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Abstract In this paper, we prove that a quasi-periodic linear differential
equation in sl(2,R) with two frequencies (α,1) is almost reducible provided
that the coefficients are analytic and close to a constant. In the case that α

is Diophantine we get the non-perturbative reducibility. We also obtain the
reducibility and the rotations reducibility for an arbitrary irrational α un-
der some assumption on the rotation number and give some applications for
Schrödinger operators. Our proof is a generalized KAM type iteration adapted
to all irrational α.

1 Introduction

Let T
d = R

d/2πZ
d . A quasi-periodic (q-p for short) linear system on T

d

with coefficients in sl(2,R) is a q-p linear skew-product ODE defined as

{
ẋ = A(θ)x,

θ̇ = ω,
(1.1)
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where x ∈ R
2, θ ∈ T

d , ω = (ω1, . . . ,ωd) ∈ R
d (ω1, . . . ,ωd are usually called

the frequencies) and A : T
d → sl(2,R) is a Cr(r = 0,1, . . . ,∞) or analytic

map.
A typical example of q-p linear systems comes from the (continuous-time)

q-p Schrödinger operator, which is defined on L2(R) as

(Ly)(t) = −y′′(t) + q(θ + ωt)y(t), (1.2)

where q : T
d → R is called the potential and θ ∈ T

d is called the phase. The
spectrum set of L is known to be independent of the phase when ω is rational
independent. It is closely related to the dynamics of Schrödinger equations

(Ly)(t) = −y′′(t) + q(θ + ωt)y(t) = Ey(t) (1.3)

(E ∈ R is called the energy), or equivalently the dynamics of one parameter
family of linear systems {

ẋ = VE,q(θ)x,

θ̇ = ω,
(1.4)

where

VE,q(θ) =
(

0 1
q(θ) − E 0

)
∈ sl(2,R).

System (1.1) is said to be reducible, if there exists an SL(2,R)-valued
function B defined on 2T

d = R
d/4πZ

d such that the change of variables
x �→ B(θ)x transforms system (1.1) into a constant system, i.e., a linear sys-
tem with constant coefficient (or we say that B conjugates system (1.1) to a
constant system and B is called the conjugation map). If B is Cr (or analytic),
we say that system (1.1) is Cr (or analytically) reducible. When applying to
the Schrödinger operator, the reducibility in the spectrum often implies the
existence of the Bloch waves and that of the absolutely continuous spectrum.

Due to its importance in the theory of dynamical systems and the spectrum
theory of q-p Schrödinger operators, the reducibility problem of q-p linear
systems has received much attention. For d = 1, i.e., the periodic case, the
classical Floquet theory shows that there always exists a periodic change of
variables so that the transformed system is a constant system. For d > 1, i.e.,
q-p case, system (1.1) is not always reducible (see for example [15]).

Perturbative reducibility The reducibility of q-p linear system (1.4) and its
applications in the spectrum theory were initiated by Dinaburg and Sinai [14]
who proved that (1.4) is reducible for a positive Lebesgue measure set of
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E > E∗(q,ω), where ω is fixed and satisfies the Diophantine conditions:

|〈k,ω〉| > γ −1

|k|τ , 0 
= k ∈ Z
d, (1.5)

with fixed γ, τ > 1. Here (γ, τ ) are called the Diophantine constants of ω.
Denote by DC(γ, τ ) the set of all (γ, τ )-type Diophantine ω and DC =⋃

γ,τ>1 DC(γ, τ ) (DC is of full measure). Dinaburg and Sinai’s reducibil-
ity result implies the existence of some absolutely continuous spectrum of
the Schrödinger operator (1.2). The result was generalized by Rüssmann [29]
to the case that ω satisfies the Bruno condition, an arithmetic condition on
ω which is slightly weaker than Diophantine. The reducibility of q-p linear
systems with coefficients in gl(n,R) was considered by Jorba and Simó [20].

Since Dinaburg and Sinai [14] there have been several breakthroughs on
this problem. The first one was the work of Eliasson [15] where a full measure
reducibility result for q-p linear Schrödinger equation was proved. More pre-
cisely, Eliasson [15] proved that (1.4) is reducible for almost all E > E∗(q,ω)

in the Lebesgue measure sense, when ω satisfies fixed Diophantine condition.
Based on his reducibility result, Eliasson also proved that, when the potential
is analytic and small, the spectrum of (1.2) is purely absolutely continuous for
all phase θ . This suggests an important role for the reducibility of q-p linear
systems in the study of the spectrum of q-p Schrödinger operators. Elias-
son’s proof is based on an earlier KAM method (that goes back to Dinaburg
and Sinai [14]) and a crucial resonance-cancelation technique which was in-
troduced by Moser and Pöschel [27]. We remark that the full-measure re-
ducibility result holds for more general system (1.1) with analytic A close
to some constant matrix. Krikorian [21–23] generalized the full measure re-
ducibility result to linear systems with coefficients in Lie algebra of compact
semi-simple Lie group. Her-You [17] and Chavaudret [11] established the
full measure reducibility with coefficients in other groups. We also remark
that all the above mentioned results are perturbative, i.e., E∗ (or the close-
ness of A to some constant matrix) depends on the frequencies ω through the
Diophantine constants (γ, τ ). Eliasson’s perturbative reducibility result is op-
timal when d > 2, as shown by a counter example of Bourgain [9]. However,
when d = 2, one could expect more. In the following we shall restrict our
attention to this case.

Non-perburbative reducibility The non-perburbative reducibility means that
the smallness of the perturbation does not depend on the Diophantine con-
stants (γ, τ ) of ω. The non-perturbative reducibility has been proved for
Schrödinger cocycles

(θ, x) �→
(

θ + α,

(
E − v(nα + θ) −1

1 0

)
x

)
, (θ, x) ∈ T

1 × R
2, (1.6)
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with one frequency α ∈ R. The proof, which is an indirect argument, comes
from the study of the discrete-time Schrödinger operator

(Hy)n = yn+1 + yn−1 + v(θ + nα)yn, (yn)n∈Z ∈ l2(Z).

More precisely, Puig [28] proved a non-perturbative extension of Eliasson’s
result by using the Aubry duality [1] and the Anderson localization re-
sults, see e.g., Bourgain and Jitomirskaya [10]. A more precise extension
of the Eliasson’s perturbative reducibility result was given by Avila and
Jitomirskaya [4] by further developing techniques in localization. In [4],
some beautiful results on the continuity of the spectrum of the discrete-time
q-p Schrödinger operators are deduced from the non-perturbative reducibil-
ity. The Aubry duality and the localization only work for the discrete-time
Schrödinger operators, they do not seem to apply to more general SL(2,R)

cocycles or continuous-time cases.
In this paper, we give an analogous non-perturbative result of [28] and [4]

for q-p system (1.1) with d = 2, which generalizes Eliasson’s reducibility
result in a non-perturbative neighborhood (a neighborhood which is indepen-
dent of the Diophantine constants of ω) of constant systems.

Before stating the results, let us introduce the rotation number. Assume
that �(θ, t) is the basic matrix solution of system (1.1), we define the rotation
number as

ρ = lim
t→+∞

arg(�(θ, t)x)

t
,

where 0 
= x ∈ R
2 and arg denotes the angle. ρ is well-defined and is inde-

pendent of θ and x [18]. ρ is said to be rational with respect to (w.r.t. for
short) ω if ρ = 1

2〈k0,ω〉 for some k0 ∈ Z
2, and to be Diophantine w.r.t. ω,

with constants γ, τ > 1, if

|〈k,ω〉 − 2ρ| ≥ γ −1

|k|τ , k ∈ Z
2.

We denote by DCω(γ, τ ) the set of all such ρ. It is well known that the union
DCω =⋃γ,τ>1 DCω(γ, τ ) is a full measure subset of R.

We now mainly focus our attention on the case d = 2 and the system of the
form {

ẋ = (A + F(θ))x,

θ̇ = ω,
(1.7)

where A ∈ sl(2,R), F : T
2 → sl(2,R) is analytic and small. We will say that

F ∈ Cω
h (T2, sl(2,R)) if F : T

2 → sl(2,R) admits an analytic extension in the
complex neighborhood |Im θ | < h of T

2, where |Im θ | = |Im θ1| + |Im θ2|. In
this paper, we mainly consider the case ω = (α,1) with irrational α ∈ (0,1).
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Theorem 1.1 (Non-perturbative reducibility) Let h > 0 and ω = (α,1) with
irrational α ∈ (0,1). Let A ∈ sl(2,R) and F ∈ Cω

h (T2, sl(2,R)). Then there
exists δ = δ(A,h) > 0 depending on A,h but not on α, such that system (1.7)
is analytic reducible if α ∈ DC, the rotation number of (1.7) is Diophantine
or rational w.r.t. ω and

sup
|Im θ |<h

|F(θ)| < δ

(| · | also stands for the usual matrix norm in this paper).

Remark 1.1 All other results in [15] remain true in a non-perturbative neigh-
borhood of A. For example, when α ∈ DC, sup|Im θ |<h |F(θ)| < δ and the
rotation number of (1.7) is neither Diophantine nor rational w.r.t. ω, for any
given φ ∈ T

2, we have

lim inf
t→±∞ |�(φ, t) − �(φ,0)| < 1

2
|�(φ,0)| and lim

t→±∞
|�(φ, t)|

t
= 0,

where �(φ, ·) is the basic matrix solution of system (1.7) with θ(0) = φ.

Almost reducibility The concept of reducibility is too strong in the sense that
system (1.1) might not be reducible even if ω is Diophantine and A is ana-
lytic and arbitrarily close to constants. In the following we recall the concept
of almost reducibility, which is weaker than the reducibility but already has
enormous implications both in the theory of dynamical systems and in the
spectrum theory. Roughly speaking, a q-p linear system is said to be almost
reducible if, by a sequence of q-p changes of variables, the transformed q-p
linear systems are closer and closer to constant systems (the precise definition
will be given later).

The almost reducibility in the modern sense was first considered by Elias-
son who proved that all q-p systems are almost reducible provided that ω

is Diophantine and the system is close to a constant (closeness depends on
the Diophantine constants of ω).1 A recent progress was made by Avila and
Jitomirskaya [4] who gave a non-perturbative (α is still assumed to be Dio-
phantine, but the smallness does not depend on the Diophantine constants)
almost reducibility result for Schrödinger cocycles with a single frequency
α ∈ DC and small potentials. Moreover, in [4], the authors used their almost
reducibility result to obtain the non-perburbative reducibility result (which
we have mentioned above).

1We remark that the convergence to constants obtained by Eliasson occurs on analyticity strips
of width going to zero. In [12], Chavaudret proved that one can get convergence on strips
of fixed width. Similar result for discrete-time case was also obtained earlier by Avila and
Jitomirskaya [4] in some cases by different methods.
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An interesting question is if the non-perturbative almost reducibility holds
true for the continuous-time case. And an even more interesting problem
is if almost reducibility holds for all irrational α. Note that the Avila-
Jitomirskaya’s non-perturbative result essentially holds for Diophantine α [4]
(more precisely β(α) = 0 which is defined in (1.9)). Moreover the proof in [4]
is an indirect argument and relies on Aubry duality and the localization nei-
ther of which works for the continuous-time case, so giving a direct proof
is also an interesting question. In the following we shall give an almost re-
ducibility result for continuous-time systems with arbitrary irrational α by a
direct argument.

We now give the precise definition of Eliasson’s almost reducibility. We
will say that system (1.1) is almost reducible if there exist a sequence of
positive hn (maybe decrease to zero) and a sequence of Bn : 2T

2 → SL(2,R)

which admit analytic extensions in the complex neighborhood |Im θ | < hn of
2T

2, such that system (1.1) can be transformed by the change of variables
x �→ Bn(θ)x into {

ẋ = (An + Fn(θ))x,

θ̇ = ω,
(1.8)

i.e., the conjugation map Bn conjugate system (1.1) to system (1.8). More-
over, An ∈ sl(2,R) is bounded and Fn ∈ Cω

hn
(T2, sl(2,R)) satisfies

lim
n→∞

1

h
χ
n

sup
|Im θ |<hn

|Fn(θ)| = 0,

for any χ ≥ 1.

Theorem 1.2 (Almost reducibility) Let h > 0 and ω = (α,1) with irrational
α ∈ (0,1). Let A ∈ sl(2,R) and F ∈ Cω

h (T2, sl(2,R)). Then system (1.7) is
almost reducible provided that

sup
|Im θ |<h

|F(θ)| < δ,

where δ = δ(A,h) > 0 depending on A,h but not on α.

Remark 1.2 The precise dependence of δ on A and h in Theorems 1.1 and 1.2
will be given explicitly in the proof. We emphasize that the smallness does
not depend on A if it is in the real normal forms

(
λ 0
0 −λ

)
or
( 0 ρ

−ρ 0

)
.

