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1. Introduction and main results

In this paper we study the following Hamiltonian systems

dp
dt

= −Hq(p, q) = −εfq(p, q) ,
dq
dt

= Hp(p, q) = hp(p) + εfp(p, q) , (1.1)

with Hamiltonian H (p, q) = h(p) + εf (p, q), (p, q) ∈ Ω × Tn, n ≥ 2, where
p = (p1, p2, . . . , pn) are action variables varying over some bounded connected
domainΩ in Rn, andq = (q1, q2, . . . , qn) are conjugate angular variables whose
domainTn is the usualn-torus obtained by identifying the points whose compo-
nents differ by integer multiples of 2π. Supposef (p, q) has period 2π in every
component ofq andH (p, q) is analytic inΩ̄×Tn, whereΩ̄ is the closure ofΩ.

For ε = 0 the unperturbed HamiltonianH (p, q) = h(p) is independent ofq,
and the equations of motion ar reduced to ˙p = 0, q̇ = ω with ω = hp(p). They
have an-parameter family of invariant tori{p0}×Tn for ∀p0 ∈ Ω with constant
frequenciesω(p0) = (ω1(p0), ω2(p0), . . . , ωn(p0)) = hp(p0).

If h(p) satisfies the usual nondegeneracy condition,

det[hpp(p)] /= 0 for ∀ p ∈ Ω ,

or equivalently, rank(hpp) = nfor ∀ p ∈ Ω, the well known KAM theorem points
out (see [E], [P1]): whenε is sufficiently small, the perturbed Hamiltonian sys-
tems (1.1) persist the majority of invariant tori with their frequenciesω satisfying
the strong nonresonant conditions or small divisor conditions:

|〈k, ω〉| ≥ ∆

|k|τ for all 0 /= k ∈ Zn , (1.2)
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where|k| = |k1| + |k2| + . . . + |kn|, ∆ is a small positive constant andτ > n − 1.
This result was first announced by Kolmogorov in 1954 [K] and the proof was
given by V. Arnold in [A].

Recently, there has been a fair amount of work on the perturbation of degen-
erate Hamiltonian systems, i.e., det[hpp(p)] ≡ 0. Bruno [B] proved that the ma-
jority of invariant tori of unperturbed systems are preserved if rank(hp, hpp) = n.
Chongqing Cheng and Yisui Sun [CS] obtained the existence of invariant tori
under the following assumptions:

(1) rank(∂ω∂p ) = r for all p ∈ Ω,
(2) there exists a twist curve on the range of any neighbourhood ofp0 for

∀ p0 ∈ Ω, where “twist curve” means that on it every curvature component is
not zero.

H. Rüssmann in [R] announced the following results: systems (1.1) possesses
many invariant tori if onΩ

a1hp1 + a2hp2 + . . . + anhpn /= 0 (1.3)

for any (a1, a2, . . . , an) ∈ Rn. This says thathp does not fall into a hyperplane
through the origin. The condition (1.3) is the sharpest one, we have not seen
its proof yet. In this paper, we will give a nondegeneracy condition by means
of the derivatives ofh(p), which is equivalent to the condition (1.3) in analytic
case, and under this nondegeneracy condition we obtain the Rüssmann’s results
for analytic case. Furthermore, the arguments of this paper are available to the
nonanalytic case since our nondegeneracy conditions only involve the finite order
derivatives ofh(p).

Main results

Theorem A. Suppose that H= h(p) + εf (p, q) is analytic inΩ̄ × Tn. If for some
p ∈ Ω̄

rank

{
ω,

∂αω

∂pα
|∀α, |α| ≤ n − 1

}
= n , (1.4)

whereω(p) = hp(p) and ∂αω
∂pα = (∂

αω1
∂pα , ∂

αω2
∂pα , . . . , ∂

αωn
∂pα ), then for∀∆ > 0 suf-

ficiently small, there existsε0 = ε0(∆) > 0 such that if|ε| < ε0, there exists a
nonempty Cantor subsetΩε ⊂ Ω such that (1.1) admits a family of invariant tori
{Ip|p ∈ Ωε}, whose frequenciesω∗(p) satisfy|ω∗(p) − ω(p)| ≤ cε with c being
a constant independent ofε. Moreover,mes (Ω − Ωε) = o(∆), where o(∆) is
infinitively small as∆→ 0.

