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1. Introduction and main results

In this paper we study the following Hamiltonian systems

dp dq
dt gt = Ho®a) =ho(p) +efo(p,a) , - (1.2)

with HamiltonianH (p, q) = h(p) + «f (p,q), (p,q) € 2 x T", n > 2, where
p = (p1, P2, ---,Pn) are action variables varying over some bounded connected
domaing? in R", andq = (g, 9z, - . ., On) are conjugate angular variables whose
domainT" is the usuah-torus obtained by identifying the points whose compo-
nents differ by integer multiples ofr2 Supposd (p, q) has period 2 in every
component ofy andH (p, q) is analytic inf2 x T", where{? is the closure of?.

For e = 0 the unperturbed HamiltoniaH (p, q) = h(p) is independent of,
and the equations of motion ar reducedpte 0, g = w with w = hy(p). They
have an-parameter family of invariant tofipo} x T" for Vpy € {2 with constant

frequenciesv(po) = (w1(pPo), w2(pPo); - - - , wn(Po)) = hp(Po)-
If h(p) satisfies the usual nondegeneracy condition,

dethpp(p)] #0 for Vpe 2,

= —Hq(p,q) = —fq(p,q) ,

or equivalently, rankf,,) = nfor Vp € (2, the well known KAM theorem points
out (see [E], [P1]): whenr is sufficiently small, the perturbed Hamiltonian sys-
tems (1.1) persist the majority of invariant tori with their frequenciesatisfying
the strong nonresonant conditions or small divisor conditions:

[k, w)| > |ij forall 0#kezZ", (1.2)
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where|k| = [ky| + |ko| + ... + |ka|, A is @ small positive constant and> n — 1.
This result was first announced by Kolmogorov in 1954 [K] and the proof was
given by V. Arnold in [A].

Recently, there has been a fair amount of work on the perturbation of degen-
erate Hamiltonian systems, i.e., dgf{(p)] = 0. Bruno [B] proved that the ma-
jority of invariant tori of unperturbed systems are preserved if fankg,) = n.
Chongging Cheng and Yisui Sun [CS] obtained the existence of invariant tori
under the following assumptions:

(1) rank(g“g) =r forall p € 2,

(2) there exists a twist curve on the range of any neighbourhoqu} ébr
Vpo € £2, where “twist curve” means that on it every curvature component is
not zero.

H. Rissmann in [R] announced the following results: systems (1.1) possesses
many invariant tori if ons2

a.]_hpl + a.zhp2 +...+ anhpn # O (1.3)

for any (@, a,...,a,) € R". This says thah, does not fall into a hyperplane
through the origin. The condition (1.3) is the sharpest one, we have not seen
its proof yet. In this paper, we will give a nondegeneracy condition by means
of the derivatives oh(p), which is equivalent to the condition (1.3) in analytic
case, and under this nondegeneracy condition we obtain iienRann’s results

for analytic case. Furthermore, the arguments of this paper are available to the
nonanalytic case since our nondegeneracy conditions only involve the finite order
derivatives ofh(p).

Main results

Theorem A. Suppose that H= h(p) +<f (p, q) is analytic in2 x T". I for some
pe

rank{w, gpﬁjwm lal <n— 1} =n, (1.4)
wherew(p) = hy(p) and 9. = %C;%il, %?;27..., ac,;;ﬁ“), then forv A > 0 suf-

ficiently small, there existsy = o(A) > 0 such that ifle| < ¢, there exists a
nonempty Cantor subs€&. C {2 such that (1.1) admits a family of invariant tori
{lplp € £2.}, whose frequencies.(p) satisfy|w.(p) — w(p)| < ce with ¢ being
a constant independent ef Moreover,mes (2 — §2.) = o(4), where d4) is
infinitively small asA — 0.

Theorem A can be proved by KAM iterations. The KAM iterations are based
on the measure estimates for small divisor condition. Hence, we need the fol-
lowing Theorem B.

