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Abstract: In this paper, we give a KAM theorem for a class of infinite dimensional
nearly integrable Hamiltonian systems. The theorem can be applied to some Hamilto-
nian partial differential equations in higher dimensional spaces with periodic boundary
conditions to construct linearly stable quasi–periodic solutions and its local Birkhoff
normal form. The applications to the higher dimensional beam equations and the higher
dimensional Schrödinger equations with nonlocal smooth nonlinearity are also given in
this paper.

1. Introduction

In late 1980’s, motivated by the construction of quasi-periodic solutions for Hamiltonian
partial differential equations, the celebrated KAM theory was successfully generalized
to infinite dimensional settings by Kuksin [14] and Wayne [20], see also [15–18], which
applies to, as typical examples, one-dimensional semi-linear Schrödinger equations

iut − uxx +mu = f (u),

and wave equations

utt − uxx +mu = f (u),

with Dirichlet boundary conditions. When trying to further generalize the KAM theory
so as to apply to the one-dimensional wave equations with periodic boundary conditions
and higher dimensional Hamiltonian partial differential equations, the multiplicity of
the eigenvalues becomes an obstacle. Especially, the multiplicity goes asymptotically to
infinity in the higher dimensional case. On one hand, the multiplicity makes the unper-
turbed part more complicated at succeeding KAM steps, as a consequence solving the
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linearized equations becomes very complicated; on the other hand, it makes the measure
estimation very difficult since there are so many non-resonance conditions to be satis-
fied. For those reasons, there is no KAM theorem for higher dimensional Hamiltonian
partial differential equations so far.

To overcome this difficulty, Craig and Wayne retrieved the origination of the KAM
method — Newtonian iteration method together with the Liapunov-Schmidt decom-
position which involves the Green’s function analysis and the control of the inverse
of infinite matrices with small eigenvalues. They succeeded in constructing periodic
solutions of the one-dimensional semi-linear wave equations with periodic boundary
conditions. Bourgain further developed the Craig–Wayne’s method and proved the exis-
tence of quasi-periodic solutions of partial differential equations in higher dimensional
spaces with Dirichlet boundary conditions or periodic boundary conditions. We point
out that the Craig-Wayne-Bourgain’s method allows one to avoid explicitly using the
Hamiltonian structure of the systems. We will not introduce their approaches in detail.
The reader is referred to Craig–Wayne [9], Bourgain [3–7].

Comparing with Craig-Wayne-Bourgain’s approach, the KAM approach has its own
advantages. Besides obtaining the existence results it allows one to construct a local
normal form in a neighborhood of the obtained solutions, and this is useful for better
understanding of the dynamics. For example, one can obtain the linear stability and zero
Liapunov exponents. The question is: Is there a KAM theorem which can be applied to
Hamiltonian partial differential equations in higher dimensional spaces? This paper is
motivated by this question.

In this paper, we give a KAM theorem which applies to some Hamiltonian partial
differential equations in higher dimensional spaces. We use the theorem to construct
the quasi-periodic solutions and prove their linear stability. The KAM theorem can be
applied to some Hamiltonian partial differential equations not explicitly containing the
space variables and time variable, including the higher dimensional beam equations

utt + (−� +m)2u+ f (u) = 0, x ∈ Td

and the higher dimensional Schrödinger equations with nonlocal smooth nonlinearities
(see Sect. 3 for details)

iut + Au+N(u) = 0, x ∈ Td ,

as well as one-dimensional wave equations under the periodic boundary conditions.
Different from the finite dimensional case, the KAM theorem may not be true for

infinite dimensional nearly integrable Hamiltonian systems. One has to impose further
restrictions both on the unperturbed part and on the perturbation besides smallness. In
the existent infinite dimensional KAM theorems, e.g., Kuksin [14], Wayne [20] and
Pöschel [18], some assumptions on the growth of the normal frequencies and the regu-
larity of the perturbation are required (see (A1)–(A3) in the next section). In this paper,
we additionally assume that the perturbation has a special form defined in (A4) in the
next section. Our proof benefits a lot from such speciality of the perturbation. With the
speciality of the form of the perturbation, we can prove that the normal form part of
the Hamiltonian remains simple during the iteration. Actually, the normal variables in
the normal form part are always uncoupled along the KAM iteration. This makes the
measure estimate as easy as the one-dimensional case. Compared with the proof of the
existent KAM theorems, an additional job done in this paper is to prove that perturbation
always has the special form defined in (A4) along the KAM iteration.
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We remark that although the assumption (A4) looks artificial, the Hamiltonian systems
deriving from the Hamiltonian partial differential equations in Td not containing explic-
itly the space variables and the time variable do have the special form defined in (A4).
And our KAM theorem can be applied to some kind of Hamiltonian partial differential
equations, such as the beam equations and the Schödinger equations mentioned above.

Although the applicable equations of the KAM theorem given in this paper are less
general, they already have sufficiently strong physical background. And although the
existence results are not new, since Bourgain has obtained the results for more gen-
eral classes of equations [6], the KAM approach may provide more information about
the constructed solutions. We are interested in the establishment of a KAM theorem
for higher dimensional Hamiltonian partial differential equations. This paper is a step
towards this goal. Moreover our proof is simpler compared with Bourgain’s proof, we
think it is of some interest. With this paper we also hope to call more attention to exploit
the inherent properties of the considered equations themselves when studying the dynam-
ics of Hamiltonian partial differential equations. Finally, we remark that a result similar
to Bourgain’s has been recently announced by Kuksin and Eliasson, but a paper is not
yet available.

Since the statement of the main result is a bit long, we postpone it to the next section.
This paper is organized as follows: In Sect. 2 we give an infinite dimensional KAM

theorem; in Sect. 3, we give its applications to higher dimensional beam equations and
higher dimensional non-local smooth Schrödinger equations. The proof of the KAM
theorem is given in Sects. 4, 5, 6. Some technical lemmas are proved in the Appendix.

2. An Infinite Dimensional KAM Theorem for Hamiltonian Partial Differential
Equations

In this section, we will formulate an infinite dimensional KAM theorem that can be
applied to higher dimensional beam equations, higher dimensional nonlocal smooth
Schrödinger equations and one-dimensional wave equations under periodic boundary
conditions.

We start by introducing some notations. For given b vectors in Zd , say {i1, . . . , ib},
we denote Zd1 = Zd \ {i1, . . . , ib}. Let z = (. . . , zn, . . .)n∈Zd1

, and its complex conjugate
z̄ = (. . . , z̄n, . . .)n∈Zd1

. We introduce the weighted norm

‖z‖a,ρ =
∑

n∈Zd1

|zn||n|ae|n|ρ,

where |n| =
√
n2

1 + · · · + n2
d , n = (n1, . . . , nd) and a ≥ 0, ρ > 0. Denote a neighbor-

hood of Tb × {I = 0} × {z = 0} × {z̄ = 0} by

D(r, s) = {(θ, I, z, z̄) : |Imθ | < r, |I | < s2, ‖z‖a,ρ < s, ‖z̄‖a,ρ < s},

where | · | denotes the sup-norm of complex vectors. Moreover, we denote by O a
positive–measure parameter set in Rb.

Let α ≡ (· · · , αn, · · ·)n∈Zd1
, β ≡ (· · · , βn, · · ·)n∈Zd1

, αn and βn ∈ N with finitely

many non-zero components of positive integers. The product zαz̄β denotes
∏
n z

αn
n z̄

βn
n .
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For any given function

F(θ, I, z, z̄) =
∑

α,β

Fαβ(θ, I )z
αz̄β, (2.1)

where Fαβ is a C1
W function in parameter ξ in the sense of Whitney, we define the

weighted norm of F by

‖F‖D(r,s),O ≡ sup
‖z‖a,ρ<s
‖z̄‖a,ρ<s

∑

α,β

‖Fαβ‖ |zα||z̄β |, (2.2)

where, if Fαβ = ∑
k∈Zb,l∈Nb Fklαβ(ξ)I

lei〈k,θ〉, (〈·, ·〉 being the standard inner product
in Cb), ‖Fαβ‖ is short for

‖Fαβ‖ ≡
∑

k,l

|Fklαβ |Os2|l|e|k|r , |Fklαβ |O ≡ sup
ξ∈O

(
|Fklαβ | + |∂Fklαβ

∂ξ
|
)

(2.3)

(the derivatives with respect to ξ are in the sense of Whitney).
To function F , we associate a Hamiltonian vector field defined by

XF = (FI ,−Fθ , {iFzn}n∈Zd1
, {−iFz̄n}n∈Zd1

).