Theorem A can be proved by KAM iterations. The KAM iterations are based
on the measure estimates for small divisor condition. Hence, we need the fol-
lowing Theorem B.

Theorem B. Suppose the mappingg : x ∈ Ω̄ → (g1(x), g2(x), . . . gn(x)) is ana-
lytic on Ω̄, whereΩ is a bounded connected domain in Rn and Ω̄ is its closure.

Let
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Ω∆ =

{
x| |k1g1(x) + k2g2(x) + . . . + kngn(x)| ≥ ∆

|k|τ , for all 0 /= k ∈ Zn

}
with τ > n(n − 1)− 1. If for all x ∈ Ω̄

rank

{
g,
∂αg

∂xα
|∀α, |α| ≤ n − 1

}
= n , (1.5)

then for∀∆ > 0 sufficiently small,|Ω − Ω∆| ≤ c(diamΩ)n−1∆
1

n−1 , where c is
independent of∆. So if∆ is small enough,Ω∆ is a nonempty Cantor subset of
Ω.

In the proof of Theorem A the KAM procedure is standard, which is described
in details in many papers, such as [M], [E], [P1], [P2], [P3] and [CS]. Since the
nondegeneracy condition (1.4) is concerned with the high order derivatives and
the small divisor condition only holds on a Cantor subset, it is necessary to
estimate some Whitney norms (see [W]) in KAM steps, which makes the proof
complicated. But this is not essential for the proof, so we omit the details and
refer to [E], [P1], [P2], [P3] and [CS]. By the way, thanks to the referees of this
paper, they told us that M.B. Sevryuk in [S] gave a quite simpler proof of the
Rüssmann’s results by using well known results of some papers and the preprint
of this paper in ETH-Z̈urich (July 1994). Also he gave an example to show that
the R̈ussmann’s nondegeneracy condition is also necessary for the results. In this
paper we mainly prove Theorem B in the next section. In Sect. 3 we prove the
nondegeneracy condition (1.4) is equivalent to the Rüssmann’s nondegeneracy
condition (1.3) in the analytic case.

Remark 1.1.If rank(hp) = 1, then the conditions given in [CS] are equivalent

to det
(
∂ j ωj

∂pj
1

)
/= 0 for p ∈ Ω, whereω(p) = (ω1(p1), ω2(p1), . . . , ωn(p1)), j =

1, 2, . . . , n. It is easy to see that the range ofω cannot lie in any hyperplane in
Rn.

Remark 1.2.If rank
(
∂ω(p)
∂p

)
= n−1, the condition (1.4) is sharper than Bruno’s

condition. For example,h(p1, p2, . . . , pn) =
√

p2
1 + . . . + p2

n−1 + pn, and then

ω(p) =

 p1√
p2

1 + . . . + p2
n−1

, . . . ,
pn−1√

p2
1 + . . . + p2

n−1

, 1

 .

It is easy to verify that rank(ω(p), ∂ω∂p ) < n, but rank{ω, ∂αω∂xα |∀α, |α| ≤ 2} = n.

Remark 1.3.Sinceω is analytic onΩ̄, the equation (1.4) holds for somep ∈ Ω
implies that (1.4) holds for an open subsetΩ∗ ⊂ Ω satisfying mes(Ω−Ω∗) = 0.
So, in the proof of Theorem A we may suppose (1.4) holds for allp ∈ Ω̄.
Thus, in Theorem A for the subsetΩε ⊂ Ω we can have the measure estimate
mes(Ω −Ωε) ≤ c∆

1
n−1 , wherec is a constant independent∆ andε.
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Remark 1.4.Theorem B can be extended to the nonanalytic case thatg is a
Cs (s ≥ 1) continuously differentiable mapping. That is, if for allx ∈ Ω̄

rank

{
g,
∂αg

∂xα
| ∀α, |α| ≤ s

}
= n ,

then Theorem B also holds with∆
1
s instead of∆

1
n−1 . So Theorem A can be ex-

tended toCr smooth situation, wherer is a sufficiently large positive integer. But
in the nonanalytic case the condition (1.4) is not equivalent to the Rüssmann’s
condition (1.3). In fact, the R̈ussmann’s condition is not sufficient in the non-
analytic case since Theorem A does not hold if for allp ∈ Ω, ω falls into two
intersected hyperplanes through the origin.