Theorem B. Suppose the mapping: x € Q2 — (91(x), g2(X), - . . gn(X)) is ana-
lytic on £2, where{? is a bounded connected domain il Bnd {2 is its closure.
Let
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A
QA= {x Ikig1(X) + kaga(X) + ... + Kngn(X)| > K forall 0#k € Z”}
with 7 > n(n — 1) — 1. If forall x € 2
rank 8ag|v la] <n—-1%=n (1.5)
gv 8Xa Q, |0 > - 9 .

then forv A > 0 sufficiently small|2 — 24| < c(diamQ)”—lAnil, where c is
independent ofA. So if A is small enough{2, is a nonempty Cantor subset of
0.

In the proof of Theorem A the KAM procedure is standard, which is described
in details in many papers, such as [M], [E], [P1], [P2], [P3] and [CS]. Since the
nondegeneracy condition (1.4) is concerned with the high order derivatives and
the small divisor condition only holds on a Cantor subset, it is necessary to
estimate some Whitney norms (see [W]) in KAM steps, which makes the proof
complicated. But this is not essential for the proof, so we omit the details and
refer to [E], [P1], [P2], [P3] and [CS]. By the way, thanks to the referees of this
paper, they told us that M.B. Sevryuk in [S] gave a quite simpler proof of the
Russmann’s results by using well known results of some papers and the preprint
of this paper in ETH-Zrich (July 1994). Also he gave an example to show that
the Rissmann’s nondegeneracy condition is also necessary for the results. In this
paper we mainly prove Theorem B in the next section. In Sect. 3 we prove the
nondegeneracy condition (1.4) is equivalent to thes$nann’s nondegeneracy
condition (1.3) in the analytic case.

Remark 1.1.If rank(h,) = 1, then the conditions given in [CS] are equivalent

to det(a(;;“,-") # 0 for p € 2, wherew(p) = (w1(pP1), w2(P1), - --,wn(P1)), j =
1,2,...,n. It is easy to see that the rangewfcannot lie in any hyperplane in
R".

Remark 1.2.If rank (8“5'(3")) =n—1, the condition (1.4) is sharper than Bruno’s

condition. For exampleh(pg, P2, .. ., Pn) = \/pf +...+p3_, +pn, and then

w(p): pl PR ) pn_l ?1 .
\/pf+...+p§_1 \/pf+...+p§_1

It is easy to verify that rank((p), ‘g‘;) <n, but rankw, 9. ¥V, o] <2} =n.
Remark 1.3.Sincew is analytic ons?, the equation (1.4) holds for sonpec 2
implies that (1.4) holds for an open subsat C (2 satisfying mes@ — £2,) = 0.
So, in the proof of Theorem A we may suppose (1.4) holds forpalt (2.
Thus, in Theorem A1 for the subsél. C {2 we can have the measure estimate
mes(? — (2.) < cAn-1, wherec is a constant independert ande.
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Remark 1.4.Theorem B can be extended to the nonanalytic case ¢hata
Cs (s > 1) continuously differentiable mapping. That is, if for alle 2

rank{g, gxg| Va, |af < s} =n,

then Theorem B also holds with: instead ofAr~1. So Theorem A can be ex-
tended taC" smooth situation, wheneis a sufficiently large positive integer. But
in the nonanalytic case the condition (1.4) is not equivalent to thesRann’s
condition (1.3). In fact, the Bssmann’s condition is not sufficient in the non-
analytic case since Theorem A does not hold if forpl (2, w falls into two
intersected hyperplanes through the origin.

Remark 1.5.If det(%g) =0 for all p € (2, the range of any small perturbation

of w on {2 may not intersect with the range af on (2. So the frequencies,

may not be from the frequencies of invariant tori of unperturbed systems, which
is different from the nondegeneracy case @‘g)(;ﬁ 0,Vp € 2. However, the
frequenciesu, arece-close to some frequencies of invariant tori of unperturbed
systems.

