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Abstract

To investigate localization in one-dimensional quasi-periodic nonlinear systems, we
consider the Schrodinger equation

igy, + €(qni1 + Gno1) + V(na + 2)qn + |qn|’qgn =0, n€Z,

as a model, with V' a nonconstant real-analytic function on R/Z, and & satisfying
a certain Diophantine condition. It is shown that, if € is sufficiently small, then for
a.e. x € R/Z, dynamical localization is maintained for “typical” solutions in a quasi-
periodic time-dependent way.

Contents
1 Introduction

2 Preliminaries
2.1 The quasi-periodic Schrédinger operator . . . . . . . . . ... ... .. ...
2.2 Decay property of matrices . . . . . . ... Lo

3 Abstract KAM theorem
3.1 Function space norms . . . . . . . . . ..o ol e
3.2 Statement of the abstract KAM theorem . . . . . . . ... ... .......
3.3 Application to Equation (1.9) . . . . . .. .. ...

4 KAM step
4.1 Construction of Opyq . . . o . o L oL
4.2 Homological equation and its approximate solution . . . . . .. . ... ...
4.3 Verification of assumptions after one sub-step . . . . . . ... ... ... ..
4.4 A succession of symplectic transformations . . . . . ... ... ... ...

5 Proof of the KAM theorem
5.1 Tteration lemma . . . . . . . . . . . ...
5.2 CONVEIZENCE . . « . v v v v v it e et e
5.3 Measure estimate . . . . . . . .. e e

11

13
14
16
23
27



A Appendix 32
A.1 Outline of the proof of Proposition 1 . . . . . .. ... ... ... ... ... 32
A.2 Hamiltonian vector field and Poisson bracket . . . . . ... ... ... ... 36

1 Introduction

Physical motivations. Localization of particles and waves in disordered media is one of the
most intriguing phenomena in solid-state physics. This phenomenon was first analyzed by
P.W.Anderson[1]. He studied the transport of non-interacting electrons in a crystal lattice,
described by a single particle with random on-site energy. In his model, he showed that
when the amplitude of the disorder becomes higher than a critical value, the diffusion in
the lattice of an initially localized wavepacket is suppressed. An Anderson localized state
is characterized by an exponential decay of the amplitude of the wave function.

In many physics experiments, a relatively weak disorder on the structure of the lattice is
introduced by a quasi-periodic potential. This kind of system corresponds to an experimen-
tal realization of the so-called Aubry-André[2] or Harper[19] model. It is important in the
study of Bose-Einstein condensation and nonlinear optics. Anderson localization in such
linear systems, especially in the one-dimensional case, has been thoroughly studied[31],
and rigorous mathematical results have been established[22]. As a well-known model in
mathematical physics, the almost Mathieu operator H ) 5 acting on (%(7) is defined by

(Hx,A,d¢)n = (¢n+1 + %-1) + Acos 27T(-Tf + nd)lbm n ez,

where n is the primary lattice site index, & is some ratio between the wavenumbers of two
lattices, € R/Z is an arbitrary phase, and 1, is a complex variable whose modulus square
gives the probability of finding a particle at the lattice site n. With & a fixed Diophantine
number, for a.e. z and X large enough, H; ) 4 exhibits dynamical localization[16, 17], i.e.,
for any v € £2(Z) with compact support and arbitrary d > 0,

sup @ (¢) := sup Z n2|(efzratep), |2 < oo.
t t nez

In particular, there exists a transparent transition between diffusion and localization for
the almost Mathieu operator. From the perspective of spectrum theory, it is shown by
Jitomirskaya[22] that, for a.e. z, H, ) 5 has

1. A > 2: only pure point spectrum with exponentially decaying eigenfunctions;
2. X = 2: purely singular-continuous spectrum;
3. A < 2: purely absolutely continuous spectrum.
There is a perfect agreement with this conclusion in some experiments(e.g., [20]). For

- V51

& =— with an initial d—function wavepacket, the asymptotic spreading of the

wavepacket width 7(1)(¢) can be parametrized as () (¢) ~ ¢7, and one finds three different
regimes

1. A > 2: localized regime, v = 0;



2. A = 2: sub-diffusive, v ~ 0.5;
3. A < 2: ballistic regime, v = 1.

However, the situation is much less clear in the presence of interactions(nonlinearities).
It strongly influences the possibility to observe the localization induced by disorder. One
can start from the Gross-Pitaevskii(GP) equation[18, 27] in Hartree-Fock theory, and
get a generalized Aubry-André model which includes an additional nonlinear term that
represents the mean-field interaction. The Hamiltonian is

H=y

(V1 + Yns1tn) + Acos 21 (né + x)]z/;n]2 + %B\zpnr‘ ,

nez
and the equation of motion is generated by i), = _ﬁ7 yielding the nonlinear Schrodinger
equation "
ity + (Yng1 + Pn1) + Acos 2m(nd + )¢, + Bltnl*n =0, n € Z, (1.1)

that can be considered as the GP equation on a discretized lattice. Similar versions of a
discretized GP equation have been already used to investigate the dynamics of condensates
in different situations(see, for instance, [33]).

It is shown experimentally in [25] that, if the condensate initially occupies a single lat-
tice site, i.e., a d—function ), (0) = J, 0, the dynamics of the interacting gas is dominated

by self-trapping in a wide range of parameters, even for weak interaction. Conversely, if
2

the diffusion starts from a Gaussian wavepacket of width o, 1,,(0) = 667;7, then self-
trapping is significantly suppressed and the destruction of localization by interaction is
more easily observable.

The aim of the present work is to analyze localization in the quasi-periodic nonlinear
dynamical systems, which are modeled by the discrete one-dimensional disordered non-
linear Schrédinger equations of the same form as (1.1). When the disorder is sufficiently
large, a rigorous mathematical argument for the maintainability of localization is given in
this paper, corresponding to the experimental conclusion in [25].

Related mathematical works. In the theory of mathematical physics, localization in disor-
dered, nonlinear dynamical systems was initiated by Frohlich-Spencer-Wayne[12](Similar
work was also done by Poschel[28] and Vittot-Bellissard[34]), who constructed infinite-
dimensional, compact invariant tori for a large class of non-coupling systems

iGn + Vatn + Y €mn(@m +Gm)’an =0, n €L,
MEZL

via the KAM techniques, where {V},},cz are i.i.d. random variables, €,,, are sufficiently
small and vanish for |m — n| large enough. Solutions which lie on such tori are localized
for all times. Besides the conclusion, they raised the following conjecture in that paper.

Conjecture.[12] Consider the equation

ign + 6(‘]n+1 + anl) + Vagn + 5|Qn’2(hl =0, nez, (1'2)



with {V,}nez i.i.d. random variables. If € and § are small enough, with the equation
in a large class, then for “most” initial conditions ( “Most”, e.g., with respect to the
uniform measure on finite-dimensional unit spheres.), ¢(0) = (¢, (0))nez, of finite support,
the solutions q(t) = (gn(t))nez of (1.2) satisfy

T -1 2 2 _
tli)rgot Z n?lgn(t)|* = 0.
nez

Recently, there are several breakthroughs on such problem. For a large class of equation
n (1.2), Bourgain-Wang|[7] constructed a quasi-periodic solution when ¢, are sufficiently
small. They also considered the slightly tempered equations[8], with the nonlinearity
replaced by A\u|gn|?qn, |An| < €(1+|n|)~" for some small 7 > 0. By constructing symplectic
transformations to create energy barriers, they proved that, if € is sufficiently small, then
the diffusion bound (i.e., the H' norm) of the solution grows polynomially with ¢ almost
surely. Moreover, a Nekhoroshev-type result about Equation(1.2) was given by Wang-
Zhang [35], who proved the long time Anderson localization for arbitrary ¢2 initial data.

By establishing an abstract KAM theorem, Geng-Zhao[15] constructed small-amplitude
time quasi-periodic solutions of the lattice Schrodinger equation

ign + €(gnt1 + gn—1) + tanw(x + nd)q, + e]qn|2qn =0, necz, (1.3)

for most of z € R/Z if € is sufficiently small and & is Diophantine. This is based on the
work by Bellissard-Lima-Scoppola[4], which have studied the linear operator correspond-
ing to Equation (1.3), the well-known Maryland model. The operator, which has dense
point spectrum, describes media with no resonance, and this provides convenience for the
KAM iteration.

Statement of the main result. Inspired by the conjecture in [12], we try to establish a
nonlinear version of “dynamical localization” in the quasi-periodic potential case.
Consider the one-dimensional nonlinear Schrodinger equation

IQn + 6(qn—ﬁ—l + Qn—l) + V<nd + x)Qn + ‘QnPQn = 07 n € 7, (14)

for 0 < € <« 1, with V' a nonconstant real-analytic function on R/Z, and @ € R is a
Diophantine number, i.e., there exist 7 > 1 and 4 > 0 such that (|z|; is the absolute value
of 2 modulo 1 defined so that 0 < |z[; < 3.)

nali > =, n#£0. (1.5)

nf”

The nonconstant real-analytic potential V', as in [11], is a smooth function in the Gevrey
class
sup [0™V (z)| < CL™(m!)?, m >0, (1.6)
T€R/Z

for some C, L > 0, and satisfying the transversality condition

Jmax |07 (V(z +¢) = V(2)| 2£>0, Va,Ve, (1.7)
Jnax 07 (V(x+ @) = V()| > Eleh,  Va,Ve, (1.8)



for some &, > 0. Clearly, the case V() = cos 27z is included.

Based on an earlier KAM mechanism which was introduced by Eliasson[11], we con-
struct an abstract KAM theorem, and apply this theorem to prove well-localization of
Equation (1.4) for typical initial data. From the KAM perspective, the main technical
challenges in this work are the following:

i) Unlike the model in [12], we need to tackle with the second order perturbation in
the Hamiltonian;

ii) Different from the method in [7], our proof is developed from the traditional KAM
method;

iii) Compared with the work in [15], the main difficulty is that the corresponding linear
operator has dense point spectrum with infinitely many resonances.

The main result can be stated as follows.
Theorem 1 Consider the one-dimensional nonlinear Schrédinger equation
idn + €(@ni1 + an-1) + V(nd + 2)gn + |@n*ea =0, n€Z, (1.9)

with V' a monconstant real-analytic function on R/Z, and & € R a Diophantine number.
Given an integer b > 1, and any J = {n1,---,np} C Z, there exists a sufficiently small
ex = €(V,a,T), such that if 0 < € < €, then the following holds for a.e. x € R/Z.