Remark 1.5.If det(∂ω∂p ) = 0 for all p ∈ Ω, the range of any small perturbation
of ω on Ω may not intersect with the range ofω on Ω. So the frequenciesω∗
may not be from the frequencies of invariant tori of unperturbed systems, which
is different from the nondegeneracy case det(∂ω

∂p ) /= 0, ∀ p ∈ Ω. However, the
frequenciesω∗ are ε-close to some frequencies of invariant tori of unperturbed
systems.

2. Proof of Theorem B

The small divisor condition (1.2) is met when we solve the homological equation
in KAM step. By measure estimate it easily follows that for any open domainΩ
in Rn, most points satisfy the small divisor condition (1.2) (see [P1]). But it is not
true for submanifold. For example, there is not any point in the hyperplanex1 = 0
satisfying (1.2). [PY] obtained some results for one dimensional submanifold. In
this section we consider the general submanifold and prove Theorem B. Denote
the Lebesgue measure of setΩ by |Ω|. We first prove some lemmas.

Lemma 2.1. Suppose thatg(x) is a m-th differentiable function on the closure
Ī of I , where I ⊂ R1 is an interval. Let Ih = {x| |g(x)| < h, x ∈ I }, h > 0.
If on I , |g(m)(x)| ≥ d > 0, where d is a constant, then|Ih| ≤ ch

1
m , where

c = 2(2 + 3 +. . . + m + d−1).

Proof.. Let I m−1
h = {x| |g(m−1)(x)| < h, x ∈ I }. Since

|(g(m−1)(x))′| = |g(m)| ≥ d > 0 , x ∈ I ,

I m−1
h has at most one connected component and it follows that|I m−1

h | ≤ 2h
d .

Let I m−2
h = {x| |g(m−2)| < h2}. I − I m−1

h = {x| |g(m−1)| ≥ h} has at most
two connected componentsI m−1

(1) and I m−1
(2) , and

|(g(m−2))′| = |g(m−1)| ≥ h , x ∈ I m−1
(1) ∪ I m−1

(2) .

In the same way, sinceI m−2
h ∩ I m−1

(1) , I m−2
h ∩ I m−1

(2) have at most one connected

component inI m−1
(1) and I m−1

(2) respectively, we have
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|I m−2
h ∩ I m−1

(1) | ≤ 2h , |I m−2
h ∩ I m−1

(2) | ≤ 2h .

Thus,

|I m−2
h | ≤ |I m−2

h ∩ (I − I m−1
h )| + |I m−2

h ∩ I m−1
h |

≤ |I m−2
h ∩ I m−1

(1) | + |I m−2
h ∩ I m−1

(2) | + |I m−2
h ∩ I m−1

h |
≤ 4h + 2d−1h = 2(2 +d−1)h .

Let
I 1
h = {x| |g′(x)| < hm−1 , x ∈ I } .

After m− 1 steps inductively we have that

|I 1
h | ≤ 2(2 + 3 +. . . + m− 1 + d−1)h .

Since |(g′(x))(m−1)| ≥ d > 0, I − I 1
h has at mostm connected components.

Denote these components byI 1
(1), I

1
(2), . . . , I

1
(m), andI 0

h = {x| |g(x)| < hm}. Then
|I 0

h ∩ I 1
(1)| ≤ 2h, . . . |I 0

h ∩ I 1
(m)| ≤ 2h. Thus

|I 0
h | ≤ |I 0

h ∩ (I − I 1
h )| + |I 0

h ∩ I 1
h |

≤ [2m + 2(2 + 3 +. . . + m− 1 + d−1)]h

≤ 2(2 + 3 +. . . + m + d−1)h ≤ ch .

Noticing thatIh = I 0

h
1
m

, it follows |Ih| ≤ ch
1
m .