Rotations reducibility Now we investigate the Liouvillean case. When the
frequency α is Liouvillean, one should not expect the reducibility without
further assumptions. However, one could expect the rotations reducibility:
system (1.1) is said to be L2, Cr(r = 0,1, . . . ,∞) or analytically rotations
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reducible, if there exists a L2, Cr or analytic q-p transformation y = B(θ)x,
such that system (1.1) is transformed into a rotation system, i.e., a linear sys-
tem with so(2,R)-valued coefficients (or we say that the conjugation map B

conjugates system (1.1) to a rotation system).

Theorem 1.3 (Rotations reducibility) Suppose that all the assumptions of
Theorem 1.2 hold. Then, for the same δ as in Theorem 1.2, system (1.7) is
analytically rotations reducible, if the rotation number of system (1.7) is Dio-
phantine w.r.t. ω and

sup
|Im θ |<h

|F(θ)| < δ.

Remark 1.3 Theorem 1.3 says that almost surely (i.e., for almost all rotation
numbers) systems in a non-perturbative neighborhood of a constant system
is rotations reducible. Similar result for cocycles has been obtained by Fayad
and Krikorian [16], Avila, Fayad and Krikorian [6].

Remark 1.4 Rotations reducibility implies that all solutions of the system are
bounded. Thus one should not expect the rotations reducibility for all rotation
numbers since in general the solutions of a system with Liouvillean rotation
number are unbounded [15]. In this sense, Theorem 1.3 is optimal.

Remark 1.5 For any fixed irrational α ∈ (0,1), Theorem 1.3 implies that the
rotations reducible systems are dense in a non-perturbative neighborhood of
a non-hyperbolic constant system, and thus the reducible systems are dense
in a non-perturbative neighborhood of any constant system. One can refer to
Avila [2], Fayad and Krikorian [16] for related results of cocycles.

Reducibility for Liouvillean α Theorem 1.3 has consequences on the re-
ducibility when α is Liouvillean.

Let α ∈ (0,1) be irrational and pn

qn
be its continued fractional approxima-

tion. Define

β(α) = lim sup
lnqn+1

qn

. (1.9)

0 ≤ β ≤ +∞ measures how Liouvillean α is. The following two theorems
are reducibility results for Liouvillean α.

Theorem 1.4 (Reducibility for β = 0) Suppose that all the assumptions of
Theorem 1.2 hold, and, in addition, suppose that β(α) = 0. Then, for the
same δ as in Theorem 1.2, system (1.7) is reducible, if its rotation number is
Diophantine w.r.t. ω and

sup
|Im θ |<h

|F(θ)| < δ.
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Remark 1.6 The assumption that β(α) = 0 is weaker than that α is Diophan-
tine or Bruno. Thus, when the rotation number is Diophantine w.r.t. ω, Theo-
rem 1.4 is stronger than the corresponding result in Theorem 1.1.

Theorem 1.4 is no longer true in the case that β(α) > 0. However, we
have the following reducibility result for a majority (more precisely positive
measure set) of rotation numbers.

Theorem 1.5 (Reducibility for β(α) > 0) Under the assumptions of Theo-
rem 1.2, assume that h > 3β(α) and that the rotation number is in DCω(γ, τ ).
Then there exists δ = δ(h,A,h − 3β,γ, τ ) > 0, such that system (1.7) is re-
ducible if

sup
|Im θ |<h

|F(θ)| < δ.

Remark 1.7 This result is a generalization of Dianburg-Sinai’s result to the
Liouvillean case. The proof of this theorem applies essentially unchanged to
the discrete case, thus same result holds true for SL(2,R)-cocycles.

Remark 1.8 The assumption that h > 3β(α) is not optimal. One could expect
the same result by assuming that h > β(α). From the proof, one sees that this
is indeed the case if we assume that the rotation number ρ ∈ [−1,1].
Remark 1.9 As a matter of fact, in Theorem 1.5, the smallness does not de-
pend on A if it is in the real normal forms

(
λ 0
0 −λ

)
or
( 0 ρ

−ρ 0

)
.

Applications to the continuous time Schrödinger operators Theorems 1.1–
1.5 can be applied to the q-p Schrodinger equations. The following is the
same result as that in [15] in the non-perturbative region.

Theorem 1.6 Let h > 0 and ω = (α,1) with irrational α ∈ (0,1). Assume
that q : T

2 → R admit an analytic extension in the complex neighborhood
|Im θ | < h of T

2. For any δ > 0, we define Cδ as

Cδ(s) =
{

−∞, as 0 ≤ s ≤ δ,

(s/δ)2, as s > δ.

Then there exists δ = δ(h) > 0 such that whenever E ≥ E∗(h, q) �
Cδ(h)(sup|Im θ |<h |q(θ)|), the conclusions of Theorems 1.1–1.4 are all true
for (1.4).

Remark 1.10 Suppose that 0 < β(α) < h/3 and the rotation number of (1.4)
is in DCω(γ, τ ) for some γ, τ > 1. Then there exists a δ1 = δ1(h,3β −
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h,γ, τ ) > 0, such that if E ≥ Cδ1(sup|Im θ |<h |q(θ)|) the result of Theorem 1.5
is true for (1.4).

The following result shows that when the energy E is sufficiently large
or the potential q is analytically small, the Schrödinger system is either uni-
formly hyperbolic or has zero Lyapunov exponent.

Corollary 1.1 The Lyapunov exponent of the Schrödinger system is zero in
the big end of spectrum. If the potential q(θ) is small (the smallness does not
depend on α), the Lyapunov exponent of Schrödinger system (1.4) is always
zero in the spectrum.

Remark 1.11 For discrete-time Schrödinger operators, the above result is a
consequence of the non-perturbative reducibility [4, 28] and the continuity of
Lyapunov component [10].

One can use the well known Moser-Pöschel argument, which has been used
in a variety of contexts, such as [15, 26–28] and etc., to obtain the generic
cantor spectrum for q in a non-perturbative neighborhood of zero.

Corollary 1.2 For generic small real analytic potentials the spectrum is a
Cantor set.

Remark 1.12 Invoking the recent work of Ben Hadj Amor [7], one can also
prove the 1

2 -Hölder continuous of the IDS in the non-perturbative region when
α is Diophantine.

Global reducibility In some special cases, such as q-p almost Mathieu oper-
ators with one frequency, non-perturbative reducibility results allow rather big
(even optimal) perturbations. However, the smallness assumption on general
perturbations is necessary for proofs of all the above mentioned works. If the
system is far from a constant, the famous Kotani theory [25, 30] implies that
both Schrödinger system (1.4) and Schrödinger cocycle (1.6) are L2 rotations
reducible for almost all E ∈ {E ∈ R : λ(E) = 0} where λ(E) is the Lyapunov
exponent. Using a renormalization type technique, Avila and Krikorian [5]
proved that the Schrödinger cocycle with analytic potential is in fact analyt-
ically reducible for almost all E ∈ {E ∈ R : λ(E) = 0} provided that α is
recurrent Diophantine (this is a slightly stronger condition than being Dio-
phantine, see [5]). In a recent paper, Avila [3] systematically studied q-p co-
cycles with one frequency. This represents a major breakthrough in the study
of reducibility. Global reducibility of uniformly hyperbolic case (correspond-
ing to that E is in the resolvent set for Schrödinger case) is relatively easier,
see the early works of Bogoljubov et al. [8], Coppel [13], Johnson and Sell
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[19]. The global theory for continuous-time case is an interesting problem,
but so far little is known.

On the proof and generalization Our proof is based on KAM. It has been
a prevalent opinion that KAM is incompatible with non-perturbative results
since it depends heavily on the arithmetical condition of α (through the Dio-
phantine constants). We shall show in this paper that it is not the case. In fact,
we shall utilize a kind of KAM like iteration based on fractional expansion
of α to prove our theorems. We shall see that the KAM method does work
well in the non-perturbative neighborhood if one adds some new ingredients
to the traditional KAM machinery (more precisely adding Floquet theory to
Eliasson’s KAM machinery [15]).

Theorem 1.2 and 1.3 are the main results of the paper. Let us sketch their
proofs. Theorem 1.2 is proved by iteration. Each iteration step contains four
sub-steps: (1) Removing all non-resonant terms (the corresponding denomi-
nators are not very small) in the Fourier expansion of the perturbation; (2) If
the rotation number is resonant w.r.t. the frequency, we invoke the resonance-
cancelation technique of Moser and Pöschel, as done by Eliasson in [15];
(3) After the previous two steps, all the remaining resonant terms are “in a
line”, i.e., the corresponding k ∈ Z

2 in the Fourier expansion are all of the
form {l(q,−p) : l ∈ Z} for some fixed p,q ∈ Z defined by the fractional ex-
pansion of α; (4) At the end, the special structure of the resonances allows
us to apply a quantitative Floquet theory to cancel it, and thus finish a step
of iteration. In the above four sub-steps, the analysis of the structure of the
resonant terms in the step 3 is the most important (see Corollary 4.1).

The proof of Theorem 1.3 contains two key ingredients: (1) The small di-
visor related to the off-diagonals terms, up to a large truncation of the Fourier
expansion of the perturbation (see Lemma 6.1), is controllable. As a result,
one can always remove all off-diagonals θ -dependent terms at each iteration
step. (2) Finding a way to solve the homological equations which is scalar but
θ -dependent.

The differences between our work and previous ones are the following:
(i) Our proof is direct and is developed from the traditional KAM method;
(ii) Our method has a potential generalization to q-p systems in gl(n,R) or
other groups (with two frequencies); (iii) Our method adapts to all irrational
α, no matter whether α is Diophantine or Liouvillean.

We organize this paper as follows. In Sect. 2, we prove Theorem 1.1,
assuming Theorem 1.2 and using Eliasson’s perturbative result. Sections 3
and 4 contain some technical lemmas needed for the proof of Theorem 1.2. In
Sect. 5, we give a proof of Theorem 1.2 by employing the KAM like iteration.
Theorem 1.3, and consequently, Theorems 1.4–1.5, are proved in Sect. 6. The
appendices include proofs of some of the lemmas that are used in the main
part of the paper.
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2 Proof of Theorem 1.1

Theorem 1.1 and the claim in Remark 1.1 can be obtained from Theorem
1.2 and its proof, combined with the following perturbative result of Elias-
son [15].

Proposition 2.1 (H. Eliasson [15]) Let h > 0. In system (1.7), we assume
that α ∈ DC(γ, τ ), A ∈ sl(2,R) is of normal forms

(
λ 0
0 −λ

)
or
( 0 ρ

−ρ 0

)
and

F ∈ Cω
h (T2, sl(2,R). Then there exist constants C = C(γ, τ ) > 0 and χ =

χ(γ, τ ) > 1, such that if

sup
|Im θ |<h

|F(θ)| < Chχ,

we have the following:

(a) If furthermore the rotation number is Diophantine or rational w.r.t. ω,
then system (1.7) is analytically reducible.

(b) Otherwise, if the rotation number is neither Diophantine nor rational
w.r.t. ω, then for any given φ ∈ T

2, we have

lim inf
t→±∞ |�(φ, t) − �(φ,0)| < |�(φ,0)| and lim

t→±∞
|�(φ, t)|

t
= 0,

where �(φ, ·) is the basic matrix solution of system (1.7) with θ(0) = φ.

Proof By Theorem 1.2 and the proof of it, there exist a sequence hn > 0, a
sequence of bounded An ∈ sl(2,R) in normal forms

( λn 0
0 −λn

)
or
( 0 ρn

−ρn 0

)
,

and a sequence of Fn : T
2 → sl(2,R) analytic in |Im θ | < hn satisfying

lim
n→∞

1

h
χ
n

sup
|Im θ |<hn

|Fn(θ)| = 0,

for any χ ≥ 1, such that system (1.7) is conjugated to{
ẋ = (An + Fn(θ))x,

θ̇ = ω.
(2.1)

Then, for any fixed χ , sup|Im θ |<hn
|Fn(θ)| < C(hn)

χ as n large enough. Note
that, by Lemma 9.1, the rotation number of (2.1) is still Diophantine or ratio-
nal w.r.t. ω provided that the rotation number of system (1.7) is so. The proof
of Theorem 1.1 and the claim in Remark 1.1 is then completed by applying
Proposition 2.1 to system (2.1). �
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3 A basic lemma

The following four sections are devoted to the proofs of Theorems 1.2–1.5.
It is well known that KAM iteration is a procedure of cancelation of lower
order non-resonant terms. In this section, we will prove a basic lemma which
will play an important role in the proofs of Theorems 1.2–1.5.

