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PERSISTENCE OF THE NON-TWIST TORUS

IN NEARLY INTEGRABLE HAMILTONIAN SYSTEMS

JUNXIANG XU AND JIANGONG YOU

(Communicated by Yingfei Yi)

Abstract. In this paper we consider analytic nearly integrable hamiltonian
systems, and prove that if the frequency mapping has nonzero Brouwer topo-
logical degree at some Diophantine frequency, then the invariant torus with
this frequency persists under small perturbations.

1. Introduction

Consider an analytic hamiltonian H(q, p) = h(p)+f(q, p), where (q, p) ∈ Tn×D,
with Tn being the usual n-dimensional torus and D a bounded simply connected
open domain of Rn. h(p) and f(q, p) are real analytic on D̄ and D̄×Tn, respectively.
The corresponding hamiltonian system reads as

(1.1)

{
q̇ = Hp(q, p) = hp(p) + fp(q, p)
ṗ = −Hq(q, p) = −fq(q, p)

.

If f = 0, the system (1.1) is integrable and possesses a family of invariant
tori Tn × {p0} for all p0 ∈ D, with ω(p0) = hp(p0) as its frequency. The whole
phase space is occupied by the invariant tori. Under Kolmogorov’s non-degeneracy
condition, that is,

det(∂ω/∂p) = det(hpp) �= 0,

the classical KAM theorem asserts that most of the tori will survive small per-
turbations [6, 1, 2, 7, 5, 8, 9]. What’s more, for a fixed Diophantine frequency
in the image of the frequency map, the perturbed system still has an invariant
torus with this frequency (in this case, we say that the torus persists under small
perturbations).

The classical KAM theorem can be extended to the case of Rüssmann’s non-
degeneracy condition

(1.2) a1ω1(p) + a2ω2(p) + · · ·+ anωn(p) �≡ 0 on D̄
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for all (a1, a2, · · · an) ∈ Rn \ {0} [10, 12, 11, 4, 16, 15, 13] in the sense that the
perturbed system (1.1) still has a family of invariant tori of positive measure.

However, under Rüssmann’s non-degeneracy condition one can only get the exis-
tence of a family of invariant tori, but there is no information on the persistence or
not of any individual torus. In fact, one cannot expect persistence when the image
of the frequency map is a sub-manifold.

In this paper, we will investigate the persistence of tori without assuming Kol-
mogorov’s non-degeneracy condition. Consider an unperturbed torus with fre-
quency ω0 = ω(p0) = hp(p0). If hpp(p0) = 0, we call this unperturbed torus non-
twist. We will prove that if ω0 is a Diophantine frequency and the topological degree
deg(ω,D, ω0) �= 0, then the perturbed system still has an invariant torus with ω0

as its frequency, i.e., the torus persists under small perturbations. The following
theorem is the main result of this paper.

Theorem 1.1. Suppose that h(p) and f(q, p) are real analytic on D̄ and Tn × D̄,
respectively. Let ω(p) = hp(p) and ω0 = ω(p0), with p0 ∈ D. Suppose that ω0

satisfies the Diophantine condition

(1.3)
∣∣〈ω0, k〉

∣∣ ≥ α

|k|τ , ∀ 0 �= k ∈ Z
n,

and that the Brouwer degree of the frequency mapping ω at ω0 on D is not zero,
i.e.

deg(ω,D, ω0) �= 0.

Then there exists a sufficiently small positive constant ε > 0 such that the system
(1.1) has an invariant torus with ω0 as its frequency if ‖f‖ = supTn×D |f(q, p)| ≤ ε.

Remark. By a property of the topological degree, it follows easily that for a Dio-
phantine frequency ω∗ sufficiently close to ω0, the invariant torus with ω∗ as its
frequency can also persist under small perturbations.

Remark. An example to which the above theorem can be applied is ω(p) = ω0 +
(p31, p

3
2 · · · , p3n). At p = 0, ω is degenerate in the Kolmogorov sense and so the classic

KAM theorem cannot be applied. Although ω satisfies Rüssmann’s non-degeneracy
condition, the previous KAM theorems cannot tell us whether the perturbed system
has an invariant torus with ω0 as the frequency.