Below we define a dictionary order of multiple index set. Let

Q = {α | α = (α1, α2, . . . , αn) ∈ Zn , |α| = l , αi ≥ 0} ,

wherel is a positive integer. Forα, β ∈ Q, we say “α ≺ β” if and only if there
is j ≤ n such thatαj < βj andαi = βi as i < j . Thus, for the dictionary order
“≺” we have{

(1) for anyα, β ∈ Q, α ≺ β or β ≺ α or α = β ,

(2) if α ≺ β and β ≺ γ, thenα ≺ γ .

Lemma 2.2. Let

λ = (λ1, λ2, . . . , λn) , λi = M n−i , i = 1, 2, . . . , n , with M = ln .

Thenα ≺ β if and only if 〈α, λ〉 < 〈β, λ〉, where〈, 〉 indicates the usual scalar
product.

Proof.. By the definition ofα ≺ β, there isj ∈ {1, 2, . . . , n} such thatαj < βj

andαi = βi as i < j . Noticing thatαi , βi ≤ l , αj + 1≤ βj andM = ln, it easily
follows that〈α, λ〉 < 〈β, λ〉. By the above first property of the order, this lemma
holds.
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By the order relation “≺” we rewrite Q as

Q = {α(i )| |α(i )| = l , αj (i ) ≥ 0 , i = 1, 2, . . . ,N , α(1)≺ α(2)≺ . . . ≺ α(N )} ,
whereαj are the components ofα and N is the cardinality ofQ. Let ni =
〈α(i ), λ〉, by Lemma 2.2 we haven1 < n2 < . . . nN .

Lemma 2.3. There exist t1, t2, . . . , tN such that

det


tn1
1 tn2

1 . . . tnN
1

tn1
2 tn2

2 . . . tnN
2

...
...

...
tn1
N tn2

N . . . tnN
N

 /= 0

Proof.. This lemma holds obviously, we omit the details.

Lemma 2.4. Suppose f(x) is a sufficiently smooth function. There exist vectors
ν(1), ν(2), . . . , ν(N ) such that, for∀β ∈ Q there exist constants c1, c2, . . . , cN

such that
∂β f
∂xβ

=
N∑

i =1

cI Dl
ν(i ) f (x) ,

where Dl
ν f (x) indicates l -th direction derivatives of f(x) along ν, ν(i ) and ci

(i = 1, 2, . . . ,N ) are independent of x and the function f(x).

Proof..

Dl
ν f (x) =

∑
|α|=l

∂αf
∂xα

να ,

whereνα = να1
1 να2

2 . . . ναn
n . Let ν(t) = (tλ1, tλ2, . . . , tλn ). We have

Dl
ν(t) f (x) =

∑
|α|=l

∂αf
∂xα

t 〈α,λ〉 =
N∑

i =1

tni
∂α(i ) f
∂xα(i )

,

whereni = 〈α(i ), λ〉. Let t = tj andν(j ) = ν(tj ), it follows that

Dl
ν(j ) f (x) =

N∑
i =1

tni
j
∂α(i )f
∂xα(i )

, j = 1, 2, . . . ,N . (2.1)

Notice that det(tni
j )1≤i ,j≤N /= 0. By solving the above linear equation systems

(2.1), it follows that {
∂α(i ) f
∂xα(i )

| i = 1, 2, . . . ,N

}
can be linearly expressed by

{Dl
ν(j ) f (x)|j = 1, 2, . . . ,N} .

Sincetni
j are independent ofx and the functionf (x), the coefficients of expression

are also independent ofx and f (x). Thus we prove this lemma.
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Proof of Theorem B.Let

g

(
k
|k| , x

)
=

k1

|k|g1(x) +
k2

|k|g2(x) + . . . +
kn

|k|gn(x)

and

Ωk =

{
x| |g

(
k
|k| , x

)
| ≤ h(|k|)

}
,

whereh(|k|) will be decided later. Below we estimate the measure ofΩk .
Let

g(ξ, x) = ξ1g1(x) + ξ2g2(x) + . . . + ξngn(x) , (ξ, x) ∈ D × Ω̄ ,

A = matrix(Dl1
ν(1)g, . . .D

ln
ν(n)g) .