Its weighted norm is defined by1

‖XF ‖
D(r,s),O ≡ ‖FI‖D(r,s),O + 1

s2 ‖Fθ‖D(r,s),O

+1

s




∑

n∈Zd1

‖Fzn‖D(r,s),O |n|āe|n|ρ +
∑

n∈Zd1

‖Fz̄n‖D(r,s),O |n|āe|n|ρ


 . (2.4)

Remark. In this paper, we require that ā > a, i.e., the weight of vector fields is a little
heavier than that of z, z̄. The boundedness of ‖XF ‖

Dρ(r,s),O means XF sends a decaying
z-sequence to a fastly decaying sequence.

The starting point will be a family of integrable Hamiltonians of the form

N = 〈ω(ξ), I 〉 +
∑

n∈Zd1

	n(ξ)znz̄n, (2.5)

where ξ ∈ O is a parameter, the phase space is endowed with the symplectic structure
dI ∧ dθ + i

∑
n∈Zd1

dzn ∧ dz̄n.

For each ξ ∈ O, the Hamiltonian equations of motion for N , i.e.,

dθ

dt
= ω,

dI

dt
= 0,

dzn

dt
= −i	nzn,

dz̄n

dt
= i	nz̄n, n ∈ Zd1 , (2.6)

1 The norm ‖·‖D(r,s),O for scalar functions is defined in (2.2). The vector functionG : D(r, s)×O →
Cm, (m < ∞) is similarly defined as ‖G‖D(r,s),O =∑m

i=1 ‖Gi‖D(r,s),O .
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admit special solutions (θ, 0, 0, 0) → (θ + ωt, 0, 0, 0) that correspond to an invariant
torus in the phase space.

Consider now the perturbed Hamiltonian

H = N + P = 〈ω(ξ), I 〉 +
∑

n∈Zd1

	n(ξ)znz̄n + P(θ, I, z, z̄, ξ). (2.7)

Our goal is to prove that, for most values of parameter ξ ∈ O (in Lebesgue measure
sense), the HamiltoniansH = N+P still admit invariant tori provided that ‖XP ‖

D(r,s),O
is sufficiently small.

To this end, we need to impose some conditions on ω(ξ),	n(ξ) and the perturbation
P . As we already remarked, the persistence of the lower dimensional torus may not be
true if one only assumes the smallness of the perturbation. This is an essential difference
between infinite and finite dimensional cases.

(A1) Nondegeneracy: The map ξ → ω(ξ) is a C1
W diffeomorphism between O and its

image.
(A2) Asymptotics of normal frequencies: There exists a ι > 0 such that for all n =

(n1, . . . , nd) ∈ Zd1 ,

	n �= 0, n ∈ Zd1 , (2.8)

	n = 	̄n + 	̃n, 	̃n = o(|n|−ι), (2.9)

where 	̄n’s are real and independent of ξ while 	̃n’s are C1
W functions of ξ with

C1
W -norm bounded by some small positive constantL (depending on det( ∂ω(ξ)

∂ξ
));

furthermore, the asymptotic behavior of 	̄n is assumed to be as follows:

	̄n = |n|p + o(|n|p), 	̄n − 	̄m = |n|p − |m|p + o(|m|−ι), |m| ≤ |n|,
(2.10)

where p ≥ 2 for d > 1 or p ≥ 1 for d = 1.
(A3) Regularity of the perturbation: The perturbation P is regular in the sense that

‖XP ‖
D(r,s),O < ∞ with ā > a.

(A4) Special form of the perturbation: The perturbation is taken from a special class
of analytic functions,

A =



P : P =
∑

k∈Zb,l∈Nb,α,β

Pklαβ(ξ)I
lei〈k,θ〉zαz̄β




 ,

where k, α, β has the following relation

b∑

j=1

kj ij +
∑

n∈Zd1

(αn − βn)n = 0. (2.11)

Remark. Compared with the existent infinite dimensional KAM theorems in literature,
we make an additional assumption (A4) on the perturbation. The assumption looks arti-
ficial, but it is satisfied by the infinite dimensional Hamiltonian systems derived from
Hamiltonian partial differential equations in T d which do not explicitly contain the space
variables and the time variable, for example, the Schrödinger equations, wave equations
and beam equations in Td in the introduction.

Now we are ready to state our KAM Theorem.
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Theorem 1. Assume that the unperturbed Hamiltonian N in (2.5) satisfies (A1) and
(A2) and P satisfies (A3) and (A4). Let γ > 0 small enough, there is a positive con-
stant ε = ε(b, d, p, ι, ā−a, L, γ ) such that if ‖XP ‖

D(r,s),O < ε, then the following holds
true: There exist a Cantor set Oγ ⊂ O with meas(O \ Oγ ) = O(γ ϑ) (ϑ is specified in
Sect. 6) and two maps (analytic in θ and C1

W in ξ )

� : Tb × Oγ → D(r, s), ω̃ : Oγ → Rb,

where � is ε
γ 2 -close to the trivial embedding �0 : Tb × O → Tb × {0, 0, 0} and ω̃

is ε-close to the unperturbed frequency ω, such that for any ξ ∈ Oγ and θ ∈ Tb, the
curve t → �(θ + ω̃(ξ)t, ξ) is a quasi-periodic solution of the Hamiltonian equations
governed by H = N + P . Moreover, the obtained solutions are linearly stable.

Remark 1. In the one dimensional case, the growth of	n can be sub-linear ( 0 < p < 1).
But we can not find any interesting application of it.

Remark 2. The regularity ā > a is used to control the drifting of the normal frequencies
which is crucial in the measure estimation of the survived parameters O \ Oγ for our
approach. It seems that the restriction is only of technical reasons. One may expect to
have a KAM theorem without the regularity assumption (A3). However this problem
remains open so far.

Remark 3. The Hamiltonian systems defined by Hamiltonian partial differential equa-
tions do have the special form defined in (A4). This fact has been used by many authors
when transforming the leading nonlinearity in the perturbation into the partial Birkhoff
normal form under Cartesian coordinate systems (see Kuksin–Pöschel [16], Pöschel
[17], Craig–Worfolk [10], Bourgain [7, 8], Bambusi [1], Bambusi–Berti [2], and Geng–
You [12, 13]). Those papers actually use this property for one or two steps. In this paper,
we will use this fact at each step of the KAM iteration. For this purpose, we have to prove
that the change of action-angle variables and the KAM iteration preserve the special form
of the perturbation defined in (A4).

Remark 4. In the one dimensional case, assumption (A4) is replaced by a kind of decay
property in [13]. Since the decay property is weaker than assumption (A4), the KAM
theorem assuming only decay property may have more applications, e.g., when the equa-
tion depends on the space variable x. However, the proof for the higher dimensional case
would be much more complicated and is not available so far.

Remark 5. The parameter γ plays the role of the Diophantine constant for the frequency
ω̃ in the sense that there exists τ > 0 (specified in Sect. 6) such that the frequencies of
the obtained KAM tori satisfy the following Diophantine conditions:

〈k, ω̃〉 ≥ γ

2|k|τ , ∀k ∈ Zb \ {0}.

Notice also that Oγ is claimed to be nonempty only for γ small enough.
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3. Applications

1. Higher dimensional beam equations. In order to avoid the technical complexities,
we apply Theorem 1 to the d-dimensional beam equations with a Fourier multiplier
Mξ . Actually, Theorem 1 can be applied to the higher dimensional beam equations with

constant potentials, i.e., Au ≡ (�2 + m)
1
2 u, x ∈ Rd , m > 0 in (3.1). However, in

order to transform the original Hamiltonian into a perturbation of a nonlinear integrable
system, the normal form technique is needed. Since the normal form procedure is quite
involved and does not fit the main theme of this paper we will handle it in another paper.