There exists a Cantor set O, = O(z) C [0,1]® with [[0,1]°\ O — 0! as e — 0
such that the solution q(t) = (qn(t))nez of Equation (1.9), with initial datum q(0) € O,
supported on [J, satisfies, for any fized d > 0,

sup Z n?q, (1) < co.
nez
Moreover, for each n € Z, q,(t) is quasi-periodic in time.
Remark 1.1 The quasi-periodic solutions we obtained are not necessarily small-amplitude,

since the nonlinearity |q,|*q, is integrable. Moreover, if the nonlinearity is “diagonal dom-
inant” with some short-range decay, e.g.,

|Qn‘QQn +e Z €_Q|m_n||Qm‘QQna
m#n
the theorem above can also be obtained.

Remark 1.2 Smallness assumption on € is necessary, otherwise the result is not true
even for the linear problem. This is different from the random potential case.

2 Preliminaries

From now on, in the formulations and proofs of various assertions, we shall encounter
absolute constants depending on the Hamiltonian, the dimension and so on. All such
constants will be denoted by c, ¢y, co, -, and sometimes even different constants will be
denoted by the same symbol.

Hereafter, we use the symbol |O| to denote the Lebesgue measure of O C R.



2.1 The quasi-periodic Schrodinger operator

Consider the Schrédinger operator T' = T'(x) : £2(Z) — £%(Z) defined as
(Tq)n = €(qn+1 + gn-1) + V(2 + nd)gn, n€Z, (2.1)

with V and & as in Equation (1.9). It is well-known from [11] that if € is sufficiently small,
then for a.e. x € R/Z, the spectrum of T'(x) is pure point. We refer to [6, 9, 13, 21, 23, 32]
for other works on the pure point spectrum and Anderson localization of quasi-periodic
Schrédinger operators.

Now, we are going to represent the main idea of [11], which is critical for the KAM
iteration in this paper. Let us start with some notations for infinite-dimensional matrices.

Given an infinite-dimensional matrix D, with D,,, € R the (m,n)™ entry, for a subset
A C Z, we define A+ :=7Z\ A,

Dpn, m,n € A
Omms otherwise

RA::{TLG]RZ:TLZ'ZO if i ¢ A}, DA::{

Loror
Then Dy : RA+RA — RALRAT | acts as RY < RZ Dy g2 P RA 61y the first component

and as the identity on the second component. (When there is no risk for confusion, we
will use Dy also to denote its first component.)
Let Dy = diag{V(x + n&)}nez and Zy = €A with A the discrete Laplacian. With

1
g€g = €1, 0p = 1 and any

L((5+1)1)?
3

one can define the following sequences as in [11],

MoZmaX{2§+4C » 27, 8}’ No>1, po=N;",

1_—ay/2
M3 L3503 38y
Myy1=M;7"v, a, = ;My vV, Epytl1 = I s
! ) | (2.2)
Nyt1=¢,", Pv+1 =€, Oy+l = gpw

These sequences of parameters will be applied in the KAM iteration in this paper.

Proposition 1 There exists a constant ¢y = eo(C,L,E, 5,4,T) such that the following
holds for the operator (2.1) if 0 < € < €.
Fiz any x € R/Z. There exists a sequence of orthogonal matrices U,, v =1,2,---, with

1
(U, = Ig)mn| < ege” 30 Im—n1,

such that U} (Do + Zo)U, = D, + Z,,, where Z, is a symmetric matric satisfying
|(Zu)mn| < €V€7pu‘min‘7

and D, is a symmetric matriz which can be block-diagonalized via an orthogonal matriz
Q. with
(Ql/)mn =0 if |m — n| > N,.



More precisely, there is a disjoint decomposition J; A} = Z such that

DY =Q'D,Q, = Hf)x; with $AY < M,, diamA} < M,N,, Vj.2
J

Moreover, there exists a full-measure subset X C R/Z such that if we fiz x € X, then
for each k € Z, there is a vo(k) such that

AYTHER) = AV (K), Vv > vo(k).

Proposition 1 shows the pure point spectrum of 7. In Appendix A.1, we shall give an
outline of the proof.

2.2 Decay property of matrices

Lemma 2.1 Given two matrices G = (Gmn)mnez and F = (Fpp)mnez. Let K = GF.

(1) If |G| < cqe=oclm=nl | Ern | < cpe FIm=nl for some positive cq, cp, oc, op > 0,
then we have
|Kmn| S CKeiaK‘min‘

for any 0 < o < min{og, op} and cx = c- cgep(min{og, op} — o).
(2) If |Gn| < cgeocmaxlimlinl} \F 1 < cpeoFIm=nl then

| K| < cxe K max{|m|, n[}

(3) If |Gmn| < cqe—oclm=—nl | Foon| < cpe™F max{|ml, [nl} ¢pep

| K| < ce™x max{iml, nf}

(4) IF|Guun| < cgeoomastimlinl} B, | < cpe-ormax{imbinlt e
‘Kmn| <cge 7K max{|m], |"|}
In particular, if og # o, then the conclusions above hold with o = min{og, op} and
cx = c-cgcrlog —op| 7L

Proof: Since the matrix element of K’ = GF can be formulated as K, = > e GruFin,
we have that, in Case (1), for any 0 < ox < min{og,or},

(GF)mn| < > |Gt Fin

lez
< cacr Z e—oc|m—l|€—oF|l—n|
ez
< CGCF670K|mfn| Z ef(aGfUK)|mfl\ef(opfax)ﬂfn\

lez

< c-cgep(min{og, op} — o) te oK

2The disjoint decomposition defines an equivalence relation m ~ n on the integers and, for each n € Z,
we denote its equivalence class by A”(n).



Here we have applied the basic triangular inequality |m — | + [l — n| > |m — n|.
Moreover, if oG # op, assume that 0 < og < o without loss of generality, then

|(GF)mn| < CGcFZe_UG‘m_”e—UFU—n\
lEZ

< CGCFeiaG‘mim Zef(apfag)|lfn|
lez

< c-cqeplop —og) teocimnl,

As for Case (2)—(4), the corresponding conclusions can also be obtained by using the
trivial facts

[m — 1] + max{[l|, |n|} = max{|m|, [n[}, max{|m], [I]} + max{[l], |n|} > max{|m], |n[}.

Thus Lemma 2.1 has been proved. ]

Remark 2.1 If we replace the matriz F satisfying |F,| < cpe=oF max{imlinl} yith q
vector f = (fn)nez satisfying | fn] < Cfe_"f|”| in Case (3) and (4), then for the vector G f,
we can obtain the conclusion that |(Gf),| < cxe 51" where cx and o are the same as
in the lemma.

3 Abstract KAM theorem

3.1 Function space norms

Given d,p > 0, let Ecll’ ,(Z) be the space of summable complex valued sequences g =
(Gn)nez, with the norm

lglla.p == > laal (n) e < oo,
nez

where (n) := 14 n2. For r,s > 0, let Dg,(r,s) be the complex b-dimensional neighbor-
hood of T? x {0} x {0} x {0} in T x R® x £} (Z) x £} ,(Z), i.e.,

,dep(r? S) = {(97[7517(7) : ]Im&\ = ‘Im(alv o ‘791))‘ <, ‘I’ < 327 HQHd,p = Hq”dﬁ < 8}7

where | - | is the /!-norm of complex vectors.

Given a real-analytic function F(0,1,q,q;§) on D = Dy ,(r,s), Ciy(ie., C! in the
sense of Whitney) parametrized by £ € O 3, a closed region in R®. We expand F into the
Taylor-Fourier series with respect to 6,1, q, cj

F(0,1,q,3:€) =Y Fap(0,1:&)q
B

where, for multi-indices « := ), c, anen, B := >, cz Bnén, 0, Bn € N, with finitely many
non-vanishing components,

Fop(0,1;6) = ) Fhrap() IR0 gogP = |}
k‘GZb,ler (an7/8n)3£(070)

3In this paper, all dependencies on the parameter £ € @ are assumed of class Cyy, thus all derivatives
with respective to £ will be interpreted in this sense.



(Here e, denotes the vector with the m'"

being zero.)

component being 1 and the other components

Definition 3.1 For each non-zero multi—indezx (o, B) = (-, ny Bns -+ Inez, On, Bn € N,
with finitely many non-vanishing components, we define

nzﬁ :=max{n € Z: (an, Bn) # (0,0)},
N, = min{n € Z: (an, Bn) # (0,0)},
Npg = max{|nj;ﬁ\, Inaslts
and |Oé| = Zn Qp, |B| = Zn BTL
In particular, for |a| = |5| =0, we define n;@’ =ngs =g = 0.
With |9¢ Friap| := Yi_1 106 Fitag| and |[Fuiaslo := subeco (|Frias| + 10¢ Fias)), let
| Fagllo =" [Fuaslo [T || Fllo = 3" [Fuaslo [1']eM™14%)14%).
k,l ka8

Define the weighted norm of F' as
1Fllp, 0 := sup IF]o.*

For the Hamiltonian vector field Xp = (OrF, —0pF, (—i0y, F')nez, (105, F )nez) associated
F on D x O, its norm is defined by

1 1
IXFllp,0 = 1l0rFlp,0 + 186 F|Ip,0 + sup >~ (105, Fllo + 105, Fllo) (n)?e™.
nez

Sometimes, for the sake of notational simplification, we shall not write the subscript O in
the norms defined above if it is obvious enough.

Given two real-analytic functions F' and G on D, let {-,-} denote the Poisson bracket
of such functions, i.e.,

{F,G} = (01F, 05G) — (0gF,0,G) +1Y_ (04, F - 93,G — 94, F - 95, G) .
nez

Some basic estimates about the Hamiltonian vector field and the Poisson bracket are given
in Appendix A.2.

3.2 Statement of the abstract KAM theorem

Now, we consider the perturbed Hamiltonian

H = N+P+P
= e(z,8) + (w(z,8),I) + (2,€)q,q) + Plq,¢;z) + P(0,1,q,G;2,€), (3.1)

defined on the domain D = Dy ,(r,s). Our goal is to prove that, for a.e. = € R/Z, the
Hamiltonian H admits invariant tori for “most” of the parameter £ € O = O(z), provided

that || X, pllp o is sufficiently small.