We have|detA| ≥ d > 0 onΩx , whered is a constant. By the compactness of
Ω̄, there are finite such neighbourhoods to coverΩ̄. Without lossing generality,
suppose|detA| ≥ d > 0 on Ω̄. There exists a constant̄d > 0 such that|Aξ| ≥
d̄ > 0 for ∀ (ξ, x) ∈ D×Ω̄, whered̄ only depends on the smallest eigenvalue ofA
onΩ, and the norm|Aξ| is defined in the same way as|ξ|. For any (̄ξ, x̄) ∈ D×Ω̄,
there existl ≤ n − 1 andν ∈ Rn such that

|Dl
νg(ξ̄, x̄)| ≥ d̄

n
,

whereDl
νg(ξ, x) are l -th direction derivatives ofg(ξ, x) with respect tox along

the vectorsν. So there exists a neighbourhood of (ξ̄, x̄), Dξ̄ ×Ωx̄ , such that

|Dl
νg(x, ξ)| ≥ d̄

2n
, ∀ (ξ, x) ∈ Dξ̄ ×Ωx̄ .

Thus we obtain a family of covers ofD × Ω̄ : {Dξ̄×Ωx̄ | ∀ (ξ̄, x̄) ∈ D × Ω̄}.
SinceD×Ω̄ is a compact set, there exist finite coversD1×Ω1,D2×Ω2, . . . ,DM×
ΩM and the correspondingM integers andM vectorsl1, l2, . . . , lM , ν2, ν2, . . . , νM

such that∪M
j =1Dj ×Ωj ⊃ D × Ω̄ and

|Dlj
νj g(x, ξ)| ≥ c1 > 0 , ∀ (ξ, x) ∈ Dj ×Ωj .

HereΩj (j = 1, 2, . . . ,M ) are chosen to be convex sets andc1 depends onΩ, n
and the smallest eigenvalue ofA.

Now we fix k /= 0 and estimate the measure ofΩk . Let h(|k|) = ∆
|k|τ with

0 < ∆ < min{c1, 1} and τ > n(n − 1)− 1, thush(|k|) ≤ min{c1, 1}. Then if
l j = 0, we haveΩk ∩Ω j /= ∅, so we only considerlj ≥ 1. Let k

|k| ∈ Dj . Then for
x ∈ Ωj we have ∣∣∣∣Dl

νg

(
k
|k| , x

)∣∣∣∣ ≥ c1 > 0 , (2.2)

where we drop the subscripts oflj andνj for simplicity. To estimate|Ωk ∩Ωj |,
we first estimate 1-dimension measure ofΩk ∩Ωj alongν.



382 J. Xu et al.

Let

g(t) = g

(
k
|k| , x0 + νt

)
, x0 ∈ ∂Ωj Ων = {t | x0 + tν ∈ Ωj }

and

Vν =

{
t | |g

(
k
|k| , x0 + νt

)
| < h(|k|)

}
,

where∂Ωj is the boundary ofΩj . SinceΩj is a connected convex neighbourhood,
Ων is also connected.

Sinceg(l )(t) = Dl
νg( k

|k| , x0 + νt), by (2.2) we have|g(l )(t)| ≥ c1 for t ∈ Ων .
By Lemma 2.1

|Vν | ≤ 2

(
2 + 3 +. . . + l +

1
c1

)
[h(|k|)] 1

l

≤ 2

(
2 + 3 +. . . + n − 1 +

1
c1

)
[h(|k|)] 1

n−1

≤ c2[h(|k|)] 1
n−1 , with c2 = 2

(
2 + 3 +. . . + n − 1 +

1
c1

)
.

Thus |Ωk ∩Ωj | ≤ (diamΩ)n−1|Vν | ≤ (diamΩ)n−1c2[h(|k|)] 1
n−1 . Therefore,

|Ωk | ≤
∑

j : k
|k|∈Dj

|Ωk ∩Ωj | ≤ Mc2(diamΩ)n−1[h(|k|)] 1
n−1

≤ M (diamΩ)n−1c2
∆

1
n−1

|k| τ+1
n−1

.