Consider

utt + A2u+ f (u) = 0, Au ≡ (−� +Mξ)u, x ∈ Rd , t ∈ R,

u(t, x1 + 2π, x2, . . . , xd) = · · · = u(t, x1, x2, . . . , xd−1, xd + 2π)

= u(t, x1, x2, . . . , xd), (3.1)

where f (u) is a real–analytic function near u = 0 with f (0) = f ′(0) = 0.
Here we assume that the operator A = −�+Mξ with periodic boundary conditions

has eigenvalues {µn} satisfying

ωj = µij = |ij |2 + ξj , 1 ≤ j ≤ b,

	n = µn = |n|2, n �= i1, . . . , ib, (3.2)

and the corresponding eigenfunctions φn(x) =
√

1
(2π)d

ei〈n,x〉 form a basis in the domain

of the operator. Assume that i1, . . . , ib ∈ Zd are the distinguished sites of Fourier modes
(assume 0 ∈ {i1, . . . , ib} in order to take care of (µn, k) = (0, 0)), and ξ = (ξ1, . . . , ξb)

is a parameter taking on a closed set O ⊂ Rb of the positive–measure.
Introducing v = ut , (3.1) reads

ut = v,

vt = −A2u− f (u). (3.3)

Letting q = 1√
2
A

1
2 u− i 1√

2
A− 1

2 v, we obtain

1

i
qt = Aq + 1√

2
A− 1

2 f

(
A− 1

2

(
q + q̄√

2

))
. (3.4)

Equation (3.4) can be rewritten as the Hamiltonian equations

qt = i
∂H

∂q̄
(3.5)

and the corresponding Hamiltonian is

H = 1

2
(Aq, q)+

∫

Td
g

(
A− 1

2

(
q + q̄√

2

))
dx, (3.6)

where (·, ·) denotes the inner product in L2 and g is a primitive of f .
Let

q(x) =
∑

n∈Zd

qnφn(x).
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Then system (3.5) is equivalent to the lattice Hamiltonian equations

q̇n = i

(
µnqn + ∂G

∂q̄n

)
, G(q, q̄) ≡

∫

Td
g




∑

n∈Zd

qnφn + q̄nφ̄n√
2µn



 dx (3.7)

with corresponding Hamiltonian function H =∑n∈Zd µnqnq̄n +G(q, q̄).
Since f (u) is real analytic in u, g(q, q̄) is real analytic in q, q̄. Making use of

q(x) =∑n∈Zd qnφn(x) again, we may rewrite g as follows

g(q, q̄) =
∑

α,β

gαβq
αq̄βφαφ̄β,

hence

G(q, q̄) ≡
∫

Td
g




∑

n∈Zd

qnφn + q̄nφ̄n√
2µn



 dx =
∑

α,β

Gαβq
αq̄β,

Gαβ = 0, if
∑

n∈Zd

(αn − βn)n �= 0. (3.8)

As in [16, 17, 12, 13], the perturbationG in (3.7) has the following regularity property.

Lemma 3.1. For any fixed a ≥ 0, ρ > 0, the gradient Gq̄ is real analytic as a map in a
neighborhood of the origin with

‖Gq̄‖a+1,ρ ≤ c‖q‖2
a,ρ. (3.9)

Next we introduce standard action-angle variables (θ, I )=((θ1, . . . , θb), (I1, . . . , Ib))

in the (qi1 , . . . , qib , q̄i1 , . . . , q̄ib )-space by letting,

Ij = qij q̄ij , j = 1, . . . , b,

and qn = zn, q̄n = z̄n, n �= i1, . . . , ib. So system (3.7) becomes

dθj

dt
= ωj + PIj ,

dIj

dt
= −Pθj , j = 1, . . . , b, (3.10)

dzn

dt
= −i(	nzn + Pz̄n),

dz̄n

dt
= i(	nz̄n + Pzn), n ∈ Zd1 ,

where P is just G with the (qi1 , . . . , qib , q̄i1 , . . . , q̄ib , qn, q̄n)-variables expressed in
terms of the (θ, I, zn, z̄n) variables. The Hamiltonian associated to (3.10) (with respect
to the symplectic structure dI ∧ dθ + i

∑
n∈Zd1

dzn ∧ dz̄n) is given by

H = 〈ω(ξ), I 〉 +
∑

n∈Zd1

	n(ξ)znz̄n + P(θ, I, z, z̄, ξ). (3.11)

Let’s verify thatP has the special form defined in (A4) from (3.8), i.e.,P(θ, I, z, z̄, ξ)
∈ A, which is a key assumption of Theorem 1.
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Denote by en the infinite dimensional vector with the nth component being 1 and the
other components being zero, and k = (k1, . . . , kb), kj = αij − βij , 1 ≤ j ≤ b, then
due to (3.8),

G =
∑

∑
n∈Zd (αn−βn)n=0

Gαβq
αq̄β

=
∑

∑b
j=1(αij−βij )ij+

∑
n∈Zd1

(αn−βn)n=0

Gαβq
αi1
i1
q̄
βi1
i1

· · · qαibib q̄
βib
ib
q
α−∑b

j=1 αij eij q̄
β−∑b

j=1 βij eij

=
∑

∑b
j=1(αij−βij )ij+

∑
n∈Zd1

(αn−βn)n=0

Gαβ
√
I1
αi1+βi1 · · ·

√
Ib
αib+βib

·ei
∑b
j=1(αij−βij )θj zα−∑b

j=1 αij eij z̄
β−∑b

j=1 βij eij

�=
∑

∑b
j=1 kj ij+

∑
n∈Zd1

(αn−βn)n=0

PklαβI
lei〈k,θ〉zαz̄β ≡ P.

Thus

Pklαβ = 0 if
b∑

j=1

kj ij +
∑

n∈Zd1

(αn − βn)n �= 0, (3.12)

i.e., P ∈ A. Moreover the regularity of P holds true:

Lemma 3.2. For any ε > 0 sufficiently small and s = ε
1
2 , if |I | < s2 and ‖z‖a,ρ < s,

then

‖XP ‖D(r,s),O ≤ ε, ā = a + 1. (3.13)

To this point, we have verified all the assumptions of Theorem 1 for (3.11) with
p = 2, ι = +∞, ā − a = 1. Now we are in the position to apply Theorem 1 to get the
following result.

Theorem 2. For any 0 < γ � 1, there is a Cantor subset Oγ ⊂ O with meas(O\Oγ ) =
O(γ ϑ) (ϑ is to be specified in Sect. 6), such that for any ξ ∈ Oγ , Eq. (3.1) parametrized
by ξ admits a small-amplitude, quasi-periodic solution of the form

u(t, x) =
∑

n∈Zd

un(ω
′
1t, . . . , ω

′
bt)e

i〈n,x〉,

whereun : Tb → R andω′
1, . . . , ω

′
b are close to the unperturbed frequenciesω1, . . . , ωb.

Moreover, the quasi-periodic solutions we obtained are linearly stable.

Remark 1. Theorem 1 also applies to 1D wave equations with periodic boundary condi-
tions

utt − uxx +mu+ au3 +O(u4) = 0, a �= 0, (3.14)

u(t, x + 2π) = u(t, x).

Since the proof follows exactly the same steps as that of the beam equations, we omit it.
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2. The higher dimensional nonlocal smooth Schrödinger equations. The dD nonlinear
Schrödinger equations to be considered are

iut + Au+N(u) = 0, Au = −�u+Mξu, x ∈ Rd , t ∈ R (3.15)

with periodic boundary conditions

u(t, x1 + 2π, x2, . . . , xd) = . . . = u(t, x1, x2, . . . , xd−1, xd + 2π)

= u(t, x1, x2, . . . , xd).

The operator A is the same as that in the beam equations. The nonlinearity we would
like to consider is

N(u) = f (|u|2)u (3.16)

with the function f real analytic in a neighborhood of 0 ∈ C and vanishing at zero.
However for the sake of regularity imposed on the nonlinearity (see (A3)), as those in
Pöschel [19] and Bambusi–Berti [2], we have to assume some nonlocal smoothness for
the nonlinearity. Thus we actually consider the nonlinearity

N(u) = �(f (|�u|2)�u), (3.17)

where� : u → ψ∗u is a convolution operator with a functionψ , which is of smoothness
of order δ > 0. More precisely,

‖�u‖a+δ,ρ ≤ c‖u‖a,ρ. (3.18)

Equation (3.15) can be rewritten as a Hamiltonian equation

ut = i
∂H

∂ū
(3.19)

and the corresponding Hamiltonian is

H = 1

2
(Au, u)+

∫

Td
g(|�u|2) dx, (3.20)

where (·, ·) denotes the inner product in L2 and g is a primitive of f .
Let

u(x) =
∑

n∈Zd

qnφn(x).

System (3.19) is then equivalent to the lattice Hamiltonian equations

q̇n = i(µnqn + ∂G

∂q̄n
), G ≡

∫

Td
g(|�u|2)dx , (3.21)

with corresponding Hamiltonian function H = ∑
n∈Zd µnqnq̄n + G. φn(x), µn are

defined in the last sub-section.
Since N(u) is real analytic in u, then making use of u(t, x) = ∑

n∈Zd qn(t)φn(x),
we may rewrite N(u) as follows

N(u) =
∑

α,β

Nαβq
αq̄βφαφ̄β,
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hence

G ≡
∫

Td
g(|�u|2)dx =

∑

α,β

Gαβq
αq̄β,

Gαβ = 0, if
∑

n∈Zd

(αn − βn)n �= 0. (3.22)

As in [19, 2], the perturbation G in (3.21) has the following regularity property.

