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Abstract
In this paper, we consider the higher dimensional nonlinear beam equations

utt + �2u + σu + f (u) = 0,

with periodic boundary conditions, where the nonlinearity f (u) is a real–
analytic function near u = 0 with f (0) = f ′(0) = 0 and σ is a real parameter in
an interval I ≡ [σ1, σ2]. It is proved that for ‘most’ positive parameters σ lying
in the finite interval I, the above equations admit a family of small-amplitude,
linearly stable quasi-periodic solutions corresponding to a Cantor family of
finite dimensional invariant tori of an associated infinite dimensional dynamical
system. The proof is based on an infinite dimensional KAM theorem, modified
from (Geng and You 2006 Commun. Math. Phys. 262 343–72) and (Xu J
et al 1996 Sci. China Ser. A 39 372–83, 383–94) with weaker non-degeneracy
conditions.

Mathematics Subject Classification: 37K55, 35B10, 35J10, 35Q40, 35Q55

1. Introduction and main result

The dynamics of linear Hamiltonian partial differential equations is quite clear: in many cases,
the equation has families of periodic solutions, quasi-periodic solutions and almost-periodic
solutions. The stability of the solutions is also obvious. One would like to know if these
solutions and the related dynamics continue to the nonlinear equations in the neighbourhood
of equilibrium. There are plenty of works along this line. Below let us roughly describe these
works and their methods.
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1. Infinite dimensional KAM theory. Motivated by the construction of quasi-periodic
solutions for Hamiltonian partial differential equations, in the late 1980s, the celebrated
KAM theory has been successfully extended to infinite dimensional settings by Wayne [27],
Kuksin [20] and Pöschel [25]. Such generalizations are based on the KAM theorem for lower
dimensional tori in finite dimensional phase space ([19,23]). These infinite dimensional KAM
theorems apply to, as typical examples, one-dimensional semi-linear Schrödinger equations
with parameters

iut − uxx + V (x, ξ)u = f (u)

and wave equations

utt − uxx + V (x, ξ)u = f (u),

with Dirichlet boundary conditions to obtain the following result: if one carefully chooses a
family of potentials V (x, ξ) so that the eigenvalues of A = −(d2/dx2) + V (x, ξ) satisfies
some kind of non-degeneracy condition, then for typical ξ , the equation has an invariant torus
carrying quasi-periodic solutions. In addition, Xu et al [29] also obtained the same results if
the eigenvalues of A = −(d2/dx2) + V (x, ξ) satisfy weaker non-degeneracy condition (see
also Rüssmann [26], Cheng and Sun [9]).

Later, a KAM theorem was given by Chierchia and You [10] which applies to a one-
dimensional wave equation with periodic boundary conditions. In [17], Geng and You gave
a KAM theorem which applies to some types of higher dimensional Hamiltonian partial
differential equations. Recently, Eliasson and Kuksin [13] gave a KAM theorem which applies
to nonlinear Schrödinger equations in higher dimensional space.

2. Craig–Wayne–Bourgain method. One-dimensional partial differential equations with
periodic boundary conditions are more complicated since the eigenvalues of A are no longer
distinct, i.e.

µ0 < µ1 � µ2 < · · · < µ2n−1 � µ2n < · · · .
For semi-linear partial differential equations in higher dimensional space, the eigenvalues of A

are always asymptotically multiple. To overcome this difficulty, Craig and Wayne [11, 12]
went to the origin of the KAM method—the Newtonian iteration method, together with
Liapunov–Schmidt decomposition and techniques by Fröhlich and Spencer [14]—which
involves a Green’s function analysis and the control of the inverse of infinite matrices with
small eigenvalues. They succeeded in constructing periodic solutions of one-dimensional
semi-linear wave equations with periodic boundary conditions.

Later Bourgain further developed the Craig–Wayne method and proved the existence of
quasi-periodic solutions of Hamiltonian partial differential equations in higher dimensional
space with Dirichlet boundary conditions or periodic boundary conditions. More precisely,
Bourgain gave the existence of quasi–periodic solutions for

iut − �u + Mσu + f (u) = 0,

utt − �u + Mσu + f (u) = 0,

where Mσ is the real Fourier multiplier, see Bourgain [4–8] for details. We remark that the
Fourier multiplier Mσ makes the spectrum of the operator −� + Mσ simple, which is crucial
for the proof. However, the physical meaning of the equation is also weakened.

3. ‘Natural’ Hamiltonian partial differential equations. We remark that when the potential
is a constant, generally speaking, normal form techniques have to be used.

In the one-dimensional case, this has been done by Wayne [27], Kuksin and Pöschel [21]
and Pöschel [24] for V (x) = m > 0.
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For similar results of other type of one-dimensional equations, we refer to Geng and
You [16] (see also Geng and Yi [18] for a simple proof), Geng and You [15,17], Liang–You [22]
and references therein.

Recently, Yuan [30, 31], using the normal form technique, proved the existence of quasi-
periodic solutions for complete resonant one-dimensional wave equations utt − uxx ± u3 = 0
and utt − uxx + V (x)u + u3 = 0 for typical V (x) not necessary constant.

In the case that the space dimension is greater than one and the potential is natural, due to
resonances, the normal form techniques are very complicated and technical. So far the only
result was due to Bourgain ( [8]). In [8], Bourgain proved the existence of two-frequency
quasi-periodic solutions for the two-dimensional Schrödinger equation with constant potential

iut − �u + mu + u|u|2 = 0. (1.1)