Let M2 denote the space of all 2×2 matrices and I denote the identity one.
For any h > 0 and matrix function F : T

2 → M2 with the Fourier expansion

F(θ) =
∑
k∈Z2

F̂ (k)ei〈k,θ〉,

we introduce the definition

|F |h �
∑
k∈Z2

|F̂ (k)|e|k|h,

where |k| = |k1| + |k2| for k = (k1, k2). Denote by Bh the set of all analytic
F : T

2 → sl(2,R) with |F |h < +∞, which is a Banach algebra under norm
| · |h. The union B =⋃h>0 Bh includes all analytic sl(2,R)-valued functions
on T

2.
For any N > 0, we define the truncating operators TN on B as

(TNF)(θ) =
∑

k∈Z2,|k|<N

F̂ (k)ei〈k,θ〉

and RN as

(RNF)(θ) =
∑

k∈Z2,|k|≥N

F̂ (k)ei〈k,θ〉.

It is obvious that TNF + RNF = F and for any h > 0, TNBh, RNBh ⊆ Bh.
For any 0 < h+ < h, by a simple computation one can check that

|RNF |h+ ≤ 36

min{1, (h − h+)}2
|F |he−N(h−h+)

2 . (3.1)

Remark 3.1 For any F ∈ Bh, F ∈ Cω
h (T2, sl(2,R)) and

sup
|Im θ |<h

|F(θ)| ≤ |F |h.

In general the converse is not true. However, for any F ∈ Cω
h (T2, sl(2,R)),

we have F ∈ B̃h+ for any 0 < h+ < h with the estimate

|F |h+ ≤ 36

min{1, (h − h+)}2
sup

|Im θ |<h

|F(θ)|. (3.2)
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To find a conjugation map that is close to the identity I and transforms the
system {

ẋ = (A + F(θ))x,

θ̇ = ω

into a constant system, we need to find a constant matrix Ã and sl(2,R)-
valued function Y(θ) which solves the cohomological equation

∂ωeY = (A + F)eY − eY Ã. (3.3)

For perturbative problems, the solution of (3.3) will be inductively con-
structed by the Newtonian iteration. For this purpose, we firstly solve the
linearized equation of (3.3)

∂ωY − [A,Y ] = F (3.4)

(Lie bracket [·, ·] is defined as [X1,X2] = X1X2 − X2X1), which is called
the linearized co-homological equation. A solution Y of (3.4) together with a
suitable bound is necessary to make the iteration work. To control the norm
of the inverse of the linear operator

∂ω · −[A, ·], (3.5)

one encounters the small divisor problem.
One step in our proofs is to remove all the non-resonant components in the

Fourier expansion of F . For any given h > 0, ω ∈ R
2 and A ∈ sl(2,R), we

decompose Bh = B
(nre)
h ⊕ B

(re)
h (the decomposition depends on A, ω, η) in

such a way that for any Y ∈ B
(nre)
h

∂ωY, [A,Y ] ∈ B
(nre)
h , |∂ωY − [A,Y ]|h ≥ η|Y |h. (3.6)

Let Pnre (Pre) be the standard projection from Bh onto B
(nre)
h (B(re)

h ). We

call B
(nre)
h (B(nre)

h ) the η-nonresonant (η-resonant) subspace. With the above
assumptions, one can prove the following Lemma.

Lemma 3.1 Let ε ∈ (0, (1/10)8) and in (3.6) η ≥ ε
1
4 . Then for any F ∈ Bh

satisfying |F |h ≤ ε, there exist Y ∈ Bh and F (re) ∈ B
(re)
h (we remark that

F (re) is not necessarily PreF ), such that

∂ωeY = (A + F)eY − eY (A + F (re)),
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i.e., the system {
ẋ = (A + F(θ))x,

θ̇ = ω
(3.7)

can be conjugated to the system{
ẋ = (A + F (re)(θ))x,

θ̇ = ω
(3.8)

by the conjugation map eY , with the estimates

|Y |h ≤ ε
1
2 , |F (re)|h ≤ 2ε.

Proof We prove it by iteration. Let ε0 = ε, A0 = A, F
(re)
0 = PreF , F

(nre)
0 =

PnreF . Assume that for j = 1,2, . . . , n, there are Yj−1,F
(nre)
j ∈ B

(nre)
h and

F
(re)
j ∈ B

(re)
h satisfying the estimates

|Yj−1|h < ε
5
8
j−1, |F (re)

j − F
(re)
j−1|h < ε1/8εj−1, |F (nre)

j |h < εj ,

where εj = ε(9/8)j = ε
9/8
j−1, such that Yj−1 solves

∂ωeYj−1 = (A + F
(re)
j−1 + F

(nre)
j−1 )eYj−1 − eYj−1(A + F

(re)
j + F

(nre)
j ).

One can check easily that |F (re)
j |h ≤ 2ε.

For any Y ∈ B
(nre)
h , from (3.6), ∂ωY, [A,Y ] ∈ B

(nre)
h and

|∂ωY − Pnre[A + F (re)
n , Y ]|h ≥ η|Y |h − |F (re)

n |h|Y |h ≥ 1

2
ε

1
4 |Y |h.

So, restricted on B
(nre)
h , the linear operator

∂ω · −Pnre[A + F (re)
n , ·]

is invertible and the norm of its inverse is bounded by 2ε− 1
4 . One then can

find Yn ∈ B
(nre)
h , such that

∂ωYn − Pnre[A + F (re)
n , Yn] = F (nre)

n

with the estimate

|Yn|h ≤ 2ε− 1
4 |F (nre)

n |h.
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Let Gn = F
(nre)
n − Pre[F (re)

n , Yn]. We have (recall that Pre[A,Yn] = 0)

∂ωYn − [A + F (re)
n , Yn] = Gn.

Moreover, one can inductively prove that, for any power Y k
n (k = 2,3, . . .) of

Yn,

∂ω(Y k
n ) − [A + F (re)

n , Y k
n ] = Y k−1

n Gn + Y k−2
n GnYn + · · · + GnY

k−1
n � G(k)

n .

Thus we have

∂ωeYn − [A + F (re)
n , eYn] = F (nre)

n − Pre[F (re)
n , Yn] +

∞∑
k=2

1

k!G
(k)
n .

It follows that

∂ωeYn = (A + F (re)
n + F (nre)

n )eYn − eYn(A + F
(re)
n+1 + F

(nre)
n+1 ),

where

F
(re)
n+1 = F (re)

n + Pre

{
e−Yn

{
F (nre)

n (eYn − I ) + Pre[F (re)
n , Yn] −

∞∑
k=2

1

k!G
(k)
n

}}

and

F
(nre)
n+1 = Pnre

{
e−Yn

{
F (nre)

n (eYn − I ) + Pre[F (re)
n , Yn] −

∞∑
k=2

1

k!G
(k)
n

}}

= Pnre

{
e−Yn

{
F (nre)

n (eYn − I ) −
∞∑

k=2

1

k!G
(k)
n

}

+ (e−Yn − I )Pre[F (re)
n , Yn]

}
.

Furthermore, we have the estimates

|F (re)
n+1 − F (re)

n |h < ε1/8εn, |F (nre)
n+1 |h < ε

9/8
n = εn+1.

Define Y by eY =∏∞
n=0 eYn . Y ∈ Bh is obviously well-defined. Moreover,

|Yn|h ≤ 2ε
3
4
n ≤ ε

5
8
n ,

which implies that

|Y |h < ε
1
2 .
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Let F (re) = limn→+∞ F
(re)
n , we then have F (re) ∈ B

(re)
h with the estimate

|F (re)|h ≤ 2ε.

One can check that

∂ωeY = (A + F)eY − eY (A + F (re)). �

The definition of the sub-space B
(nre)
h and B

(re)
h depends on A. When A is

in normal form
(

λ 0
0 −λ

)
, we have the following more precise characterization

of B
(nre)
h and B

(re)
h . Let �1 and �2 be two subsets of Z

2 with �j = −�j

(j = 1,2) such that we have that

k ∈ �1 ⇒ |〈k,ω〉| ≥ η and k ∈ �2 ⇒ |2λ ± i〈k,ω〉| ≥ η.

B
(nre)
h is defined to be the space of all F ∈ Bh of the form

F(θ) =
∑
k∈�1

(
F̂11(k) 0

0 −F̂11(k)

)
ei〈k,θ〉 +

∑
k∈�2

(
0 F̂12(k)

F̂21(k) 0

)
ei〈k,θ〉

(3.9)

and B
(re)
h is defined to be the space of all F ∈ Bh of the form

F(θ) =
∑
k∈�c

1

(
F̂11(k) 0

0 −F̂11(k)

)
ei〈k,θ〉 +

∑
k∈�c

2

(
0 F̂12(k)

F̂21(k) 0

)
ei〈k,θ〉,

(3.10)

where �c
1 = Z

2\�1,�
c
2 = Z

2\�2. Clearly, Bh = B
(nre)
h ⊕ B

(re)
h .

Corollary 3.1 Let ε ∈ (0, (1/10)8), η ≥ ε
1
4 and A = ( λ 0

0 −λ

)
(λ ∈ R). Then

all conclusions in Lemma 3.1 are true with F (re) in the form of (3.10).

Proof For any Y ∈ B
(nre)
h , we have that

∂ωY (θ) =
∑
k∈�1

i〈k,ω〉
(

Ŷ11(k) 0
0 −Ŷ11(k)

)
ei〈k,θ〉

+
∑
k∈�2

i〈k,ω〉
(

0 Ŷ12(k)

Ŷ21(k) 0

)
ei〈k,θ〉 ∈ B

(nre)
h ,

[A,Y ](θ) =
∑
k∈�2

(
0 2λŶ12(k)

−2λŶ21(k) 0

)
ei〈k,θ〉 ∈ B

(nre)
h ,
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and then

(∂ωY − [A,Y ])(θ)

=
∑
k∈�1

(
i〈k,ω〉Ŷ11(k) 0

0 −i〈k,ω〉Ŷ11(k)

)
ei〈k,θ〉

+
∑
k∈�2

(
0 (i〈k,ω〉 − 2λ)Ŷ12(k)

(i〈k,ω〉 + 2λ)Ŷ21(k) 0

)
ei〈k,θ〉.

So one can easily check that

|∂ωY − [A,Y ]|h ≥ η|Y |h. �

In the case that A = ( 0 ρ

−ρ 0

)
, we have the following precise characterization

of B
(nre)
h and B

(re)
h .

Let M = 1
1+i

( 1 −i
1 i

) ∈ U(2), then MAM−1 = ( iρ 0
0 −iρ

)
. Note that any

F ∈ Bh can be uniquely re-written as

F(θ) =
∑
k∈Z2

(
0 F̂−(k)

−F̂−(k) 0

)
ei〈k,θ〉 +

∑
k∈Z2

(
F̂11(k) F̂+(k)

F̂+(k) −F̂11(k)

)
ei〈k,θ〉

=
∑
k∈Z2

M−1
(

iF̂−(k) 0
0 −iF̂−(k)

)
Mei〈k,θ〉

+
∑
k∈Z2

M−1
(

0 F̂11(k) − iF̂+(k)

F̂11(k) + iF̂+(k) 0

)
Mei〈k,θ〉,

where

F̂±(k) = 1

2

(
F̂12(k) ± F̂21(k)

)
.

We assume that �1 and �2 are two subsets of Z
2 with �j = −�j (j =

1,2), such that

k ∈ �1 ⇒ |〈k,ω〉| ≥ η and k ∈ �2 ⇒ |2ρ ± 〈k,ω〉| ≥ η.

We define B
(nre)
h to be the space of all F ∈ Bh of the form

F(θ) =
∑
k∈�1

(
0 F̂−(k)

−F̂−(k) 0

)
ei〈k,θ〉 +

∑
k∈�2

(
F̂11(k) F̂+(k)

F̂+(k) −F̂11(k)

)
ei〈k,θ〉

(3.11)
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and B
(re)
h to be the space of all F ∈ Bh of the form

F(θ) =
∑
k∈�c

1

(
0 F̂−(k)

−F̂−(k) 0

)
ei〈k,θ〉 +

∑
k∈�c

2

(
F̂11(k) F̂+(k)

F̂+(k) −F̂11(k)

)
ei〈k,θ〉.

(3.12)
It is obvious that Bh = B

(nre)
h ⊕ B

(re)
h .

Corollary 3.2 Let ε ∈ (0, (1/10)8), η ≥ ε
1
4 and A = ( 0 ρ

−ρ 0

)
(ρ ∈ R). Then

all conclusions in Lemma 3.1 are true with F (re) in the form (3.12).