Lemma 3.3. For any fixed a ≥ 0, ρ > 0, the gradient Gq̄ is real analytic as a map in a
neighborhood of the origin with

‖Gq̄‖a+δ,ρ ≤ c‖q‖3
a,ρ. (3.23)

The same as that of the beam equations, by introducing the standard action-angle
variables (θ, I ) = ((θ1, . . . , θb), (I1, . . . , Ib)) in the (qi1 , . . . , qib , q̄i1 , . . . , q̄ib )-space,
we arrive at a Hamiltonian system with the Hamiltonian (with respect to the symplectic
structure dI ∧ dθ + i

∑
n∈Zd1

dzn ∧ dz̄n)

H = 〈ω(ξ), I 〉 +
∑

n∈Zd1

	n(ξ)znz̄n + P(θ, I, z, z̄, ξ). (3.24)

The same as the beam equations, we can prove that

P =
∑

k∈Zb,l∈Nb,α,β

Pklαβ(ξ)I
lei〈k,θ〉zαz̄β

satisfies the assumption (A4), i.e.,

Pklαβ = 0, if
b∑

j=1

kj ij +
∑

n∈Zd1

(αn − βn)n �= 0. (3.25)

Moreover the regularity of P holds true:

Lemma 3.4. For any ε > 0 sufficiently small and s = ε
1
2 , if |I | < s2 and ‖z‖a,ρ < s,

then

‖XP ‖D(r,s),O ≤ ε, ā = a + δ. (3.26)

Remark. When we consider the local smooth nonlinearity N(u) = f (|u|2)u, we can
get ‖XP ‖D(r,s),O ≤ ε with ā = a. As a consequence, Theorem 1 can not be applied
since (A3) is violated.

So we have verified all the assumptions of Theorem 1 for (3.24) with p = 2, ι = +∞,
ā − a = δ > 0. Then Theorem 1 yields the following result for nonlinear Schrödinger
equations.

Theorem 3. For any 0 < γ � 1, there is a Cantor subset Oγ ⊂ O with meas(O\Oγ ) =
O(γ ϑ) (ϑ is to be specified in Sect. 6) such that for any ξ ∈ Oγ , Eq. (3.15) parameterized
by ξ ∈ O admits a small-amplitude, quasi-periodic solution of the form

u(t, x) =
∑

n∈Zd

un(ω
′
1t, . . . , ω

′
bt)e

i〈n,x〉,

whereun : Tb → R andω′
1, . . . , ω

′
b are close to the unperturbed frequenciesω1, . . . , ωb.

Moreover, the quasi-periodic solutions obtained here are linearly stable.
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4. KAM Step

Theorem 1 will be proved by a KAM iteration which involves an infinite sequence of
change of variables. Each step of KAM iteration makes the perturbation smaller than in
the previous step at the cost of excluding a small set of parameters. We have to prove the
convergence of the iteration and estimate the measure of the excluded set after infinite
KAM steps.

At the ν–step of the KAM iteration, we consider a Hamiltonian vector field with

Hν = Nν + Pν,

where Nν is an "integrable normal form" and Pν ∈ A is defined in D(rν, sν)× Oν−1.
We then construct a map

�ν : D(rν+1, sν+1)× Oν → D(rν, sν)× Oν−1

so that the vector field XHν◦�ν defined on D(rν+1, sν+1) satisfies

‖XPν+1‖D(rν+1,sν+1),Oν
= ‖XHν◦�ν −XNν+1‖D(rν+1,sν+1),Oν

≤ εκν , κ > 1

with some new normal form Nν+1. Moreover, the new perturbation Pν+1 still has the
special form defined in (A4).

To simplify notations, in what follows, the quantities without subscripts refer to quan-
tities at the νth step, while the quantities with subscripts + denote the corresponding
quantities at the (ν + 1)th step. Let us then consider the Hamiltonian

H = N + P ≡ e + 〈ω(ξ), I 〉 +
∑

n∈Zd1

	n(ξ)znz̄n + P(θ, I, z, z̄, ξ, ε) (4.1)

defined inD(r, s)×O. We assume that ξ ∈ O satisfies (a suitable τ > 0 will be specified
later)

|〈k, ω(ξ)〉| ≥ γ

|k|τ , k �= 0,

|〈k, ω(ξ)〉 +	n(ξ)| ≥ γ

|k|τ ,
(4.2)

|〈k, ω(ξ)〉 +	n(ξ)+	m(ξ)| ≥ γ

|k|τ ,

|〈k, ω(ξ)〉 +	n(ξ)−	m(ξ)| ≥ γ

|k|τ , |k| + ||n| − |m|| �= 0.

Moreover,

‖XP ‖D(r,s),O ≤ ε, (4.3)

and P =∑k,l,α,β PklαβI
lei〈k,θ〉zαz̄β is in the class A defined in (A4), i.e.,

Pklαβ = 0 if
b∑

j=1

kj ij +
∑

n∈Zd1

(αn − βn)n �= 0. (4.4)
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Remark 1. According to (4.4), when k = (k1, · · · , kb) = 0 and α = en, β = em, we get

P0lenem = 0 if
b∑

j=1

kj ij +
∑

n∈Zd1

(αn − βn)n = n−m �= 0.

This means that there are not terms of the form
∑
n�=m P0lenemI

lznz̄m in the perturbation.
As a result, the normal variables zn, z̄m with n �= m in the new normal formN+ will not
be coupled.

Remark 2. Compared with the KAM step in existent KAM theorems in the literature, we
make an additional assumption P ∈ A. With this assumption the linearized equations
are easy to be solved in Subsect. 4.1, and the new normal form after one step of the
iteration still has the formN+ ≡ e+ +〈ω+(ξ), I 〉+∑n∈Zd1

	+
n (ξ)znz̄n. This makes the

measure estimate available and easier at each KAM step. Subsection 4.5 is an additional
work which proves the new perturbation P+ still has the special form defined in (A4),
i.e., P+ ∈ A, after one step of the iteration. The proofs in Subsects. 4.2–4.4 are the same
as that of the existent KAM theorems.

We now let 0 < r+ < r and define

s+ = 1

4
sε

1
3 , ε+ = cγ−2(r − r+)−cε

4
3 . (4.5)

Here and later, the letter c denotes suitable (possibly different) constants that do not
depend on the iteration steps.

We now describe how to construct a set O+ ⊂ O and a change of variables � :
D+ × O+ = D(r+, s+) × O+ → D(r, s) × O such that the transformed Hamilto-
nian H+ = N+ + P+ ≡ H ◦ � satisfies all the above iterative assumptions with new
parameters s+, ε+, r+ and with ξ ∈ O+.

4.1. Solving the linearized equations. Expand P into the Fourier-Taylor series

P =
∑

k,l,α,β

Pklαβe
i〈k,θ〉 I lzαz̄β,

where k ∈ Zb, l ∈ Nb and the multi–indices α and β run over the set of all infinite
dimensional vectors α ≡ (· · · , αn, · · ·)n∈Zd1

with finitely many nonzero components of
positive integers.

Let R be the truncation of P given by

R(θ, I, z, z̄) = R0 + R1 + R2 =
∑

k,|l|≤1

Pkl00e
i〈k,θ〉 I l

+
∑

k,n

(P k10
n zn + P k01

n z̄n)e
i〈k,θ〉

+
∑

k,n,m

(P k20
nm znzm + P k11

nm znz̄m + P k02
nm z̄nz̄m)e

i〈k,θ〉 , (4.6)

whereP k10
n = Pklαβ with α = en, β = 0, here en denotes the vector with the nth compo-

nent being 1 and the other components being zero; P k01
n = Pklαβ with α = 0, β = en;
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P k20
nm = Pklαβ with α = en + em, β = 0; P k11

nm = Pklαβ with α = en, β = em;
P k02
nm = Pklαβ with α = 0, β = en + em. Due to assumption (A4), P ∈ A implies that

Pkl00 = 0, if
b∑

j=1

kj ij �= 0,

P k10
n = 0, if

b∑

j=1

kj ij + n �= 0,

P k01
n = 0, if

b∑

j=1

kj ij − n �= 0,

P k20
nm = 0, if

b∑

j=1

kj ij + n+m �= 0,

P k11
nm = 0, if

b∑

j=1

kj ij + n−m �= 0,

P k02
nm = 0, if

b∑

j=1

kj ij − n−m �= 0.

(4.7)

Remark. The special form of P defined in (A4), i.e., P ∈ A, is crucial in this paper.
With P of such special form, one knows that P k11

nm = 0 if k = 0 and n �= m, then the
terms P 011

nm znz̄m with n �= m are absent, i.e., zn, zm with n �= m are uncoupled in the
new normal form.