More concretely, for two fixed distinguished lattice points i1, i2 ∈ Z
2 on a circle

|i1| = |i2| = R, i1 �= −i2,

where | · | denotes Euclid–norm, Bourgain proved that (1.1) possesses quasi–periodic solutions

u(t, x) =
2∑

j=1

ξj ei(ωj t+〈ij ,x〉) + O(|ξ |3)

with frequencies ω = (ω1, ω2) satisfying

ωj = |ij |2 + m + O(|ξ |2), j = 1, 2,

for ξ = (ξ1, ξ2) in a Cantor set O of positive measure.
In this paper, we consider dD (d-dimensional) nonlinear beam equations with periodic

boundary conditions

utt + �2u + σu + f (u) = 0, x ∈ R
d , t ∈ R,

where 0 < σ ∈ I ≡ [σ1, σ2], and f (u) is a real-analytic function near u = 0 with
f (0) = f ′(0) = 0. We will construct quasi-periodic solutions with arbitrary many frequencies
for the above equations. Note that, in the higher dimensional case, for a fixed lattice point n,
there will be many other lattice points m such that |m| = |n|, which will bring two main
difficulties: one difficulty is that the first Melnikov conditions and the second Melnikov
conditions are partially violated; this difficulty can be overcome by assuming that f (u)

does not depend explicitly on the space variables and the time variable; the point is that
the perturbation has some special structure which makes some first and second Melnikov
conditions unnecessary. The other difficulty is that there are more resonances between
tangential frequencies and normal frequencies in the higher dimensional case so that the
Hamiltonian cannot keep the desired form along the KAM iteration. For example, the lattice
points n1 = (0, 1), n2 = (0, −1), n3 = (1, −1), n4 = (1, 1) satisfy

n1 �= n2, n1 �= n4, n3 �= n4,

|n1| = |n2|, |n3| = |n4|,
n1 − n2 + n3 − n4 = 0.

If we put two of them into tangential sites, after one KAM step the normal form will contain the
non-integrable terms. This is not allowed by the KAM method. However, such a phenomenon
does not appear in the one-dimension case. In the higher dimensional case, to avoid such
difficulty, we have to carefully choose the tangential sites.
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In the following, we formulate the main result of this paper. Letφn(x) =
√

(1/(2π)d)ei〈n,x〉

be eigenvectors of the operator �2 + σ with periodic boundary conditions corresponding to
eigenvalues

λn = |n|4 + σ , n ∈ Z
d ,

where σ is parameter. For any fixed lattice points i1, . . . , ib ∈ Z
d , it is obvious that the

linearized equations have a small-amplitude quasi-periodic solution

u(t, x) =
b∑

j=1

ξj ei
√

λij
t
φij (x), ξj > 0.

We will prove that for ‘most’ σ (in the sense of Lebesgue measure) the quasi–periodic solutions
of the linearized equation continue to the nonlinear equation if one chooses the lattice points
(called tangential sites) i1, . . . , ib in the following way: {i1, . . . , ib} ∈ J where J is defined
as follows:

J =


{i1, . . . , ib} :

ij = (ij1 , . . . , ijd
), 1 � j � b,

|ijk+1 | > 4d(ijk
)2, 1 � k � d − 1,

|i(j+1)1 | > 4d(ijd
)2, 1 � j � b − 1.


 . (1.2)

Theorem 1. Consider dD nonlinear beam equations

utt + �2u + σu + f (u) = 0, x ∈ R
d , t ∈ R,

u(t, x1 + 2π, . . . , xd) = · · · = u(t, x1, . . . , xd + 2π) = u(t, x1, . . . , xd),

where σ ∈ I ≡ [σ1, σ2] as parameters and f (u) is a real-analytic function near u = 0 with
f (0) = f ′(0) = 0. Then for a fixed {i1, . . . , ib} ∈ J and any 0 < γ 	 1, there exists a
Cantor subset Oγ ⊂ I with meas(I \ Oγ ) = O(γ ϑ) (ϑ is specified in appendix B), such
that for each σ ∈ Oγ , the above nonlinear beam equation admits a small-amplitude, linearly
stable quasi-periodic solution of the form

u(t, x) =
∑
n∈Zd

un(ω1t, . . . , ωbt)φn(x),

where un : T
b → R and Diophantine frequency ω = (ω1, . . . , ωb) is close to the unperturbed

frequency (
√

λi1 , . . . ,
√

λib ).

Remark 1. We remark that our way of choosing J is tricky; the other ways of choosing
i1, . . . , ib are also possible. The basic principle is to choose the distinguished lattice points
i1, . . . , ib so that if λn1 + λn2 − λn3 − λn4 = 0, there will be at most one of n1, n2, n3, n4

belonging to tangential sites {i1, . . . , ib}. For example, in the case of two dimension, in order
to construct two-frequency torus, we may choose J = {(0, 1), (9, 650)}.

Remark 2. It is plausible that the equation possesses quasi-periodic solutions for all σ , but
we cannot prove this stronger result so far.

The paper is organized as follows: in section 2 we formulate an infinite dimensional KAM
theorem, the proof of which is based on Geng and You [17] and Xu et al [29]; in section 3
the Hamiltonian is transformed into the desired form; as a consequence, theorem 1 follows
by applying theorem 2 in section 2. Some technical lemmas are given in appendix A and
appendix B.
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2. An infinite dimensional KAM theorem for Hamiltonian partial differential equations

We start by introducing some notations. For given b vectors in Z
d , say {i1, . . . , ib}, we

denote Z
d
1 = Z

d \ {i1, . . . , ib}. Let z = (. . . , zn, . . .)n∈Z
d
1
, zn ∈ C and its complex conjugate

z̄ = (. . . , z̄n, . . .)n∈Z
d
1
, z̄n ∈ C. We introduce the weighted norm

‖z‖a,ρ =
∑
n∈Z

d
1

|zn||n|ae|n|ρ,

where |n| =
√

n2
1 + · · · + n2

d , n = (n1, . . . , nd) and a � 0, ρ > 0. Denote a neighbourhood of

T
b × {I = (I1, . . . , Ib) = 0} × {z = 0} × {z̄ = 0} by

D(r, s) = {(θ, I, z, z̄) : |Imθ | < r, |I | < s2, ‖z‖a,ρ < s, ‖z̄‖a,ρ < s},
where | · | denotes the sup-norm of complex vectors. Moreover, let O be a compact subset
of R

ν of positive Lebesgue measure, and let CN,1(O) be N -order Lipschitz continuously
differentiable function space; here the derivatives of function on O are understood in the sense
of Whitney, so the space CN,1(O) is also understood in the sense of Whitney (for the related
definition about the notation CN,1(O) and Whitney differentiability, see [28, 29]).