Proof Note that any Y ∈ B
(nre)
h has the form

Y(θ) =
∑
k∈�1

M−1
(

iŶ−(k) 0
0 −iŶ−(k)

)
Mei〈k,θ〉

+
∑
k∈�2

M−1
(

0 Ŷ11(k) − iŶ+(k)

Ŷ11(k) + iŶ+(k) 0

)
Mei〈k,θ〉,

which implies that

∂ωY (θ)

=
∑
k∈�1

i〈k,ω〉M−1
(

iŶ−(k) 0
0 −iŶ−(k)

)
Mei〈k,θ〉

+
∑
k∈�2

i〈k,ω〉M−1
(

0 Ŷ11(k) − iŶ+(k)

Ŷ11(k) + iŶ+(k) 0

)
Mei〈k,θ〉

∈ B
(nre)
h ,

[A,Y ](θ)

=
∑
k∈�2

M−1
(

0 2iρ{Ŷ11(k) − iŶ+(k)}
−2iρ{Ŷ11(k) + iŶ+(k)} 0

)
Mei〈k,θ〉

∈ B
(nre)
h ,

and hence

(∂ωY − [A,Y ])(θ)

=
∑
k∈�1

i〈k,ω〉M−1
(

iŶ−(k) 0
0 −iŶ−(k)

)
Mei〈k,θ〉



Almost reducibility and non-perturbative reducibility 227

+
∑
k∈�2

M−1

×
(

0 i(〈k,ω〉 − 2ρ){Ŷ11(k) − iŶ+(k)}
i(〈k,ω〉 + 2ρ){Ŷ11(k) + iŶ+(k)} 0

)

× Mei〈k,θ〉.

One then can easily check that

|∂ωY − [A,Y ]|h ≥ η|Y |h. �

4 Resonances and non-resonances

Let α ∈ (0,1) be irrational with the continued fractional expansion

α = 1

a1 + 1

a2 + · · ·
,

We set α0 = α, and

αn = 1

an+1 + 1

an+2 + · · ·
.

In fact, αn = Gn(α) where G is the Gauss map. The integers an are given by
an = [α−1

n−1] ([·] denotes the integer part). We also set a0 = 0 for convenience.
Let βn =∏n

j=0 αj . Define

Q0 =
[

q0 p0
q−1 p−1

]
=
[

1 0
0 1

]
,

Qn =
[

qn pn

qn−1 pn−1

]
=
[
an 1
1 0

][
qn−1 pn−1
qn−2 pn−2

]
.

It is easy to see that Qn = U(αn) · · ·U(α1) where

U(x) =
[[x−1] 1

1 0

]
.

Thus det(Qn) = qnpn−1 − pnqn−1 = (−1)n. Note that

βn = (−1)n(qnα − pn) = 1

qn+1 + αn+1qn

,
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1

qn + qn+1
< βn <

1

qn+1
.

Moreover, for any p,q ∈ Z satisfying |q| < qn+1, we have

|qα − p| ≥ βn >
1

qn + qn+1
. (4.1)

The following fact is important for our proof.

Lemma 4.1 For any k = (k1, k2) ∈ Z
2 which satisfies

(a) |k| := |k1| + |k2| ≤ 1

6
qn+1, and (b) k 
= l(qn,−pn), l ∈ Z,

we have

|〈k,ω〉| ≥ 1

7qn

,

where ω = (α,1).

Proof For any k = (k1, k2) ∈ Z
2, there exist s, l ∈ Z, s.t.

k = (k1, k2) = s(qn−1,−pn−1) + l(qn,−pn). (4.2)

It is obvious that |s| ≥ 1 if k 
= l(qn,−pn), l ∈ Z, and

|k| ≥ |k1| ≥ |l|qn − |s|qn−1,

and thus

|l| ≤ |k|
qn

+ |s|qn−1

qn

. (4.3)

So, by (4.2) and (4.3), we have

|〈k,ω〉| ≥ |s||qn−1ω − pn−1| − |l||qnω − pn|
≥ |s|

qn−1 + qn

− 1

qn+1

( |k|
qn

+ |s|qn−1

qn

)

=
(

1

qn−1 + qn

− qn−1

qnqn+1

)
|s| − |k|

qnqn+1

≥
(

1

qn−1 + qn

− qn−1

qnqn+1

)
− |k|

qnqn+1
.
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Since |k| ≤ 1
6qn+1, one has

|〈k,ω〉| ≥
(

1

qn−1 + qn

− qn−1

qnqn+1

)
− 1

6qn

.

If qn+1 ≥ 6qn, we have

qn−1

qnqn+1
≤ qn−1

6q2
n

≤ 1

3(qn−1 + qn)
,

and then

|〈k,ω〉| ≥ 2

3(qn−1 + qn)
− 1

6qn

≥ 1

3qn

− 1

6qn

= 1

6qn

.

Otherwise, qn+1 < 6qn, by (4.1), we have

|〈k,ω〉| ≥ 1

qn + qn+1
≥ 1

7qn

. �

Corollary 4.1 (The structure of resonances) Suppose that k ∈ Z
2 satisfies

|k| < 1
6qn+1 and |〈k,ω〉| < 1

7qn
. Then k = l(qn,−pn) for some l ∈ Z.

5 Proof of Theorem 1.2

In this section, we shall inductively prove Theorem 1.2.
We begin with the system

{
ẋ = (A + F(θ))x,

θ̇ = ω.
(5.1)

Let

� �
{(

λ 0
0 −λ

)
: λ ∈ R

}
∪
{(

0 ρ

−ρ 0

)
: ρ ∈ R

}
⊆ sl(2,R).
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For simplicity, we assume that h ≤ 1, F ∈ Bh and A ∈ � with the estimate2

|F |h < min

{(
1

1000

)1000

, h16
}
. (5.2)

We give the iteration sequences:

1. q0, q1, . . . and p0,p1, . . . are defined by the Fractional expansion of α.
2. Let (h0, ε0) = (h, |F |h), and⎧⎨

⎩(hn, εn) = (hn−1, εn−1), if εn−1 ≤ e− qnhn−1
65×21 ;

(hn, εn) = (1
4hn−1, ε

33/32
n−1 e− qnhn−1

65×21×4 ), when εn−1 > e− qnhn−1
65×21 .

(5.3)

By definition, it is obvious that εn and hn are decreasing. Moreover, we
have the following simple and important facts:

1. We always have the inequality,

εn ≤ min
{
h16

n , e− qnhn
65×21

}
. (5.4)

The inequality εn ≤ e− qnhn
65×21 can be obtained easily from the definition (5.3).

The inequality εn ≤ h16
n can be proved inductively. Firstly ε0 < h16

0 is the
case. We assume εn−1 < h16

n−1. By definition, one just need to check that

when εn−1 > e− qnhn−1
65×21 , there is

εn ≤ ε
33/32
n−1 = ε

1/32
n−1 · εn−1 ≤ ε

1/32
n−1 · h16

n−1 ≤ ε
1/32
n−1 · 416 · h16

n ≤ h16
n .

2. We always have

lim
n→∞hn = lim

n→∞ εn = 0, (5.5)

and for any χ ≥ 1,

lim
n→∞ εnh

−χ
n = 0. (5.6)

We argue by contradiction. If (5.5) is not true, by the iterative definition of
(hn, εn), there exists n0 such that (hn, εn) = (hn0, εn0) when n > n0, then it

2 If A is of general form in the system (5.1), one can find some P ∈ SL(2,R), such that

PAP−1 ∈ � or PAP−1 = ( 0 1
0 0

)
(parabolic case). For the parabolic case, one can further use

P1 = ( ε 0
0 1/ε

)
(ε > 0) to conjugate A to D = ( 0 ε2

0 0

)
and then D + P1PFP−1P−1

1 are treated
as the new perturbation. In this case, the smallness of the perturbation will also depend on A

through min{|P | : PAP−1 ∈ � or PAP−1 = ( 0 1
0 0

)}.
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follows that

0 < εn0 = εn ≤ e− qnhn−1
65×21 = e− qnhn0

65×21 → 0.

This is a contradiction. Condition (5.6) can then be obtained from the defini-
tion (5.3).

Assume that, after n steps of iteration, we arrive at{
ẋ = (A(n) + F (n)(θ))x,

θ̇ = ω,
(5.7)

where A(n) ∈ � and F (n) ∈ Bhn , with the estimate

|F (n)|hn ≤ εn.

We will construct a conjugation map B(n) which conjugates (5.7) to{
ẋ = (A(n+1) + F (n+1)(θ))x,

θ̇ = ω,
(5.8)

with A(n+1) ∈ � and F (n+1) ∈ Bhn+1 satisfying the estimates

|F (n+1)|hn+1 ≤ εn+1.

If εn ≤ e− qn+1hn
65×21 , one needs to do nothing at this step. We just simply let

A(n+1) = A(n), F (n+1) = F (n).

Otherwise, i.e., εn > e− qn+1hn
65×21 . The proof is decomposed into the follow-

ing four lemmas. For simplicity of notations, in the following A(n),F (n) are
written as A,F respectively, hn, εn, qn,pn,hn+1, εn+1, qn+1 are written as
h, ε, q,p,h+, ε+, q+ respectively. Now, by (5.4), we have

e− q+h

65×21 < ε ≤ min
{
h16, e− qh

65×21
}
. (5.9)

We emphasis that condition (5.9) is the starting point of the following proof.
We first handle the elliptic case, i.e., A = ( 0 ρ

−ρ 0

) ∈ sl(2,R), which is the
most complicated. Let

�1 = {k ∈ Z
2 : |〈k,ω〉| ≥ ε1/4}, �2 = {k ∈ Z

2 : |2ρ ± 〈k,ω〉| ≥ ε1/4}.
As in Sect. 3, we use M to denote the matrix 1

1+i

( 1 −i
1 i

) ∈ U(2). By Corol-
lary 3.2, there is a Y ∈ Bh satisfying

|Y |h ≤ ε1/2,
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and a F (re) ∈ Bh of the form

F (re)(θ) =
∑
k∈�c

1

⎛
⎝ 0 F̂

(re)
− (k)

−F̂
(re)
− (k) 0

⎞
⎠ ei〈k,θ〉

+
∑
k∈�c

2

⎛
⎝F̂

(re)
11 (k) F̂

(re)
+ (k)

F̂
(re)
+ (k) −F̂

(re)
11 (k)

⎞
⎠ ei〈k,θ〉

=
∑
k∈�c

1

M−1

(
iF̂

(re)
− (k) 0

0 −iF̂
(re)
− (k)

)
Mei〈k,θ〉

+
∑
k∈�c

2

M−1

⎛
⎝ 0 F̂

(re)
11 (k) − iF̂

(re)
+ (k)

F̂
(re)
11 (k) − iF̂

(re)
+ (k) 0

⎞
⎠

× Mei〈k,θ〉 (5.10)

(recall that F̂
(re)
± (k) = 1

2{F̂ (re)
12 (k) ± F̂

(re)
21 (k)}), such that

∂ωeY = (A + F)eY − eY (A + F (re)),

with the estimate

|F (re)|h ≤ 2ε.

We then obtain the following conclusion.

Lemma 5.1 (Eliminating the non-resonant terms) System (5.7) is conjugated
to {

ẋ = (A + F (re)(θ))x,

θ̇ = ω,
(5.11)

with F (re) of the form (5.10) satisfying

|F (re)|h ≤ 2ε.

Note that ε1/8 < 1/7q since (by (5.9))

7qε1/8 ≤ 7qhe− qh
65×21×32 ε1/32 ≤ 7 × 65 × 21 × 32ε1/32 < 1.
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Thus, by Corollary 4.1, we obtain the following fact

{
k ∈ Z

2 : |〈k,ω〉| ≤ ε1/8 and |k| < q+
6

}

⊆
{
k = l(q,−p) : l ∈ Z and |k| < q+

6

}
, (5.12)

which will be frequently used in the following.
Firstly, from (5.12), we obviously have

�c
1 ∩
{
k ∈ Z

2 : |k| < q+
6

}
⊆
{
k = l(q,−p) : l ∈ Z and |k| < q+

6

}
.

(5.13)

Now we consider different cases of �c
2:

If �c
2 ∩ {k ∈ Z

2 : |k| < q+
6 } = ∅, T q+

6
F

(re)
12 = −T q+

6
F

(re)
21 , i.e.,

T q+
6

F (re)(θ) =
∑

k∈�c
1,|k|<q+

6

M−1

(
iF̂

(re)
12 (k) 0

0 −iF̂
(re)
12 (k)

)
Mei〈k,θ〉

one can use B∗ � eE , with

E(θ) =
∑

k∈�c
1,0<|k|<q+

6

M−1

(
iF̂

(re)
12 (k) 0

0 −iF̂
(re)
12 (k)

)
M

ei〈k,θ〉

i〈k,ω〉 ∈ T q+
6

Bh

to conjugate (5.11) to {
ẋ = (A∗ + F∗(θ))x,

θ̇ = ω,

where A∗ � A + F̂ (re)(0) and F∗ � B∗(R q+
6

F (re))B−1∗ . Note that

|B∗|h ≤ e|E|h ≤ e4q+ε.