SinceΩ∆ = ∩k/=0(Ω −Ωk), we have

|Ω −Ω∆| ≤
∑
k/=0

|Ωk | ≤ M (diamΩ)n−1c2∆
1

n−1

∑
k/=0

1

|k| τ+1
n−1

≤ c(diamΩ)n−1∆
1

n−1 ,

wherec = Mc2
∑

k/=0
1

|k|
τ+1
n−1

< +∞ for τ > (n − 1)n − 1. If ∆ < ( |Ω|c )n−1, then

|Ω−Ω∆| < |Ω|, thusΩ∆ has positive measure. Moreover, since{ k
|k| |∀ k ∈ Zn}

is dense in the setD , Ω∆ is a Cantor set.

3. Equivalence with Rüssmann’s nondegeneracy condition

In this section we prove the nondegeneracy condition (1.4) and the condition
(1.3) given by R̈ussmann are equivalent in analytic case. LetG be the image
of the analytic mappingg(x) = (g1(x), . . . , gn(x)) on Ω̄. We will prove that, if
the condition (1.4) is not satisfied, thenG must lie on a hyperplane through the
origin.
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Theorem 3.1. Suppose that for any positive integer l≤ n − 1 the set of vector
function{g, ∂αg∂xα | ∀α, |α| ≤ l } has constant rank onΩ, i.e., for any l≤ n − 1
its rank is a constant onΩ. If on Ω

rank

{
g,
∂αg

∂xα
| ∀α, |α| ≤ n − 1

}
≡ s ,

then

rank

{
g,
∂αg

∂xα
| ∀α, |α| ≤ s− 1

}
≡ s

onΩ and for |β| ≥ s, ∂
βg

∂xβ can be linearly expressed by{
g,
∂αg

∂xα
| ∀α, |α| ≤ s− 1

}
.

Proof.. Supposeg /= 0 on Ω. If rank{g, ∂αg∂xα | ∀α, |α| ≤ 1} = rank{g} ≡ 1,

then for ∀α, |α| = 1, there existskα(x) such that ∂
αg

∂xα = kα(x)g(x). Since
g /= 0, thenkα ∈ C∞. By derivating the above equation, it follows that for
∀α, |α| ≥ 2, ∂αg

∂xα = kα(x)g(x), wherekα is a differentiable function. Thus we-

have rank{g, ∂αg∂xα | ∀α, |α| ≤ n − 1} = 1. This is impossible unlesss = 1. If

s > 1, then rank{g, ∂αg∂xα | ∀α, |α| ≤ 1} ≡ r > 2. If

rank

{
g,
∂αg

∂xα
| ∀α, |α| ≤ 2

}
≡ r ,

for any x ∈ Ω, there exists a neighbourhood ofx, Bx ⊂ Ω, and vectors
α1, α2, . . . , αr , |αi | ≤ 1 (i = 1, 2, . . . , r ) such that onBx

rank

{
∂α1g

∂xα1
,
∂α2g

∂xα2
, . . . ,

∂αr g

∂xαr

}
≡ r .

So for∀β, |β| = 2, there exist functionsk1(x), k2(x), . . ., kr (x) such that

∂βg

∂xβ
= k1(x)

∂α1g

∂xα1
+ k2(x)

∂α2g

∂xα2
+ . . . + kr (x)

∂αr g

∂xαr
.

Sincek1, k2, . . . , kr can be obtained by solving the above nonsignular linear
equation systems, it is easy to see thatki ∈ C∞(Bx). In the same way as the
above we have rank{g, ∂αg∂xα |∀α, |α| ≤ n − 1} = r . So if r < s, this contradicts

and rank{g, ∂αg∂xα |∀α, |α| ≤ 2} ≥ r + 1≥ 3.
After at mosts− 1 steps, we have

rank

{
g,
∂αg

∂xα
|∀α, |α| ≤ s− 1

}
≡ s onΩ .