Let α ≡ (. . . , αn, . . .)n∈Z
d
1
, β ≡ (. . . , βn, . . .)n∈Z

d
1
, αn and βn ∈ N with finitely many

non-zero components of positive integers. The product zαz̄β denotes
∏

n zαn
n z̄

βn
n . For any given

function

F(θ, I, z, z̄) =
∑
α,β

Fαβ(θ, I )zαz̄β, (2.1)

where Fαβ belongs to CN,1(O) in parameter ξ , we define the weighted norm of F by

‖F‖D(r,s),O ≡ sup
‖z‖a,ρ<s

‖z̄‖a,ρ<s

∑
α,β

‖Fαβ‖ |zα||z̄β |, (2.2)

where, if Fαβ = ∑
k∈Zb,l∈Nb Fklαβ(ξ)I lei〈k,θ〉, (〈·, ·〉 being the standard inner product in C

b),
‖Fαβ‖ is short for

‖Fαβ‖ ≡
∑
k,l

|Fklαβ(ξ)|CN,1(O)s
2|l|e|k|r . (2.3)

To function F , we associate a Hamiltonian vector field defined by

XF = (FI , −Fθ, {iFzn
}n∈Z

d
1
, {−iFz̄n

}n∈Z
d
1
).

Its weighted norm is defined by1

‖XF ‖D(r,s),O ≡ ‖FI‖D(r,s),O +
1

s2
‖Fθ‖D(r,s),O

+
1

s


∑

n∈Z
d
1

‖Fzn
‖D(r,s),O|n|āe|n|ρ +

∑
n∈Z

d
1

‖Fz̄n
‖D(r,s),O|n|āe|n|ρ


 (2.4)

Remark. In this paper, we require that ā > a, i.e. the weight of vector fields is a little heavier
than that of z, z̄. The boundedness of ‖XF ‖Dρ(r,s),O means XF sends a decaying z-sequence
to a faster decaying sequence.

1 The norm ‖·‖D(r,s),O for scalar functions is defined in (2.2). The vector function G : D(r, s)×O → C
m, (m < ∞)

is similarly defined as ‖G‖D(r,s),O = ∑m
i=1 ‖Gi‖D(r,s),O .
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The starting point will be a family of integrable Hamiltonians of the form

N = 〈ω(ξ), I 〉 +
∑
n∈Z

d
1

�n(ξ)znz̄n, (2.5)

where ξ ∈ O is a parameter, the phase space is endowed with the symplectic structure
dI ∧ dθ + i

∑
n∈Z

d
1

dzn ∧ dz̄n.
For each ξ ∈ O, the Hamiltonian equations of motion for N , i.e.

dθ

dt
= ω,

dI

dt
= 0,

dzn

dt
= −i�nzn,

dz̄n

dt
= i�nz̄n, n ∈ Z

d
1 , (2.6)

admit special solutions (θ, 0, 0, 0) → (θ + ωt, 0, 0, 0) that corresponds to an invariant torus
in the phase space.

Consider now the perturbed Hamiltonian

H = N + P = 〈ω(ξ), I 〉 +
∑
n∈Z

d
1

�n(ξ)znz̄n + P(θ, I, z, z̄, ξ). (2.7)

Our goal is to prove that, for most values of parameter ξ ∈ O (in Lebesgue measure sense), the
Hamiltonians H = N + P still admit invariant tori provided that ‖XP ‖D(r,s),O is sufficiently
small.

To this end, we need to impose some conditions on ω(ξ), �n(ξ) and the perturbation P .
As we already remarked, the persistence of the lower dimensional torus may not be true if one
only assumes the smallness of the perturbation. This is an essential difference between infinite
and finite dimensional cases.

(A1) Regularity of the perturbation. The perturbation P is regular in the sense that
‖XP ‖D(r,s),O < ∞ with ā > a.

(A2) Special form of the perturbation. The perturbation is taken from a special class of analytic
functions,

A =

P : P =

∑
k∈Zb,l∈Nb,α,β

Pklαβ(ξ)I lei〈k,θ〉zαz̄β


 ,

where k, α, β has the following relation

b∑
j=1

kj ij +
∑
n∈Z

d
1

(αn − βn)n = 0. (2.8)

(A3) Non-degeneracy. Suppose for ∀ξ ∈ O,

rank

{
∂ω1

∂ξ
, · · · , ∂ωb

∂ξ

}
= κ,

rank

{
∂βω

∂ξβ
|∀β, 1 � |β| � b − κ + 1

}
= b, (2.9)

where κ is a given integer with 1 � κ � min{b, ν}, ∂ω1
∂ξ

, . . . , ∂ωb

∂ξ
are vectors of all 1-order

partial derivatives in ξ and for a fixed β ∂βω
∂ξβ = ( ∂βω1

∂ξβ , . . . , ∂βωb

∂ξβ ). Moreover, for some

N > b − κ + 4, ω belongs to CN,1(O).
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(A4) Asymptotics of normal frequencies. There exists an ι > 0 such that for all n =
(n1, . . . , nd) ∈ Z

d
1 ,

�n �= 0, n ∈ Z
d
1 , (2.10)

�n = �̄n + �̃n, |�̃n|CN,1(O) = o(|n|−ι), (2.11)

where �̄ns are real and independent of ξ ; furthermore, the asymptotic behaviour of �̄n is
assumed to be as follows

�̄n = |n|p + o(|n|p), �̄n − �̄m = |n|p − |m|p + o(|m|−ι), |m| � |n|, (2.12)

where p � 2 for d > 1 or p � 1 for d = 1.
(A5) Non-resonance conditions and admissible tangential sites. For a fixed γ > 0 small enough

and τ sufficiently large, we assume that either

|〈k, ω(ξ)〉| � γ

|k|τ , k �= 0,

|〈k, ω(ξ)〉 + �n| � γ

|k|τ ,

|〈k, ω(ξ)〉 + �n + �m| � γ

|k|τ ,

|〈k, ω(ξ)〉 + �n − �m| � γ

|k|τ , |k| + ||n| − |m|| �= 0

(2.13)

or

〈k, i〉 + n + m �= 0, for(k, |n|, |m|) = (−ej − el, |ij |, |il|), 1 � j < l � b,

〈k, i〉 + n − m �= 0, (k, |n|, |m|) = (−ej + el, |ij |, |il|), 1 � j < l � b,

where i = (i1, . . . , ib) and ej denotes b-vector with its j th component being 1 and the
other components being zero.