“In the case of a vector-valued function F : D x O — C™(n < o), the norm is defined as | F||p,o0 :=
> ey IEillp. o



Remark 3.1 From now on, we shall not report x for convenience if it is irrelevant.

To this end, we need to impose some conditions on w, {2, and the perturbations P+P.

(A1) Nondegeneracy of tangential frequencies: The map & — w is a C}}, diffeomorphism
between O and its image.

(A2) Regularity of Q: Q=T+ A+ W.
— T is the symmetric matrix defined in (2.1), independent of £. More precisely,
T = diag{V (z + n&) }nez + €A,

with V' and & as in Equation (1.9).
— A is Hermitian, independent of &, satisfying
<N
oL mlnl< 15
[ A _{ 0, otherwise (3.2)

~

for some positive V.
— W is C}, parametrized by & € O, with

b T Y
for some positive p < 1, 0 > p and sufficiently large N.
Moreover, there exists a subset J C Z such that
Qun =0 if m or ne J. (3.4)

(A3) Short range of P: p(q, q) = >lal=|8]>2 paﬁqo‘(jﬁ is real-analytic in ¢, g, and indepen-
dent of £, with

‘Paﬁ‘ S 6_9(”25—71;/3), ‘Oé‘ = ‘5‘ Z 27 (35)
9y, P=0,P=0, YneJ.

(A4) Decay property of P: P = 3, 3 Pap(0,1; £€)q*g® is real-analytic in 0,1,q,q, C}
parametrized by £ € O, and, with ¢ = €1,

N

ce e, o] +|6] < 2
P < NG =2 3.7
|| OC/BHD,O — { eipnaﬂ’ |Oé| + |ﬁ| Z 3 ( )
0g, P =05, P=0, VneJ. (3.8)
(A5) Gauge invariance of P: For P = Z Pklagllei<k’9>q°‘cj , we have
kezb,lenb
o8

b

Puap =0 if > kj+|a] — |8 #0.
j=1

10



Our abstract KAM theorem can be stated as follows.

Theorem 2 Consider the Hamiltonian H in (3.1), with (A1) — (AS5) satisfied. There is
a positive constant €, = &(w,V,d,N,p, o,N,r, s,d,p) such that if HXerPHDp <e < ey,
then for every x € X, there exists a Cantor set O, = O(z) C O(z) with |0\ O = 0 as
e — 0, such that the following holds.

(a) There exists a Cfy, map & : O — R®, such that |© — w|o, — 0 ase — 0.

(b) There ezists a map ¥ : T° x O, — Dyp(r/2,0), real-analytic in 6 € T° and C},
parametrized by § € O, such that |V — Wo|lp, (r/2,0),0. — 0 as e — 0, where ¥y is
the trivial embedding: T x O — T® x {0} x {0} x {0}.

(c) For any 6 € T" and ¢ € O., V(0 + (©)4E) = (6 + B I(1), q(t),q(t)) is a b-
frequency quasi-periodic solution of equations of motion associated with the Hamil-
tonian (3.1).

(d) For eacht, q(t) = (¢n(t))nez € E}LO(Z).
Remark 3.2 The statement (d) of Theorem 2 implies that

2
sup > n*lan(t)* < e <Sgp Z<n>dlqn(t)\> < o0,

nez nez

which is exactly the conclusion of Theorem 1.

Remark 3.3 In case that H satisfies (A1) — (AB) at the first step, all assumptions hold
for the Hamiltonian at each KAM step (with suitable parameters).

3.3 Application to Equation (1.9)

The Hamiltonian associated with Equation (1.9) is

- _ _ 1
H = Z V(l‘ + na)QnQn + € Z Qn(Qn—i-l + Qn—l) + 5 Z \qn|4. (39)

nez nez =
Fix J = {nm,---,m} CZ, and Zy = Z\ J. Let & = 6%, with e sufficiently small such that
1 .
‘ni‘ﬁllné‘\:jlne\, i=1,---.b.

We introduce action-angle variables and amplitude parameters to the Hamiltonian (3.9),

dn = V In + §neion7 Qn = V In + fneiwna ne j7

where (I,0) = (In,, -+, In,,0n,, -+, 0n,) are the standard action-angle variables in the
(qn, Gn)neg-space around &, with & = (&,,,-++,&p,) € O = [e12,1] C [0,1]° a parameter,

11



and (¢,7) = (¢n,dn)nez,- Then the Hamiltonian (3.9) becomes H = N'(0,1,q,q;z,&) +
P(q,q) + P(0,1,q,q;§), with

NO,I,q,32,8) = Y (V(z+nad), + %52) + Y (V(z+na) + &),

nEJ nej
+ Z V(x+n5‘)|qn|2 te Z (QnQnJrl +QnQn+1)v
nezy ngJ
n+1¢.7,
v 1
P(Qa Q) = 9 Z |Qn‘4,
nezi
i 1 . .
PO,1,4,38) = 5> Iite > VIn+&n(e g0+ e q0)
neJ meJ,n¢T
|m—n|=1
te Y VIn A Env/Tn T EaleOn 00 4 HOm=0n)).
m,neJ
|m—n|=1

After introducing the action-angle variables, we find that the structure of the linear
operator T in (3.9) has been destroyed. To overcome this disadvantage, we need to add b
variables ¢;,,, -, ¢, and the corresponding conjugates g, ,---,q,, into this system. For
convenience, omit the prime of the newly-added variables and still use ¢ to denote (g, )nez,
since there is no confusion. We then rewrite N as

N = Z (V(z 4+ na)&, + %5%) + Z (V(x +na) + &)1,
neJ neJ

+ Z Vi + nd)‘QnP =+ Z V(z+ nd)|Qn‘2 +€ Z(QnQn+1 + @nGn+1)

nezy neJ nez
- Z V(QZ + nd)|qn|2 — € Z (QnQn-i-l + QnQn-&-l)
neJ norn+leJ

= e(x, )+ (w(=,8),I) + (T(x)q, q) + (A(z)q, q),

with e(x,§) := Z V(z +na)é, + % Z &,

neJ neJ
w(z, &) = V(e+ma)+&,, -, V(e+nma)+ &), (3.10)
V(z+ma), m=n
Ton(x) = €, m—n==1 |, (3.11)
0, otherwise

—V(z+ma), m=n, meJ
Apn(x) = —¢, m—-n==1, m or neJ . (3.12)
0, otherwise

Now, on some domain Dg,(r, s), the regularity of P + P holds true:

Lemma 3.1 For e > 0 sufficiently small and s = ei, if |1 < s* and ||qlla, < s, then

1
8

1
||X}5+P|‘Dd,p(r,s),(’) <etr=e.

12



We need to show that the Hamiltonian H = N + P + P satisfies the assumptions
(A1) — (A5) of the KAM theorem, in which (A3) and (A5) are obviously satisfied.

(A1): Since {V(z 4+ nd@)}nez is independent of £, we have that ‘g—‘g = I 7 in view of (3.10).
Thus (A1) holds.

(A2): Here, W = 0. Then it is evident that (A2) holds with N = 1/Inel, by (3.12).

(A4): We focus on the formulation of P. Note that terms of P merely correspond to the
normal variables ¢, gn, n € J,n—1or n+ 1 € J, with the coefficients no more than e,
and J C [-N,N] = [—1|In¢|, [Ine]]. Then, with p < 2N, (3.7) is verified since

1 1 \7
cel T < eie PN,

Hence, Theorem 1 is a corollary of Theorem 2.

4 KAM step

To start the KAM iteration for the Hamiltonian (3.1), let Dy = Dy, p, (ro, s0), O,
No(including eg, wo, Wo, po, 00, No), Po, €0 = ¢1 denote the initial quantities given in
the assumptions (A1) — (A5) respectively, and require that e smaller than the ¢y given in
Proposition 1.

Suppose we have arrived at the v*" step of the KAM iteration, v = 0, 1,2, - - -, recalling
that several sequences have been given in (2.2). We consider the Hamiltonian on D, :=
Dy p, (rv,s,) and O,

HI/ - NV+p+PV
= e+ (Wi, [) + (g, @) + P+ P, (4.1)

where Q, =T + A+ W,, and (A1) — (A5) are satisfied, including (3.2), (3.5), (3.6) and

(2%)mn =0, m or neJ, (4.2)
pye*U” max{|m/|, |n\}’ ‘m|, ’n’ < Nz/

W < .

((Wo)mnlo, < { 0, otherwise (4.3)
£ e P s la) + 18] < 2

< * ’ - .
(Feslioo. = { e lasal+ (B >3 (44)
0g, Py =04,P, =0, neJ. (4.5)

Moreover, HX15+PVHDV7OV <eéy.
Choose some 7,41 such that 0 < r, 41 <7y, and let J, := {35;2} Forj=0,1,---,J,,
we define the quantities at each KAM sub-step as

, J ; J(ry —ruyq1) j 35 %
pU) = (1 - E)Pu, rd) =r, — %a sP) =27%¢e]s,,

13



. . . . j
and D,(,]) = Dd7pu+1(r,(,]), s,(,J)), 5,(,]) = E,E’H. Our goal is to construct a set 0,41 C O, and
a finite sequence of maps
él(/j) DI(JJ) _>D1(/j71)7 j:1727'”7J1/7
so that the Hamiltonian transformed into the (v + 1) KAM cycle

Hyy1 = Hyo0dWMo...00lw)

= NI/+1+F)+PZ/+1
= epp1 + (Wt I) + (114, 9) + P+ Py

satisfies all the above iterative assumptions (Al) — (A5) on D, = DY) and Cl
parametrized by & € O, 41, with new suitable parameters. Moreover,

1_—av/2
Ju 2%y _
||X15+P1/+1HDV+1’OV+1 <éy ) <ep = Eu+l-
In the remaining part of this paper, all constants labeled with ¢, ¢y, ¢1, - - - are positive

and independent of the iteration step.

