o,ns ~ €3. O

Lemma 7.4.Let© be a compact set iR? for which (4.2) holds. Suppose thatg) and
w (&) are C™ Whitney-smooth function & € O with Cjj, norm bounded by.. Then

g@) = %
is C™ Whitney-smooth i with??
lgllo < ¢y CIkI°L.
Proof. The proof follows directly from the definition of Whitney’s differentiabilityz

20 Recall the definition in (2.4).
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A similar lemma for matrices holds:

Lemma 7.5.Let O be a compact set iiR¢ for which (4.2) holds. Suppose thA(),
A; (&) areC™ Whitney-smooth matrices and¢) is a Whitney-smooth functiongne O
bounded by.. Then

CE =BM,
is C™ Whitney-smooth with
IFlo < cy CIkI°L,

whereM stands for eithekk, w) 1y, + AiJg; if B is (d; x d;)-matrix, or (k, w)lg.a; +
(Ai‘]di) ® Idj — Id,' ® (deAj) if Bis (didj X dl-dj)—matrix,

ForaN x N matrix M = (a;;), we denote byM| its determinant. Conside¥

as a linear operator ofR", | - |), where|x| = Y |x;|. Let | M]| be its operator norm
and recall thai| M || is equivalent to the norm mau;;|; thus disregarding a constant
(depending only on dimensions) we will simply den¢f|| = max|a;;|.

Lemma 7.6.Let M be aN x N non-singular matrix with| M| < c |k|, then

|k|Nfl
7 .

{o: 1M~ > n}c {a): |detM| < ¢

Proof. First, note that ifM is a nonsingulatv x N matrix with elements bounded by

Im;j| < m,itsinverse isM¥ ! = ﬁade so that

N-1

MY < cZ
|detM |

|k|N_1

with a constant depending avi. In particular, ifm = constk|, |DetM| > =,—, then

IM~Y < ch.
This proofs the lemma.o

In order to estimate the measure®f+!, we need the following lemma, which has
been proven in [19,21]. A similar estimate is also used by Bourgain [4].

Lemma 7.7.Suppose thag(u) is a C™ function on the closurd, where I ¢ R!
is a finite interval. Letl, = {u : |g(w)| < h}, h > 0. If for some constand > O,

1™ (u)| > dforallu € I,thenmeas(l),) < ch ,wherec = 22+3+- - -+m+d ).
For the proof of Lemma 3.1, we need the following

Lemma 7.8.

—|n—jlr+plj n —|n—jlr+in
Ze [n—jlr+pljl < Ce”! I’ Z lg;jle In—jlr+inlp < Clql,
JEZ J.nez

if p <r,q e Z,whereC depends on — p.
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Lemma 7.9.
Y@+ —iD7E < clnl Y lgild+In— jD7FInl* < Clgla
JEL Jnez

if K>a+1,q € 2, ,-0, whereC depends olK —a — 1.

The proofs of the above two lemmata are elementary and we omit them.

A direct proof of Lemma 3.1t is clearly enough to consider the casefai:) equal to
a monomialt¥ 1 for someN > 1. From (3.10), one can see that the regularitgof
implies the regularity of5. In the following, we shall give the proof fag.

Suppose that the potenti#l(x) is analytic in|Imx| < r (respectively, belongs to
Sobolev spacei X) then the eigenfunctions are analytic|[lmx| < r (respectively,
belong toH X +2). If we let ¢, (x) = Za” 1n.x) then (see, e.g.,[7])

la"| < ce =" respectively |a"| < ¢ (14 |n—i|7X72).

Recall that
G(g) = Cig-i %"”
l Z N l() )"lN
where

N
Cone= [ dotnds= Y e

no+ni+--+ny=0 s=0

with |a*| < ce lis™sI" (respectivelylal®| < ¢ (1+ |n; — is|7KX72).
In what follows, we assume either=0, p > 0 ora > 0, p = 0. Since

Gq/ = (N+1) Z Cji1~--iN qi1 - qiyn

i1, 0N \/)‘]')‘il.")‘iN
it follows that

. 1
1Gqllus1, = IGall + D 1Gqy,lj1*F 2

jz1
n
<c Y |a°|ﬂe'f'ﬂ(1"[|alvq,s
Joits N, s=1
no+-+n =0
N
<C Y (A+|j—nol)~N|j| et loInomilr (H(1+ Ins — is|>"2e"m"|%|)
Joi1ediNG s=1
ng+-+npy=0
N
<c Y lngl"ol <H<1 +Ins — is|>—"—2e—'"m"|qix|>
i1, 0N s=1

no+-+n =0
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N N
N .
<c > (D nhtelZemn o [ TTA+Ing—ish ™K Zenislrgy, |

ioniys s=1 s=1
LN

N
<c Y (ATJa+Ins —ish K 2ng| e islrtindoyg, |
1

<

igoniys \s=1
ny,- N

N
c > ([]tist“e" g,

i1,,iy \s=1

N
<c[ [ lisl®e ™ 1ail | < clall,. (7.6)
s=1 is
a
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