Now we are ready to state our KAM theorem.

Theorem 2. Assume that the Hamiltonian H = N + P satisfies (A1), (A2), (A3), (A4),
(A5), then there exists a positive constant ε = ε(b, d, p, κ, ι, ā − a, γ, τ ) such that if
‖XP ‖D(r,s),O < ε, then the following holds true: there exists a Cantor subset Oγ ⊂ O with
meas(O \ Oγ ) = O(γ ϑ) (ϑ is specified in appendix B) and two maps (analytic in θ and
belonging to CN,1(Oγ ) in ξ )

� : T
b × Oγ → D(r, s), ω̃ : Oγ → R

b,

where � is (ε/γ N+1)-close to the trivial embedding �0 : T
b × O → T

b × {0, 0, 0} and ω̃

is ε-close to the unperturbed frequency ω, such that for any ξ ∈ Oγ and θ ∈ T
b, the curve

t → �(θ + ω̃(ξ)t, ξ) is a quasi-periodic solution of the Hamiltonian equations governed by
H = N + P . Moreover, the obtained solutions are linearly stable.

Remark 1. Just as commented in [17], according to the assumption (A2), when k =
(k1, . . . , kb) = 0 and n �= m, we get

P0lnm = 0 if
b∑

j=1

kj ij + n − m = n − m �= 0.

This means that there are no terms of the form
∑

n �=m P0lnmI lznz̄m in the perturbation; hence, we
will not encounter small divisor �n − �m in the KAM iteration. Similarly, due to assumption
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(A2), we will not encounter small divisor −ωj + �n in the KAM iteration; thus, although
the first Melnikov conditions are partially violated while |n| = |ij |, 1 � j � b, our KAM
theorem holds true under assumption (A2). It should be noted that, P and F satisfy (A2), then
{P, F } also satisfies (A2). The detailed proof can be found in [17].

Remark 2. Analogously, due to assumption (A5), we will not encounter small divisor
−ωj + ωl + �n − �m and −ωj − ωl + �n + �m in the KAM iteration; thus, although the
corresponding second Melnikov conditions are violated, our KAM theorem still holds true.

Remark 3. In the case of ξ ∈ O ⊂ R, non-degeneracy conditions (2.9) have a particularly
simple form ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

dω1

dξ

dω2

dξ
· · · dωb

dξ

d2ω1

dξ 2

d2ω2

dξ 2
· · · d2ωb

dξ 2

...
...

. . .
...

dbω1

dξb

dbω2

dξb
· · · dbωb

dξb

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

�= 0, (2.14)

this form is of special interest in the applications.

The proof of this theorem includes two parts: one is KAM iteration, which is the same
as [17]; the other is the measure estimates under weaker non-degeneracy condition (A3), which
can be obtained by following the proof of measure estimates in Xu et al [29]. For the sake of
completeness, we give the proof of measure estimates in appendix B.

3. Application to higher dimensional beam equations

Consider dD beam equations

utt + B2u + f (u) = 0, Bu ≡ (�2 + σ)1/2u, x ∈ R
d , t ∈ R, (3.1)

u(t, x1 + 2π, . . . , xd) = . . . = u(t, x1, . . . , xd + 2π) = u(t, x1, x2, . . . , xd),

where f (u) is a real-analytic function near u = 0 with f (0) = f ′(0) = 0. Introducing v = ut ,
(3.1) reads

ut = v,

vt = −B2u − f (u). (3.2)

Letting w = (1/
√

2)B1/2u − i(1/
√

2)B−1/2v, we thus obtain

1

i
wt = Bw +

1√
2
B−1/2f

(
B−1/2

(
w + w̄√

2

))
. (3.3)

Equation (3.3) can be rewritten as the Hamiltonian equation

wt = i
∂H

∂w̄
(3.4)

and the corresponding Hamiltonian is

H =
∫

Td

(Bw)w̄ dx +
∫

Td

g

(
B−1/2

(
w + w̄√

2

))
dx, (3.5)
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where g is a primitive of f (this is similar to the cases of Schrödinger equation and wave
equation, see [21,24]). The operator B with periodic boundary conditions has an exponential
basis φn(x) =

√
(1/(2π)d)ei〈n,x〉 and corresponding eigenvalues

µn =
√

|n|4 + σ , n ∈ Z
d . (3.6)

Let

w(x) =
∑
n∈Zd

qnφn(x).

System (3.4) is then equivalent to the lattice Hamiltonian equations

q̇n = i

(
µnqn +

∂G

∂q̄n

)
, G ≡

∫
Td

g

(∑
n∈Zd

qnφn + q̄nφ̄n√
2µn

)
dx, (3.7)

with corresponding Hamiltonian function

H = � + G =
∑
n∈Zd

µnqnq̄n +
∫

Td

g

(∑
n∈Zd

qnφn + q̄nφ̄n√
2µn

)
dx. (3.8)

Since f (u) is real analytic in u, then g(w, w̄) is real analytic in w, w̄: making use of
w(x) = ∑

n∈Zd qnφn(x) again, let q = (. . . , qn, . . .)n∈Zd , q̄ = (· · · , q̄n, · · ·)n∈Zd , then we
may rewrite g as follows

g(w, w̄) =
∑
α,β

gαβqαq̄βφαφ̄β,

hence

G(q, q̄) ≡
∫

Td

g

(∑
n∈Zd

qnφn + q̄nφ̄n√
2µn

)
dx =

∑
α,β

Gαβqαq̄β,

Gαβ = 0, if
∑
n∈Zd

(αn − βn)n �= 0. (3.9)

Next we consider the regularity of the gradient of G. To this end, let �a,ρ be the Banach spaces
of all bi-infinite, complex valued sequences q = (. . . , qn, . . .)n∈Zd with finite weighted norm

‖q‖a,ρ =
∑
n∈Zd

|qn||n|ae|n|ρ.