4.1 Construction of O,

As described in Proposition 1, there exists an orthogonal matrix U, with

1 3

(U, — Ip)mn| < ege™20vIm=nl (4.6)

such that U;TU, = D, + Z,, where Z,, is a symmetric matrix satisfying
[(Zv)mnl < 5z/e_py‘m_n‘7 (4.7)

and D, is a symmetric matrix which can be block-diagonalized via an orthogonal matrix
Q. with
(Qu)mn =0 if |m —n| > N,. (4.8)

More precisely,

D, = Q%D,Q, = H[)[’(]V_ with fAY < M,, diamA} < M,N,, Vj.
i

To describe U;Q,U,, we need furthermore to consider U;AU, and U;W,U,. In view
of (3.2), (4.3) and (4.6), there exists a constant ¢; > 0 such that

| (U;(A + WV)UI/) |(9y < maX{N2€3U”N, pyO';2} . e—al,~max{|m|,|n\}’

mn

by a simple application of Lemma 2.1. Define the truncation A, as

i _ ) WA+W)U)py, ImlIn] <N,
(Av)mn := { 0, otherwise (4.9)
It follows that )
‘(U:(A + W)U, — A,) , < semremeimling (4.10)

under the assumption

14



(C1) ¢ max{Nze?"’”N, puo, 2} e ovmp)Ne < o
Let K11 := Nyy1 — (M, 4+ 1)N, with the sequences M,, N, v =0,1,---, defined in
(2.2) and ) ) 3
D{v:= [ Div, A :=Q;AQ., (4.11)
AvcAr

where AY = U{A;’ SAYN [—(Ky41+ Ny), Kyp1+ Ny # 0} C[—Nyy1, Nygi]. In view
of (4.8) and (4.9), we have

(A))mn =0 if |m| or |n| > 2N,.
Since both of D/l’\,, and fly are Hermitian, there is an orthogonal matrix O, such that
O%(DX., + A,)0, = diag{p}jenr,

where {M]V }jear are eigenvalues of E/V\V + A,. Due to the block-diagonal structure of
Dj’\,, + A, we also have

(O )mn =0 if |m —n| > 2(M, +2)N,. (4.12)
Indeed, D/’(V + A, can be expressed as
bxv + AV = (DX’D + AV) ) H DXV
A¥N[=2N, 2N, |=0 !
where A;, := U{AY : AYn [~—2Ny, 2N,] # 0, A} C AV} with diamA;ig 2(]\{,, + 2)Nl:. The
diagonalization of DY, + A, is just the diagonalization of blocks (D}, + A,) and D}..
~ ~ v J
As for the eigenvalues of DX, +A,, it is well-known that {y% },epnr Cy~smoothly depend

on ¢ and there exist orthonormal eigenvectors ¢, corresponding to f, C&V—smoothly
depending on ¢ (see e.g. [10]). In fact, u¥ = ((Dar + A,)Y7, k) and

85]“% = <(853(DA” +AV))1/]Z71Z}Z>7 ] = ]-776
By the construction of A, we have Ogjﬁ,, = Qﬁ(@gj/ly)Q,,, with A, the truncation of
Ui(A+W,(€))U,. Since D,, A, U, and @, are all independent of &,
sup |8€:U7VL| < csup |a§(Wu)mn| < cpy. (413)

¢€O, £€oy

m,n

Now we defined the new parameter set 0,11 C O, as

[(k,wo)| > g, k#0,
Opi1:=E€0,: |<k,wu>+uZ!>WT”3H, k#0, neA”, (4.14)
|k ) + i £ ] > ey, kK #0, mon €AY,

for some 0 < v, < 1, 7 > b. These inequalities are famous small-divisor conditions for
controlling the solutions of the linearized equations.

From now on, to simplify notations, the subscripts (or superscripts) “v” of quantities
at the v*" step are neglected, and the corresponding quantities at the (v + 1) step are
labeled with “+”. In addition, we still use the superscript (j) to distinguish quantities at
various sub-steps.
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4.2 Homological equation and its approximate solution

For P =3} 108 Pklaﬁ(ﬁ)llei<k’9>qa(jﬂ, according to (4.4) and the definition of norm in
subsection 3.1, we have

|Priaglo < e ase™ BT 20| 4 |a| + (8] < 2, VE e Z°. (4.15)
Decompose P = R+ (P — R) with

Ri= Y Puape™I'¢"¢®, P—R= Y Puase™"1'¢"¢".

k k
2[l+]el+]B]<2 2/l +|a|+]8]23

It follows || Xr||p, 0 < || Xp|p,0 < €. Recalling that P(q,q) is a sum of high-order terms,
there exists a constant ¢o > 0 such that

1 s
X124, m5), 05 1 XP—RllDy 1 (r,ms), 0 < €2ms < G5, (4.16)

with n := 6%, provided
(C2) cs < ie.

/ / opP : .

Let €' := Pyooo and ' := Equ:q:O,I:O- With O defined as in (4.14), we have
Proposition 2 There exist two real-analytic Hamiltonians
F= > Fuapg®@’1'é™? P= 3" Puapg®d’e*?,
12|l +|al+|8] <2 1<lal181<2

and a Hermitian matriz W', all of which are CJ, parametrized by &€ € O, such that
{N.F}+R=¢ + (., 1)+ (Wq,q) + P. (4.17)

Moreover, both of F' and P have gauge invariance, and for € sufficiently small,

4 _ *
|Friaglo, < &5 [k[*H e Mremmas, (4.18)
’PkOQB’O_;,_ < E%’k‘27'+1ef\k\refp(l)nt’;ﬁ7 (419)
—pmax{mlInl} ) In| < Ny, mond J
/ < ge ) ) = +5 ) ]
Winnlo, < { 0, otherwise ’ (4.20)
Oy F =05, F =8, P=0;,P=0, neJ. (4.21)

Proof of Proposition 2: We decompose the proof into the following parts.
e Truncation and approximate linearized equations

At first, we rewrite R as

R= Y Paone ™01+ 3 ((PM0, )+ (PHL, )+ (P¥20, g) + (P11, g) + (P02, g) e,
k k

[]<1
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where P10 pkOL - pk20 - pkll = pk02 regpectively denote

The gauge invariance (A5) implies that P10, p00l p020  p002 — q
We try to construct a Hamiltonian F', of the same form as R, such that

{N,F}+ R=¢+ (1) + (P"q,q).

PFO) = (Proeno) PFY) = (Prooe,)
Py = (Pkl)(em-i-en)o)  (PR)) = (Proenmen) (P/%%Q) = (Pk00(€m+6n)) :

(4.22)

By a straightforward calculation and simple comparison of coefficients, Equation (4.22) is

equivalent to the following equations for k # 0 and |I| <1,

YFFL0 — pho,

I + Q) Fk0T — jphot.

I — Q)Fk20 _ ph20g _ ph20,

I YFRLL 4 phile — phkil
)

S
4
)
B>
g
+
>
S
N
o)
Il
N
g

In view of the definition of O, we know that (4.23) is solved on O, with

| Frioolo, < v 2|k[>Hlee M,

As for (4.24) — (4.28), consider the equations

k,w) (D+ A)

k,w) (D + )) FROL _  RROL

ke, w) I, — (D+A)) k20 _Fk2O(D+A) — iRk20.
ke, w) (D + )) Fkll_i_Fkll(D_i_A) — iRk,
k,w) (D + )) FR02 4 fRO2(D 4 A) = {RK02

instead, where D and A are defined in the previous subsection, and for & £ 0,

Bhe { (U*P*)n, |n| < Ky

. , x — “10777 “01777
0, otherwise

mn 0, otherwise

By (4.6) and (4.15), combining with Lemma 2.1, there exists ¢ > 0 such that

(U*P*®), |0 < e3(o — p)*lae*p‘“e*'k'r,
‘(U*PkIU)mn’O < 03(0' _ p)*2€e*f)m3«x{|m|: \n|}67|k|7‘_

17
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This means
A 1
(U P = R0 < Jese?IMe bl (4.38)
7

|(U*PkmU _ sz)mn|0 < iege—p(l) max{|m]|, |n|}e—|k|r (439)

under the assumption that

U‘\l\"

(C3) c3(0 — p) e (K < 1

Equation (4.29) — (4.33) provide us with approximate solutions to (4.24) — (4.28), with
the error estimated later.

e Block-diagonalization and construction of F'

Consider the equations

((k,w)In = (Do + A)) FMO = iR, (4.40)
((k,w)In + (Da + A)) PR = iRHY, (4.41)
((kw) Iy = (Da + A)) F}20 — FF20(Dy 4 A) = iRM, (4.42)
((k,w)In = (D + A)) B4 FEY Dy 4 A) = iR, (4.43)
((k,w)In + (Da + A)) FRO2 4 FF2(Dy 4 A) = iRM?, (4.44)

where Dy, A are defined as in (4.11) via the orthogonal matrix @, and
ka _ Q*R;k’x, T = “10”, “01”
: Q*kaQ, T = u2077’ 4411»’ “)2”
Note that Qmn, = 0 if |m — n| > N, then by (4.34) and (4.35), we have

R =0, if |n|> K, +N, z=*10", “017,
R =0, if |m| or |n|> K.+ N, z=%0", “11”7, “02”.

mn —
Thus, recalling that A := J{A; : A; N [—(K4+ + N), Ky + N| # (0}, solutions of these
finite-dimensional equations satisfy

FF =0, if ngA, z=410", “01”,
FF =0, if m or nd A, x =420, “11”7, “02”.

Then, in view of the facts

((k W)l £ (D + A) ) Fke ( (k,w)Ix + (Dy +A)) Fke @ = <107, “017,
((k, )Lz + (D + A)) FEe = ( (k,w)In = (Do + A)) F*, 2= <207, 117, 027,

Fka?(D + A) Fk:l?(D _|_ A)’ _ “2077’ “1177’ 440277’

18



they are also solutions of

which are respectively equivalent to Equation (4.29) — (4.33) since D can be block-
diagonalized by the orthogonal matrix Q.
Now we focus on the following equations

((k, w) = pa) B30 = i(O"RM),
(<k w) )Fk[)l — i(O*ka)n,
(ks w) = ptm — Mn)FTi?r? = i(O*kaO)mna
((k,w) = o + pn) Fy = (0" R O)
(k,w) + m + pn) Fpe. = (0" R*20)
for k # 0 and m,n € A, which is transformed from (4.40) — (4.44) by diagonalizing Dy + A

via the orthogonal matrix O. Obviously, these equations can be solved in O,. Hence,
(4.29) — (4.33) are solved with

Fkx - Qopk‘w’ o 4L1077’ “0177
- QOFkxO*Q*, T = u2077’ 441177’ “2”

Fkx o (]ﬁ'lm7 T = 441077’ “01”
T UFka*’ r = 442077’ 4411n7 “«

then we obtain a Hamiltonian

F =3 Fuooe ™01+ 30 ((FF, g)+ (FX0, )+ (F*0g, g)+ (g, )+ (F*g, g))e ).

k+#£0
[11<1 ##0

It is easy to see that F' = F, by noting

F(_yi00 = Frioo, F(R)10 = kol F(=k)01 — k10
F(=k)20 — };’l€027 (F(—k)ll)* _ Fkll) W — Fk20

e Estimates for coefficients of F

Let us consider F*20 for instance, and the other terms can be treated in an analogous
way. By the construction above, one sees that

* * k20 * * *
Fk20 _ IZ Um'fll inng On2’"«3 On3n4 n4M5 Rn5n6 Qn6n70n7ng Ongng ngnio Unlon (4 45)
mn ~ ’ .
To <k7 OJ> - Mn3 - /j’ns
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where the summation notation Fy denotes

ny €Z, |ng—ni| <N, |ng—na|, Ing—ng| <2(M+2)N, |ns—nyg| <N,
nio € Z, |ng —nio| < N, |ng—ngl, |ny —ng| < 2(M +2)N, |ng—n7| <N

by virtue of the structure of @ and O, i.e, (4.8) and (4.12). Then, by (4.37) and Lemma
2.1,

S [FDE)] < ey 7N (o — )AL NSO gmlir gl ),
+

Here we have applied the property of the orthogonal matrices @ and O, and used the
factor e(*M+10NP 6 recover the exponential decay.