Remark. Our result can be easily generalized to lower dimensional hyperbolic in-
variant tori. However, this is not true for the elliptic case.

We follow the paper [8] in the standard part of KAM iteration. First we linearize
the hamiltonian system (1.1) at the invariant tori of the integrable system, and then
we will consider instead a parameterized hamiltonian system. For any ξ ∈ D, let
p = ξ + I and q = θ. Then,

H(q, p) = h(ξ) + 〈hp(ξ), I〉+ fh(I; ξ) + f(θ, ξ + I)

= e+ 〈ω(ξ), I〉+ P (ξ, θ, I),

where e = h(ξ), ω(ξ) = hp(ξ), P (θ, I; ξ) = fh(I, ξ) + f(θ, ξ + I), and ξ ∈ D is
regarded as a parameter. Here e is an energy constant, which is usually omitted,
ω : ξ → ω(ξ) is called the frequency mapping, and P is a small perturbation term.

Let

D(s, r) =
{
(θ, I) ∈ C

n × C
n
∣∣ |Im θ|∞ ≤ s, |I|1 ≤ r

}
,
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where |Im θ|∞ = max1≤i≤n |Imθi| and |I|1 =
∑

1≤i≤n |Ii|. Let
Π = {ξ ∈ D | dist (ξ, ∂D) ≥ σ},

where σ > r > 0 is a small constant. Let Πσ be the complex closed neighborhood
of Π in C

n with radius σ, that is,

Πσ = {ξ ∈ C
n | dist (ξ,Π) ≤ σ}.

Now the hamiltonian function H(ξ; θ, I) is real analytic in (ξ; θ, I) on Πσ ×
D(s, r). The corresponding hamiltonian system becomes

(1.4)

{
θ̇ = HI = ω(ξ) + PI(ξ; θ, I)

İ = −Hθ = −Pθ(ξ; θ, I)
.

Thus, persistence of invariant tori for the nearly integrable system (1.1) is reduced
to that of invariant tori for the family of hamiltonian systems (1.4) indexed by the
parameter ξ ∈ Π.

We expand P (ξ; θ, I) as a Fourier series with respect to θ:

P (ξ; θ, I) =
∑
k∈Zn

Pk(ξ; I) e
i〈k,θ〉.

Define
‖P‖Πσ×D(s, r) =

∑
k, l

‖Pk‖σ;r es|k|,

where ‖Pk‖σ;r = supξ∈Πσ ,|I|1≤r |Pk(ξ; I)|.

Theorem 1.2. Let H(ξ; θ, I) = 〈ω(ξ), I〉+P (ξ; θ, I) be real analytic on Πσ×D(s, r),
where Π ⊂ Rn is a bounded simply connected domain. Let ω0 = ω(ξ0) with ξ0 ∈ Π.
Suppose that ω0 satisfies (1.3) and that deg(ω,Π, ω0) �= 0. Then there exists a
sufficiently small positive constant ε > 0 such that if ‖P‖Πσ×D(s, r) ≤ ε, there exists
ξ∗ ∈ Π such that the hamiltonian system (1.4) at ξ = ξ∗ has an invariant torus
with ω0 as its frequency.

Remark. Theorem 1.2 also holds true if the hamiltonian system (1.4) is finitely
smooth with respect to the parameter. For some related results we refer to [3] for
details.

2. Proof of the theorems

Our key idea is to introduce an artificial external parameter λ and consider the
following hamiltonian system:

(2.1)

{
θ̇ = HI = ω(ξ) + λ+ PI(ξ; θ, I)

İ = −Hθ = −Pθ(ξ; θ, I)
,

where H = H(ξ, λ; θ, I) = 〈ω(ξ) + λ, I〉+ P (ξ; θ, I). The hamiltonian system (1.4)
corresponds to the hamiltonian system (2.1) with λ = 0. The method of introducing
a parameter was used in [13] to give a simple proof of the KAM theorem under
Rüssmann’s non-degeneracy condition. We will first give a KAM theorem for the
hamiltonian system (2.1) with parameters (ξ, λ) and then prove Theorem 1.2.