The convolution q ∗ p of two such sequences is defined by (q ∗ p)n = ∑
m qn−mpm.

Lemma 3.1. For a � 0, ρ > 0, the space �a,ρ is a Banach algebra with respect to convolution
of sequences and

‖q ∗ p‖a,ρ � c‖q‖a,ρ‖p‖a,ρ

with a constant c depending only on a.

For the proof of lemma 3.1, see [10, 15, 16, 21, 24].

Lemma 3.2. For a � 0 and ρ > 0, the gradient Gq̄ is real analytic as a map from some
neighbourhood of the origin in �a,ρ into �a+1,ρ , with

‖Gq̄‖a+1,ρ � c‖q‖2
a,ρ . (3.10)
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For the proof of lemma 3.2, see [10, 15, 16, 21, 24].
For any {i1, . . . , ib} ∈ J , we introduce standard action-angle variables (θ, I ) =

((θ1, . . . , θb), (I1, . . . , Ib)) in the (qi1 , . . . , qib , q̄i1 , . . . , q̄ib )-space by letting

Ij = qij q̄ij , j = 1, . . . , b,

and qn = zn, q̄n = z̄n, n �= i1, . . . , ib. Let Z
d
1 = Z

d \{i1, . . . , ib}, so that system (3.7) becomes

dθj

dt
= ωj + PIj

,
dIj

dt
= −Pθj

, j = 1, . . . , b,

dzn

dt
= −i(�nzn + Pz̄n

),
dz̄n

dt
= i(�nz̄n + Pzn

), n ∈ Z
d
1 , (3.11)

where P is just G with the (qi1 , . . . , qib , q̄i1 , . . . , q̄ib , qn, q̄n)-variables expressed in terms of the
(θ, I, zn, z̄n) variables. The Hamiltonian associated to (3.11) (with respect to the symplectic
structure dI ∧ dθ + i

∑
n∈Z

d
1

dzn ∧ dz̄n) is given by

H = 〈ω(σ), I 〉 +
∑
n∈Z

d
1

�n(σ)znz̄n + P(θ, I, z, z̄, σ ), (3.12)

where ω(σ) = (ω1(σ ), . . . , ωb(σ )) = (µi1(σ ), . . . , µib (σ )), �n(σ) = µn(σ).

Lemma 3.3. P has the special form defined in (A2), i.e. P(θ, I, z, z̄, σ ) ∈ A.

For the proof, see [17]. Moreover the regularity of P holds true.

Lemma 3.4. For any ε > 0 sufficiently small and s = ε1/2, if |I | < s2 and ‖z‖a,ρ < s, then

‖XP ‖D(r,s),O � ε, ā = a + 1. (3.13)

Thanks to lemma 4.1 in the appendix, one can easily get the following lemma.

Lemma 3.5. ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

dω1

dσ

dω2

dσ
· · · dωb

dσ

d2ω1

dσ 2

d2ω2

dσ 2
· · · d2ωb

dσ 2

...
...

. . .
...

dbω1

dσb

dbω2

dσb
· · · dbωb

dσ b

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

�= 0.

To verify assumption (A5) in theorem 2, we need the following lemmas; first recall the
definition of J (see (1.2)):

J =


{i1, . . . , ib} :

ij = (ij1 , . . . , ijd
), 1 � j � b,

|ijk+1 | > 4d(ijk
)2, 1 � k � d − 1,

|i(j+1)1 | > 4d(ijd
)2, 1 � j � b − 1.


 .

Lemma 3.6. For any {i1, . . . , ib} ∈ J , one has

〈k, i〉 + n + m �= 0, (k, |n|, |m|) = (−ej − el, |ij |, |il|), 1 � j < l � b,

〈k, i〉 + n − m �= 0, (k, |n|, |m|) = (−ej + el, |ij |, |il|), 1 � j < l � b.
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Proof. If (k, |n|, |m|) = (−ej + el, |ij |, |il|), by contradiction, we assume 〈k, i〉 + n − m =
−ij + il +n−m = 0, then m = n+ il − ij ; thus |n+ il − ij | = |m| = |il|, i.e. |n+ il − ij |2 = |il|2;
therefore

〈n + il − ij , n + il − ij 〉 = 〈il, il〉,
i.e.

|ij |2 + 〈n, il〉 − 〈n, ij 〉 − 〈ij , il〉 = 0;
thus

〈n − ij , il − ij 〉 = 0,

i.e.

(n1 − ij1)(il1 − ij1) + · · · + (nd − ijd
)(ild − ijd

) = 0;
due to n �= ij , let ns −ijs

denote the first non-vanishing component among nd −ijd
, . . . , n1−ij1 ,

then

(n1 − ij1)(il1 − ij1) + · · · + (ns − ijs
)(ils − ijs

) = 0;
hence

(n1 − ij1)(il1 − ij1) + · · · + (ns − ijs
)(−ijs

) = −(ns − ijs
)ils ; (3.14)

again according to |n| = |ij | and the definition of J , one has

|(n1 − ij1)(il1 − ij1) + · · · + (ns − ijs
)(−ijs

)| � 4s|ils−1 |2 < |ils | � | − (ns − ijs
)ils |,

which is contradicted by equality (3.14). In conclusion, −ij + il + n − m �= 0. The other case
can be proved analogously and lemma 3.6 is obtained. �

To check non-resonance conditions (A5), we have the following lemma.