To estimate |0, F¥29| we need to differentiate both sides of (4.42) with respect to &;,
k20

Jj=1,2,---,b. Then we obtain the equation about 0,
((k,w)In — (Da + A))(9g, F**°) — (9, F*°) (D + A) = RE™,
which can also be solved by diagonalizing D + A via O as above, where

REZ := 10, R0 + F*0(0g, A) — (0g, ((k,w) T — A))F*°.

We get the formulation

) .FkQO —
%97 mn _27:1: <k7 w> — Hng — Hng

Umm anzOnzngO* (ngfo)mmsOnzmeO* " Uy,

n3ng neny ¥nrng "~ ngn
)

with /7 denotes

ny €7, |n2—n1|§N, \ng—ng\,]n4—n3|§2(M+2)N,
ng € Z, |ng—mns| <N, |ng—nz|, |ns —ne| <2(M +2)N |

By the decay property of R¥20 and 8@121, we have that

gS%QP ‘(ngfo)mn’ < C(,yfl‘k|T+1Ni)(O__p)74M4N8€(4M+11)Np567|k|refpmax{\m\,|n|}'
€Ot

Thus there exists ¢4 > 0 such that

sup (|Fe| + 10 F )
§e04

04(772|k’2T+1N§)(0_ _ p)76M8N146(8M+20)Np567pmax{|m|,\n\}ef|k|r

&3 k|2 H e Kl g —pmax{ml.lnl}

IN

IN

under the assumption
(C4) cay~2(0 — p)76N$M8N14€(8M+20)Np6% <1.

Suppose that Zle ki + 2 # 0, which means P*?0 = 0. Then R¥20 = 0, since it is a
truncation of U*P*¥29U. By the formulation of F*20 in (4.45), F¥?0 = (.

Doing the same thing for F¥ FkO2 pkl0 - pkOL 55 above, we obtain the gauge invari-
ance of F' and the inequality (4.18).
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e Estimates for coefficients of P

Let W’ be the truncation of P!, satisfying

W _{P&%, [ml, In| < N
mn

0, otherwise ’
and
P POllq, + Z PklO Pk()l —> <pk:20q, q> + <Pk11q, q> <Pk302q q>) i(k,0)
k#£0

with
jj(]ll — POll W/
PklO — (Pklo URklO) (A + Z)Fklo
Pk01 — (Pk()l URkOl) + I(A + Z)Fk01
PkQO . (Pk‘ZO Rk2OU*) . I(A + Z)Fk‘ZO _ 1Fk20<A + Z)’
pk:ll — (Pk’ll Rk‘llU*) (A+ Z)Fkll +1Fk11<121+ Z)
jjk:O? (Pk’02 URk’OQU*) + l(A + Z)Fk’OQ + le:OZ(A + Z)

where A := (A+ W) — UAU*, and Z := UZU*. Then we obtain
{N,F}+R=¢+ (W, 1)+ (W'q,q) + P. (4.46)
By (4.4) and (4.5), we have (4.20) holds and

PO, < eempmaxlimlinl} < oF gmn®) max{im al)

under the assumption
(C5) e~ (P=PIN+ < o5

As for the case k # 0 in (4.19), we only estimate P*20 with the others entirely
analogous. By (4.39) and (C3), combining with Lemma 2.1,

£ # o= max{|m|, n|} .~ |klr

‘(Pmo . UR“OU*) _ ‘(U(U*P’“QOU _ RkQO)U*)

1
| o7
mnlO mnlO — 4

(4.47)
In view of (4.7) and (4.10),
|Amn\o <o — p)—2€€—pmax{IMI7 Inl}, ‘Zmn’ < o — p)—QEe—plm—nl.
Then, by applying Lemma 2.1 again, there exists cg > 0 such that

9

‘(ka(A—F Z))

((A+2)F™)

mn‘OJr mn‘0+

(1))—1€% ’k‘QT-&-le—‘k‘Te_p(l) max{|m/, [n|}

IN

cslo—p) 2(p—p

igglmzwle—\k\re—p“) max{|m|, In|} (4.48)

IN

provided that
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,4;\,_.

(C6) c5(0 —p)~2(p— pV)les <

Thus, we can obtain the estimate for P¥20 by putting (4.47) and (4.48) together.
By the construction of P, the gauge invariance is easily verified.

e Verification of (4.21)

In view of the construction of R and W’ above, the objects in (4.46) that may depend
on the variables (¢n, Gn)ncs are F and P. Let

F = Z Z (ijloqn + Frlfm(jn) + Z kaQan FkHQan + an Qan) .<k79>
k#0 \neJ morn€J
= 3 ((FH0,.q) + (FM g) + (2, q) + (F*1q.q) + (F1q,q)) /0.
k0

For m or n € J, by (4.2), we have

(((k‘,wﬂz _ Q)Fmo _ Fk2OQ)mn = (k,w) Fk20 Z Qi k20 Z k20an
lgg lgg
(k,w)Fk20, m,n € J
= </<:,w)Fk20 > ijlFln , me&J, neJ
<kvw>Fk20 Zl J ana m e j, n g J
— ((< 7w> Q)FkQO _ Fk2OQ)

mn

This means, by comparing the coefficients in both side of Equation (4.46),

(k) — ) P42 — F’mﬂ)mn = —iP" i oor ne J.
Similarly,
(kI = Q) FM?) = —iPF, e g,
(k) o+ FFY) = <Pl ne g,
(k@) Iz — Q) FF 4 F’“”Q)mn —iPFIL o or me J,
(((k:,w)]Z + Q)FR02 4 F’“OQQ)mn —iP¥2 " oor ne J.

Thus, {N, F} equals to
Z Z (Prlfloqn + P7]L€01Q7l) + Z PkZOQan Pkll(]m‘]n + Pmn GmGn) k),
k#0 \neJg morn€J

Hence, if we substitute F' with F' — 3 , which is independent of the variables (¢n, Gn)ne7,
then P in the homological equation (4.46) is replaced correspondingly, independent of
(Gn, Gn)neg- (4.21) is satisfied. -
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4.3 Verification of assumptions after one sub-step

We proceed to estimate the norm of Xp, and to study properties of ®L on smaller
domains D; = Dd,er(T(l) + 3(r— r(D), 75),1=1,2,3,4.

Lemma 4.1 For e sufficiently small, we have | Xr|p,, 0, < et and 1 Xpllps, 0, < et

Proof: In view of the decay property of F' in Proposition 2, it follows that
1 _ 4
29 F D30, 101F [ps,0, < cr — r(1)=Groles,

and

1 n
sup — Y (110, Flloy, + 110g, Fllo. ) {n)%er "

3 neZ

c
Sup - Z Z <|FT’L€10’O+ + |F501|O+) e|k|(r7i(7‘77‘(1))) <n>d€p+‘n‘
Ds 5 pez k#0

¢ _ 1. (1)
+sup = 30 S (1Flo, + |Fiillo, + FRRlo, ) gnleMr =50 fnyders i

D3 ° pnez k0
MmEZ

< C(T‘ n r(l))7(2’r+b+1) (ﬂ - P+)725 )

IN

[SF

Putting together the estimates above, there is a constant cy > 0 such that
4

(1))7(27+b+1) (p _ p+)72€3.

HXFHDS,O+ <ecr(r—r
In an entirely analogous way, we have
_ 9 I
IXpllpy, 0, < er(r—rM)=CTHED (M — p ) =265,
Moreover, if
(CT) ex(r —r0)=Crbe (o) — p)=2eds < L,
then Lemma 4.1 follows.
Let Dy = Dap, (rV + L(r —rM), ins), i =1,2,3,4.
Lemma 4.2 For e sufficiently small, we have ®%, : Dy,) — D3y, —1 <t < 1 and moreover,

3
| D®L — I||p,, < 2et.

Let FO, e @ w), PO pe the corresponding quantities in (4.17) respectively,
which means that we are in the 15 sub-step. Define H®) as

H(l) = Ho @}7(1)
= (N+p+R)O(I)}:<1) +(P_R)O(I)11v(1>

1
— N+ PN, FO} LR /0 (1 - O{{N, FD}, FO} o at, dt

1 ~
+ /0 (P+R,FW}od!  dt+ (P—R)odL,

= N+ PielV @1+ (wihg,q) + P,
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where
\ 1 v
PO .= p) 4 / {1 =N, FO}Y + P+ R FWY o @l ) dt + (P — R) o ®L,).
0

Let R(t) := (1—t)(e® + (w®, 1)+ (WDq, ) + PD) 4+t R, which satisfies I XR@)llDs < ce.
Then P can be written as

\ 1 v
PV = p) 4 /0 {R(t) + P, FD} o @, dt + (P — R) o ®L).