Let
d = max

ξ,η∈Πσ

|ω(ξ)− ω(η)|

and define
B(ω, d) = {λ ∈ C

n | dist(λ, ω) < d}.
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Let O = (
⋃

ξ∈Π B(ω(ξ), d)) ∩ Rn. It follows that

ω(Π) =
{
ω(ξ) | ξ ∈ Π} ⊂ O.

Let
Oα = {Ω ∈ O | |〈k,Ω〉| ≥ α

|k|τ , ∀k ∈ Z
n \ {0}

}

and Oα,δ̃ = B(Oα, δ̃). Let K > 0 and δ̃ = α
2Kτ+1 . Then, for all Ω ∈ Oα,δ̃ it follows

that
|〈k,Ω〉| ≥ α

2|k|τ , 0 < |k| ≤ K.

Let M = Πσ × B(0, 2d+ 1). The hamiltonian H(ξ, λ; θ, I) is real analytic on M ×
D(s, r). Without loss of generality, write P (ξ, λ; θ, I) = P (ξ; θ, I).

Theorem 2.1. There exists a small ε > 0 such that if

‖P‖M×D(s,r) ≤ ε,

then we have a Cantor-like family of analytic curves in M ,

{ΓΩ : λ = λ(ξ), ξ ∈ Π | Ω ∈ Oα},
which are determined implicitly by the equation

λ+ ω(ξ) + h(ξ, λ) = Ω,

where h(ξ, λ) is a C∞-smooth function on M with |h(ξ, λ)| ≤ 2ε/r and |hλ(ξ, λ)|+
|hξ(ξ, λ)| ≤ 1

2 , and a parameterized family of symplectic mappings

Φ(ξ, λ; ·, ·) : D(s/2, r/2) → D(s, r), (ξ, λ) ∈ Γ =
⋃

Ω∈Oα

ΓΩ,

where Φ is C∞-smooth in (ξ, λ) on Γ in the sense of Whitney and analytic in (θ, I)
on D(s/2, r/2), such that for each (ξ, λ) ∈ ΓΩ,

H(ξ, λ; Φ(ξ, λ; θ, I)) = 〈Ω, I〉+ P∗(ξ, λ; θ, I),

where P∗(ξ, λ; θ, I) = O(I2) at I = 0. Therefore, the hamiltonian system (1.4) has
invariant tori Φ(ξ, λ;Tn, 0) with Ω as their frequencies.

Now we first use Theorem 2.1 to prove Theorem 1.2 and delay the proof of
Theorem 2.1 until later. In fact, let Ω = ω0 and then we have an analytic curve
Γω0

: ξ ∈ Π → λ(ξ), implicitly determined by the equation λ+ω(ξ) + h(ξ, λ) = ω0.
By the implicit function theorem we have

λ(ξ) = ω0 − ω(ξ) + λ̂(ξ), ∀ξ ∈ Π.

Moreover, if ε is sufficiently small, we have |λ̂(ξ)| ≤ 2ε/r and |λ̂ξ(ξ)| ≤ 4ε/r. From
the assumption it follows that

deg(ω0 − ω,Π, 0) �= 0.

So if ε is sufficiently small we have

deg(λ,Π, 0) = deg(ω0 − ω,Π, 0) �= 0.

Then we have ξ∗ ∈ Π such that λ(ξ∗) = 0. Therefore, the hamiltonian system (1.4)
with H(ξ∗; θ, I) = H(ξ∗, λ(ξ∗); θ, I) has an invariant torus Φ(ξ∗, λ(ξ∗);T

n, 0) with
ω0 as the frequency.

Now it remains to prove Theorem 2.1. Our method is the standard KAM itera-
tion. We should note that it is very important to keep the parameters ξ and λ in
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the KAM iteration so that one can see clearly the dependence of KAM tori on the
parameters.

KAM step. We summarize our KAM step in the following iteration lemma.

Lemma 2.1 (Iteration Lemma). Consider the hamiltonian

H(ξ, λ; θ, I) = N(ξ, λ; I) + P (ξ, λ; θ, I),

where N(ξ, λ; I) = 〈Ω(ξ, λ), I〉 with Ω(ξ, λ) = ω(ξ) + λ + h(ξ, λ). Assume that the
following hold:

A1. N and P are analytic on M and M ×D(s, r), respectively. With 0 < E < 1
and 0 < ρ < s/5, P satisfies

‖P‖M×D(s,r) ≤ ε = αrρτ+n+1E.