2. Proof of Theorem B

The small divisor condition (1.2) is met when we solve the homological equation
in KAM step. By measure estimate it easily follows that for any open dorfiain

in R", most points satisfy the small divisor condition (1.2) (see [P1]). But itis not
true for submanifold. For example, there is not any point in the hyperplané
satisfying (1.2). [PY] obtained some results for one dimensional submanifold. In
this section we consider the general submanifold and prove Theorem B. Denote
the Lebesgue measure of getby |£2|. We first prove some lemmas.

Lemma 2.1. Suppose thay(x) is a m-th differentiable function on the closure
| of I, where | C Rl is an interval. Let} = {x| [g(X)] < h,x €1}, h>0.

If on I, [¢™(x)] > d > 0, where d is a constant, theft,| < chm, where
c=2Q2+3+...+m+d1).

Proof.. Let 11" = {x| g™ Y(x)| < h, x €1}. Since
(" D) =1g™ =d >0, xel,

1™~ has at most one connected component and it follows [tffat*| < A,
Let "2 = {x| [¢™ 2| <h?}. 1 — 1"t ={x| [¢™ Y| > h} has at most
two connected component§)* andl 3, and

V| = | (m— —1 -1
@™ 2= g™V =h, xe Dy~ Ulg -

In the same way, sincg" >N I, 1”2 N 13" have at most one connected
component irl 3~ andl 5" respectively, we have
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2 <2h, 1P ?nigt < 2h.
Thus,
[ B P N (I P Tl | e a Y P
< I 2n |(T)_l| +1"2 N I(g])_1| A el Py
< 4h+2d7th=2(2+d Hh.
Let

It={x] |¢/x)| <h™?, xel}.
After m — 1 steps inductively we have that

I <2@2+3+...+m—1+d Hh.

Since|(¢’(x))™ Y| > d > 0,1 — I} has at mosm connected components.
Denote these components k¥, 1%, ..., I¢, andl) = {x| |g(x)| < h™}. Then
I NIG < 2h,. 1P NGyl < 2h. Thus

IRl < 190 @ =1+ 19 Nig]
< [2m+2(@2+3+...+m—1+d Y]h
< 22+3+...+m+dHh <ch.

Noticing thatly, = I:l, it follows |Ip| < chm.
Below we define a dictionary order of multiple index set. Let
Q={a|a=(u,az...,an) €Z", |a|=1, o >0},

wherel is a positive integer. Fat, 5 € Q, we say & < 3" if and only if there
isj < nsuch thatyy < §; ande; = G asi < j. Thus, for the dictionary order
“<" we have

() foranya,€Q, a<p or f<a O a=p3,
2 ifa<p and g<~, thena<-~.

Lemma 2.2. Let
A=A, ), A=M" i=12....n, withM=In.

Thena < g if and only if (a, A) < (8, ), where(,) indicates the usual scalar
product.

Proof.. By the definition ofae < 3, there isj € {1,2,...,n} such thaty < f
ando; = asi < j. Noticing thatey, 5 <1, o5 +1 < g5 andM =1n, it easily
follows that{a, A) < (6, A). By the above first property of the order, this lemma
holds.
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By the order relation X” we rewrite Q as
Q={a(i)| |a)| =1,0(()>0,i=2,2,...,N, a(l) < a(2) < ... < a(N)},

where o; are the components af and N is the cardinality ofQ. Let n; =
{a(i), A), by Lemma 2.2 we have; < n; < ...ny

Lemma 2.3. There existi to, ..., ty such that

(PR VU
(P P P

det| 2 2 2 |z0
(g

Proof.. This lemma holds obviously, we omit the details.

Lemma 2.4. Suppose () is a sufficiently smooth function. There exist vectors
v(1),v(2),...,v(N) such that, forv 5 € Q there exist constants @y, ..., Cy
such that

Pt &
oxB ch Dy f(X)
i=1

where O f (x) indicates I-th direction derivatives of(X) along v, v(i) and g
(i=12,...,N) are independent of x and the functiofx}.