Hence,

1
Xpoy_pay = /0 (%) X gysp, oy At + (Pp)) X(p_p)-

By Lemma A .4,

27

T
4 = g20,

1 X ¢ Rs +p, ) 1D, < en e
{R(t)+P, }

Then, combining with (4.16), recalling the conclusion of Lemma 4.1 and 4.2,
1 Xpw llpm), 0, < 585 +2e% +2ce20 < e5 =W,

Now we need to show P()) satisfies assumptions (A4) and (A5). Note that
PO = PO p_R+{P,FV} 4+ {P, FV}
g (N, PO}, FO) 4 (0B, PO}, FO) 4 (P FO} FO}

1 1 .
1, Wy pMy e Lo p pr. . g
ot W T A e AP Y
1

1 p

L PO PO

n

Since all of N, P, P, F(U P() have gauge invariance, independent of variables (Gns Gn)nes,
so does P due to Lemma A.5 and A.6 in Appendix.
For P— R = Z Pklaﬂei<k’9>llq"‘q’5, we have
2|l +|ee|+]8]=3

LeWe™mas | ol + |8] < 2
P < 46 o, ) - .
[ Pasllpay < { e Pras, la| + 8] = 3

Here we applied the estimate |I| < s®) < 22()) to handle the case that |a| + |3| < 2 and
21| + |a| + 8] > 3.

The decay property of remaining terms, which are made up of several Poisson brackets,
is covered by the following lemmas.

Lemma 4.3 For ¢ sufficiently small, {P, F(V} satisfies

836_”(1)”‘*’57 laf + 8] < 2
1
1

_ (1) % .
e e, ol + (8] =3

I{P, FD}agllpy,0, < { _
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Proof: A straightforward calculation yields that

1 _ ) 3 (1)
(PFDYas = i % (Pd+€nvﬁFd,B+en _Pd7ﬁ+e"Fét+€n7B) (4.49)

(&,B)+(6,8)=(cv,8)
(1)
+ X {PaB,FdB}. (4.50)
(6,8)+(@B)=(a8)

e Terms in (4.49)
(1)

Let us consider terms P, ten, BFa B first.

i) ol +8[ <2

Since |a| + |3 4 en| = 1 or 2 in view of the construction of F(1)| we have that

6+ en| + 8] = lof + 8] + 1= (|a] + |B]) < 3. (4.51)
If | + en| + | 3| < 2, then, noting that nhs < max{n;%mg, ngﬁJren}, we have
1 —pn* , 3 —pn* | 7 _pn*
"Pél+€nygF(§(é7ﬂ2+en ||D3,(9+ <ege = dtenb - gde aften < gie Plas, (4.52)

If |6+ en|+|B| = 3, then, by (4.51), (&, 8) = (0,0), (¢, 8) = (a, B). By the definition
of norm || Xp||p,o and the construction of F(1),

_ 1 3 _
| Paten sllpso < e arens,  ||FSY |Ipy 0, < seie P,

Thus, noting that n} s < max{n, . s, [n[},
o L7
| Paren s FSo, Ipyi0, < se¥e ™o < ete (4.53)

i) |af +[8]=>3

By the same argument as above,

||Pd+en BF(EV1[)§+6 H’Z)?”(’)+ S e_pnd+en75 . Ege_pnd,[%"ren S E%e_pn:;/e (454)
Doing the same for P; 5, Fo(ir)e g we finish estimates for terms in (4.49).

e Terms in (4.50)
By Lemma A.3 and the inequality n7z < max{ng F n(’; B}’ we have

T =i la| + (8] < 2
P POV < o — py-1,-2 ) €1€70% o+ 18] <
{Pap: F g b IDy, < clr =) ete a8, |a|+ |8 >3

(4.55)
Combining (4.52) — (4.55), there exists cg > 0 such that

—p(Wp*
s, ol +16] <2
e, ol + 18] 2 3

7
g1
3
1

1P, FDYaslipy, < es(r — @)1y 2( — )2 { i

applying the fact that |&| + | B[ < 2. Moreover, if

25



1
(C8) es(r —rW)"1n~2(p— p)2e> <,
Lemma 4.3 is proved. [ |

By (4.15), (4.19) and (4.20), it is evident that the coefficients of

NV FDY =W 4 (O 1)+ (Whg,q) + PY — R

(D)
satisfies |[{N, FW},pllps0, < cee™” V76, Then we have the following lemma, whose
proof is analogous to that of Lemma 4.3.

Lemma 4.4 For ¢ sufficiently small, {{N, FD}, F} satisfies

1 6 _ 1),
N, FOY, DY aglpg, 0, < qefe s

Lemma 4.5 For e sufficiently small, {P, F(V} satisfies
P, F M} aglipgo0, <ete ™ ™s, o]+ 8] > 3.

Proof: Tt can be calculated that

5 (1 . s (D) P (1)
(PoFWYag =i 3 (ParengFib, = Pagea L) ) (4.56)

. nez
(@8)+(&,8)=(a,8)

For Pa+e BF(%%” in (4.56), since |&| + |3 +en| = 1 or 2 and |& + e,| + |3] > 4 here, it

is obvious that |a| 4 |3| = |&| + |5 + &+ (8] < 3.

Note that nj,; < max{n? Sten. B’ aﬁgre }, and

*
nd""enaﬁ

_ X _
aen n&+6nﬂ}, N Ben = max{n’ n

- ma’X{n 75+en d7B+57L}'

— *
Then n vend  Maten +n* & Bten > Mg and hence

_p(nt R 3 —pn* . 3 _on*
<e pn dten,B a+en,5) .cde PR& ten <e1e Plag
D30,

|Pasen s,

Doing the estimate for P, %+ enFOEl)e”’ 5 in (4.56) similarly, we have that

3 _p(pe 1 (e
HP, FDYagllps0, < cslp—pV)2eie” Mos < cie™ Men, Ja| + (] = 3,

if (C8) holds. ]

Summarize the analysis above, then the decay property for P() can be expressed as

Proposition 3 For ¢ sufficiently small, P = 2o P (0 I;6)q*q® satisfies

1
IPY oo o, <

eMeVs a| + 18] < 2
e s Jal 48] > 3
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4.4 A succession of symplectic transformations

With the verification of assumptions (A4) and (A5) completed, we finish one sub-step
of KAM iteration. Suppose that we have arrived at the j** sub-step, j = 1,---,J, with
J = [35%}, then we encounter the Hamiltonian

H(j_l) = Ho @}:,(1) O---0 @};,(j,U

j—1
= N+ Py (94 @0, 1) + (Wq,q)) + PO,
i=1

with the superscript “(0)” labeling quantities before the 15* sub-step in particular. Let
i i—1) ; _
RU™D .= Z P,gaﬁ)el<k’9>llqo‘qﬁ. (4.57)
2\l|+\a}|€+\5|52
As demonstrated in Proposition 2, on O, the following homological equation
(N, FO} 4+ RUTD = 0) 1 (u0) 1y 4+ (W), q) + PY, (4.58)

can be solved, with F@)_ @) @) W), pU) having properties similar to F(1), e®, )
w®, p) respectively. Then we obtain

j
HD =HU Dol =N+ P+ (eu‘) + (D, 1) + (Wiig, q>) + P,
=1

The estimates for F(9) and the verification of assumptions for PU) can be done similarly
as in subsection 4.3.
The process above can be summarized as

Proposition 4 Consider the Hamiltonian H in (4.1). There exist J symplectic transfor-

mations ®\) = @}:m, j=1,---,J, generated by the corresponding real-analytic Hamilto-

nians FU) respectively, such that
HO =HodWo...0p0) :N+]5+Gj+P(j),

is real-analytic on DY) = Dy, (r0), s, with Gj = ‘3:1 (e(i) + (w®, 1) + (W, q))

Fori=1,2,3,4, n=¢5, let

1

DY =Dy, (P9 4 %'(,nm —r0FD), 250y,

DY =Dy, (rGt) 4 L(p@) — p Gty L)y,

K 4 4
a) With RY=Y defined in (4.57), FU) satisfies the homological equation (4.58) on O,
+
1 - j_ i
1 Xk lpg-1 o, < eaeli-D, ot DYV DYV 1<t <1, and

ID®L ;) — Il 1) < 2671071,
1n

eHelU e M o] 416 < 2
0 ol + 16 >3

8an(j) = 8an(j) =0, VnelJ.

1FY

5)”73&]'71)70+ <

)

—
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(b) Gj satisfies that || X, . <ce and fori=1,2,---,7,

Py, 0
) -
w® o, <Y,
i—1) —pti—=1)
|W(2) |O < E(Z 1)6 P max{‘m"|n|}7 ‘m|’ ’n’ S N+7 m,mn g j '
mnitt = 0, otherwise

(c) PU) satisfies X5, po D), 0, < e and assumptions (A4), (AB), which include

N ()
||P(j)|| ) < eWe p Map laf + (8] < 2
aB 1D, 04 = e_p(ﬂ)n:’;ﬂ
b

ol + 18123

8an(j) = 8an(j) =0, VnelJ.

Let sy = s() = 2_3‘]5%3, d=0Wo...00) and
Ny =eq + (wi, I) +(9+49,9),
with Qp =T+ A+ W, and
J J J '
ey = e+Ze(7), wy =w+ Zwm, Wy=W+ ZW(J).
j=1 j=1 j=1

Then ® : Dy x O — D x O. From the estimates of w?) and W), we have

lwy —wlo, < ece, (4.59)

max{lml 1o} |l 0] < Ny, mon @ J

. (4.60
0, otherwise ( )

1 _p

(W = W)nlo, < { e

Since W* = W and (W®)* = W@ W, is still a Hermitian matrix. Then, by (4.59) and
(4.60), (A1) and (A2) hold with p; =p+ ez and o4 = 3p.

Let P, = P)). It has been verified that the assumptions (A4) and (A5) for P)

hold, which is an analogue to the process in subsection 4.3.
This completes one step of KAM iterations.

5 Proof of the KAM theorem

With g = e%, oo=1, N = |Inegp|, and

sa A LTTH(B 4+ 1))? 12(27 +b+3
My = max{23+4C((S~+)), 27, 8, M , No=6|lngg|, po= No_l,
T
one can define the following sequences as in [11],
_ 1 - 1 —ay/2
MV+1 == Mnyga ay, = TMV_BSng El/-‘rl == 63‘2” 3
T
_ 1
NV+1 = gyauu Pv+1 = 5zy7 Ov+1 = ng
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1
Given pg = €3, ro = r, so = s, the other sequences are defined as

1 5 _ay
P+l =pv + €7, KVJrl = Nz/Jrl - (Mz/ + 1)N1/a J= {2511 ? ] >
v+1 ] 1
=10 <1 — Z 2_z> , Syr1 =27 3‘]”51, Sy, v, =&l
=2

Let D, and O, be as defined in Section 4.