A2. The function h satisfies

(2.2) |hλ(ξ, λ)|+ |hξ(ξ, λ)| <
1

2
, ∀(ξ, λ) ∈ M,

and for each Ω ∈ Oα the equation

Ω(ξ, λ) = ω(ξ) + λ+ h(ξ, λ) = Ω

defines implicitly an analytic mapping

λ : ξ ∈ Πσ → λ(ξ) ∈ B(0, 2d+ 1)

such that ΓΩ = {(ξ, λ(ξ)) | ξ ∈ Πσ} ⊂ M. Moreover, for K > 0 satisfying e−Kρ =

E, δ̃ = α
2Kτ+1 and δ = 2

3 δ̃, we have

U(ΓΩ, δ) = {(ξ, λ′) ∈ Πσ × C
n | |λ′ − λ(ξ)| ≤ δ} ⊂ M.

Then, there exist M+ ⊂ M and D(s+, r+) ⊂ D(s, r) such that for any (ξ, λ) ∈ M+

there exists a symplectic mapping

Φ(ξ, λ; ·, ·) : D(s+, r+) → D(s, r),

with Φ real analytic on M+ ×D(s+, r+), such that

H+(ξ, λ; θ, I) = H(ξ, λ; Φ(ξ, λ; θ, I)) = N+(ξ, λ; I) + P+(ξ, λ; θ, I),

where N+(ξ, λ; I) = 〈Ω+(ξ, λ), I〉 with Ω+(ξ, λ) = ω(ξ) + λ+ h(ξ, λ) + ĥ(ξ, λ), and
the following conclusions hold:
(i) The new perturbation term P+ satisfies

‖P+‖M+×D(s+,r+) ≤ ε+ = α+r+ρ
τ+n+1
+ E+

with

s+ = s− 5ρ, η =
√
E, ρ+ =

1

2
ρ, r+ = ηr, E+ = cE

3
2 ,

and

M+ =
{
(ξ, λ′) ∈ C

n × C
n | ξ ∈ Πσ− 1

2 δ
, (ξ, λ) ∈ Γ, |λ′ − λ| ≤ 1

2
δ
}
,

where Γ =
⋃

Ω∈Oα
ΓΩ. Moreover, for the mapping Φ we have the following estimates:

‖W (Φ− id)‖M+×D(s+,r+) ≤ cE,

and
‖W (DΦ− Id)W−1‖M+×D(s+,r+) ≤ cE,

where D is the differentiation operator with respect to (θ, I) and W is the matrix
diag(ρ−1In, r

−1In) with In being the n-th unit matrix.
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(ii) ĥ satisfies

|ĥ(ξ, λ)| ≤ ε

r
= αρτ+n+1E, ∀(ξ, λ) ∈ M

and

|ĥλ(ξ, λ)|+ |ĥξ(ξ, λ)| ≤
2ε

rδ
, ∀(ξ, λ) ∈ M+.

Thus, if

(2.3) 2αρτ+n+1E ≤ 1

4
δ,

then the equation

Ω+(ξ, λ) = ω(ξ) + λ+ h+(ξ, λ) = Ω

determines implicitly an analytic mapping

λ+ : ξ ∈ Πσ+
→ λ+(ξ) ∈ B(0, 2d+ 1) with σ+ = σ − 1

2
δ

that satisfies

(2.4) |λ+(ξ)− λ(ξ)| ≤ 2ε

r
= 2αρτ+n+1E ≤ 1

4
δ

and

(2.5) Γ+
Ω = {(ξ, λ+(ξ)) | ξ ∈ Πσ+

} ⊂ M+.

Let δ+ = α
2Kτ+1

+

with K+ satisfying eρ+K+ = E+. If

(2.6) δ+ <
1

4
δ,

then for all Ω ∈ Oα we have U(Γ+
Ω , δ+) ⊂ M+.