By (5.9), there is

|F∗|h+ = |F∗| h
4

≤ εe− 3q+h

2×6×4 e8q+ε

≤ ε · e− q+h

16 e8q+hε15/16

≤ ε · e− q+h

32 e− q+h

32 (1−8×32ε15/16)

≤ εe− q+h

32
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≤ εe− q+h

65×21 e− q+h

65×21×4

≤ ε2e− q+h

65×21×4

≤ ε33/32e− q+hn
65×21×4 = ε+.

For this simple case, a step of iteration is thus finished.
If �c

2 ∩ {k ∈ Z
2 : |k| <

q+
6 } 
= ∅, let k∗ ∈ �c

2 satisfy |k∗| = min{|k| : k ∈
�c

2}.
If |k∗| = 0, we have 0 ∈ �c

2. Since

�2 = {k ∈ Z
2 : |2ρ ± 〈k,ω〉| ≥ ε1/4},

we therefore have |ρ| < 1
2ε1/4. By (5.12), we have

�c
2 ∩
{
k ∈ Z

2 : |k| < q+
6

}
⊆
{
k ∈ Z

2 : |k| < q+
6

and |2ρn − 〈k,ω〉| < ε1/4
}

⊆
{
k ∈ Z

2 : |k| < q+
6

and |〈k,ω〉| < 2ε1/4
}

⊆
{
k ∈ Z

2 : |k| < q+
6

and |〈k,ω〉| < ε1/8
}

⊆
{
k = l(q,−p) : l ∈ Z and |k| < q+

6

}
.

T q+
6

F (re)(θ) is of the form

T q+
6

F (re)(θ) =
∑

k=l(q,−p),|k|<q+
6

F̂ (re)(k)ei〈k,θ〉

and the following Lemma 5.3 applies.
If |k∗| 
= 0, we invoke the following lemma to put the system into a better

normal form.

Lemma 5.2 (Rotation) By some 4πZ-periodic analytic conjugation map,
(5.11) is conjugated to

{
ẋ = (A1 + F1(θ))x,

θ̇ = ω,
(5.14)
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where

A1 =
(

0 ρ − 〈k∗,ω〉
2

−ρ + 〈k∗,ω〉
2 0

)
,

T q+
6

F1 =
∑

k=l(q,−p),|k|<q+
6

F̂1(k)ei〈k,θ〉

with the estimates

|A1| ≤ ε
1
4 , |F1| h

3
≤ 2ε3/4.

Proof By the definition of k∗, �c
2 ∩ {k ∈ Z

2 : |k| < |k∗|} = ∅, which implies
that

T|k∗|F (re)(θ)

=
∑

k=l(q,−p)∈�c
1,|k|<|k∗|

M−1

(
iF̂

(re)
12 (k) 0

0 −iF̂
(re)
12 (k)

)
Mei〈k,θ〉. (5.15)

By a direct computation, one sees that the 4πZ-periodic rotation

Q(θ) =
(

cos 〈k∗,θ〉
2 − sin 〈k∗,θ〉

2
sin 〈k∗,θ〉

2 cos 〈k∗,θ〉
2

)
= M−1

(
e−〈k∗,θ〉

2 i 0

0 e
〈k∗,θ〉

2 i

)
M

conjugates (5.11) to {
ẋ = (A1 + F̃1(θ))x,

θ̇ = ω,
(5.16)

with F̃1 = QF(re)Q−1 and

A1 = (∂ωQ)Q−1 + QAQ−1 =
(

0 ρ̃

−ρ̃ 0

)
,

where ρ̃ = ρ − 〈k∗,ω〉/2. Note that k∗ ∈ �c
2 implies |ρ̃| < 1

2ε1/4.
Since T|k∗|F (re) commutes with Q, i.e., QT|k∗|F (re)Q−1 = T|k∗|F (re), we

have

F̃1 = T|k∗|F (re) + QR|k∗|F (re)Q−1.

By the estimates |T|k∗|F (re)|hn ≤ 2ε ≤ 1
2ε3/4 and

|QR|k∗|F (re)Q−1| h
3

≤ 9 × 36

2h2
εe−|k∗|h

3 e
|k∗|h

3 ≤ 5 × 36ε7/8 ≤ 1

2
ε3/4,
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one has

|F̃1| h
3

≤ |T|k∗|F (re)| h
3

+ |QR|k∗|F (re)Q−1| h
3

≤ ε3/4 � ε̃.

A simple computation, together with (5.12) and the fact that |ρ̃| < 1
2ε1/4,

leads to

(�̃c
1 ∪ �̃c

2) ∩
{
k ∈ Z

2 : |k| < q+
6

}
⊆
{
k ∈ Z

2 : |k| < q+
6

and |〈k,ω〉| < ε1/8
}

⊆
{
k = l(q,−p) : l ∈ Z and |k| < q+

6

}
,

where

�̃1 = {k ∈ Z
2 : |〈k,ω〉| ≥ (̃ε)1/4}, �̃2 = {k ∈ Z

2 : |2ρ̃±〈k,ω〉| ≥ (̃ε)1/4}.
Thus by Corollary 3.2, one can find a Y1 ∈ B h

3
, such that eY1 conjugates

system (5.16) to system (5.14) with F1 ∈ B h
3

of the form

T q+
6

F1(θ) =
∑

k=l(q,−p),|k|<q+
6

F̂1(k)ei〈k,θ〉

and satisfying |F1| h
3

≤ 2̃ε = 2ε3/4. The proof is then completed. �

Remark 5.1 It is obvious that the degree of Q in the above proof is k∗ (one
can refer to Appendix C for precise definition of degree) with |k∗| < q+/6.

In any case, we are in the position to use the following lemma. We remark
that the special form of T q+

6
F1 is very important, while the special form of

A1 is irrelevant in the following lemma. Let{
ẋ = (A1 + T q+

6
F1(θ))x = (A1 +∑k=l(q,−p),|k|<q+

6
F̂1(k)ei〈k,θ〉)x,

θ̇ = ω,
(5.17)

with the estimates

|A1| ≤ ε
1
4 , |F1| h

3
≤ 2ε3/4.

Lemma 5.3 (Floquet) System (5.14) is conjugated to{
ẋ = (A2 + F2(θ))x,

θ̇ = ω,
(5.18)
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where A2 ∈ sl(2,R) and F2 ∈ Bh/4 satisfies

|F2| h
4

≤ ε1/8e− q+h

25×6 , |A2| ≤ 1

2πq+
e24πq+ε1/4

and |spec(A2)| ≤ 1

q+
.

Proof By Lemma 7.1 in Appendix A, which is based on Floquet Theory, one
can find some 4πZ-periodic analytic conjugation map B , which is analytic in
|Im θ | < h/3, to conjugate system (5.17) to{

ẋ = A2x,

θ̇ = ω,
(5.19)

where A2 is a constant matrix, with the estimates (notice that |A1| =
|spec(A1)| ≤ ε1/4)

sup
|Im θ |<h

3

|B(θ)| ≤ e3q+ε1/4(8π+qh),

|A2| ≤ 1

2πq+
e24πq+ε1/4

and |spec(A2)| ≤ 1

q+
.

The inequality

3q+ε1/4(8π + qh) ≤ 30πq+ε3/32

follows from the fact that

qhε1/4 ≤ ε1/8qhe− qh
65×21×8 ≤ 65 × 21 × 8 · ε1/8 ≤ ε3/32.

Thus, by the inequality (3.2), we have

|B| h
4

≤ 36 × 144

h2
e30πq+ε3/32

. (5.20)

Note that F2 = BR q+
6

F1B
−1 and

|R q+
6

F1| h
4

≤ 144 × 36

h2
|F1| h

3
≤ 144 × 72

h2
ε3/4e− q+h

24×6 ≤ ε1/2e− q+h

24×6 .

It follows that

|F2| h
4

≤ 144 × 36

h2
ε1/2e− q+h

24×6 e60πq+ε3/32

≤ ε1/4e− q+h

25×6 e− q+h

24×25×6 (1−24×25×6×60πε1/32)

≤ ε1/4e− q+h

25×6 . �
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Remark 5.2 By (5.20) and Corollary 9.1 in Appendix C, the degree of the
conjugation map B in the above proof is no more than

c

hσ
eσq+ε1/σ

where c, σ > 1 are two universal constants.

Finally we normalize A2.

Lemma 5.4 (Normalization) One can conjugate system (5.18) to{
ẋ = (A3 + F3(θ))x,

θ̇ = ω,
(5.21)

with A3 ∈ � and F3 ∈ Bh+ , such that

|A3| ≤ 1

q+
+ ε+, |F3|h+ ≤ ε+.

Proof Let ε = |F2|1/7
h
4

= |F2|1/7
h+ . The estimate

ε|A2| ≤ e− q+h

25×42 e24πq+ε1/4 ≤ e− q+h

25×42 (1−24π×25×42ε3/16) < 1

and Lemma 8.2 together imply that there exist P2 ∈ SL(2,R) satisfying
|P2| ≤ 2ε−3, D3 ∈ sl(2,R) satisfying |D3| ≤ 2ε and A3 ∈ � satisfying

|A3| ≤ |spec(A2)| + ε ≤ 1

q+
+ ε,

such that P2A2P
−1
2 = A3 +D3. Let F3 = D3 +P2F2P

−1
2 , then P2 conjugates

the system (5.18) to the system (5.21) with the estimate

|F3|h+ = |F3| h
4

≤ 6ε ≤ 6ε1/28e− q+h

25×42

≤ ε1/32e− q+h

25×42

≤ ε1/32e− q+h

65×21 e− q+h

65×21×4

≤ ε33/32e− q+h

65×21×4

= ε33/32e− q+h+
65×21 = ε+. �

The proof for the elliptic case is therefore finished. The case of A = ( λ 0
0 −λ

)
with λ ∈ R, is easier. In this case, we do not need Lemma 5.2. In fact, by
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Corollary 3.1, one can obtain a result analogous to Lemma 5.1 and then obtain
a similar F (re). Note that now T q+

6
F

(re)
12 = T q+

6
F

(re)
21 = 0 if |λ| ≥ 1

2ε1/4, i.e.,

the matrix T q+
6

F (re) is diagonal. Otherwise k∗ = 0. In latter cases, we arrive
at the normal form (5.17) and then switch to Lemma 5.3. Note that now A1 =
A = ( λ 0

0 −λ

)
, but the difference is irrelevant.

In summary, we use some conjugation map B(n) to conjugate system (5.7)
to system (5.8) with A(n+1) ∈ � and F (n+1) ∈ Bhn+1 satisfying the estimates

|F (n+1)|hn+1 ≤ εn+1.

At the end, we remark from the proof that⎧⎨
⎩|A(n+1)| = |A(n)|, when εn ≤ e− qn+1hn

65×21 ;
|A(n+1)| ≤ max{|A(n)|, 1

qn+1
} + 2εn, when εn > e− qn+1hn

65×21 .

That is to say, the sequence A(n), n = 1,2, . . . is bounded.
We thus complete the proof of Theorem 1.2.

Remark 5.3 If in system (5.1), F ∈ Bh (h > 0) satisfies |F |h ≤ 10−8, A =(
λ 0
0 −λ

)
with λ ∈ R and |λ| ≥ 1

2 |F |1/4
h , the proof is very simple. In fact, by

Corollary 3.1, one can conjugates it to{
ẋ = (A + F̃ (θ))x,

θ̇ = ω,

with F̃ ∈ Bh in diagonal form, and it is thus uniformly hyperbolic. Then the
almost reducibility is easily obtained by conjugating it to{

ẋ = (A + ̂̃F(0) + RnF̃ (θ))x,

θ̇ = ω,

by a sequence of conjugation maps exp{−∑0<|k|<n

̂̃F(k)
i〈k,ω〉e

i〈k,θ〉}.

Remark 5.4 When εn ≤ e− qn+1hn
65×21 , the degree of the conjugation map B(n)

is zero for B(n) = I . When εn > e− qn+1hn
65×21 , the nonzero degree could only

occurs in the procedure of Lemma 5.2 or Lemma 5.3. By Remark 5.1 and
Remark 5.2, the degree of the conjugation map B(n) is no more than

cqn+1

hσ
n

eσqn+1ε
1/σ
n ,

where c, σ > 1 are two universal constants.
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6 Proofs of Theorems 1.3–1.5

Firstly, we prove Theorem 1.3, i.e., systems which are close to a non-
hyperbolic constant system can be conjugated to rotations of the form{

ẋ = ϕ(θ)Jx

θ̇ = ω
(6.1)

under some assumptions on the rotation number, where ϕ is analytic and J =( 0 1
−1 0

)= M−1
(

i 0
0 −i

)
M (recall that M denotes the matrix 1

1+i

( 1 −i
1 i

) ∈ U(2)).
Let Ch (h > 0) be the set of all analytic f : T

2 → R with the Fourier ex-
pansion

f (θ) =
∑
k∈Z2

f̂ (k)ei〈k,θ〉

satisfying

|f |h �
∑
k∈Z2

|f̂ (k)|e|k|h < +∞.