Proof..
o°f
| — a
DVf (X) - Z:I aXO‘I/ 9
wherev® = vMug? . pgn. Let u(t) = (M, t2, ... t2). We have
aaf 90 f
| _ (a A) n.
Dv(t) f(x) = Z axed)

|ex|= |

wheren; = (af(i), A). Lett =t andv(j) = v(f), it follows that

o, 0o
D} f(x) = Zt] oxaly: =12 N (2.1)

Notice that de1t‘ni )i<ij<n 7 0. By solving the above linear equation systems

(2.1), it follows that
aa(l)f
{8 o) i =1,2,...,N}

can be linearly expressed by

Sincetjni are independent of and the functiori (x), the coefficients of expression
are also independent afandf (x). Thus we prove this lemma.
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Proof of Theorem BlLet

K \_ Kk ke ko
7 (%) = 00+ 0 sk an

o= {x| g (|E| ,x> | < h(lkl)}7

whereh(|k|) will be decided later. Below we estimate the measurébf
Let

and

9(€,X) = E1g1(X) + E292(X) + ... + Engn(X) ,  (£,X) €D x 2,

- ! In
A= matrix©,g; - - -D,in)9) -

We have|detd| > d > 0 on {2, whered is a constant. By the compactness of
{2, there are finite such neighbourhoods to coferWwithout lossing generality,
supposeldetd| > d > 0 on {2. There exists a constadt > 0 such thaiA{| >

d > 0forV (£ x) € D x {2, whered only depends on the smallest eigenvaluéof
on £2, and the normA¢| is defined in the same way &5. For any €,X) € D x {2,
there exist < n —1 andv € R" such that

_ d
Do) =

whereD) (¢, x) arel-th direction derivatives of(¢, x) with respect tax along
the vectorsy. So there exists a neighbourhood ¢fX), D¢ x (2, such that

d
Do &) >, ¥(€x) € Dgx fx.

Thus we obtain a family of covers & x 2: {Dgx (% | V({,X) € D x £2}.
SinceD x {2 is a compact set, there exist finite covBxisx 21, Do x (25, ..., Dy x
2y and the correspondinlg integers andW vectorsly, Iy, ..., Im, vz, v2,. .., M
such thatuM,D; x £ > D x 2 and

DY g(x, )] > ¢ >0, V(EX) €D x 2 .

Heref( (j =1,2,...,M) are chosen to be convex sets andlepends orf2, n
and the smallest eigenvalue Af

Now we fix k # 0 and estimate the measure @f. Let h(|k|) = ‘kA‘, with
0 < A < min{c;,1} andT > n(n — 1) — 1, thush(|k|) < min{c;,1}. Then if
l =0, we have2* N 2 # 0, so we only considefj > 1. Let & D;. Then for
X € £} we have

k
’D'Vg(|k|,X>’2cl>0, (2.2)

where we drop the subscripts pfandy; for simplicity. To estimate 2k N 21,
we first estimate 1-dimension measuref®fn (2 alongv.
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Let

g(t)=9(|::|,xo+ut>, Xo € 08 2, ={t] X+tve )}

k
Vo= {ol o (6 oset) 1<k}

whered(); is the boundary of?;. Since(? is a connected convex neighbourhood,
(2, is also connected.

SincegO(t) = Dll’g(ltl’xo +wt), by (2.2) we havdg!(t)| > c; for t € 12,.
By Lemma 2.1

and

V,| < 2(2+3+...+| + 1>[h(|k|)]'1
C1

IA

2(2+3+...+n—1+ 1>[h(|k|)]n11
C1

IN

colh(k])]»> ,  with cz=2(2+3+...+n—1+cl>.
1

Thus|2% N )| < (diam2)"2|V, | < (diamQ)“—lcz[h(|k|)]ni1. Therefore,

24 < 37 192N 92| < Mey(diami2)" " [h([k()] "
jiltleDj
Anil

| n—1

< M (diam?)"1c,

Since 24 = Nzo(2 — £2¢), we have
12— 022 < D104 < M(diam2)"tepAn Y L
k#0 k20 ‘k|n71

< c(diam2)"1Ant

wherec = Mc; Zk#o 1, <+coforr>m—-1n—-1.1f A< ('f')“*l, then
[k|n—1

|2 — 24| < |£2], thusf24 has positive measure. Moreover, sir{qb‘ Vk e Z"}
is dense in the sdb, 2, is a Cantor set.