From the above it is easy to see that for allβ, |β| ≥ s, ∂βg
∂xβ can be expressed by

the set of vector function{
g,
∂αg

∂xα
| ∀α, |α| ≤ s− 1

}
.
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Theorem 3.2. Suppose that for any l≤ n − 1 the set of vector function
{g, ∂αg∂xα | ∀α, |α| ≤ l } has constantrank onΩ. If on Ω

rank

{
g,
∂αg

∂xα
| ∀α, |α| ≤ n − 1

}
≡ n − 1 ,

then G must lie on a(n − 1)-hyperplane through the origin.

Proof.. By Theorem 3.1,

rank

{
g,
∂αg

∂xα
| ∀α, |α| ≤ n − 2

}
≡ n − 1 (3.1)

on Ω. For anyx ∈ Ω there exists a nonzero vector functionk(x) such that〈
k,

∂αg

∂xα

〉
≡ 0 onΩ for ∀α, |α| ≤ n − 1 . (3.2)

There exists a neighbourhood ofx, Bx , and ∂α1g
∂xα1 , ∂α2g

∂xα2 , . . . ,
∂αn−1g
∂xαn−1 such that

they are linearly independent onBx . Thus k(x) can be obtained by solving a
nonsingular linear equation system ofn − 1 variables, sok(x) ∈ C∞(Bx). By
derivating the above equations (3.2), it follows that〈

kxi ,
∂αg

∂xα

〉
≡ 0 onBx , ∀α, |α| ≤ n − 2 ,

i = 1, 2, . . . , n. By (3.1) it follows that onBx , rank{k, kx1, . . . , kxn} ≡ 1 and there
exist functionsc1(x), c2(x), . . . , cn(x) such thatkxi = ci k. By integrating these
equations, we have

k(x) = e

∫ x1

x0
1

c1(x)dx1

k(x0
1 , x2, . . . , xn) = c̄1(x)k(x0

1 , x2, . . . , xn) ,

k(x) = e

∫ x2

x0
2

c2(x)dx2

k(x1, x
0
2 , . . . , xn) = c̄2(x)k(x1, x

0
2 , . . . , xn) ,

. . . . . .

k(x) = e

∫ xn

x0
n

cn(x)dxn
k(x1, x2, . . . , x

0
n ) = c̄n(x)k(x1, x2, . . . , x

0
n ) ,

wherex0 ∈ Bx . Combining all the above equations, it follows that

k(x) = c̄1(x)k(x0
1 , x2, . . . , xn) = . . .

= c̄1(x)c̄2(x0
1 x2, . . . , xn) . . . c̄n(x0

1 , . . . , x
0
n−1, xn)k(x0)

= c̃(x)k(x0) ,

with c̃(x) /= 0. By (3.2) it follows that〈g, k(x0)〉 ≡ 0 onBx . Sinceg is analytic on
Ω, so〈g, k(x0)〉 ≡ 0 onΩ. This implies thatG lies on the following hyperplane
through the origin:

a1x1 + a2x2 + . . . + anxn = 0 ,

whereai = ki (x0), i = 1, 2, . . . , n.
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Theorem 3.3. If

max
x∈Ω̄

rank

{
g,
∂αg

∂xα
| ∀α, |α| ≤ n − 1

}
= n − 1 , (3.3)

then G lies on a(n − 1)-hyperplane through the origin.

Proof.. Let

rl = max
x∈Ω̄

rank

{
g,
∂αg

∂xα
| ∀α, |α| ≤ l

}
and

El =

{
x | rank

{
g,
∂αg

∂xα
| ∀α, |α| ≤ l

}
= rl

}
,

where l is a positive integer. By Remark 1.3, we haveEl is an open subset of
Ω andΩ − El has zero measure. LetE = ∩l≤n−1El . ThenE is an open set and
mes(Ω − E) = 0. So there exists a neighbourhoodB ⊂ E such that onB

rank

{
g,
∂αg

∂xα
| ∀α, |α| ≤ 1

}
≡ rl

for all l ≤ n − 1. From (3.3),

rank

{
g,
∂αg

∂xα
| ∀α, |α| ≤ n − 1

}
≡ n − 1 onB .

By Theorem 3.2, it follows that onB, G lies on a (n−1)-hyperplane through the
origin. Sinceg is analytic onΩ, we haveG is also on this (n − 1)-hyperplane.