For any N > 0, we also use the notations TN and RN to denote the operators
on Ch defined as

(TNf )(θ) =
∑

|k|<N

f̂ (k)ei〈k,θ〉, (RNf )(θ) =
∑

|k|≥N

f̂ (k)ei〈k,θ〉.

Moreover, for any ω ∈ R
2, we define the formal linear operator �ω as

(�ωf )(θ) =
∑

k∈Z2\{0}

f̂ (k)

i〈k,ω〉e
i〈k,θ〉.

It is obvious that �ω∂ωf = ∂ω�ωf = f − f̂ (0) for any f ∈ Ch. In the end,
we use C =⋃h>0 Ch to denote the set of all analytic f : T

2 → R.
Let ω = (α,1) with α ∈ (0,1) being irrational. Recall that q1, q2, . . . and

p1,p2, . . . are defined in Sect. 3 by the fractional expansion of α and

β(α) = lim sup
n→∞

lnqn+1

qn

.

Remark 6.1 System (6.1) is analytically reducible if ϕ ∈ Ch and β(α) < h.
In fact the analytic conjugation map e�ωϕJ (note that �ωϕ ∈ C as β(α) < h)
conjugates (6.1) to {

ẋ = ϕ̂(0)Jx,

θ̇ = ω.
(6.2)
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For general systems close to a constant one, we should not expect the ro-
tations reducibility for all rotation numbers (even under the assumption that
the rotation number is not rational w.r.t. ω) since the rotations reducibility im-
plies that all solutions of the linear system are bounded (which is not always
the case as shown in [15]). The rotations reducibility is closely related to the
rotation number.

We need the following lemma on the rotation number, which says that the
divisor is big enough even for very large k (comparing with qn).

Lemma 6.1 Let γ, τ ≥ 1 and ρ ∈ DCω(γ, τ ) ∩ [−1,1]. Then for any k ∈ Z
2

satisfying |k| ≤ qn+1/γ (8qn)
τ , we have

|〈k,ω〉 − 2ρ| ≥ 1

γ (8qn)τ
.

Proof We just need to consider all k ∈ Z
2 satisfying |k| ≤ qn+1

γ (8qn)τ
and

|〈k,ω〉 − 2ρ| < 1. For such k, one can find l ∈ Z and k̂ = (̂k1, k̂2) ∈ Z
2, such

that k = l(qn,−pn) + (̂k1, k̂2), with |l| ≤ qn+1
γ (8qn)τ qn

and |̂k1| < qn. Thus from

1 > |〈k,ω〉 − 2ρ| = |l(qnα − pn) + k̂1α + k̂2 − 2ρ|,

we obtain that |̂k2| ≤ qn + 2|ρ| + 2, and |̂k| ≤ 2qn + 2|ρ| + 2 ≤ 4qn. The

assumption that ρ ∈ DCω(γ, τ ) implies that |〈̂k,ω〉 − 2ρ| ≥ γ −1

4τ qτ
n

= 2τ

γ (8qn)τ
,

which, in turn, implies that

|〈k,ω〉 − 2ρ| = |l(qnα − pn) + 〈̂k,ω〉 − 2ρ|
≥ 2τ

γ (8qn)τ
− qn+1

γ (8qn)τ qn

· 1

qn+1

≥ 1

γ (8qn)τ
.

This completes the proof. �

The following theorem gives a result which is slightly weaker than The-
orem 1.3. More precisely, it is a rotations reducibility result for a positive
measure set of rotation numbers.

Theorem 6.1 Consider {
ẋ = (ρ0J + F(θ))x,

θ̇ = ω.
(6.3)
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Assume that the rotation number of (6.3) ρ ∈ DCω(γ, τ ) and that F ∈ Bh for
h > 0. For any h ∈ (0, h

3 ), if

|F |h ≤ δ0

(
1

200γ τ
min

{
h − 3h

3
,1

})120τ 2

, (6.4)

where δ0 is some sufficiently small positive universal constant, one can find
ϕ ∈ Ch with ϕ̂(0) = ρ,Y ∈ Bh, such that system (6.3) is conjugated by eY to{

ẋ = ϕ(θ)Jx,

θ̇ = ω.
(6.5)

Proof We firstly consider the case ρ ∈ [−1,1]. Let F̃ = F + (ρ0 −ρ)J . Then
|F̃ |h ≤ 2c|F |h for ρ0 − ρ ≤ c|F |h, where c > 1 is some universal constant.
The system (6.3) can be rewritten as{

ẋ = (ρJ + F̃ (θ))x,

θ̇ = ω.
(6.6)

Without loss of generality, we assume that h ∈ (0,1).
For n = 0,1,2, . . . , we define

Kn = 82τ 2
γ 3τ q2τ 2

n ,

and {
Ln = 1, when qn+1 ≤ (8τ γ qτ

n )2;
Ln = 8τ γ qτ

n , when qn+1 > (8τ γ qτ
n )2.

One can easily check that

qn+1/Ln ≥ q
1/2
n+1. (6.7)

For any k ∈ Z
2 satisfying |k| < qn+1/Ln, by (4.1) we have

|〈k,ω〉| ≥ 1/2qn+1, (6.8)

and by Lemma 6.1 we have

|〈k,ω〉 − 2ρ| ≥ 1/Kn. (6.9)

We also give some other iteration sequences inductively as follows: Let
ε0 = 2c|F |h, h0 = h and r0 = 1

2(h − h). Suppose that εn,hn, rn are defined.
We then define hn+1, εn+1, rn+1 as follows:
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(a) If εn < e
− qn+1rn

4Ln , let

εn+1 = εn, hn+1 = hn, and rn+1 = rn.

(b) If εn ≥ e
− qn+1rn

4Ln , let

rn+1 = rn

2
and then let

hn+1 = hn − rn

2
= hn−rn+1, and εn+1 = εne

− qn+1rn
8Ln = εne

− qn+1rn+1
4Ln .

Under the assumption (6.4), one can prove inductively that

εn ≤ min

{
e
− qnrn

4Ln−1 ,

(
rn

50γ

)60τ 2}
≤ min{e− 1

4 q
1/2
n rn, r2

n}. (6.10)

Thus we have

max{K5
n,L5

n}εn ≤ (82τ 2
γ 3τ q2τ 2

n )5εn

≤ ε
1/2
n (82τ 2

γ 3τ )5(q
1/2
n e

− q
1/2
n rn

80τ2 )20τ 2

≤ ε
1/2
n

(
50γ τ

rn

)60τ 2

≤ 1,

which implies that

εn ≤ min
{
K−5

n ,L−5
n

}
. (6.11)

We iteratively prove the conclusion as in the proof of Theorem 1.2.
Let ϕ0 = ρ, F0 = F̃ . For |�ωϕ0|h0 = |�ωρ|h0 = 0, it is obvious that

ε0 ≤ e−18|�ωϕ0|h0 = 1. (6.12)

Assume that we have obtained the system{
ẋ = (ϕn(θ)J + Fn(θ))x,

θ̇ = ω,
(6.13)

with ϕn ∈ Tqn Chn and Fn ∈ Bhn , satisfying ϕ̂n(0) = ρ which is the rotation
number of the system (6.13) and

|Fn|hn ≤ εn ≤ e−18|�ωϕn|hn . (6.14)
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We shall prove that the system (6.13) can be conjugated to{
ẋ = (ϕn+1(θ)J + Fn+1(θ))x,

θ̇ = ω,
(6.15)

with desired estimates on Fn+1 and ϕn+1. The proof is summarized in the
following lemma:

Lemma 6.2 There exists Yn ∈ Bhn+1 such that system (6.13) is conjugated to
system (6.15) by eYn , where ϕn+1 ∈ Tqn+1 Chn+1 , Fn+1 ∈ Bhn+1 and

ϕ̂n+1(0) = ρ, |ϕn+1 − ϕn|hn+1 ≤ 2ε
8/9
n ,

|Fn+1|hn+1 ≤ εn+1 ≤ e
−18|�ωϕn+1|hn+1 , |Yn|hn+1 ≤ ε

1/4
n .

Proof If εn < e
− qn+1rn

4Ln , we shall do nothing. In other words, we just let Yn =
0, ϕn+1 = ϕn, Fn+1 = Fn.

So we only need to consider the case εn ≥ e
− qn+1rn

4Ln . Note that by (6.7),
(6.10), (6.11), the definitions and the assumptions at the nth step, we have the
inequality

e
− qn+1rn

4Ln ≤ εn ≤ min
{
K−5

n ,L−5
n , r2

n

}
. (6.16)

Firstly, let ψn = �ωϕn, then system (6.13) is conjugated by eψnJ to{
ẋ = (ρJ + Fn,1(θ))x,

θ̇ = ω,
(6.17)

where Fn,1 = e−ψnJ Fne
ψnJ . By (6.14), there is

e2|�ωϕn|hn ≤ ε
−1/18
n (6.18)

and then

|Fn,1|hn ≤ εne
2|ψn|hn ≤ εne

2|�ωϕn|hn ≤ ε
8/9
n .

Since 1/Kn ≥ (ε
8/9
n )1/4 = ε

2/9
n , by Corollary 3.2, there exists Yn,1 ∈ Bhn

such that system (6.17) is conjugated by eYn,1 to{
ẋ = (ρJ + ϕ̃n(θ)J + Fn,2(θ))x,

θ̇ = ω,
(6.19)

where ϕ̃n ∈ Tqn+1/Ln Ch and Fn,2 ∈ Rqn+1/LnBhn , with the estimates

|Yn,1|hn ≤ ε4/9 and |ϕ̃n|hn, |Fn,2|hn ≤ 2ε
8/9
n .
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Moreover, we have the estimate

ε̃n � |Fn,2|hn+1 ≤ 36

(hn − hn+1)2
ε

8/9
n e

− qn+1(hn−hn+1)

2Ln

≤ 1

2
ε

7/9
n e

− qn+1(hn−hn+1)

2Ln

≤ 1

2
ε

7/9
n e

− qn+1rn
4Ln .

Since eYn,1 is close to I , the rotation number of system (6.19) is still ρ (see
Appendix C). Thus the difference between ρ and the rotation number of the
system {

ẋ = (ρJ + ϕ̃n(θ)J )x,

θ̇ = ω
(6.20)

is no more than c|e−�ωϕ̃nJ Fn,2e
�ωϕ̃nJ |C0 ≤ c|Fn,2|C0 ≤ c̃εn, which means

that |̂ϕ̃n(0)| ≤ c̃εn. Let ϕn,3 = ϕ̃n −̂̃ϕn(0) and Fn,3 = Fn,2 +̂̃ϕn(0)J , thus the
system (6.19) can be rewritten as{

ẋ = (ρJ + ϕn,3(θ)J + Fn,3(θ))x,

θ̇ = ω,
(6.21)

with the estimates

|ϕn,3|hn ≤ |ϕ̃n|hn ≤ 2ε
8/9
n and |Fn,3|hn+1 ≤ 2c̃εn.

Finally, we use e−ψnJ to conjugate system (6.21) back to{
ẋ = (ϕn+1(θ)J + Fn+1(θ))x,

θ̇ = ω,
(6.22)

where ϕn+1 = ϕn +ϕn,3 (note that ϕ̂n+1(0) = ρ) and Fn+1 = eψnJ Fn,3e
−ψnJ ,

with

|ϕn+1 − ϕn|hn+1 ≤ |ϕn,3|hn+1 ≤ 2ε
8/9
n ,

and (by (6.7))

|Fn+1|hn+1 ≤ 2c̃εne
2|ψn|hn

≤ cε
2/3
n e

− qn+1rn
4Ln

≤ ε
1/2
n e

− qn+1rn
4Ln

≤ ε
1/2
n e

− qn+1rn
8Ln e

− qn+1rn
8Ln

≤ εne
− qn+1rn

8Ln = εn+1.
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To complete the proof, we need to check two more facts. Firstly, by (6.18),
there is

|e−ψnJ eYn,1eψnJ − I |hn+1 = |e−ψnJ (eYn,1 − I )eψnJ |hn+1

≤ 2ε
4/9
n e2|ψn|hn ≤ 2ε

1/3
n .