Remark. The above lemma is actually one step in our KAM iteration. If (2.3) and
(2.6) hold and h+ satisfies (2.2), then the assumptions A1 and A2 hold for H+

and so the KAM step can be iterated.

Proof of the iteration lemma. Our KAM step is standard and we divide it into sev-
eral parts.

A. Truncation. Let R = P (ξ, λ; θ, 0) + 〈PI(ξ, λ; θ, 0), I〉. It follows easily that
‖R‖M×D(s, r) ≤ 2‖P‖M×D(s, r) ≤ 2ε. Let

R =
∑
k∈Zn

Rk(ξ, λ; I)e
i〈k, θ〉

and

RK =
∑

|k|≤K

Rk(ξ, λ; I)e
i〈k, θ〉.

By definition, we have

‖R −RK‖M×D(s−ρ, r) ≤ 2εe−Kρ.

B. Construction of the symplectic mapping. The symplectic mapping is generated
by a hamiltonian flow mapping at time 1, that is, Φ = Xt

F |t=1, where F is the
generation function. It follows that

H ◦ Φ = N+ + {N,F}+RK − [R] + P+,
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where [R] denotes the average of R on Tn, N+ = N + [R] = 〈I,Ω+(ξ, λ)〉, {·, ·} is
the Poisson bracket, and

P+ = (R−RK) +

∫ 1

0

{(1− t){N,F}+R,F} ◦Xt
F dt+ (P −R) ◦ Φ.

We choose F such that

(2.7) {N,F}+RK − [R] = 0.

It follows that
Ω : (ξ, λ) ∈ U(Γ, δ) → Ω(ξ, λ) ∈ Oα,δ̃.

Thus, we have

|〈Ω(ξ, λ), k〉| ≥ 1

2

α

|k|τ , ∀ (ξ, λ) ∈ U(Γ, δ), ∀ 0 < |k| ≤ K.

Let {Fk} and {Rk} be the Fourier coefficients of F and R with respect to θ.
Thus

Fk =
1

i〈Ω(ξ, λ), k〉Rk, 0 < |k| ≤ K

and Fk = 0 with k = 0 or |k| > K.
We have

‖F‖U(Γ,δ)×D(r,s−ρ) ≤
cε

αρτ+n
.

C. Estimates for the symplectic mapping. It follows that

‖WXF ‖U(Γ,δ)×D(r,s−2ρ) ≤
cε

αrρτ+n+1
= cE.

Thus, if 0 < η ≤ 1
8 and cE ≤ 1

8 , then for all (ξ, λ) ∈ U(Γ, δ) we have

Φ(ξ, λ; ·, ·) = X1
F : D(rη, s− 3ρ) → D(2rη, s− 2ρ).

Combining this with Cauchy’s estimate, we have

‖W (Φ− id)‖U(Γ,δ)×D(s−5ρ,ηr) ≤ cE

and
‖W (DΦ− Id)W−1‖U(Γ,δ)×D(s−5ρ,ηr) ≤ cE.

Thus the estimates for Φ hold.
D. Estimates of the error terms. Since ĥ(ξ, λ) = [PI(ξ, λ; ·, 0)], by the assump-

tions the estimate for ĥ obviously holds. Let M+ be defined as in conclusion (i).
Since the set Oα is closed, it follows easily that M+ is also closed. Obviously, we

have dist(M+, ∂M) ≥ 1
2δ. By Cauchy’s estimate, the estimates for ĥξ and ĥλ follow

easily.
Moreover, by (2.3) and the implicit function theorem, if

|h+λ(ξ, λ)| ≤
1

2
, ∀(ξ, λ) ∈ M,

the equation
Ω+(ξ, λ) = ω(ξ) + λ+ h+(ξ, λ) = Ω

determines an analytic mapping

λ+ : ξ ∈ Πσ+
→ λ+(ξ) ∈ B(0, 2d+ 1).

It is easy to see that statements (2.4) and (2.5) hold. By (2.6) we have that
U(Γ+

Ω , δ+) ⊂ M+. Thus, conclusion (ii) holds.
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As usual, it follows that

‖P+‖M+×D(s+,r+) < c

[
ε2

αrρτ+n+1
+ (η2 + e−Kρ)ε

]
.