RewriteH asH = N +R+ (P −R). By the choice of s+ in (4.5) and the definition
of the norms, it follows immediately that

‖XR‖D(r,s),O ≤ ‖XP ‖D(r,s),O ≤ ε. (4.8)

Moreover, we take s+ � s such that in a domain D(r, s+),

‖X(P−R)‖D(r,s+) < c ε+. (4.9)

In the following, we will look for an F in the class A, defined in a domain D+ =
D(r+, s+), such that the time one map φ1

F of the Hamiltonian vector field XF defines a
map fromD+ → D and transformsH intoH+. More precisely, by second order Taylor
formula, we have

H ◦ φ1
F = (N + R) ◦ φ1

F + (P − R) ◦ φ1
F

= N + {N,F } + R

+
∫ 1

0
(1 − t){{N,F }, F } ◦ φtF dt +

∫ 1

0
{R,F } ◦ φtF dt + (P − R) ◦ φ1

F

= N+ + P+ + {N,F } + R − P0000 − 〈ω′, I 〉 −
∑

n

P 011
nn znz̄n, (4.10)
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where

ω′ =
∫
∂P

∂I
dθ |z=z̄=0,I=0,

N+ = N + P0000 + 〈ω′, I 〉 +
∑

n

P 011
nn znz̄n, (4.11)

P+ =
∫ 1

0
(1 − t){{N,F }, F } ◦ φtF dt+

∫ 1

0
{R,F } ◦ φtF dt+(P − R) ◦ φ1

F . (4.12)

Remark. Generally speaking,
∑
n P

011
nn znz̄n should be replaced in (4.11) by∑

|n|=|m| P 011
nm znz̄m, but in terms of (4.7), P 011

nm = 0 if n �= m. Hence the terms∑
n�=m P 011

nm znz̄m are absent. Thus N+ has the same form as that in the first step.

We shall find a function F of the form

F(θ, I, z, z̄) = F0 + F1 + F2

=
∑

k �=0,|l|≤1

Fkl00e
i〈k,θ〉 I l +

∑

k,n

(F k10
n zn + Fk01

n z̄n)e
i〈k,θ〉

+
∑

k,n,m

(F k20
nm znzm + Fk02

nm z̄nz̄m)e
i〈k,θ〉 +

∑

|k|+||n|−|m||�=0

Fk11
nm znz̄me

i〈k,θ〉

(4.13)

satisfying the equation

{N,F } + R − P0000 − 〈ω′, I 〉 −
∑

n

P 011
nn znz̄n = 0. (4.14)

Lemma 4.1. F satisfies (4.14) and is in A if the Fourier coefficients of F are defined by
the following equations:

(〈k, ω〉)Fkl00 = iPkl00, k �= 0, |l| ≤ 1,
(〈k, ω〉 −	n)F

k10
n = iP k10

n ,

(〈k, ω〉 +	n)F
k01
n = iP k01

n ,

(〈k, ω〉 −	n −	m)F
k20
nm = iP k20

nm ,

(〈k, ω〉 −	n +	m)F
k11
nm = iP k11

nm , |k| + ||n| − |m|| �= 0,
(〈k, ω〉 +	n +	m)F

k02
nm = iP k02

nm .

(4.15)

Proof. Inserting F , defined in (4.13), into (4.14) one sees that (4.14) is equivalent to the
following equations

{N,F0} + R0 = P0000 + 〈ω′, I 〉,
{N,F1} + R1 = 0, (4.16)

{N,F2} + R2 =
∑

n

P 011
nn znz̄n.

By comparing the coefficients, the first equation in (4.16) is obviously equivalent to
the first equation in (4.15). To solve {N,F1} + R1 = 0, we note that

{N,F1} = i
∑

k,n

(〈k, ω〉Fk10
n zn −	nF

k10
n zn)e

i〈k,θ〉
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+i
∑

k,n

(〈k, ω〉Fk01
n z̄n +	nF

k01
n z̄n)e

i〈k,θ〉

= i
∑

k,n

(〈k, ω〉 −	n)F
k10
n zne

i〈k,θ〉

+i
∑

k,n

(〈k, ω〉 +	n)F
k01
n z̄ne

i〈k,θ〉 . (4.17)

It follows that Fk10
n , Fk01

n are determined by the linear algebraic systems

i(〈k, ω〉 −	n)F
k10
n + Rk10

n = 0, n ∈ Zd1 , k ∈ Zb,

i(〈k, ω〉 +	n)F
k01
n + Rk01

n = 0, n ∈ Zd1 , k ∈ Zb.

Similarly, from

{N,F2} = i
∑

k,n,m

(〈k, ω〉Fk20
nm znzm −	nF

k20
nm znzm −	mF

k20
nm znzm)e

i〈k,θ〉

+i
∑

|k|+||n|−|m||�=0

(〈k, ω〉Fk11
nm znz̄m −	nF

k11
nm znz̄m +	mF

k11
nm znz̄m)e

i〈k,θ〉

+i
∑

k,n,m

(〈k, ω〉Fk02
nm z̄nz̄m +	nF

k02
nm z̄nz̄m +	mF

k02
nm z̄nz̄m)e

i〈k,θ〉

= i
∑

k,n,m

(〈k, ω〉 −	n −	m)F
k20
nm znzme

i〈k,θ〉

+i
∑

|k|+||n|−|m||�=0

(〈k, ω〉 −	n +	m)F
k11
nm znz̄me

i〈k,θ〉

+i
∑

k,n,m

(〈k, ω〉 +	n +	m)F
k02
nm z̄nz̄me

i〈k,θ〉 , (4.18)

it follows that Fk20
nm , Fk11

nm and Fk02
nm are determined by the following linear algebraic

systems

(〈k, ω〉 −	n −	m)F
k20
nm = iRk20

nm , n,m ∈ Zd1 , k ∈ Zb,

(〈k, ω〉 −	n +	m)F
k11
nm = iRk11

nm , |k| + ||n| − |m|| �= 0, (4.19)

(〈k, ω〉 +	n +	m)F
k02
nm = iRk02

nm , n,m ∈ Zd1 , k ∈ Zb.

Moreover, P ∈ A implies F ∈ A. ��

4.2. Estimation on the coordinate transformation. We proceed to estimate XF and φ1
F .

We start with the following

Lemma 4.2. Let Di = D(r+ + i
4 (r − r+), i4 s), 0 < i ≤ 4. Then

‖XF ‖D3,O ≤ cγ−2(r − r+)−cε. (4.20)
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Proof. By (4.2), Lemma 4.1, Assumptions (A1) and (A2), we have

|Fkl00|O ≤ (|〈k, ω〉|−1|Pkl00|)O < cγ−2|k|2τ+1|Pkl00|O, k �= 0;
|Fk10
n |O ≤ cγ−2|k|2τ+1|P k10

n |;
|Fk01
n |O ≤ cγ−2|k|2τ+1|P k01

n |;
(4.21)|Fk20

nm |O ≤ cγ−2|k|2τ+1|P k20
nm |;

|Fk11
nm |O ≤ cγ−2|k|2τ+1|P k11

nm |, |k| + ||n| − |m|| �= 0;
|Fk02
nm |O ≤ cγ−2|k|2τ+1|P k02

nm |.
It follows that

1

s2 ‖Fθ‖D3,O ≤ 1

s2

(
∑

k,|l|≤1

|Fkl00| · s2|l| · |k| · e|k|(r− 1
4 (r−r+))

+
∑

k,n

|Fk10
n | · |zn| · |k| · e|k|(r− 1

4 (r−r+))

+
∑

k,n

|Fk01
n | · |z̄n| · |k| · e|k|(r− 1

4 (r−r+))

+
∑

k,n,m

|Fk20
nm | · |zn| · |zm| · |k| · e|k|(r− 1

4 (r−r+))

+
∑

|k|+||n|−|m||�=0

|Fk11
nm | · |zn| · |z̄m| · |k| · e|k|(r− 1

4 (r−r+)
)

+
∑

k,n,m

|Fk02
nm | · |z̄n| · |z̄m| · |k| · e|k|(r− 1

4 (r−r+)))

≤ cγ−2(r − r+)−c‖XR‖
≤ cγ−2(r − r+)−cε. (4.22)

Similarly,

‖FI‖D3,O =
∑

|l|=1

|Fkl00|e|k|(r− 1
4 (r−r+)) ≤ cγ−2(r − r+)−cε.