Thus there exists Yn ∈ Bhn+1 , such that eYn = e−ψnJ eYn,1eψnJ , with |Yn|hn+1 ≤
ε

1/4
n . Secondly,

|Fn+1|1/18
hn+1

e
|�ωϕn+1|hn+1 ≤ |Fn+1|1/18

hn+1
e
|ψn|hn+|�ωϕn,3|hn+1

≤ ε
1/18
n e

− qn+1rn
8×18Ln e|ψn|hn e4qn+1ε

8/9
n

= ε
1/18
n e|ψn|hn e

− qn+1rn
8×18Ln e4qn+1ε

8/9
n

≤ e
− qn+1rn

8×18Ln e4qn+1ε
8/9
n

≤ e
− qn+1

8×18Ln
{rn−32×18Lnε

8/9
n }

≤ e
− qn+1

8×18Ln
{rn−ε

1/2
n } ≤ 1

since |�ωϕn,3|hn+1 ≤ 2qn+1|ϕn,3|hn . �

Finally, we define

ϕ = lim
n→∞ϕn, (6.23)

and define Y so that

eY = lim
n→∞ eY0eY1 · · · eYn. (6.24)

Thus the conclusion is proved as ρ ∈ [−1,1].
If ρ is not in [−1,1], there is k∗ ∈ Z

2 such that

|〈k∗,ω〉 − 2ρ| < 1, and |〈k∗,ω〉 − 2ρ| ≥ 1 for 0 < |k| < |k∗|.
Then, by Lemma 3.1, there exists Y ∈ Bh which satisfies |Y |h ≤ ε1/2 and eY

conjugates system (6.6) to3

{
ẋ = (ρJ + ϕ(θ)J + F∗(θ))x,

θ̇ = ω,
(6.25)

3Here we assume that ϕ̂(0) = F̂∗(0) = 0 for simplicity.
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where ϕ ∈ T|k∗|Ch and F∗ ∈ R|k∗|Bh, with the estimate

|ϕ|h, |F∗|h ≤ 2ε.

Furthermore, we have

|F∗|h/3 ≤ 36 × 9

4h2
εe−|k∗|h

3 ≤ 1

2
ε1/2e−|k∗|h

3 .

Now one can use exp{− k∗θ
2 J } to conjugate system (6.25) to

{
ẋ = ((ρ − 〈k∗,ω〉

2 )J + ϕ(θ)J + F̃ (θ))x,

θ̇ = ω,
(6.26)

where F̃ = exp{− k∗θ
2 J }F∗(θ) exp{ k∗θ

2 J } ∈ Bh/2. Thus

|ϕJ + F̃ |h/3 ≤ |ϕ|h + e
|k∗|h

3 |F∗|h/3 ≤ 2ε + 1

2
ε1/2 ≤ ε1/2.

Let ρ̃ be the rotation number of the system (6.26), we have

|ρ̃| ≤
∣∣∣∣ρ − 〈k∗,ω〉

2

∣∣∣∣+ ε1/2 <
1

2
+ ε1/2 ≤ 1.

The system is reduced to the case we have studied. �

Now we are in the position to prove Theorems 1.3–1.5. Let us consider the
system {

ẋ = (A + F(θ))x,

θ̇ = ω,
(6.27)

where A ∈ sl(2,R) is a general matrix which is not necessarily a rotation.
Recall that the rotation number is Diophantine w.r.t. ω as we assumed in
Theorems 1.3–1.5.

Proof of Theorem 1.3 We use Theorem 1.2 and also its proof in Sect. 5 to
do it. There exists δ > 0 such that if |F |h ≤ δ, system (6.27) can be conjugated
to {

ẋ = (A(n) + F (n)(θ))x,

θ̇ = ω,
(6.28)

where F (n) ∈ Bhn satisfies |F (n)|hn ≤ εn and A(n) is either of the form ρnJ

(ρn ∈ R, elliptic case), or of the form
( λn 0

0 −λn

)
(λn ∈ R, hyperbolic case). For
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hyperbolic A(n), we always have

|λn| ≤ 1

2
ε

1/4
n ,

then A + F can be all viewed as a perturbation to 0 = 0J . Otherwise, by
Remark 5.3, system (6.28) is uniformly hyperbolic, which contradicts the as-
sumption that the rotation number is irrational w.r.t. ω (by Lemma 9.1 in
Appendix C, the rotation number is invariant modulo {1

2〈k,ω〉 : k ∈ Z
2}). In

any case system (6.28) can be rewritten as{
ẋ = (ρn,1 + F (n,1)(θ))x,

θ̇ = ω,
(6.29)

where ρn,1 ∈ R and F (n,1) ∈ Bhn satisfies |F (n,1)|hn ≤ ε
1/4
n .

Moreover, from the iteration procedure of the proof in Sect. 5, one can
choose a subsequence {nj }∞j=0 of N, such that for any j ≥ 0, there is

(
A(nj ),F (nj )

)= (A(nj+1),F (nj+1)
)= · · · = (A(nj+1−1),F (nj+1−1)

)
.

Now we let q̃j = qnj
, q̃+

j = qnj+1, ε̃j = εnj
, h̃j = hnj

. Note that we always
have

(̃εj+1, h̃j+1) =
(̃

ε
33/32
j exp

{
− q̃ +

j h̃j

65 × 21 × 4

}
, h̃j /4

)
, (6.30)

and for any χ > 1,

lim
j→∞

ε̃j

h̃
χ
j

= 0. (6.31)

In summary, system (6.27) can be conjugated to a sequence of systems of
the form {

ẋ = (ρ̃
(0)
j J + F̃j (θ))x,

θ̇ = ω
(j th system) (6.32)

where ρ̃
(0)
j = ρnj ,1 and F̃j = F (nj ,1) (in system (6.29)). Note that F̃j satisfies

|F̃j |̃hj
≤ ε̃

1/4
j .

Denote by ρ̃j the rotation number of the j th system of (6.32).
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We will prove in the end that one can choose a sequence of γj > 1, such
that

ρ̃j ∈ DC(γj , τ ) and γj+1 ≤
(

cq̃ +
j

h̃σ
j

exp{σ q̃ +
j ε̃

1/σ
j }

)τ

γj , (6.33)

where c, σ > 1 are some universal constants. Now in condition (6.4) of The-
orem 6.1, we choose h = h̃j (note that h̃j ≤ 1 as we assume in Sect. 5) and
h = h̃j /6 to obtain a sequence of conditions

νj � δ0

(
h̃j

1200γj τ

)120τ 2

.

By Theorem 6.1, to complete the proof, we then just need to find j , such that

|F̃j |̃hj
< νj . (6.34)

By (6.30) and (6.31),

|F̃j+1 |̃hj+1
/νj+1

|F̃j |̃hj
/νj

=
|F̃j+1 |̃hj+1

/|F̃j |̃hj

νj+1/νj

≤ C

(
q̃+
j

h̃j

)L

exp{Lq̃+
j ε̃

1/L
j }̃ε 1/L

j exp

{
− q̃+

j h̃j

L

}

= C
ε̃

1/L
j

h̃L
j

(
q̃+
j exp

{
− q̃+

j h̃j

2L2

})L

exp

{
Lq̃+

j ε̃
1/L
j − q̃+

j h̃j

2L

}

≤ C1

(
ε̃j

h̃2L2

j

)1/L

exp

{
−Lq̃ +

j

(
h̃j

2L2
− ε̃

1/L
j

)}

decreases to zero as j → ∞, where constants C, C1 and L depend only on τ .
This fact implies that (6.34) can be verified for sufficiently large j .

Now we choose γ0, γ1, . . . and verify (6.33). Assume that ρ0 = ρ ∈
DCω(γ, τ ). Firstly let γ0 = γ . We assume that γj have been chosen. Let rj

be the degree of the conjugation map B(nj ) from the j th system to (j + 1)th
system in the form (6.32). By Lemma 9.1 in Appendix C, there is

ρj+1 = ρj + 〈rj ,ω〉
2

.
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If rj = (0,0), ρj+1 = ρj and we can choose γj+1 = γj . If rj 
= (0,0), for
ρj ∈ DCω(γj , τ ),

|2ρj − 〈k,ω〉| ≥ γ −1
j

|k|τ , for any 0 
= k ∈ Z
2.

We then have

|2ρj+1 − 〈k,ω〉| = |2ρj − 〈k + rj ,ω〉| ≥ γ −1
j

|rj |τ |k|τ , for any 0 
= k ∈ Z
2.

So we can choose γj+1 = γj |rj |τ and ρj+1 ∈ DCω(γj+1, τ ). By Remark 5.4,
there is

|rj | ≤ cq̃j

h̃σ
j

exp{σ q̃ +
j ε̃

1/σ
j }.

In this way, the sequence γ0, γ1, . . . satisfying (6.33) is chosen. �

Proof of Theorem 1.4 By Remark 6.2, we get Theorem 1.4 from Theo-
rem 1.3. �

Theorem 6.1 remains true if we consider the perturbations to arbitrary con-
stant system. In fact, we have the following conclusion:

Theorem 6.2 (Positive measure rotations reducibility) Suppose that in (6.27)
F ∈ Bh and the rotation number ρ is in DCω(γ, τ ). For any h ∈ (0, h

3 ), there
exists δ = δ(A,h,3h−h,γ, τ ) > 0 such that system (6.27) can be conjugated
to system (6.5) with ϕ ∈ Ch if

|F |h ≤ δ.

Proof By footnote 2, we only need to consider the elliptic case A = ρJ with
ρ ∈ R, and the hyperbolic case A = ( λ 0

0 −λ

)
with λ ∈ R. Now we assume that

ε = |F |h. For hyperbolic case, we always have

|λ| ≤ 1

2
ε1/4,

then A + F can be all viewed as a perturbation to 0 = 0J . Otherwise, by Re-
mark 5.3 the system is uniformly hyperbolic, which contradicts the assump-
tion that the rotation number is irrational w.r.t. ω. In any case, system (6.27)
can be rewritten as {

ẋ = (ρ̃J + F̃ (θ))x,

θ̇ = ω,
(6.35)
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where ρ̃ ∈ R, and F̃ ∈ Bh satisfying |F̃ |h ≤ ε1/4. Then it follows from The-
orem 6.1. �

Proof of Theorem 1.5 Theorem 1.5 can be obtained from Remark 6.1 and
Theorem 6.2. �
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Appendix A: Floquet theory

In this section, we present a result based on Floquet Theory and its proof.

Lemma 7.1 We consider system{
ẋ = F(θ)x,

θ̇ = ω = (α,1),
(7.1)

where F ∈ Bh satisfies |F |h < ε and is of the form

F(θ1, θ2) =
∑
l∈Z

F̂ (lq,−lp)eil(qθ1−pθ2),

with (q,−p) ∈ Z
2 fixed. Then one can find analytic B : 2T

2 → SL(2,R) and
C ∈ sl(2,R) with the following properties:

(1) B(θ) admits analytic extension in |Im θ | < h with

|B|C0 ≤ exp

{
8π |F |h

|τ |
}

and

sup
|Im θ |<h

|B(θ)| ≤ exp

{ |F |h
|τ | (8π + (|q| + |p|)h)

}

where τ = qα − p;
(2) C satisfies the estimates

|C| < |τ |
2π

exp

{
4π |F |h

|τ |
}

and |spec(C)| ≤ |τ |
4π

max{|F |h,2π};
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(3) In |Im θ | < h, there is

∂ωB(θ) ≡ CB(θ) − B(θ)F (θ),

i.e., B conjugates (7.1) to constant system{
ẋ = Cx,

θ̇ = ω = (α,1).

Proof Let φ = qθ1 − pθ2, h̃ = (|q| + |p|)h and

G(φ) =
∑
l∈Z

F̂ (lq,−lp)eilφ.

Thus we have F(θ1, θ2) = G(qθ1 − pθ2) and

sup
φ∈T1,|Imφ|≤h̃

|G(φ)| ≤
∑
l∈Z

|F̂ (lq,−lp)|e|l |̃h

=
∑
l∈Z

|F̂ (lq,−lp)|e|l|(|q|+|p|)h = |F |h.

Let us consider the equation

dx

dt
= G(τ t)x, (7.2)

with the basic matrix solution �(t) satisfying �(0) = I . We have the estimate
(by Gronwall inequality)

sup
0≤t≤ 4π

|τ |
|�(t)| ≤ exp

{
4π

|τ | |F |h
}
.

The fact that G is 2π
|τ | -periodic implies that �(4π

|τ | ) = �(2π
|τ | )

2. Thus one

can choose C ∈ sl(2,R) satisfying �(4π
|τ | ) = e

4π
|τ | C with the estimates

∣∣∣∣4π

|τ |C
∣∣∣∣≤ 2 exp

{
4π

|τ | |F |h
}

and

∣∣∣∣spec

(
4π

|τ |C
)∣∣∣∣≤ max{|F |h,2π},

i.e.,

|C| ≤ |τ |
2π

exp

{
4π

|τ | |F |h
}

and |spec(C)| ≤ |τ |
4π

max{|F |h,2π}.