3. Equivalence with Rissmann’s nondegeneracy condition

In this section we prove the nondegeneracy condition (1.4) and the condition
(1.3) given by Rissmann are equivalent in analytic case. Gebe the image

of the analytic mapping/(x) = (g1(X), ..., gn(X)) on £2. We will prove that, if

the condition (1.4) is not satisfied, th& must lie on a hyperplane through the
origin.
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Theorem 3.1. Suppose that for any positive integexl n — 1 the set of vector

function{g, 5 ¢| Ve, |a| <1} has constant rank o2, i.e., for any I<n -1

its rank is a constant ot.. If on {2

] _
rank{g, 8xa|va’ lal <n— 1} =s,
then 5
‘g
<s-— =
rank{g, axa‘ Va, la] <s 1} s

on {2 and for|f3| > s, gjg can be linearly expressed by

60{
{g, Gxg‘ Va, la| <s-— 1} .

Proof.. Supposeg # 0 on 2. If rank{g, g:§|Va, la| < 1} = rank{g} = 1,

then for Vo, |a] = 1, there existk,(x) such thatg:(? = ko (X)g(x). Since
g # 0, thenk, € C*. By derivating the above equation, it follows that for

Ya, |a| > 2, g;‘g =k, (X)g(x), wherek,, is a differentiable function. Thus we-
have ranKg, gjgwa, la] < n— 1} = 1. This is impossible unless = 1. If

s> 1, thenrankg, 5 /|Va, [a| <1} =1 > 2. If

80[
rank{g, axg\‘da, la] < 2} =r,
for any x € (2, there exists a neighbourhood &f B, C (2, and vectors

a1, a2, .0, lag] <131 =1,2,...,r) such that orBy

9%g 0%g  O%g| _
rank{ Oxor’ gxer’ " Pyen =r.

So forV 3, |8] = 2, there exist functionk; (x), ka(x), . .., k- (X) such that

0Pg _ 0%yg 0“g 0%g
s =K k() k()
Sinceky, ko, ...,k can be obtained by solving the above nonsignular linear

equation systems, it is easy to see that C*°(By). In the same way as the
above we have radly, gxfwa, o] <n—1} =r. So ifr < s, this contradicts

and rankg, 5 9|V a, |a| <2} >r1+1> 3.
After at mosts — 1 steps, we have

804
rank{g, axgwa, la| <s-— 1} =son{?.

From the above it is easy to see that for@ll| 5| > s, g:g can be expressed by
the set of vector function

8()(
{97 axg|vaa |Oé‘ S S_l} .
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Theorem 3.2. Suppose that for any I< n — 1 the set of vector function
{g, §x£|\m7 |a| <1} has constantankon 2. If on {2

rank{g, ngWa, la] <n-— 1} =n-1,

then G must lie on én — 1)-hyperplane through the origin.

Proof.. By Theorem 3.1,

a(x
rank{g, g|Va, || <n—2} =n-1 (3.1)
oxe
on 2. For anyx € {2 there exists a nonzero vector functil(x) such that
0%
K, Ixo =0on? forVa,|a/<n—-1. (3.2)
There exists a neighbourhood ®f By, and 9.9, 9729, ..., 90" such that

they are linearly independent dB. Thusk(x) can be obtained by solving a
nonsingular linear equation system mf- 1 variables, s&k(x) € C*°(By). By
derivating the above equations (3.2), it follows that

<kx“gxg> =0o0nB,Va,|la] <n-2,

i =1,2,...,n. By (3.1) it follows that orBy, rank{k, ky,, ..., ks, } = 1 and there
exist functionscy(x), cx(x), ..., cn(X) such thatk, = cik. By integrating these
equations, we have