Lemma 3.7. For a fixed γ > 0 small enough, there exists τ sufficiently large and a subset
O ⊂ I with meas(I \ O) = O(γ ϑ) (ϑ is specified in appendix B), such that for each σ ∈ O,
one has the following non-resonance conditions

|〈k, ω(σ )〉| � γ

|k|τ , k �= 0,

|〈k, ω(σ )〉 + �n(σ)| � γ

|k|τ ,

|〈k, ω(σ )〉 + �n(σ) + �m(σ)| � γ

|k|τ ,

|〈k, ω(σ )〉 + �n(σ) − �m(σ)| � γ

|k|τ , |k| + ||n| − |m|| �= 0.

(3.15)

The proof of lemma 3.7 is very similar to section 8 in Bambusi [2] (also see section 6
in Bambusi [1]); however, here we deal with a higher dimensional case; hence, for the sake
of completeness, we give its proof in appendix A. In addition, we simplify the proof in [2].
In [2], the author separated the measure estimates into two parts: |k| sufficiently large and |k|
small. Here we do not need to distinguish them, which reduces a lot of computation.

In addition,

�n = �̄n + �̃n, �̄n = |n|2, |�̃n|CN,1(O) = o(|n|−1).

Now we have verified all the assumptions of theorem 2 for (3.12) with p = 2, ι = 1, ā−a = 1.
Consequently, theorem 1 follows by applying theorem 2.
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Appendix A

The proof of lemma 3.7.
In the first KAM step, we have to exclude the resonant set such that lemma 3.7 holds true.

Clearly in (3.15), when (k, |n|) = (−ej , |ij |), 1 � j � b, one has 〈k, ω(σ )〉 + �n(σ) ≡ 0;
similarly, when (k, |n|, |m|) = (−ej + el, |ij |, |il|), 1 � j < l � b, one has 〈k, ω(σ )〉 +
�n(σ) − �m(σ) ≡ 0. But due to lemmas 3.3 and 3.6, we will not encounter such terms in the
perturbation; thus without loss of generality, we suppose �n �= √|ij |4 + σ , �m �=

√
|il|4 + σ .

We have to throw away the following resonant set

R =

⋃

k �=0

Rk


⋃(⋃

k,n

Rkn

)⋃(⋃
k,n,m

R1
knm

)⋃
 ⋃

k,|n|�=|m|
R2

knm


 ,

where

Rk =
{
σ ∈ I : |〈k, ω(σ )〉| <

γ

|k|τ
}

, (4.1)

Rkn =
{
σ ∈ I : |〈k, ω(σ )〉 + �n(σ)| <

γ

|k|τ
}

, (4.2)

R1
knm =

{
σ ∈ I : |〈k, ω(σ )〉 + �n(σ) + �m(σ)| <

γ

|k|τ
}

, (4.3)

R2
knm =

{
σ ∈ I : |〈k, ω(σ )〉 + �n(σ) − �m(σ)| <

γ

|k|τ
}

. (4.4)

Here we only consider the most complicated case R2
knm; the other cases can be handled in the

same way.

Lemma 4.1. For any given i1, . . . , iL ∈ Z
d , |i1| < · · · < |iL|, L � b + 2, one has∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

dµi1

dσ

dµi2

dσ
· · · dµiL

dσ

d2µi1

dσ 2

d2µi2

dσ 2
· · · d2µiL

dσ 2

...
...

. . .
...

dLµi1

dσL

dLµi2

dσL
· · · dLµiL

dσL

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

� c

|i1|4L−2|i2|4L−2 · · · |iL|4L−2
. (4.5)

Proof. First remark that by explicit computation one has

dsµij

dσ s
= (2s − 3)!!

2s

(−1)s+1

(|ij |4 + σ)s−(1/2)
. (4.6)

Substituting (4.6) into the lhs of (4.5) we get the determinant to be estimated. To obtain the
estimate factorize from the j th column the term (|ij |4 + σ)−1/2 and from the lth row the term
(2l − 3)!!/2l . Forgetting the inessential powers of −1, we obtain that the determinant to be
estimated is given by


 L∏

j=1

(|ij |4 + σ)−1/2


[ L∏

l=1

(2l − 3)!!

2l

]
∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1

x1 x2 · · · xL

...
...

. . .
...

xL−1
1 xL−1

2 · · · xL−1
L

∣∣∣∣∣∣∣∣∣∣∣
, (4.7)
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where xj ≡ (|ij |4 + σ)−1. The last determinant is a Vandermond determinant whose value is
given by ∏

j<l�L

(xj − xl). (4.8)

Now one has

|xj − xl| = |(|ij |4 + σ)−1 − (|il|4 + σ)−1| � (|ij |4 + σ)−1(|il|4 + σ)−1 = xjxl,

then (4.8) is estimated by

L∏
l=2

l−1∏
j=1

xjxl =
L∏

l=2


xl−1

l

l−1∏
j=1

xj


 =

L∏
l=1

xL−1
l =

L∏
l=1

(|il|4 + σ)−(L−1),

from which, using the asymptotics of the frequencies, lemma 4.1 immediately follows. �

Lemma 4.2. (Proposition of appendix B in [3]). Let u(1), . . . , u(L) be L independent vectors
with ‖u(s)‖�1 � 1. Let w ∈ R

L be an arbitrary vector, then there exists s ∈ [1, . . . , L], such
that

|u(s) · w| � ‖w‖�1 det(u(s))

L
3
2

,

where det(u(s)) is the determinant of the matrix formed by the components of the vectors u(s).

For the proof see [3].

Corollary 1. For any σ ∈ I and any vector w ∈ R
L, L � b + 2, there exists s ∈ [1, . . . , L]

such that ∣∣∣∣w · dsu

dσ s

∣∣∣∣ � c
‖w‖�1∏L

l=1 |il|4b+6
,

where u = (µi1 , . . . , µiL).

Proof. Consider the vector

u(s) ≡




dsu
dσ s∥∥∥∥ dsu

dσ s

∥∥∥∥
�1

if

∥∥∥∥ dsu

dσ s

∥∥∥∥
�1

> 1

dsu

dσ s
if

∥∥∥∥ dsu

dσ s

∥∥∥∥
�1

� 1

and apply lemma 4.2. We thus get that there exists s ∈ [1, . . . , L] such that∣∣∣∣w · dsu

dσ s

∣∣∣∣ � c
‖w‖�1∏L

l=1 |il|4b+6
.