5.1 Iteration lemma
The preceding analysis can be summarized as follows.

Lemma 5.1 There exists g9 sufficiently small such that the following holds for all v =
0,1,

(a) H, =N, + P+P,is real-analytic on D, and CéV parametrized by £ € O, where

N,,:el,+<wl,,f>+<9uq7§>a PI/—Z aBQIQQ7

with Q, =T + A+ W, satisfying

(W) =0 if m or ne J,

pye v max{|ml|[nl} |m|, |n| < N,
<
|(Wo)mnlo, < { 0, otherwise
‘wy-i-l - wV‘OuJ,-l < Eu,

Pv

1
‘(Wu-‘rl - Wu)mn’(’) 1 < epe” 2 max{|m|,|n\}’ ’m|7 |n| < Nl/-‘rla m,n ¢ J
v 0, otherwise

Moreover, P, has gauge invariance and |Xp_ p |Ip,,0, < €v,

)

eve P8, o] 48] < 2

P, S >
1(Po)asllD,, 0, < { e s, lal+ (6] >3
aQnPV = 8‘jnPV = 07 vn € j

(b) For each v, there is a symplectic transformation ®, : D,11 — D, with

1
2
i1, Ovir S vy

|D®, — Id||p

such that H,11 = Hy, 0o ®,,.
Proof: Let co := 8¢? max{cy,---,cs}. We need to verify the assumptions (C1) — (C8)
for v =0,1,---. By noting that
1

_ _ -1 o : i+1) Ty —Tu+1 .
Nyjy1=¢p = Pur1s  Ov+1 = 5Pvs T£J)_r(] )= 2 G)

p (j+1) _ Pv — P+l
3 v 2J, "

_pV 2Jy )

it is sufficient for us to check:
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(D1) cpsy < ey,

_ —@rbt1) o, 2,
(D2) co (TVQ;/H) (/),,2J,oy+1) <&,

_
(D3) coNy  MINeSMrNorw < g, 10,

_PrKy4q 2
(D4) e 2w <gj,
forallv=0,1,---.
By the choice of sg, the condition (D1) clearly holds for ¥ = 0. Suppose that it holds
for some v, then it is easy to see that

J;

Jv Ju
CoSp+1 = 273 e L eps, < 273ve) e, < Eptl-

Hence (D1) holds for all v.
Let us first take g sufficiently small such that

8%7%a0(27+b+3) < i (T’())2T+b+1 (1 — 880)2
0 ~ o \20 5 '

_a=n/3
Here we have applied My > 2 (27+b+3) and ag = M, M5 Such that o — 3a0(2T+b+3) >

0. Then, recalling that r, — 7,41 = 5% and J, = {35;2}7

. <ro —7‘1>(27+b+1) <PO —Pl>2 < 5—%
o\ 2, 2Jo =0 o

i.e., (D2) holds for ¥ = 0. Since for v > 1 and for ¢¢ sufficiently small,

_ 2
e (ribed) g(g)” < 1 o \ 2T B« en )t — el
v 0 2V(2T+b+1)co 20 ’ v 5 )

we have
<TI/ —Tvt1 ) —(2r+b4D) (/OV — Pr+1 > -2 —2*10
CO E—— S < 51/ .
2.J, 2Jy
Thus, (D2) holds true.
In Section 6 of [11], the basic smallness assumption of ¢,, i.e., the inequality (A.1) in
Lemma A.1, has been verified, then all other assumptions are immediate, including the
inequality

00|

T, N2eSMNvor < )

)

where '), increases superexponentially in M,,. Since all of M,, N,, p, and €, here are
defined in the same way as [11], we can apply this inequality. So (D3) has been verified.
By the definition of p,, a, and ¢, we have

_lg, 1
pl,s,ﬂa >1n —.
€y

Then we see that (D4) holds for v = 0,1, - - -. |
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5.2 Convergence

Now we fix € X, with X defined as in Proposition 1. This means that the blocks
mentioned in Proposition 1 are eventually stationary after some step, i.e., for each n € Z,
there is a vy(n) such that

A" (n) = AY(n), Vv > y(n).

In this case, the local decay rate for n may not shrink with v necessarily(p, is the global
upper bound of the rates for all n € Z).
Define ¥¥ = &go Py 0--- 0P, 1, v = 1,2,---. An induction argument shows that
U :Dyi11 — Dy, and
HyoW’ =H,=N,+P+P,.

Let O., = NS2,O,. As in standard arguments (e.g. [24, 29]), thanks to Lemma 4.2, it
concludes that H,, N,, P,, ¥”, e,, w, and W, converge uniformly on Dd,O(%TO; 0) x Og,
to, say, Heo, Noo, Poo, ¥, eno, Weo and W, respectively, in which case it is clear that

Noo =€x t+ <wooal> + <(T+A+W00)q76>7

with Qoo = T 4+ A 4+ W satistying (Qog)mn = 0 if m or n € J. Since || Xp,|p, 0, < e
with €, — 0, it follows that [ Xpllp, (1r0.0),0 .= 0
,0\3 W), Ve

Since Hyo V¥ = H,,, we have <I>fHO oW” ="T¥o <I>fHV, with (ID%U denoting the flow of the
Hamiltonian vector field Xp,. The uniform convergence of ¥* and Xy, implies that one
can pass the limit in the above and conclude that

1
U Dd,0(§r070) — Do.

oo

DYy, 0 U = U™ o
Hence,
Ry, (T(T° % {€})) = U= (T x {€}) = U(T" x {¢}), V€€ O

This means that U>(T® x {¢}) is an embedded invariant torus of the original perturbed
Hamiltonian system at & € O.,. Moreover, the frequencies ws, (£) associated with ¥ (T® x
{&}) are slightly deformed from the unperturbed ones, w(§).

5.3 Measure estimate

At the ™ step of KAM iteration, we need to exclude the following resonant parameter
set

Rznu(un)u( U Rm)u( U Rm) k0

neAv m,neAY m,neA?

for any fixed € X, where

v T
Rkl = EEOVZ|<]{?,WV>|<|]€|T},

RY2 = {5 €0, [{k,wy) + py| < 7%2}7
|k‘ v+1
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Tv
R = O, : |k wy) + . + | < — L
kmn {56 |< w>+um+ﬂn|<|k’7le}+l}

v v A
Rk’mn = {feou:’<kku>+/im—ﬂn’< LITN }’
| | V+1

with {}jenr eigenvalues of DX, + A,. Tt is clear Oy \ O, C U0 Ugzo Ri.-
Recalling that wy is a diffeomorphism of £, together with the estimates in (4.13), (4.59)
and (4.60), we have

10 (ks )+t — pi)| = 10g (ks wo) | — &6 [k —p = O([])

for the set kan The cases for RY!, R,m, kan can be handled in an entirely analogous
way. Thus

Rzlu(u Rk)u( U Rm)U( U Rﬁm)

neAv m,neAY m,neA?

Since 7 > b, we have that

|OO \ Oso‘ <

U U R

v>0 k#£0

<CZZ

E |T+1 702% Y =¢g-
>0 k£0

v>0

A Appendix
A.1 Outline of the proof of Proposition 1

For any smooth function f defined on Z C R/Z, let |f|qi == Jmax. sup 'lﬁif(m)]

The operator 7" in (2.1) can be viewed as a sum of two infinite- dlmensmnal matrices,
ie., diag{V(z + na@)}nez + €A with A denoting the discrete Laplacian. It is natural to
define an abstract normal form containing diag{V (z + n&) }nez.

Definition A.1 Given a symmetric matriz D, smoothly parametrized by x € R/Z and
satisfying the shift condition

Dyyikntk(2) = Dy (x + k&), Yk € Z,
where & is a Diophantine number, i.e., for some 5 >0 and 7 > 1,
Inal; > ’:VT’ n # 0.
We say that D is in normal form if the following conditions hold.
(a) Short-range.

Ce=PIm=rlLk |m —n| < N

> 0.
0, otherwise » k20

|Dmn|(]k < {

(b) Block diagonalization. Fiz any x. € R/Z. There exist an interval I centered in x., a
disjoint decomposition J; Aj = Z and a smooth orthogonal matriz Q) on I such that
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(bl) #A; < M and diamA; < MN for each j.
(b2) the conjugated matriz D = Q*DQ is a product of commuting blocks

HDAj (x), Vrel.
J

(b3) Qumn =0 if |Im —n| > N. Moreover, for all m, Qmn Z 0 for at most M different n.

(b4) |Q|cr < L for each k > 0.

(c) Eigenvalues. There is a piecewise smooth function E(x) such that for each j,
{E(x« +na)}tnen,; are the eigenvalues of DA], (z4),
and there are sets Q; O A; such that

(c1) for each n, if infien, |E(7x +1&) — E(2« +nd&)| < &, then
- .1
T +na € xy +ma + 5(1— x.) for some m € €,

Q(z)(RAM) c R% ™ vy e T.
(c2) the resultant
ug, (19, %) = Res (det(D(x + ¢)a, — tlo,), det(D(2)a, — tln,))

satisfies ,
lug, [or < (AMC)*M B* vk < sM? + 1,6

1
6kqu (p,x)| > 9, Ve, VreR/Z

max |——
vIBk ¥

0<k<3M?2

742
(c3) 4Q; < M and diamQ; < (%)T .
(c4) the intervals {n& + I}qis(n,,)<n are pairwise disjoint.
(c5) for each ¢ € I, ugq,(p,x) satisfies

lug, |or < (2MC)PM B, WE < 3M? 41,7

1

k

max |———0ruq.(p,x
o<k<sMm? |vIBk % i (0 7)

219( H |g0+(mn)d]1), Vo € R/Z.

m,nefd;

5The resultant of two monic polynomials P and @ is defined as the product Res(P, Q) = H (z—y).

P(x)=0
Q(y)=0

5The norm is with respect to the variable ¢.
"The norm is with respect to the variable z.
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Remark A.1 Condition (a) implies an estimate of D in the operator norm on (%(Z) —
%(z):

e’ +1
el —1

4
|D||cx < C LF < C;Lk, VEk >0,

ifp<1.

