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Abstract

In this note, we prove that the reducibility of analytic quasi-periodic linear
systems close to the identity is irrelevant to the size of the base frequencies.
More precisely, we consider the quasi-periodic linear systems

Ẋ = (A+B(θ))X, θ̇ = λ−1ω

in Cm where the matrix A is constant and ω is a fixed Diophantine vector,
λ ∈ R\{0}. We prove that the system is reducible for typical A if B(θ) is
analytic and sufficiently small (depending on A,ω but not on λ).

1 Introduction and Main Result

Consider quasi-periodic (or q-p for short) linear differential systems close to constant,

Ẋ = (A+B(θ))X, θ̇ = ω, (1.1)

where A is a m×m constant matrix, B(θ) is a small analytic m×m matrix defined
on Tn, the frequencies ω = (ω1, · · · , ωn) are rational independent.

A typical example of q-p linear systems comes from the (continuous-time) q-p
Schrödinger operators, which are defined on L2(R) as

(Ly)(t) = −y′′(t) + q(θ + ωt)y(t),

where q : Tn → R is called the potential and θ ∈ Tn is called the phase. It is
well-known that the spectrum of L does not depend on the phase when ω is rational
independent, but it is closely related to the dynamics of the Schrödinger equations

(Ly)(t) = −y′′(t) + q(θ + ωt)y(t) = Ey(t), (1.2)
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or equivalently the dynamics of the linear systems

Ẋ = VE,q(θ)X, θ̇ = ω, (1.3)

where

VE,q(θ) =

(
0 1

q(θ)− E 0

)
∈ sl(2,R).

System (1.1) is said to be reducible, if there exists a gl(m,C)-valued function P
defined on Tn = Rn/Zn such that the change of variables x 7→ P (θ)x transforms
system (1.1) into a constant system, i.e., a linear system with constant coefficient
(or we say that P conjugates system (1.1) to a constant linear system and P is
called the conjugation map). If P is Cr (or analytic), we say that system (1.1) is
Cr(or analytically) reducible. It is equivalent to say that P−1((A+B(θ))P − ∂ωP )
is a constant matrix.

Due to the importance in the theory of dynamical systems and the spectrum
theory of the corresponding operators, the reducibility problem of q-p linear systems
has received much attention. Floquet theory shows that the periodic linear systems
(i.e., n=1) are always reducible, but it is not the case for quasi-periodic linear
systems (see [11]).

The reducibility of q-p linear systems (1.1) was initiated by Dinaburg and Sinai
[4], who proved that the linear systems (1.3) are reducible for “most” E > E∗(q, α, τ)
which is sufficiently large, if ω is fixed and satisfies the Diophantine condition:

|〈k, ω〉| ≥ α

|k|τ
, 0 6= k ∈ Zn,

α, τ are positive constants. The result was generalized by Rüssmann [15] for ω
satisfing the Bruno condition. The reducibility of q-p linear systems with coefficients
in gl(n,R) was considered by Jorba and Simó [10].

Eliasson [5] proved a full measure reducibility result for q-p linear Schrödinger
equations. More precisely, Eliasson proved that (1.3) is reducible for almost all E >
E∗(q, ω) in Lebesgue measure sense, where ω is a fixed Diophantine vector. All the
above mentioned results hold for more general systems (1.1) withB sufficiently small.
We emphasize that all the above results are perturbative, i.e., E∗ (or the smallness
of B in (1.1) ) depends on the frequency ω through its Diophantine constant α. In
case that the frequency is of the form 1

λ
ω, α→ 0 as λ→∞. To get the reducibility

result, the size of the perturbation has to go to zero when λ→∞ .
An example by Bourgain [3] proves that the Eliasson’s perturbative reducibility

result is optimal, i.e., the size of the perturbation does depend on the frequencies
some how. In this paper, we will prove that the reducibility does not depend on the
size of the base frequencies. More precisely, we prove a reducibility result for (1.1)
no matter how small the ω is.

In case that n = 2, stronger reducibility result called non-perturbative reducibil-
ity is available. The non-perturbative reducibility means that the smallness of the
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perturbation does not depend on the Diophantine constant α. Hou and You [9]
proved, besides other results, that non-perturbative reducibility for (1.3). The non-
perturbative reducibility and global reducibility of q-p linear mappings were given
by Avila and Krikorian [2] , Avila and Jitormirskaya [1]. For more results, see [6],
[8], [13], [14].