Lemma 4.3. (Lemma 8.4 of [2]). Let g : I → R be b + 3 times differentiable and assume
that

(1) ∀σ ∈ I there exists s � b + 2 such that g(s)(σ ) > B,
(2) there exists A such that |g(s)(σ )| � A for ∀σ ∈ I and ∀s with 1 � s � b + 3.
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Define

Ih ≡ {σ ∈ I : |g(σ )| � h},
then

meas(Ih)

meas(I)
� A

B
2(2 + 3 + · · · + (b + 3) + 2B−1)h1/(b+3).

For the proof see [2] and [29].
By combining lemma 4.3 and corollary 1 we get the following lemma.

Lemma 4.4. For any {i1, . . . , ib} ∈ J , ω = (µi1 , . . . , µib ), �n = µn, �m = µm, then for
fixed k, n, m, we have

meas(R2
knm) < c

|n|8b+12|m|8b+12γ 1/(b+3)

|k|(τ/(b+3))+1
.

Lemma 4.5. meas

(⋃
k,n,m

R2
knm

)
< cγ ϑ, ϑ > 0.

Proof. Suppose that |n|2 − |m|2 = l � 0. If l > c|k|, R2
knm = ∅; if l � c|k|, one has

|�n − �m − l| � O(|m|−1).

It follows that

R2
knm ⊆ Q2

klm

def=
{
σ : |〈k, ω(σ )〉 + l| <

γ

|k|τ + O(|m|−1)

}
. (4.9)

Moreover, Q2
klm ⊆ Q2

klm0
for |m| � |m0|. Due to lemmas 4.4 and 4.3, one has

meas


 ⋃

l�c|k|

⋃
|n|2−|m|2=l

R2
knm




�
∑

l�c|k|

∑
|m|<|m0|

meas(R2
knm) +

∑
l�c|k|

meas(Q2
klm0

)

< c

(
γ 1/(b+3)|m0|8(2b+3)+C(d)

|k|(τ/(b+3))−4b−6
+

(
γ

|k|τ + O(|m0|−1)

)1/(b+3)
)

< c

(
γ 1/(b+3)|m0|8(2b+3)+C(d)

|k|(τ/(b+3))−4b−6
+ O(|m0|−1/(b+3))

)
, (4.10)

where C(d) is a constant depending only on space dimension d. By choosing

γ 1/(b+3)|m0|8(2b+3)+C(d)

|k|(τ/(b+3))−4b−6
= |m0|−1/(b+3),

i.e.

‖m0| =
( |k|(τ/(b+3))−4b−6

γ 1/(b+3)

)1/8(2b+3)+C(d)+(1/(b+3))

,

we arrive at

meas


 ⋃

l�c|k|

⋃
|n|2−|m|2=l

R2
knm


 < c

γ
1

(b+3)2(8(2b+3)+C(d))+b+3

|k| (τ/(b+3))−4b−6
(b+3)(8(2b+3)+C(d))+1

. (4.11)
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Let

ϑ = 1

(b + 3)2(8(2b + 3) + C(d)) + b + 3

and

τ > b(b + 3)2(8(2b + 3) + C(d)) + (b + 3)(5b + 6),

then

meas


 ⋃

k,|n|�=|m|
R2

knm




� c
∑

k

γ ϑ

|k| (τ/(b+3))−4b−6
(b+3)(8(2b+3)+C(d))+1

< cγ ϑ. (4.12)

Lemma 4.5 is obtained. As a consequence, we get

meas(R) < cγ ϑ .

�
Let O = I \R, then O is positive-measure subset of I and for each σ ∈ O, non-resonance

conditions (3.15) hold true and lemma 3.7 is obtained. �

Appendix B

The proof of theorem 2 includes two parts: one is KAM iteration, which is the same as [17];
the other is the measure estimates under weaker non-degeneracy condition (A3), which can
be obtained by following the proof of measure estimates in Xu et al [29]. For the sake of
completeness, we give the proof of measure estimates in this appendix.

Lemma 5.1. Suppose that g(x) is an m times differentiable function on the closure Ī of I ,
where I ⊂ R

1 is an interval. Let Ih = {x||g(x)| < h}, h > 0. If for some constant d > 0,
|g(m)(x)| � d for ∀x ∈ I , then meas(Ih) � ch1/m, where c = 2(2 + 3 + · · · + m + d−1).

For the proof see [2] and [29].
Next, we give the proof of measure estimates under weaker non-degeneracy conditions.

Since for |k| � K ∼ | ln ε|, according to assumption (A5) and ‖XP ‖ < ε, when
|k| � K ∼ | ln ε|, we do not need to excise the parameter set. Thus in the following, we
suppose |k| � K .

Since the two vector groups {∂βω/∂ξβ |∀β, |β| = r} and {Dr
vω(ξ)|v ∈ R

b} are linearly
equivalent, where r > 0 is an integer, Dr

vω(ξ) = drω(ξ + tv)/dt r |t=0 are direction derivatives
of ω at ξ along v. By assumption (A3) in section 2, for ξ ∈ O there exist b integers,
1 � r1, . . . , rb � b − κ + 1, and b direction vectors, v1, · · · , vb ∈ R

b such that

rank{Dr1
v1

ω(ξ), . . . , Drb

vb
ω(ξ)} = b. (5.1)

There exists a neighbourhood of ξ , Oξ ⊂ O, such that (5.1) holds on Oξ . Since O is compact,
we can choose such finite neighbourhoods to cover O, so without loss of generality, we suppose
that (5.1) holds for ∀ξ ∈ O.