Lemma A.1 (The inductive lemma of [11]) Let D be in normal form on an interval
Z C R/Z with parameters C, L, p, M, N, k, B, 9, A\, and let a < g < h be numbers
restricted by

1 << g < h b < 1
7 =S 9054 T 100527 M80 S paMEME

Assume, as simplification, that
1<BL<L M2>8 1<C<2, pr09<L1

Let Z be a symmetric matriz, smoothly parametrized on R/Z, satisfying the shift condition.
Assume that
A< |Z| <9/B,

| Zyn| e < ce”PmILE k> 0.
If there is a constant I' =T'(5, 7,8, M), super-exponentially decaying in M, such that

anvd
eSM

a 72 €
le] <T [”E@e—m’] , (A1)

then there is a smooth orthogonal matriz U, satisfying the shift condition, such that

’(U - I)mn’C’“ < gée—p’|m—n|L/k
and ) )
UD+2)U =D+ 27,
with Z' a symmetric matriz, smoothly parametrized on R/Z, satisfying the shift condition,

and D' in normal form on an interval T' C T, with parameters

C'=(1+ 5%)6’, L'=¢ehL, p= %p,
N=9"Mx  M=MM N=ec0
K =¢eh, B' =1L, ¥ =e9L,

and
2\ <|T'| < &9,

1_—a/2

= — / —
\Z! Jon < g3 e imnlpk,

In addition,

L
|E(zs + ma) — E(z« + na)| < M'=¢9, Vm € N (n),
p
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Q@)®Y™M)c Y Q@)®MN™), VeeT,

meA(n)

!

1
D' is in normal form with the same parameters also on x, + §(I — Ty).

Finally, if M > 27 then the closure of the sets

I 3
{zs +méa : |E(zy + ma) — B(z. + (m +n)a)| < 2M' =9}, V4(1/N)72 < |n| < M'N’,
p

{zs +ma : |E(ze + ma) — E(ze + (m+n)a)| < 2&‘%}, VM'N' < |n| < 4(1/\)™

. . 9 e
are unions of, respectively, at most € 5mM2 qnd e Mg many components, each component

being of length, respectively, at most c? and e2M'9,

For the detail of proof, which contains the construction of new blocks A, i.e., the new
equivalence relation on Z, and the new orthogonal transformation @Q’, see Section 5 of
Reference [11].

Recall that (1.5) — (1.8) have defined quantities 7, 7, C, L, 8, ¢ associated with the
Diophantine number & and the nonconstant real-analytic function V. It has been proved
by Eliasson in Section 6 of [11] that Dy = diag{V(z + n&)}nez is in normal form with
Co=0C, Ly = L, any

B L§+1 z 1) 2
My > max {25+4C((?)), 27, 8} , No>1, p=Ng',

and other suitable parameters kg, By, Ao, ¥g. With eg = ei, Zy = €A satisfies
‘(Zo)mn’Ck < €0€_p0|m_n|ng.

For v =0,1,2,---, let M, = M7 and

1 1\ 38M7 1 1\ 25M7
a, = — () . gy =2057M*a,, h, = = () .
S

The other sequences can be defined as

1o ow/? 1/2 _h
Ev4+1 = Ev D CV+1 - (]- + ey )CIM LV+1 =&, VLI/?
Nl/+1 = Eljaua Pr+1 = 831/7 Ry+1 = 5’;«117
Bl/+1 = Lm )\V+1 = g_MUEg”’ 79l/+1 = Egl’L,}.

The inequality (A.1), about parameters at the v*" step, has been verified in Section 6 of
[11], so we can apply Lemma A.1 iteratively. For each v > 0, there is an orthogonal matrix

U, satisfying the shift condition, such that

~ Y
|(Ul/ - IZ)mn|Ck < 536 2 m n‘LIIi—&-l

and

(Uo- - U,)"(Do + Zo)(Uo -+ Uy) = D1 + Zya,
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where D, 11 is in normal form with parameters Cy,11, Lyy1, po+1, Myy1, Nys1, K1, Byt
Y41, Avt1, and Zy4 is a symmetric matrix, smoothly parametrized on R/Z, satisfying
the shift condition and

‘(Zu—kl)mnlc’f < 5V+1€_pu+1‘m_n|L];+1-

Hence, in the operator norm || - ||k,
Up---U,—=U, Z,—-0, D,— Dy.

Let Uyq11 = Uy---U,, by a simple calculation, we have

Ly,
|(UV+1 - IZ)mn|Ck < 556 2 m n|le/:+1.

Clearly there is a uniform limit E¥(x) — FE°°(x) which describes the spectrum of
Doo(z)-it is the closure of the image of E*°. Consider now the closure S, of the set of all
x such that

3 L .
|Eoo(7) — Eoo(x + na)| < §My+1p—ye,€” for some 4(1/A,)7 "% < |n| < M,+1N, 41

v
or

1

3 _
|Exo () — Eoo( + na)| < 558 for some M, 1N, 11 < |n| <4(1/X41)" 2

A2
According to the final statement of Lemma A.1, this set is of measure less than caﬂ”/ QOSM”.

By Borel-Cantelli Lemma, we conclude that there is a full-measure subset X of R/Z such
that for any = € X, each = + né will belong to only finitely many S,’s. Choose = = x, of
this sort, i.e., for all n € Z there is a 1vy(n) such that =z, +na € S, for v > 1y(n). Hence
for such v’s,

L .
|EY (2, + nd) — EY (x4 + na + ma)| > 2My+17”egv, VA(1/X)2 < |m| < Myy1N,y1,

v

1 ~
|E” (24 + n@) — EY (x4 + né 4+ ma)| > 285, Y M, 1N,y < |m| < 4(1/ A1)

This implies that AY(n) C [n — 4(1/A ) T2 04+ 4(1/Ayym)) 12 for v > vo(n). The
blocks A¥(n) therefore become eventually stationary:

AT (n) = AY(n), Vv > uo(n).

A.2 Hamiltonian vector field and Poisson bracket

For d,p,r,s > 0, let F,G be two real-analytic functions on D = Dy ,(r,s), both of
which C&V depend on the parameter £ € O.

Lemma A.2 The norm | - ||p,o has the Banach algebraic property, i.e.,

7G|

p,0 < ||Fp,0llG]

D,0-
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Proof: Since (FQ)giap = E Fl%idBGl%[an we have that
k+k=k, [+i=1
a+éa=a, f+B=p

IFGlp,0 = sup 37 [(FG)uaslola|la”||'e! ™
D klap

< sup S S |FuasGiiaglola®l1g?| 1R kDO

D kvl’azﬁ k+l;:k1 [+[:l
atd=a, f+=p

[1Elp,0llGllp,0-

IN

Lemma A.3 (Generalized Cauchy Inequalities) The various components of the Hamil-
tonian vector field X satisfy: for any 0 <1’ <r, 0 < p' < p,

c

106 F (1D, (. 5) < 1F||p,

r—r
c
101F D, ,(r,5) < szIIFHDv

sup Y (104, Fllo + [10g, Fllo) (n) el <

C
( - ,) ”FH'D
Dq,p(r,5) nez s\p—p

Proof: We only prove the third inequality, with others shown analogously. Given
w € KCIM(Z) \ {0}, f(t) = F(-,-,q + tw,) is an analytic function on the the complex disc
{zeC:|z| < m} Hence

O] =1 wn g, F

nez

C
< Fllo - Jwllap

by the usual Cauchy inequality. As a linear operator on 5(11, p(Z), 0, F satisfies

Wn, + Oy, F
10,Fllp 1= sup 1 2ncza O ]
w#0 Hw‘d,p

C
< <l Fllp-
S

Let ||wl/q,, = 5, then

|0, F| < sup 940 | - |wn| < HaqFHSOp‘WM
lolap=3  wlap s

c —d —
< S IFllp(n) =% nle.

Hence, for any 0 < p/ < p,

’ C / &
|0, Fl () e < 5™ =||P[lpeMe=#) < ——— || F|p.
=l 2 G
With F = Zk’mﬁ(85Fklag)llei<k’9)qa(jﬂ, it can be proved similarly that

D104, Fle? < 0
S

C
nez (p - p)

Since in the process above, { € O and (0,1,q,q) € Dy ,(r, 5) are arbitrarily chosen, this
inequality is proved. [ |
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Remark A.2 These inequalities can be seen as a generalization of the standard Cauchy
estimates, which is similar to Lemma A.3 in [30].

Let {-,-} denote the Poisson bracket of smooth functions, i.e.,

{F,G} = (01F,09G) — (0gF,01G) +1 Y (94, F - 93,G — 93, F - 9,,G)..

nezi

Lemma A.4 If || Xp|p <€, | Xc|lp <&", then

IX 15,6} 1Day(r—,ms) < co ' 2ee”,
forany0<o<rand0<n<l.
The proof is similar to that of Lemma 7.3 in [14].
Remark A.3 For more information about the norm || - ||p,o, see references [3, 5, 26].

Lemma A.5 If both of F' and G have gauge invariance, then {F, G} has gauge invariance.

Proof: F and G can be written as

F=" Fup;e™ ¢ G =" Grap(l;€)e* g,
k,a,B k,a,B

with Fiag = Giap = 0 if Z?’:l k; + |a| — |B] # 0. By a simple calculation, we have

{(F,Ghas = 1 Y ((OrFiap F)Giap — (b 0rGiap) Frap) (A.2)

H Y Y (Fraren8Giacaien) = Fratrem Gitarenys) - (A3)
Efhok mer

B+B=8

Assume 22‘21 ki + |a| —|B| # 0. Then, in the summation above, it is impossible that

7j=1 7j=1
or
b 5 b
D kjtlaten| = 18=3 ki+1al=|B+em| =0,
j=1 j=1
b § b R
D kit 1al = 1B+ eml = ki +1a+em| - 8] =0.
j=1 j=1
This means, in (A.2) and (A.3), each term = 0. Thus Lemma A.5 is obtained. ]
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Lemma A.6 If there exists n. € Z such that

Bqn*F = 8qn*F = 8qn*G = 8%*(}’ = O,

then 0,4, {F,G} = 04, {F,G} =0.

Proof: Since

&MWG}:E%<@R%®—@R&®+QZ@JW%G%%F%J®

mezZ

= (01(0y,.F), 09(0y,.G)) — (09(Dy,, F), 91(8,,.G))
i Y (94 (0o, F) - 05,0y, G) — g, (0g,,, F) - Dy, (0y,,, G))

mezZ

=0

and similarly, 0, {F,G} =0, this lemma is proved. [ |
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