Define B1(t) = eCt�(t)−1, then B1(t) = B1(t + 4π
|τ | ).
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Moreover, � has analytic extension in |Im t | < h̃/|τ |. In fact, it is easy to
see that �(t + is), for any fixed |s| < h̃/|τ |, is the basic matrix solution of the
equation

dx

dt
= G(τ t + is)x

with �(0 + is) = �(is). As in the case s = 0, we have the estimate

sup
0≤t≤ 4π

τ

|�(t + is)| ≤ exp

{
4π

|τ | |F |h
}
|�(is)|.

In the same way, from the equation

dx

d(is)
= G(is)x,

we obtain the estimate

|�(is)| ≤ exp{|s||F |h}.
Hence,

sup
0≤t≤ 4π

|τ |
|�(t + is)| ≤ exp

{(
4π

|τ | + |s|
)

|F |h
}
.

In other words, the matrix function �(t) satisfies the estimate

sup
0≤|Re t |≤4π/|τ |,|Im t |<h̃/|τ |

|�(t)| ≤ exp

{ |F |h
|τ | {4π + (|q| + |p|)h}

}
.

Thus B1(t) = eCt�(t)−1 has analytic extension in |Im t | < h̃/|τ | with the es-
timate (notice that B1 is 4π

|τ | -periodic and |M| = |M−1| for any M ∈ SL(2,C))

|B1|C0 ≤ exp

{
8π |F |h

|τ |
}

and

sup
|Im t |<h̃/|τ |

|B1(t)| ≤ exp

{ |F |h
|τ | (8π + (|q| + |p|)h)

}
.

One can check easily that B1 conjugates (7.2) to some equation with con-
stant coefficient. More precisely, we have

d

dt
B1(t)B1(t)

−1 + B1(t)G(τ t)B1(t)
−1 ≡ C
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in the domain |Im t | < h̃/|τ |. In other words,

τ
d

dφ
B̃1(φ)B̃1(φ)−1 + B̃1(φ)G(φ)B̃1(φ)−1 ≡ C,

where B̃1(φ) = B1(φ/τ), in the domain |Im t | < h̃. It is obvious that B̃1 is
4π -periodic.

Let B2(θ1, θ2) = B̃1(qθ1 − pθ2). We see that B2 is analytic in |Im θ | < h

and

|B2|C0 ≤ exp

{
8π |F |h

|τ |
}

and

sup
|Im θ |<h

|B2(θ)| ≤ exp

{ |F |h
|τ | {8π + (|q| + |p|)h}

}
.

Moreover,

∂ωB2(θ)B2(θ)−1 + B2(θ)F (θ)B2(θ)−1 ≡ C

in the domain |Im θ | < h. �

Appendix B: Normal form

In this section, we give some estimates on conjugating a matrix to normal
form.

Lemma 8.1 Let A ∈ sl(2,R) satisfy spec(A) = {iρ,−iρ} with 0 
= ρ ∈ R.
There exists P ∈ SL(2,R) such that |P | ≤ 2(|A|/ρ)1/2 and that PAP −1 =( 0 ρ

−ρ 0

)
.

Proof There exist u = (u1, u2), v = (v1, v2) ∈ R
2 with |u| = |v| = 1 such

that Au = −ρv and Av = ρu. Let θ = ∠(u, v), 0 ≤ θ ≤ π/2. Without loss of
generality, we assume that 〈u, v〉 = cos θ .

For any t ∈ R, we have that 〈u+ tv, u+ tv〉 = 1+ t2 +2t cos θ and 〈A(u+
tv),A(u + tv)〉 = ρ2(1 + t2 − 2t cos θ). Thus

|A| = sup
t∈R

|ρ|
√

1 + t2 − 2t cos θ

1 + t2 + 2t cos θ
� |ρ| sup

t∈R

√
f (t) = |ρ|

√
sup
t∈R

f (t).

By simple computation, one can see that

sup
t∈R

f (t) = f (−1) = 1 + cos θ

1 − cos θ
= (1 + cos θ)2

sin2 θ
.
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Thus we have

sin θ = |ρ|
|A|(1 + cos θ) ≥ |ρ|

|A| .

Now let P̃ = ( u1 v1
u2 v2

)
, then P̃AP̃ −1 = ( 0 ρ

−ρ 0

)
. Recall that |detP̃ | =

|u||v|| sin θ | = sin θ , so P = ±(sin θ)− 1
2 P̃ ∈ SL(2,R) satisfies

|P | ≤ 2(|A|/|ρ|)1/2 and PAP −1 = ( 0 ρ

−ρ 0

)
. �

Lemma 8.2 Let ε > 0. Assume that A ∈ sl(2,R) and |A| ≤ 1/ε. Then there
exist P ∈ SL(2,R) with |P | ≤ 2(1/ε)3, D ∈ sl(2,R) with |D| ≤ 2ε and � =(

λ 0
0 −λ

)
or � = ( 0 ρ

−ρ 0

)
, such that PAP −1 = � + D. Here λ,ρ ∈ R satisfy

||spec(�)| − |spec(A)|| ≤ ε, i.e., ||λ| − |spec(A)|| ≤ ε or ||ρ| − |spec(A)|| ≤
ε.

Proof We consider firstly the case of spec(A) = {λ,−λ} ⊆ R. In this case,
one can find some M ∈ SO(2,R), such that

MAM−1 =
(

λ 0
0 −λ

)
+
(

0 c

0 0

)
� � + C.

It is obvious that |c| ≤ |A| ≤ 1/ε. Now let

K =
(

ε 0
0 1/ε

)
,

then we have

KMAM−1K−1 = K(� + C)K−1 = � + KCK−1,

where

D � KCK−1 =
(

0 ε2c

0 0

)
.

It is obvious that |KM| ≤ |K| ≤ 1/ε and |D| ≤ ε.
When spec(A) = {iρ,−iρ} with 0 
= ρ ∈ R, without loss of generality, we

assume that

A =
(

λ u

−v −λ

)
with 0 < v ≤ u ≤ |A| ≤ 1/ε.

If v < ε3, let

A1 =
(

λ u

0 −λ

)
and C1 =

(
0 0

−v 0

)
.
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For spec(A1) = {λ,−λ} ⊆ R, there exist K1 ∈ SL(2,R) satisfying |K1| ≤ 1/ε

and D1 ∈ sl(2,R) satisfying |D1| ≤ ε, such that

K1A1K
−1
1 =

(
λ 0
0 −λ

)
+ D1 � � + D1.

Let

D = D1 + K1C1K
−1
1 ,

we then have |D| ≤ |D1| + |K1|2|C1| ≤ 2ε. In this case, one can check that
||λ| − |ρ|| ≤ ε.

If v ≥ ε3, let

L1 =
(

(v/u)1/4 0
0 (u/v)1/4

)
.

It is obvious that |L1| ≤ (|A|/ε3)1/4 ≤ 1/ε. One can see that

E1 � L1AL−1
1 =

(
λ

√
uv

−√
uv −λ

)
.

Now we have uv = λ2 + ρ2. Moreover, it is obvious that min{|λ − √
uv|,

|λ + √
uv|} ≤ ρ.

Under the assumption v ≥ ε3, there are furthermore two cases:
If ρ < ε3, there is |d| < ε3, such that

E1 = λ

(
1 ±1

∓1 −1

)
+
(

0 d

−d 0

)
� E2 + G,

For spec(E2) = {0} ⊆ R, there exist K2 ∈ SL(2,R) satisfying |K2| ≤ 1/ε. Let
D2 = K2E2K

−1
2 . Then there is |D2| ≤ ε. Now we let

� = 0 and D = D2 + K2GK−1
2 .

We then have |D| ≤ |D2| + |K2|2|G| ≤ 2ε.
Otherwise, if ρ ≥ ε3, by Lemma 8.1 there exists P1 ∈ SL(2,R) such that

|P1| ≤ 2(|A|/ρ)1/2 ≤ 2(1/ε)2 and let

� = P1E1P
−1
1 =

(
0 ρ

−ρ 0

)
and D = 0. �

Appendix C: Degree and rotation number

In this section we discuss the impact of conjugation maps on the rotation
number. A continuous map B : 2T

2 → SL(2,R) is said to be of degree r =
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(r1, r2) ∈ Z
2, if B(·,0) is homotopic to R(·)r1 and B(0, ·) is homotopic to

R(·)r2 , where

R(θ) =
(

cos θ
2 − sin θ

2
sin θ

2 cos θ
2

)
.

Recall that the fundamental group of SL(2,R) is Z with generator R.

Lemma 9.1 Let ω = (ω1,ω2) ∈ R
2 be irrational. Assume that a C1 conjuga-

tion map B : 2T
2 → SL(2,R) of degree r conjugates system{

ẋ = A(θ)x,

θ̇ = ω,
(9.1)

with the rotation number ρ to system{
ẋ = Ã(θ)x,

θ̇ = ω,
(9.2)

with rotation number ρ̃. Then we have

ρ̃ = ρ + 1

2
〈r,ω〉.

Proof Without loss of generality, assume that ω2 > 0. Let �(·, t) and
�̃(·, t) be basic matrix solutions of (9.1) and (9.2) respectively. Consider the
Poincaré Cocycles(

4πω1

ω2
,�

)
: T × R

2 → T × R
2,

(φ, x) �→
(

φ + 4πω1

ω2
,�

(
(φ,0),

4π

ω2

)
x

)

and (
4πω1

ω2
, �̃

)
: T × R

2 → T × R
2,

(φ, x) �→
(

φ + 4πω1

ω2
, �̃

(
(φ,0),

4π

ω2

)
x

)
.

By the definition of the rotation number of cocycles [5, 24], (
4πω1
ω2

,�)

and (4πω1
ω2

, �̃) have rotation numbers 4πρ
ω2

and 4πρ̃
ω2

respectively. More-

over W(φ) = B(φ,0) = B(φ, 4π
ω2

) defined on 2T conjugates (4πω1
ω2

,�) to
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(
4πω1
ω2

, �̃). Recall that W(φ) is homotopic to R(·)r1 . By Proposition 1.1
in [24] and its remarks, we have

4πρ̃

ω2
= 4πρ

ω2
+ 2r1πω1

ω2
mod 2πZ,

i.e.,

ρ̃ = ρ + r1ω1 + lω2

2
, for some l ∈ Z.

In the same way, one can show that

ρ̃ = ρ + l̃ω1 + r2ω2

2
, for some l̃ ∈ Z.

Recall that ω is irrational, we thus have l̃ = r1 and l = r2, i.e.,

ρ̃ = ρ + 〈r,ω〉
2

. �

The following Lemma shows that the degree of a conjugation map is con-
trolled by its C1-norm.

Lemma 9.2 For any C1 map B : 2T
2 → SL(2,R) with the degree r , we have

|r| ≤ c|B|σ
C1,

where c, σ > 1 are some universal constants.

Proof We only need to prove that, for any C1 map W : 2T → SL(2,R) which
is homotopic to Rs ,

|s| ≤ c|W |σ
C1,

where c, σ > 1 are universal constants. In fact, we define the path w : 2T →
S

1 ⊆ R
2, where S

1 = {(x, y) ∈ R
2 : x2 + y2 = 1}, as

w(φ) = (1,0)W(φ)

|(1,0)W(φ)| ,

(the norm | · | here is the standard Euclidean norm of R
2). It is obvious that w

is homotopic to the path e : 2T → S
1 ⊆ R

2 defined as

e(φ) = (1,0)R(φ)s

|(1,0)R(φ)s | =
(

cos
sφ

2
, sin

sφ

2

)
.
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Thus the degree of w is also s, so the length of it is not less than 2π |s|, i.e.,

4π |w′|C0 ≥
∫ 4π

0
|w′(φ)|dφ ≥ 2π |s|,

which implies |s| ≤ 2|w′|C0 ≤ c|W |σ
C1 , where c, σ > 1 are some universal

constants. �

By Cauchy inequality, we have a corollary as follows:

Corollary 9.1 Let h > 0. For any map B : 2T
2 → SL(2,R) analytic in

|Im θ | < h with the degree r , we have

|r| ≤ c

min{1, hσ }
(

sup
|Im θ |<h

|B(θ)|
)σ

,

where c, σ > 1 are some universal constants.

Added in the Proof With minor modification in the proof of Lemma 5.2, one can get almost
reducibility (Theorem 1.2) in a stronger sense: the analytic radius hn of Fn does not tend to
zero. More precisely, hn > h− δ for arbitrarily small δ (see the definition before Theorem 1.2).
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