In this paper, we consider the following family of quasi-periodic skew-product
systems with n ≥ 2

Ẋ = (A+B(θ))X, θ̇ =
ω

λ
, (1.4)

where θ ∈ Tn, X ∈ Cm, λ ∈ R\{0}, A is a constant m×m matrix, B(θ) is analytic
and sufficiently small which does not depend on λ, ω = (ω1, · · · , ωn) is fixed and
satisfies the Diophantine condition

|〈k, ω〉| ≥ α

|k|τ
, 0 6= k ∈ Zn, (1.5)

α, τ are positive constants. Scaling the time, systems (1.4) are equivalent to the
following systems

Ẋ = λ(A+B(θ))X, θ̇ = ω. (1.6)

For the sake of simplicity, in the following, we denote by |A| the determinant
of a m × m matrix A = (aij), by ‖A‖ its operator norm which is equivalent to
m ·max |aij|. Denote by ‖(v1, · · · , vm)‖ = max1≤j≤m |vj| the norm for vectors. For
k ∈ Zn, denote its module by |k| = |k1| + · · · + |kn|. [a] denotes the integer part of
a number a. If f is a function, |f | denotes its absolute value. Through this note, we
use c to designate positive constant which may take different values when its actual
value does not matter.

Suppose that B(θ) is an analytic gl-valued function defined on

Wh(Tn) = {θ ∈ Cn|dist(θ,Tn) < h}.

Let
‖Bij(θ)‖h =

∑
k∈Zn
|Bkij|e|k|h,

where
Bij(θ) =

∑
k∈Zn

Bkije
i〈k,θ〉.

We will give a reducibility result for typical A. Since the eigenvalues of typical
matrices are mutually different and the hyperbolic case is trivial, we consider the
case A =

√
−1diag(µ1, µ2, · · · , µm) without loss of generality. For simplicity, we let

µ1, · · · , µm ∈ [1, 2].
Now we are in the position to state the main result.

Theorem 1 Suppose that the frequency ω is fixed and satisfies the Diophantine
condition (1.5), λ ∈ R\{0} is fixed. Then there exists ε depending on α, h but not
on λ such that if ‖B‖h < ε, the system (1.4) is reducible for (µ1, · · · , µm) ∈ Oλ ⊂
[1, 2]m, where the measure of Oλ is larger than 1− cε 1

3 for all λ.
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Another variant of Theorem 1 is the following:

Theorem 2 Suppose that the frequency ω is fixed and satisfies the Diophantine
condition (1.5), A =

√
−1diag(µ1, µ2, · · · , µm) is fixed with µi, µj different, λ ∈

R\{0}. Then there exists ε depending on α, h,A such that if ‖B‖h < ε, the system

(1.4) is reducible for all λ ∈ R\{0}, but a small set of measure O(ε
1
3 ).

Remark 1.1 We thank H. Eliasson for pointing out that Theorem 2 may of more
interest in some case.

Remark 1.2 Applying Theorem 1 to (1.3), we get a reducibility result for the
Schrödinger systems with arbitrarily small frequencies. In the previous results, the
smallness of the perturbation does depend on the size of the frequencies, more pre-
cisely on λ. Thus the size of the perturbation is not uniform for λ.

Remark 1.3 In the case that |λ| ≤ 1, the reducibility of (1.4) is covered by the
previous result. In this paper, we merely consider the case |λ| ≥ 1. When λ is large,
the perturbation λB(θ) in (1.6) can be large since B(θ) is independent of λ, which
is out of scope of the previous results. Actually, the main innovation of this note is
the reducibility for arbitrarily large λ.

Remark 1.4 In Theorem 1, the set Oλ does depend on λ, but the lower bound of the
measure of Oλ does not depend on λ. In fact, m(Oλ) = 1−min{O(ε

1
3 ), O(|λ| 12 e−a|λ|ε 1

2 )}
where a is a positive number depending on ε. It is easy to see that m(Oλ) tends to
1 as λ→∞.