Furthermore, we can prove the following results.

Theorem 3.4. If

max
x∈Ω̄

rank

{
g,
∂αg

∂xα
| ∀α, |α| ≤ n − 1

}
= s < n , (3.4)

then G must lie on a s-hyperplane through the origin onΩ.

Proof.. By (3.4) there exist ¯g = (ḡ1, ḡ2, . . . , ḡs) such that

max
x∈Ω̄

rank

{
ḡ,
∂αḡ

∂xα
| ∀α, |α| ≤ n − 1

}
= s < n , (3.5)

whereḡi (i = 1, 2, . . . , s) are somes components ofg. Let the rest components
be ḡs+1, . . . , ḡn. Let g̃ = (ḡ1, ḡ2, . . . , ḡs, ḡj ) (j ≥ s + 1). We apply Theorem 3.3 to
the function ˜g and obtain ˜g is on as-hyperplane ofRs+1 through the origin, i.e.,
there existcj

1, c
j
2, . . . , c

j
s, c

j
s+1 such that onΩ

cj
1ḡ1 + cj

2ḡ2 + . . . + cj
sḡs + cj

s+1ḡs+1 ≡ 0 .

By (3.5) ḡ1, ḡ2, . . . , ḡs are linearly independent for somex ∈ Ω, so cj
s+1 /= 0,

j = s + 1, . . . , n. This implies thatG is on n − s different (n − 1)-hyperplanes
through the origin. Thus we prove this theorem.
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Notice that if the condition (1.4) does not hold, then the condition (3.4)
holds. By Theorem 3.4 it follows that the condition (1.4) is equivalent to the
Rüssmann’s condition (1.3).

Remark 3.1.If

max
x∈Ω̄

rank

{
g,
∂αg

∂xα
| ∀α, |α| ≤ n − 1

}
= n , (3.6)

then there exists an integer̄N > 0 such that

rank

{
g,
∂αg

∂xα
| ∀α, |α| ≤ N̄

}
≡ n onΩ̄ . (3.7)

Proof.. Assume this result does not hold. Then for∀ l = 1, 2, . . ., there exists
xl ∈ Ω̄ such that atxl

rank

{
g,
∂αg

∂xα
| ∀α, |α| ≤ l

}
< n . (3.8)

SinceΩ̄ is bounded domain, there exists a convergent subsequence of{xl }l≥1.
Without loss of generality suppose the sequence itself is convergent and liml→∞ xl =
x0 ∈ Ω̄. Now we conclude that forx = x0

rank

{
g,
∂αg

∂xα
| ∀α, |α| < +∞

}
< n . (3.9)

If (3.9) is not true, then there exists̄l > 0 such that forx = x0

rank

{
g,
∂αg

∂xα
| ∀α, |α| ≤ l̄

}
= n .

Thus there is a neighbourhood ofx0, Bx0, such that onBx0,

rank

{
g,
∂αg

∂xα
| ∀α, |α| ≤ l̄

}
≡ n .

There exists sufficiently largel > l̄ such thatxl ∈ Bx0, so for x = xl ,

rank

{
g,
∂αg

∂xα
| ∀α, |α| ≤ l

}
= n .

This contradicts with (3.8) and then (3.9) holds.
For ∀α1, α2, . . . , αn ∈ Zn let

f (x) = det

(
∂α1g

∂xα1
,
∂α2g

∂xα2
, . . . ,

∂αng

∂xαn

)
.

By (3.9), f (x0) = 0. Derivatingf (x) and using (3.9) again, it follows that for
∀α, ∂αf

∂xα = 0 for x = x0. Sincef (x) is analytic onΩ̄, so f (x) ≡ 0 on Ω. This
contradicts with the condition (3.6), and thus the result is proved.



Nearly integrable Hamiltonian systems 387

Remark 3.2.By Remark 1.3, on some local domain we can obtain a more ac-
curate measure estimate for the parameter set, where the invariant tori exist. By
Remark 1.3 and Remark 3.1, for the subsetΩε of Ω in Theorem A we may have
the estimates|Ω −Ωε| ≤ c∆

1
N̄ , whereN̄ is a positive integer.
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