Now we estimate ‖XF1‖D3,O. Since

‖F1zn ‖D3,O = ‖
∑

k

F k10
n ei〈k,θ〉‖D3,O

≤
∑

k

|Fk10
n |e|k|(r− 1

4 (r−r+))

≤ cγ−2
∑

k

|P k10
n ||k|2τ+1e|k|(r−

1
4 (r−r+))

and similarly

‖F1z̄n ‖D3,O ≤ cγ−2
∑

k

|P k01
n ||k|2τ+1e|k|(r−

1
4 (r−r+)),
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it follows from the definition of the weighted norm2 that

‖XF1‖D3,O ≤ c

s

(
∑

n

‖F1zn ‖D3,O|n|āe|n|ρ +
∑

n

‖F1z̄n ‖D3,O|n|āe|n|ρ
)

≤ cγ−2(r − r+)−c‖XR‖ ≤ cγ−2(r − r+)−cε. (4.23)

Moreover,

‖F2zn ‖D3,O = ‖
∑

k,m

F k20
nm zme

i〈k,θ〉 ‖D3,O + ‖
∑

k,m

F k11
nm z̄me

i〈k,θ〉 ‖D3,O

≤ cγ−2

(
∑

k,m

|P k20
nm ||zm||k|2τ+1e|k|(r−

1
4 (r−r+))

+
∑

k,m

|P k11
nm ||z̄m||k|2τ+1e|k|(r−

1
4 (r−r+))

)
; (4.24)

and similarly

‖F2z̄n ‖D3,O ≤ cγ−2

(
∑

k,m

|P k11
mn ||zm||k|2τ+1e|k|(r−

1
4 (r−r+))

+
∑

k,m

|P k02
nm ||z̄m||k|2τ+1e|k|(r−

1
4 (r−r+))

)
.

Hence we have

‖XF2‖D3,O ≤ c

s

(
∑

n

‖F2zn ‖D3,O|n|āe|n|ρ +
∑

n

‖F2z̄n ‖D3,O|n|āe|n|ρ
)

≤ cγ−2(r − r+)−c‖XR‖
≤ cγ−2(r − r+)−cε. (4.25)

The conclusion of the lemma follows from the estimates above. ��
In the next lemma, we give some estimates for φtF . The formula (4.26) will be used

to prove our coordinate transformation is well defined. Inequality (4.27) will be used to
check the convergence of the iteration.

Lemma 4.3. Let η = ε
1
3 ,Diη = D(r+ + i

4 (r − r+), i4ηs), 0 < i ≤ 4. If ε � ( 1
2γ

2(r −
r+)c)

3
2 , we then have

φtF : D2η → D3η, −1 ≤ t ≤ 1. (4.26)

Moreover,

‖DφtF − Id‖D1η < cγ−2(r − r+)−cε. (4.27)

2 Recall (2.4), the definition of the norm.
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Proof. Let

‖DmF‖D,O = max






∥∥∥∥∥
∂ |i|+|l|+|α|+|β|

∂θi∂I l∂zα�n∂z̄
β

�n
F

∥∥∥∥∥
D,O

, |i| + |l| + |α| + |β| = m ≥ 2




 .

Notice that F is a polynomial of degree 1 in I and degree 2 in z, z̄. From (2.4), (4.25)
and the Cauchy inequality, it follows that

‖DmF‖D2,O < cγ−2(r − r+)−cε, (4.28)

for any m ≥ 2.
To get the estimates for φtF , we start from the integral equation,

φtF = id +
∫ t

0
XF ◦ φsF ds

so that φtF : D2η → D3η, −1 ≤ t ≤ 1, which follows directly from (4.28). Since

DφtF = Id +
∫ t

0
(DXF )Dφ

s
F ds = Id +

∫ t

0
J (D2F)DφsF ds,

where J denotes the standard symplectic matrix

(
0 −I
I 0

)
, it follows that

‖DφtF − Id‖ ≤ 2‖D2F‖ < cγ−2(r − r+)−cε. (4.29)

Consequently Lemma 4.3 follows. ��

4.3. Estimation for the new normal form. The map φ1
F defined above transformsH into

H+ = N+ +P+(see (4.10) and (4.14)). Due to the special form of P defined in (A4), the
terms in

∑
n,m P

011
nm znz̄m with n �= m are absent, i.e., zn, zm with n �= m are uncoupled.

Hence compared with the normal form in [13], here the normal form N+ is simpler

N+ = N + P0000 + 〈ω′, I 〉 +
∑

n

P 011
nn znz̄n

= e+ + 〈ω+, I 〉 +
∑

n

	+
n znz̄n, (4.30)

where

e+ = e + P0000, ω+ = ω + P0l00(|l| = 1), 	+
n = 	n + P 011

nn . (4.31)

Now we prove that N+ has the same properties as N . By regularity of P , set3 δ =
min{ι, ā − a}, then we have

|ω+ − ω|O < ε, |P 011
nn |O < ε|n|−δ. (4.32)

3 Recall (2.9) and (2.4).
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It follows that

|〈k, ω + P0l00〉| ≥ |〈k, ω〉| − |〈k, P0l00〉| ≥ γ

|k|τ − ε|k| ≥ γ+
|k|τ , k �= 0,

(4.33)

|〈k, ω + P0l00〉 +	+
n | ≥ |〈k, ω〉 +	n| − |〈k, P0l00〉 + P 011

nn | ≥ γ+
|k|τ , (4.34)

and

|〈k, ω + P0l00〉 +	+
n +	+

m| ≥ γ+
|k|τ , (4.35)

|〈k, ω + P0l00〉 +	+
n −	+

m| ≥ γ+
|k|τ , |k| + ||n| − |m|| �= 0, (4.36)

provided that ε|k|τ+1 ≤ c(γ − γ+). This means that in the succeeding KAM step, small
divisor conditions are automatically satisfied for |k| ≤ K , where εKτ+1 ≤ c(γ − γ+).
The following bounds will be used for the measure estimates:

|ω+ − ω|O < ε, |	+
n −	n|O < ε|n|−δ. (4.37)

4.4. Estimation for the new perturbation. Since

P+ =
∫ 1

0
(1 − t){{N,F }, F } ◦ φtF dt +

∫ 1

0
{R,F } ◦ φtF dt + (P − R) ◦ φ1

F

=
∫ 1

0
{R(t), F } ◦ φtF dt + (P − R) ◦ φ1

F ,

where R(t) = (1 − t)(N+ −N)+ tR. Hence

XP+ =
∫ 1

0
(φtF )

∗X{R(t),F }dt + (φ1
F )

∗X(P−R).

According to Lemma 4.3,

‖DφtF − Id‖D1η < cγ−2(r − r+)−cε, −1 ≤ t ≤ 1,

thus

‖DφtF ‖D1η ≤ 1 + ‖DφtF − Id‖D1η ≤ 2, −1 ≤ t ≤ 1.

Due to Lemma 7.3,

‖X{R(t),F }‖D2η ≤ cγ−2(r − r+)−cη−2ε2,

and

‖X(P−R)‖D2η ≤ cηε,

we have

‖XP+‖D(r+,s+) ≤ cηε + cγ−2(r − r+)−cη−2ε2 ≤ cε+.
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4.5. Verification of (A4) after one KAM step. The assumption P ∈ A defined in (A4)
is used to guarantee that the normal form at each KAM step has the same form as in the
first step. To complete one KAM step, we need to prove the new perturbation P+ still
has the special form defined in (A4), i.e., P+ ∈ A.

Note that

P+ = P − R + {P,F } + 1

2!
{{N,F }, F } + 1

2!
{{P,F }, F }

+ · · · + 1

n!
{· · · {N,F } · · · , F︸ ︷︷ ︸

n

} + 1

n!
{· · · {P,F } · · · , F︸ ︷︷ ︸

n

} + · · · .

SinceP ∈ A we haveP−R ∈ A. Moreover, {N,F } = P0000+〈ω′, I 〉+∑n P
011
nn znz̄n−

R ∈ A. Hence the key point is to prove that A is closed under the Poisson bracket. To
this end, we prove the following lemma.

Lemma 4.4. If G(θ, I, z, z̄), F (θ, I, z, z̄) ∈ A, then B(θ, I, z, z̄) = {G,F } ∈ A.