2 Outline of the Proof

To prove the reducibility, it is equivalent to find a change of variables X → P (θ)X,
such that the transformed system

Ẋ = (LωP · P−1 + λP (A(θ) +B(θ))P−1)X, θ̇ = ω

is a linear system with constant coefficients, where Lω = 〈ω, ∂
∂θ
〉 is the derivative

along ω.

We will try to find a transformation close to the identity to finish the job, i.e.,
we assume that

P (θ) = I + F (θ),

where F (θ) ∈ Cω
h (Tn, g) is small. In this case, P−1 can be expanded as

P−1 = I − F + F 2 +O(‖F‖3).
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It follows that

LωP · P−1 + λP (A(θ) +B(θ))P−1

= λA(θ) + LωF + λ[F,A(θ)] + λB(θ)

− LωF · F + λ[F,B(θ)]− λFA(θ)F + λA(θ)F 2 + λO(‖F‖3). (2.1)

We will find F by Newtonian iteration scheme. Firstly, we solve the linearized
equation

LωF + λ[F,A(θ)] + λB(θ) = 0, (2.2)

where [F,A] = FA− AF . Since A is diagonal, (2.2) is decomposed as

LωFij + λ(µj − µi)Fij + λBij(θ) = 0. (2.3)

One sees that the above equation does not admit a small solution when i = j.
Our strategy is to find a F such that the off-diagonal terms of the transformed
system are smaller, while the diagonal terms of the matrix B(θ) are kept un-
solved and moved to A. The price we have to pay is, from the second step,
A =

√
−1diag(µ1 + a1(θ), · · · , µm + am(θ)) will depend on θ. Then we have to

solve θ-dependent homological equations to keep the Newtonian iteration working.
This is the key point in our proof. After finitely many iteration steps (depending
on λ), we get a linear system of the form

Ẋ = λ(Ã(θ) + B̃(θ))X, θ̇ = ω,

where Ã(θ) is diagonal, ‖Ã(θ) − A‖h ≤ 3ε, ‖B̃(θ)‖h
2
≤ cεe−c|λ|h. To this stage, we

can remove the θ-dependent terms in Ã(θ) and get a system

Ẋ = (λA∗ +B∗(θ))X, θ̇ = ω,

with a constant matrix A∗ and a sufficiently small ‖B∗(θ)‖h
2
< cε. Then we use a

standard result to get the reducibility.

3 Key Lemmas

We need the following Lemmas:

Lemma 3.1 Suppose that a0 is a non-zero constant, [a(θ)] = 0, ‖a(θ)‖h < ε0 ≤
a20

2(|ω|+|a0|) and ‖b(θ)‖h < ε. Then the equation

LωF + λ(a0 + a(θ))F + λb(θ) = 0 (3.1)

has an approximating solution F ∗ such that

‖F ∗‖h <
2(|ω|+ |a0|)

a2
0

ε (3.2)
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and
LωF

∗ + λ(a0 + a(θ))F ∗ + λb(θ) = λb̄(θ) (3.3)

with

‖b̄(θ)‖h−σ < cεe
− |a0|σ
|a0|+|ω|

|λ|
.

Proof: Rewrite the linear operator Lω + λ(a0 + a(θ)) as an infinite dimensional
matrix L, and rewrite F, a, b as infinite dimensional vectors defined by their Fourier
coefficients. Let

LN = R[−N,N ]LR[−N,N ], bN = R[−N,N ]b,

where R[−N,N ] is the coordinate restriction to [−N,N ], N ∈ N+. Let N = [ |a0|
|ω|+|a0| |λ|],

then the diagonal of LN is dominated, and thus L−1
N < 2(|ω|+|a0|)

a20|λ|
. It follows that

LNF + λbN = 0 has a solution FN = λL−1
N bN . The analytic function F ∗(θ) corre-

sponding to (λL−1
N bN , 0) is the desired approximating solution. It is obvious that

‖F ∗‖h <
2(|ω|+ |a0|)

a2
0

‖b‖h

and

‖b̄(θ)‖h−σ = ‖RZ\[−N,N ](a(θ)F ∗ + b(θ))‖h−σ < cεe
− |a0|σ
|a0|+|ω|

|λ|
.