By the choice of the parameters, we have

‖P+‖M+×D(s+,r+) ≤ cεE ≤ cαr+ρ
τ+n+1
+ E

3
2 = α r+ρ

τ+n+1
+ E+,

where E+ = cE
3
2 with c being a constant that depends only on n and τ. This

implies conclusion (i). �

Iteration. Now we choose some suitable parameters so that the above step can
be iterated infinitely.

At the initial step, let ρ0 = s/20, r0 = r, ε0 = αr0ρ
τ+n+1
0 E0 = ε, and η0 = E0

1
2 .

Let K0 satisfy e−K0ρ0 = E0.
Assume the above parameters are all well defined for j. Then, we define ρj+1 =

1
2ρj , ηj = E

1
2
j , rj+1 = ηjrj and Ej+1 = cE

3
2
j ; εj+1, ηj+1, Kj+1 are defined similarly.

Let M0 = Πσ × B(0, 2d+ 1) and D0 = D(s0, r0). Let H0 = H. By the iteration
lemma, we have a sequence of closed sets {Mj} with Mj+1 ⊂ Mj and a sequence of
symplectic mappings {Φj} such that for each (ξ, λ) ∈ Mj+1, Φj(ξ, λ; ·, ·) : Dj+1 →
Dj , where Dj = D(sj , rj). Moreover, we have the following estimates:

‖Wj(Φj − id)‖Mj+1×Dj+1
≤ cEj

and

‖Wj(DΦj − Id)W−1
j ‖Mj+1×Dj+1

≤ cEj .

Let Φj = Φ0 ◦ Φ1 ◦ · · ·Φj−1 with Φ0 = id and

Hj = H ◦ Φj = Nj + Pj ,

where Nj(ξ, λ; I) = 〈Ωj(ξ, λ), I〉 with Ωj(ξ, λ) = ω(ξ)+λ+hj(ξ, λ). Let δ̃j =
α

2Kτ+1
j

,

δj = 2
3 δ̃j and σj = σj−1 − 1

2δj−1 with σ0 = σ. From the iteration lemma we know
that for Ω ∈ Oα the equation

Ωj(ξ, λ) = ω(ξ) + λ+ hj(ξ, λ) = Ω

on Mj defines implicitly an analytic mapping λ = λj(ξ), ξ ∈ Πσj
, whose graph in

Mj forms an analytic curve Γj
Ω.

Let Γj =
⋃

Ω∈Oα
Γj
Ω. We have

Mj+1 =
{
(ξ, λ′) ∈ C

n × C
n | ξ ∈ Πσj+1

, (ξ, λ) ∈ Γj , |λ′ − λ| ≤ 1

2
δj

}
.

Obviously, it follows that Mj+1 ⊂ Mj and dist(Mj+1, ∂Mj) ≥ 1
2δj .

Let

ĥj(ξ, λ) = Ωj+1(ξ, λ)− Ωj(ξ, λ).

Then we have

|ĥj(ξ, λ)| ≤
εj
rj
, ∀ (ξ, λ) ∈ Mj

and

|ĥjξ(ξ, λ)|+ |ĥjλ(ξ, λ)| ≤
2εj
δjrj

, ∀ (ξ, λ) ∈ Mj+1.
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Furthermore, we have

|λj+1(ξ)− λj(ξ)| ≤
2εj
rj

, ∀(ξ, λ) ∈ Mj+1.

Obviously it follows that

‖Pj‖Mj×Dj
≤ εj = αρτ+n+1

j rjEj .

Convergence of the iteration. Now we prove convergence of the KAM iter-
ation. In the same way as in [8, 15], it follows that if c

1
2E0 ≤ 1

2 , then

‖W0DΦjW−1
j ‖Mj×Dj

≤
j∏

i=1

(1 + cEj) < 2.

So, we have

‖W0(Φ
j − Φj−1)‖Mj×Dj

≤ cEj

and

‖W0D(Φj − Φj−1)‖Mj×Dj
≤ cEj .

Let D∗ = D(0, 12s), M∗ =
⋂

j≥0 Mj and Φ = limj→∞ Φj . Thus, we have

‖W0(Φ− id)‖M∗×D∗ ≤ cE0

and

‖W0(DΦ− Id)‖M∗×D∗ ≤ cE0.