Let the matrix A(ξ) = (Dr1
v1

ω(ξ), . . . , Drb
vb

ω(ξ)). Since det(A(ξ)) �= 0 for ∀ξ ∈ O,
there exists c1 > 0 such that for ∀(ξ, y) ∈ O × S, |A(ξ)y| � c1, where S = {y|y ∈
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R
b, |y| = ∑b

j=1 |yj | = 1}, the norm of the vector A(ξ)y is in the same way as that of y. Thus,
∀(ξ, y) ∈ O × S, there exists a neighbourhood of ξ in O, Oξ , and a neighbourhood of y in S,
Sy such that for some i,

|〈Dri

vi
ω(ξ ′), y ′〉| � c1

2n
, ∀(ξ ′, y ′) ∈ Oξ × Sy.

Since {Oξ × Sy |(ξ, y) ∈ O × S} covers the compact set O × S, there exists a finite subcover:

O1 × S1, . . . , ON̄ × SN̄ , such that
⋃N̄

j=1 Oj × Sj ⊃ O × S and for (ξ, y) ∈ Oj × Sj ,

|〈Dr̄i

v̄i
ω(ξ), y〉| � c1

2n
,

where r̄i ∈ {r1, . . . , rb} and v̄i ∈ {v1, . . . , vb}, j = 1, . . . , N̄ .
Now fix |k| � K and suppose k/|k| ∈ Sj , then for ξ ∈ Oj ,∣∣∣∣

〈
D

r̄i

v̄i
ω(ξ),

k

|k|
〉∣∣∣∣ � c1

2n
. (5.2)

Let us consider small divisor f (ξ) = 〈k, ω〉 + �n − �m, which is the most complicated case.
Since 1/|k|Dr̄i

v̄i
f (ξ) = 〈Dr̄i

v̄i
ω(ξ), k/|k|〉+(D

r̄i

v̄i
(�n(ξ) − �m(ξ))/|k|), by (5.2) and assumption

(A4) in section 2,

1

|k| |D
r̄i

v̄i
f (ξ)| � c1

2n
− o(|n|−ι) + o(|m|−ι)

|k| .

Since |k| � K , then ∀ξ ∈ Oj , |1/|k|Dr̄i

v̄i
f (ξ)| � c1/4n, consequently, |Dr̄i

v̄i
f (ξ)| � c1|k|/4n.

Let

Rj

knmv̄i
=
{
t : |f (ξ + v̄i t)| <

γ

|k|τ , ξ ∈ Oj , ξ + v̄i t ∈ Oj

}
,

Rj

knm =
{
ξ : |f (ξ)| <

γ

|k|τ , ξ ∈ Oj

}
.

Since for ξ + v̄i t ∈ Oj ,∣∣∣∣ dr̄i

dt r̄i
f (ξ + v̄i t)

∣∣∣∣ = |Dr̄i

v̄i
f (ξ)| � c1|k|

4n
,

by lemma 5.1 it follows that meas(Rj

knmv̄i
) � c2(

γ

|k|τ )
1/r̄i ; hence,

meas(Rj

knm) � c2(diamO)b−1

(
γ

|k|τ
)1/r̄i

.

Since k/|k| belongs at most to the N̄ sets S1, . . . , SN̄ , it follows that for r̄i � b − κ + 1

meas(Rknm) � N̄c2(diamO)b−1

(
γ

|k|τ
)1/r̄i

� N̄c2(diamO)b−1

(
γ

|k|τ
)1/(b−κ+1)

. (5.3)

The following proof is similar to the proof of lemma 4.5 in appendix A; for the sake of
completeness, we formulate it again.

Suppose that |n|2 − |m|2 = l � 0. If l > c3|k|, Rknm = ∅; if l � c3|k|, one has

|�n − �m − l| � O(|m|−1).
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It follows that

Rknm ⊆ Qklm
def=

{
ξ : |〈k, ω(ξ)〉 + l| <

γ

|k|τ + O(|m|−1)

}
.

Moreover, Qklm ⊆ Qklm0 for |m| � |m0|. Due to (5.3) and lemma 5.1, one has

meas


 ⋃

l�c3|k|

⋃
|n|2−|m|2=l

Rknm




�
∑

l�c3|k|

∑
|m|<|m0|

meas(Rknm) +
∑

l�c3|k|
meas(Qklm0)

< c4

(
γ 1/(b−κ+1)|m0|C(d)

|k|τ/(b−κ+1)−1
+

(
γ

|k|τ + O(|m0|−1)

)1/(b−κ+1)
)

< c4

(
γ 1/(b−κ+1)|m0|C(d)

|k|(τ/(b−κ+1))−1
+ O(|m0|−1/(b−κ+1))

)
, (5.4)

where C(d) is a constant depending only on space dimension d. By choosing

γ 1/(b−κ+1)|m0|C(d)

|k|(τ/(b−κ+1))−1
= |m0|−1/(b−κ+1),

i.e.

|m0| =
( |k|(τ/(b−κ+1))−1

γ 1/(b−κ+1))

) 1
C(d)+(1/b−κ+1))

,

we arrive at

meas


 ⋃

l�c3|k|

⋃
|n|2−|m|2=l

Rknm


 < c5

γ 1/((b−κ+1)(1+C(d)(b−κ+1)))

|k| (τ/(b−κ+1))−1
(b−κ+1)C(d)+1

. (5.5)

Combining with section appendix A, let

ϑ = min

{
1

(b + 3)2(8(2b + 3) + C(d)) + b + 3
,

1

(b − κ + 1)(1 + C(d)(b − κ + 1))

}
and

τ > max{b(b + 3)2(8(2b + 3) + C(d)) + (b + 3)(5b + 6), (b + 1)(b − κ + 1)2C(d)

+(2 + b)(b − κ + 1)},
then

meas


 ⋃

|k|�K,n,m

Rknm




� c6

∑
|k|�K

γ ϑ

|k|
τ

b−κ+1 −1

(b−κ+1)C(d)+1

< c7
γ ϑ

K
. (5.6)

At νth KAM step, the excluded measure is O(γ ϑ/Kν), then after infinite KAM steps, the total
excluded measure is

∑
ν�1 O(

γ ϑ

Kν
) = O(γ ϑ). As a consequence, we complete the proof of

measure estimates under weaker non-degeneracy conditions. �
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