Lemma 3.2 (Refined Kuksin’s Lemma) Assume furthermore

|i〈k, ω〉+ λa0| ≥
γ

|k|τ
, 0 6= k ∈ Zn (3.4)

and

‖a(θ)‖h < ε0 ≤ c
|a0|αστ+n

|ω|+ |a0|
. (3.5)

Then equation (3.1) has an solution F with

‖F‖h−2σ < c
ε

γστ+n
. (3.6)

Proof: Let F ∗ be the solution of (3.3). In order to get a solution of (3.1), we
further solve the following equation:

LωF̃ (θ) + λ(a0 + a(θ))F̃ (θ) + λb̄(θ) = 0. (3.7)

Let
ã(θ) =

∑
k 6=0

ak
i〈k, ω〉

ei〈k,θ〉.

By (1.5), one sees that ã(θ) is well defined in the domain Wh(Tn).
Set

u(θ) = eλã(θ)F̃ (θ)
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and
G(θ) = eλã(θ)b̄(θ),

then (3.7) is changed into

Lωu+ λa0u+ λG(θ) = 0.

Expanding u(θ), G(θ) into the Fourier series, we get

(i〈k, ω〉+ λa0)uk + λGk = 0. (3.8)

Solving the equation (3.8), we obtain:

uk =
−λGk

i〈k, ω〉+ λa0

.

In order to give desired estimate for F̃ (θ) , we first estimate ã(θ) :

‖ã(θ)‖h−σ = ‖
∑
k 6=0

ak
i〈k, ω〉

ei〈k,θ〉‖h−σ

≤ ‖a‖h
α

(sup
|k|
|k|τe−|k|σ)

≤ c‖a‖h
αστ+n−1

,

then

‖G(θ)‖h−σ = ‖eλã(θ)b̄(θ)‖h−σ
≤ e

c|λ|‖a‖h
αστ+n−1 ‖b̄(θ)‖h−σ.

In view of (3.4), we have

‖u‖h−2σ =
∑
k

|uk|e|k|(h−2σ)

≤ c|λ|
γστ+n−1

e
c|λ|‖a‖h
αστ+n−1 ‖b̄(θ)‖h−σ.

It follows that

‖F̃ (θ)‖h−2σ = ‖e−λã(θ)u(θ)‖h−2σ

≤ c
|λ|

γστ+n−1
e
−|λ|( |a0|

|ω|+|a0|
σ− c‖a‖h

αστ+n−1 )
ε (3.9)

≤ c
ε

γστ+n
, (3.10)

invoking (3.5). Moreover, from (3.2) and (3.10), we have (3.6)

‖F‖h−2σ = ‖F ∗ + F̃‖h−2σ ≤ c
ε

γστ+n
.
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Remark 3.1 The Lemma refines a result by Kuksin [12]. The proof is simpler. Us-
ing this Lemma, it is promising to get the quasi−periodic solutions of the derivative
nonlinear Schrödinger equation.

Consider the quasi-periodic system on Wh(Tn):

Ẋ = λ(A+B(θ))X, θ̇ = ω, (3.11)

where A =
√
−1diag(µ1 + a1(θ), · · · , µm + am(θ)). Assume that

‖a1(θ)‖h, · · · , ‖am(θ)‖h < ε� ρ, ‖B‖ < ε� ε0.

Let Π = {(µ1, µ2, · · · , µm) ∈ [1, 2]m : |µj − µi| > ρ, 1 ≤ i, j ≤ m} with ρ = ε
1
3 .

The measure of the set Π is larger than (1− cε 1
3 )m.

Lemma 3.3 There is a F with ‖F‖h < cε such that the change of variables X →
(I + F (θ))X transforms (3.11) into

Ẋ = λ(Ã(θ) + B̃(θ))X, θ̇ = ω, (3.12)

where
Ã(θ) =

√
−1diag(µ1 + ã1(θ), · · · , µm + ãm(θ)),

‖ãi‖h < 3ε, ‖B̃‖h
2
< cεe−

ρh|λ|
2(ρ+2|ω|) .