Since Φj is affine in I, we have convergence of Φj to Φ on D(r/2, s/2) and

‖W0(Φ− id)‖M∗×D(s/2,r/2) ≤ cE0.

Now we consider convergence of {hj}. Let Fj =
2εj
δjrj

. It follows that

Fj+1

Fj
= (

1

2
)n

(Kj+1ρj+1)
τ+1

(Kjρj)τ+1

Ej+1

Ej
= (

1

2
)n

xτ+1
j+1e

−xj+1

xτ+1
j e−xj

,

where xj = Kjρj . By the iteration Ej+1 = cE
3
2

j , if E0 is sufficiently small, Ej

are all sufficiently small and so Kjρj are sufficiently large. Since the function
xτ+1e−x is decreasing for x > τ + 1, we can choose a small E0 > 0 such that
Fj+1

Fj
≤ 1

4 and Fj ≤ 1
4 , ∀j ≥ 0. Thus the assumption (2.3) holds. Moreover,

δj+1

δj
= ( 12 )

τ+1 xj

xj+1
≤ 1

4 . Thus, the condition (2.6) holds.

Let σ∗ = σ − 1
2

∑∞
j=0 δj . It follows that σ∗ ≥ σ − 2

3δ0. If E0 is sufficiently small

such that δ0 ≤ σ, then we have σ∗ ≥ 1
3σ. Thus Πσ∗ ⊂

⋂
j≥0 Πσj

.

By iteration we have hj =
∑j−1

i=0 ĥi. Combining this with the estimates for ĥj ,
we have that for all (ξ, λ) ∈ Mj ,

|hj(ξ, λ)| ≤
j−1∑
i=0

1

2
δiFi ≤

1

2
δ0

j−1∑
i=0

Fi ≤ δ0F0 ≤ 2ε/r.

Similarly, it follows that for all (ξ, λ) ∈ Mj ,

|hjξ(ξ, λ)|+ |hjλ(ξ, λ)| ≤
j−1∑
i=0

Fi ≤ 2F0 ≤ 12(− lnE0)
τ+n+1E0.
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So if E0 is sufficiently small we have

|hjξ(ξ, λ)|+ |hjλ(ξ, λ)| ≤
1

2
, ∀(ξ, λ) ∈ Mj ,

and so the assumption (2.2) holds for all j.
Let h = limj→∞ hj . Then for (ξ, λ) ∈ M∗ we have

|h(ξ, λ)| ≤ 2ε

r

and

|hξ(ξ, λ)|+ |hλ(ξ, λ)| ≤ 12(− lnE0)
τ+n+1E0 ≤ 1

2
.

In the same way it is easy to show that {λj} is also convergent on Πσ∗ . In fact,
we can choose E0 sufficiently small such that Fj ≤ 1

4 for all j ≥ 0. Then for i > j
it follows that

|λi(ξ)− λj(ξ)| ≤
i−1∑
l=j

Flδl ≤ 2Fjδj ≤
δj
2
.

Let λj(ξ) → λ(ξ), ξ ∈ Πσ∗ . Since Γj
Ω = {(ξ, λj(ξ)) |ξ ∈ Πσj

} ⊂ Mj and λj are all
analytic on Πσ∗ , so is the limit λ. Let i → ∞, and then we have

|λ(ξ)− λj(ξ)| ≤
δj
2
.

This implies that Γ∗
Ω = {(ξ, λ(ξ)) | ξ ∈ Πσ∗} ⊂ Mj and so Γ∗ =

⋃
Ω∈Oα

Γ∗
Ω ⊂ Mj .

Hence, Γ∗ ⊂ M∗ =
⋂

j≥0Mj . Obviously, for (ξ, λ) ∈ Γ∗
Ω we have

λ+ ω(ξ) + h(ξ, λ) = Ω.

In the same way as in [15] we can prove that h and P∗ are C∞-smooth with
respect to (ξ, λ) on M∗ in the Whitney sense. By Whitney’s extension theorem
[14], we can extend h and P∗ to be C∞-smooth on M , but this makes sense only
on M∗ for our problem.
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