Proof. Let

G =
∑

k1,α1,β1

Gk1α1β1(I )e
i〈k1,θ〉zα1 z̄β1 ,

F =
∑

k2,α2,β2

Fk2α2β2(I )e
i〈k2,θ〉zα2 z̄β2 ,

where the summations are taken over

{(k1, α1, β1),

b∑

j=1

k1j ij +
∑

n∈Zd1

(α1n − β1n)n = 0}, (4.38)

and

{(k2, α2, β2),

b∑

j=1

k2j ij +
∑

n∈Zd1

(α2n − β2n)n = 0} (4.39)

respectively. Since

{G,F } =
∑

A1

∑

A2

〈∂Gk1α1β1(I )

∂I
, ik2〉Fk2α2β2(I )e

i〈k1,θ〉zα1 z̄β1ei〈k2,θ〉zα2 z̄β2

−
∑

A1

∑

A2

〈ik1,
∂Fk2α2β2(I )

∂I
〉Gk1α1β1(I )e

i〈k1,θ〉zα1 z̄β1ei〈k2,θ〉zα2 z̄β2

+i
∑

m

∑

A3

Gk1α1β1(I )Fk2α2β2(I )e
i〈k1,θ〉ei〈k2,θ〉zα1−em z̄β1zα2 z̄β2−em

−i
∑

m

∑

A4

Gk1α1β1(I )Fk2α2β2(I )e
i〈k1,θ〉ei〈k2,θ〉zα1 z̄β1−emzα2−em z̄β2

=
∑

A5

B(k1+k2)(α1+α2)(β1+β2)(I )e
i〈k1+k2,θ〉zα1+α2 z̄β1+β2

+
∑

A6

B(k1+k2)(α1+α2−em)(β1+β2−em)(I )e
i〈k1+k2,θ〉zα1+α2−em z̄β1+β2−em,

(4.40)
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where A1 denotes

b∑

j=1

k1j ij +
∑

n∈Zd1

(α1n − β1n)n = 0,

A2 denotes

b∑

j=1

k2j ij +
∑

n∈Zd1

(α2n − β2n)n = 0,

A3 denotes

b∑

j=1

k1j ij + (α1m − 1 − β1m)m+
∑

n∈Zd1 \{m}
(α1n − β1n)n = −m,

b∑

j=1

k2j ij + (α2m − (β2m − 1))m+
∑

n∈Zd1 \{m}
(α2n − β2n)n = m,

A4 denotes

b∑

j=1

k1j ij + (α1m − (β1m − 1))m+
∑

n∈Zd1 \{m}
(α1n − β1n)n = m,

b∑

j=1

k2j ij + (α2m − 1 − β2m)m+
∑

n∈Zd1 \{m}
(α2n − β2n)n = −m,

A5 denotes

b∑

j=1

(k1j + k2j )ij +
∑

n∈Zd1

(α1n + α2n − β1n − β2n)n = 0,

A6 denotes

b∑

j=1

(k1j + k2j )ij + ((α1m + α2m − 1)− (β1m + β2m − 1))m

+
∑

n∈Zd1 \{m}
((α1n + α2n)− (β1n + β2n))n = 0.

Thus Lemma 4.4 is obtained. ��

Corollary 1. The new perturbation P+ ∈ A.
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5. Iteration Lemma and Convergence

For any given s, ε, r, γ and for all ν ≥ 1, we define the following sequences

rν = r

(
1 −

ν+1∑

i=2

2−i
)
,

εν = cγ−2(rν−1 − rν)
−cε

4
3
ν−1, (5.1)

γν = γ

(
1 −

ν+1∑

i=2

2−i
)
,

ην = ε
1
3
ν , Lν = Lν−1 + εν−1,

sν = 1

4
ην−1sν−1 = 2−2ν

(
ν−1∏

i=0

εi

)1
3

s0,

Kν = c(ε−1
ν (γν − γν+1))

1
τ+1 ,

where c is a constant, and the parameters r0, ε0, γ0, L0, s0 and K0 are defined to be
r, ε, γ, L, s and 1 respectively. Note that

�(r) =
∞∏

i=1

[(ri−1 − ri)
−c](

3
4 )
i

is a well–defined function of r .

5.1. Iteration lemma. The preceding analysis can be summarized as follows.

Lemma 5.1. Let ε is small enough and ν ≥ 0. Suppose that

(1) Nν = eν + 〈ων(ξ), I 〉 +∑n 	
ν
n(ξ)znz̄n is a normal form with parameters ξ satis-

fying

|〈k, ων〉| ≥ γν

|k|τ , k �= 0,

|〈k, ων〉 +	νn| ≥ γν

|k|τ ,

|〈k, ων〉 +	νn +	νm| ≥ γν

|k|τ ,

|〈k, ων〉 +	νn −	νm| ≥ γν

|k|τ , |k| + ||n| − |m|| �= 0

on a closed set Oν of Rb;
(2) ων(ξ), 	νn(ξ) are C1

W smooth and satisfy

|ων − ων−1|Oν
≤ εν−1, |	νn −	ν−1

n |Oν
≤ εν−1|n|−δ;
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(3) Pν has the special form defined in (A4) (i.e., Pν ∈ A) and

‖XPν‖D(rν,sν ),Oν
≤ εν.

Then there is a subset Oν+1 ⊂ Oν ,

Oν+1 = Oν \



⋃

|k|>Kν
Rν+1
k (γν+1)



 ,

where

Rν+1
k (γν+1) =

{
ξ ∈ Oν :

|〈k, ων+1〉| < γν+1
|k|τ |〈k, ων+1〉 +	ν+1

n | < γν+1
|k|τ , or

|〈k, ων+1〉 ±	ν+1
n ±	ν+1

m | < γν+1
|k|τ ,

}

with ων+1 = ων + P ν0l00, and a symplectic transformation of variables

�ν : D(rν+1, sν+1)× Oν → D(rν, sν), (5.2)

such that on D(rν+1, sν+1)× Oν+1, Hν+1 = Hν ◦�ν has the form

Hν+1 = eν+1 + 〈ων+1, I 〉 +
∑

n

	ν+1
n znz̄n + Pν+1, (5.3)

with

|ων+1 − ων |Oν+1 ≤ εν, |	ν+1
n −	νn|Oν+1 ≤ εν |n|−δ. (5.4)

And also Pν+1 has the special form defined in (A4) (i.e., Pν+1 ∈ A) with

‖XPν+1‖D(rν+1,sν+1),Oν+1 ≤ εν+1. (5.5)

5.2. Convergence. Suppose that the assumptions of Theorem 1 are satisfied. Recall that

ε0 = ε, r0 = r, γ0 = γ, s0 = s, L0 = L,N0 = N,P0 = P,

O0 =





ξ ∈ O :

|〈k, ω(ξ)〉| ≥ γ0
|k|τ , k �= 0,

|〈k, ω(ξ)〉 +	n| ≥ γ0
|k|τ ,

|〈k, ω(ξ)〉 +	n +	m| ≥ γ0
|k|τ ,

|〈k, ω(ξ)〉 +	n −	m| ≥ γ0
|k|τ , |k| + ||n| − |m|| �= 0





,

the assumptions of the iteration lemma are satisfied when ν = 0 if ε0 and γ0 are suffi-
ciently small. Inductively, we obtain the following sequences:

Oν+1 ⊂ Oν,

�ν = �0 ◦�1 ◦ · · · ◦�ν : D(rν+1, sν+1)× Oν → D(r0, s0), ν ≥ 0,

H ◦�ν = Hν+1 = Nν+1 + Pν+1.

Let Õ = ∩∞
ν=0Oν . As in [17, 18], thanks to Lemma 4.3, it concludes that Nν,�ν,

D�ν, ων converge uniformly on D( 1
2 r, 0)× Õ with

N∞ = e∞ + 〈ω∞, I 〉 +
∑

n

	∞
n znz̄n.
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Since

εν+1 = cγ−2
ν (rν − rν+1)

−cε
4
3
ν ≤ (cγ−2�(r)ε)(

4
3 )
ν

,

it follows that εν+1 → 0 provided that ε is sufficiently small.
Let φtH be the flow of XH . Since H ◦�ν = Hν+1, we have

φtH ◦�ν = �ν ◦ φtHν+1
. (5.6)

The uniform convergence of�ν,D�ν, ων andXHν implies that the limits can be taken
on both sides of (5.6). Hence, on D( 1

2 r, 0)× Õ we get

φtH ◦�∞ = �∞ ◦ φtH∞ (5.7)

and

�∞ : D(
1

2
r, 0)× Õ → D(r, s)× O.