Proof: Applying Lemma 3.1, we get an approximating solution F ∗(θ) for

LωFij + λ[(µi − µj) + ai(θ)− aj(θ)]Fij + λBij(θ) = 0, i 6= j,

with estimate ‖F ∗ij‖h < cε. Let B1 = (B̄ij)i 6=j where B̄ij = LωFij + λ[(µi − µj) +

ai(θ)− aj(θ)]Fij + λBij(θ). By Lemma 3.1, ‖B1‖h−σ < cεe−
ρσ

ρ+|ω| |λ|. Let

B2 = −1

λ
LωF

∗ · F ∗ + [F ∗, B(θ)]− F ∗A(θ)F ∗ + A(θ)(F ∗)2 +O(‖F ∗‖3).

It is easy to see that ‖B2‖h < cε2. In view of (2.1), the system (3.11) is transformed
into

Ẋ = λ(A1(θ) +B1(θ) +B2(θ))X, θ̇ = ω, (3.13)

by X → (I + F ∗(θ))X, where A1(θ) = A(θ) + diag(B11(θ), · · · , Bmm(θ)). Applying

Lemma 3.1 [log2(− ρh|λ|
2(ρ+2|ω|) ln ε

+ 1)] + 1 times, we arrive at (3.12) with the estimate

‖B̃(θ)‖h
2
< cεe−

ρh|λ|
2(ρ+2|ω|) , ‖ãi‖h < 3ε, ‖F‖h < cε.
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4 Eliminating the θ-dependent Terms in Ã(θ)

In this section, we transform (3.12) to

Ẋ = (λA∗ +B∗(θ))X, θ̇ = ω, (4.1)

where A∗ is a constant matrix, B∗(θ) is small.

Lemma 4.1 If ε ≤ cαρh
τ+n

ρ+2|ω| , then the system (3.12) can be transformed to the system

(4.1) with

A∗ =
√
−1diag(µ∗1, · · · , µ∗m), µ∗j =

1

(2π)n

∫
Tn
µj + ãj(θ) dθ

and
‖B∗‖h

2
≤ cε

2
3 .

Proof: Let āj(θ) =
∑

k 6=0
(ãj)k
i〈k,ω〉e

i〈k,θ〉 be the solution of ∂ωā = ã, and

Ā(θ) = diag(ā1(θ), · · · , ām(θ)),

which is well defined by (1.5). The change of variables X = eλĀ(θ)Y transforms
(3.12) into

Ẏ = (λA∗ +B∗(θ))Y, θ̇ = ω,

where
B∗(θ) = λeλĀ(θ)B̃(θ).

In order to give the estimate of B∗(θ) , we first estimate Ā(θ)

‖Ā(θ)‖h
2

= m · max
1≤j≤m

‖
∑
k 6=0

(ãj)k
i〈k, ω〉

ei〈k,θ〉‖h
2

≤ m · 3ε
α

(sup
|k|
|k|τe−

|k|h
2 )

≤ cε

αhτ+n−1
,

then

‖B∗(θ)‖h
2

= ‖λeλĀ(θ)B̃(θ)‖h
2

≤ c|λ|e−|λ|(
ρh

2(ρ+2|ω|)−
cε

αhτ+n−1 )ε.

If ε ≤ cαρhτ+n

ρ+2|ω| . It follows that

‖B∗(θ)‖h
2
≤ c

ρ+ 2|ω|
ρh

ε ≤ cε
2
3 .
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5 Proof of the Main Result

The change of variables Φ = eλĀ(θ) ◦ (I + F ) transforms the system (1.6) to (4.1),
where F and eλĀ(θ) are defined in Lemma 3.3 and Lemma 4.1.
Let

σ(A∗) = {
√
−1µ∗j : j = 1, · · · ,m}, |µ∗j − µj| ≤ 3ε,

h∗ =
h

2
, ε∗ = ‖B∗‖h∗ ≤ cε

2
3 .

Theorem 3 Suppose that the frequency ω is fixed and satisfies the Diophantine
condition (1.5). Then there exists a positive real number ε∗ depending on h∗, such
that if ‖B∗‖h∗ < ε∗, the measure of the set of (µ∗1, · · · , µ∗m) for which the system

(4.1) is non-reducible is less than c(ε∗)
1
2 .

Proof: See, i.g., [7].

A direct application of Theorem 3 leads to the main result of this paper.
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