It follows from (5.7) that

φtH (�
∞(Tb × {ξ})) = �∞φtN∞(T

b × {ξ}) = �∞(Tb × {ξ})

for ξ ∈ Õ. This means that �∞(Tb × {ξ}) is an embedded torus which is invariant for
the original perturbed Hamiltonian system at ξ ∈ Õ. We remark here that the frequen-
cies ω∞(ξ) associated to �∞(Tb × {ξ}) are slightly different from ω(ξ). The normal
behavior of the invariant torus is governed by normal frequencies 	∞

n . ��

6. Measure Estimates

For notational convenience, let O−1 = O,K−1 = 0. Then at νth step of KAM iteration,
we have to exclude the following resonant set

Rν =
⋃

|k|>Kν−1,n,m

(Rν
k

⋃
Rν
kn

⋃
Rν
knm),

where

Rν
k = {ξ ∈ Oν−1 : |〈k, ων(ξ)〉| < γν

|k|τ }, (6.1)

Rν
kn = {ξ ∈ Oν−1 : |〈k, ων(ξ)〉 +	νn| <

γν

|k|τ }, (6.2)

Rν
knm = {ξ ∈ Oν−1 : |〈k, ων(ξ)〉 ±	νn ±	νm| < γν

|k|τ }. (6.3)

Remark. From Sect. 4.3, one has that at the νth step, small divisor conditions are auto-
matically satisfied for |k| ≤ Kν−1. Hence, we only need to excise the above resonant
set Rν . Note that due to the Special form of the perturbation (see (A4) and (4.7)), there
are not the terms of the form

∑
n�=m P 011

νnmznz̄m in the perturbation Pν , thus we need not
consider small divisors 〈k, ω〉 +	νn −	νm with k = 0, n �= m, which is crucial for this
paper.
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Lemma 6.1. For any fixed |k| > Kν−1, n and m,

meas
(
Rν
k

⋃
Rν
kn

⋃
Rν
knm

)
< c

γν

|k|τ+1 .

Proof. Recall that ων(ξ) = ω(ξ)+∑ν−1
j=0 P

j
0l00(ξ) with

|
ν−1∑

j=0

P
j
0l00(ξ)|Oν−1 ≤ ε, (6.4)

and 	νn(ξ) = 	n(ξ)+∑ν−1
j=0 P

011,j
nn with

∣∣∣∣∣∣

ν−1∑

j=0

P
011,j
nn

∣∣∣∣∣∣Oν−1

≤ ε|n|−δ. (6.5)

It follows that 4

∣∣∣∣
∂(〈k, ων(ξ)〉 ±	νn ±	νm)

∂ξ

∣∣∣∣ ≥ c|k|,

then the proof of this lemma is evident; we omit it. ��
Lemma 6.2. The total measure we need to exclude along the KAM iteration is

meas




⋃

ν≥0

Rν



 = meas




⋃

ν≥0

⋃

|k|>Kν−1,n,m

(
Rν
k

⋃
Rν
kn

⋃
Rν
knm

)


 < cγ ϑ, ϑ > 0.

Proof. We estimate

meas




⋃

|k|>Kν−1

⋃

n,m

{ξ ∈ Oν−1 : |〈k, ων(ξ)〉 +	νn −	νm| < γν

|k|τ }


 ,

which is the most complicated case. We divide the proof into several cases according to
p, d.

Case 1. p = 1, d = 1 and p = 2, d > 1. The case p = 1, d = 1 has been proved by
Pöschel in [17]. The case p = 2, d > 1 can be proved similarly. In fact, suppose that
|n|2 − |m|2 = l ≥ 0. If l > c|k|, Rν+1

knm = ∅; if l ≤ c|k|, then according to assumption
(A2) and (6.5), we have

|	νn −	νm − l| ≤ O(|m|−δ).
It follows that

Rν
knm ⊆ Qν

klm

def= {ξ : |〈k, ων〉 + l| < γν

|k|τ +O(|m|−δ)}. (6.6)

4 Here | · | denotes �1–norm.
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Moreover, Qν
klm ⊆ Qν

klm0
for |m| ≥ |m0|. Due to Lemma 6.1, one has

meas




⋃

l≤c|k|

⋃

|n|2−|m|2=l
Rν
knm



 ≤
∑

l≤c|k|

∑

|m|<|m0|
meas(Rν

knm)+
∑

l≤c|k|
meas(Qklm0)

< c

(
γ |m0|C(d)

|k|τ +O(|m0|−δ)
)
, (6.7)

whereC(d) is a constant depending only on space dimension d. By choosing γ |m0|C(d)
|k|τ =

|m0|−δ , i.e.

|m0| =
( |k|τ
γ

) 1
δ+C(d)

,

we arrive at

meas




⋃

l≤c|k|

⋃

|n|2−|m|2=l
Rν
knm



 < c
γ

δ
δ+C(d)

|k| δτ
δ+C(d)

. (6.8)

Case 2. p > 2 for d > 1 and p > 1 for d = 1. Without loss of generality, we assume
that |n| ≥ |m|. If |n| = |m|, the proof proceeds in the same way as in Case 1. If |n| > |m|,
we have

|n|p − |m|p ≥ 1

2
|n|p−2(|n|2 − |m|2), for d > 1,

|n|p − |m|p ≥ |n|p−1(|n| − |m|), for d = 1.

If |n| > c|k| 1
p−2 for d > 1 or |n| > c|k| 1

p−1 for d = 1, we get Rν
knm = ∅; if |n| ≤ c|k| 1

p−2

for d > 1, it follows from Lemma 6.1 that

meas(
⋃

|n|�=|m|
Rν
knm) = meas(

⋃

|n|�=|m|;|n|,|m|≤c|k|
1

p−2

Rν
knm) < c

γ

|k|τ+1−C(d)
p−2

. (6.9)

The case of d = 1 can be proved analogously.
Let ϑ = δ

δ+C(d) , τ >
(b+1)(δ+C(d))

δ
+ C(d)

p−2 (here p > 2),

meas(Rν) ≤ c meas




⋃

|k|>Kν−1

⋃

n,m

Rν
knm





≤ c
∑

|k|>Kν−1

meas

(
⋃

n,m

Rν
knm

)

< cγ ϑ(1 +Kν−1)
−1. (6.10)
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The above upper bound (6.10) gives out the measure estimate of excluded parameter set
at the νth step of KAM iteration, then along the KAM iteration, the total measure we
need to excise has the upper bound

meas




⋃

ν≥0

Rν



 ≤
∑

ν≥0

meas
(Rν

)

< cγ ϑ
∑

ν≥0

(1 +Kν−1)
−1 < cγ ϑ . (6.11)

So Lemma 6.2 follows.

Remark 1. Note that the regularity is crucial in (6.6)–(6.8).

Remark 2. The case p = 1, d ≥ 2 is not considered in this paper since we can not prove
Lemma 6.2 in this case. This is the reason why Theorem 1 can not be applied to higher
dimensional wave equations.

7. Appendix

Lemma 7.1.

‖FG‖D(r,s) ≤ ‖F‖D(r,s)‖G‖D(r,s).

Proof. Since (FG)klαβ =∑k′,l′,α′,β ′ Fk−k′,l−l′,α−α′,β−β ′Gk′l′α′β ′ , we have

‖FG‖D(r,s) = sup
‖z‖ρ<s
‖z̄‖ρ<s

∑

k,l,α,β

|(FG)klαβ |s2l |zα||z̄β |e|k|r

≤ sup
‖z‖ρ<s
‖z̄‖ρ<s

∑

k,l,α,β

∑

k′,l′,α′,β ′
|Fk−k′,l−l′,α−α′,β−β ′Gk′l′α′β ′ |s2l |zα||z̄β |e|k|r

≤ ‖F‖D(r,s)‖G‖D(r,s),

and the proof is finished. ��

Lemma 7.2 (Cauchy inequalities).

‖Fθ‖D(r−σ,s) ≤ c

σ
‖F‖D(r,s),

‖FI‖D(r, 1
2 s)

≤ c

s2 ‖F‖D(r,s),

and

‖Fzn‖D(r, 1
2 s)

≤ c

s
‖F‖D(r,s)|n|ae|n|ρ,

‖Fz̄n‖D(r, 1
2 s)

≤ c

s
‖F‖D(r,s)|n|ae|n|ρ.
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Let {·, ·} denote the Poisson bracket of smooth functions, i.e.,

{F,G} =
〈
∂F

∂I
,
∂G

∂θ

〉
−
〈
∂F

∂θ
,
∂G

∂I

〉
+ i
∑

n

(
∂F

∂zn

∂G

∂z̄n
− ∂F

∂z̄n

∂G

∂zn

)
,

then we have the following lemma:

Lemma 7.3 If

‖XF ‖D(r,s) < ε′, ‖XG‖D(r,s) < ε′′,

then

‖X{F,G}‖D(r−σ,ηs) < cσ−1η−2ε′ε′′, η � 1.

In particular, if η ∼ ε
1
3 , ε′, ε′′ ∼ ε, we have ‖X{F,G}‖D(r−σ,ηs) ∼ ε

4
3 .

For the proof, see [13]. ��
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