) _ efx? C1(X)dx

k(x KX, X, - - %) = CLOOKOK X, - 5 %)

Jia catdx
2

k(x) = e’ KXz, X3, ... Xn) = Ca()K(Xe, X2, . .., Xn)

" cn(x)t;ix;. _
k(x) = efxé’ K(X1, X, . . -, X0) = Cu(¥)K (X1, %o, . . ., X0)
wherex? € B,. Combining all the above equations, it follows that
k(x) = CLOOK(D, Xa, -+ %) = ...
= C(X)CAXX2s -+ %) - Ca(XEs -+ X1, Xn)K(XO)
= E(k(x%),

with &(x) # 0. By (3.2) it follows that(g, k(x%)) = 0 onB,. Sincey is analytic on
2, s0{g,k(x%) = 0 on £2. This implies thaiG lies on the following hyperplane
through the origin:

X tapXe+...+tapx, =0,

wherea; =k (x%),i =1,2,...,n.
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Theorem 3.3. If

maxrank{g, 0 g|Va, lal <n— 1} =n—-1, (3.3)
XEN OxX«
then G lies on gn — 1)-hyperplane through the origin.
Proof.. Let
rn = maxrank{ aagWa la] < I}
| e g, X ) I
and

6= {x rank{s. 5 71 valal < b=}

wherel is a positive integer. By Remark 1.3, we haldeis an open subset of
£2 and {2 — E; has zero measure. L& =N <,_1E. ThenE is an open set and
meq{? — E) = 0. So there exists a neighbourhoBd= E such that orB

0%
< =
rank{g7 axawa’ la] < 1} f
foralll <n— 1. From (3.3),
rank{g, ngWa, la] < n—l} =n-1onB.

By Theorem 3.2, it follows that oB, G lies on a (i — 1)-hyperplane through the
origin. Sinceg is analytic onf2, we haveG is also on thisif — 1)-hyperplane.

Furthermore, we can prove the following results.

Theorem 3.4. If

0%
< — = .
[(Téa};(rank{g, oxo [Va, |a| <n 1} s<n, (3.4)

then G must lie on a s-hyperplane through the originf@n

Proof.. By (3.4) there exisy = (91, g2, - - - , gs) Such that

m(';Q(rank{gj,a g |V a, | <n—1}:s<n7 (3.5
XEN ox«

whereg, (i =1,2,...,s) are somes components ofj. Let the rest components
be gs+1,...,9n. L€t G=(91,92,...,0s,9;) ( > s+1). We apply Theorem 3.3 to
the functiong™and obtaing’is on as-hyperplane oR**! through the origin, i.e.,
there existc), cj, ..., ¢, cL,; such that onf2

i rd i~ sd o=
Cl1+Cugat ... +CLgs+Clygst1 =0.

By (3.5) 91,92, ..., 9s are linearly independent for somee {2, so st+1 # 0,
j =s+1...,n. This implies thatG is onn — s different ( — 1)-hyperplanes
through the origin. Thus we prove this theorem.
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Notice that if the condition (1.4) does not hold, then the condition (3.4)
holds. By Theorem 3.4 it follows that the condition (1.4) is equivalent to the
Rissmann’s condition (1.3).

Remark 3.1.If

0%
<n-1;= .
ngrank{g, 8xa|va’ o] <'n 1} n, (3.6)

then there exists an integB_r > 0 such that
0% — —
ranky g, oxe Vo, || <N =non{2. (3.7)

Proof.. Assume this result does not hold. Then #oF = 1,2,.. ., there exists
X € £2 such that al

rank{g, gxgwa’ la] < I} <n. (3.8)
Since (2 is bounded domain, there exists a convergent subsequenoe}pf.

Without loss of generality suppose the sequence itself is convergent andJim =
Xo € 2. Now we conclude that fox = xg

rank{g, 0 g|Va, la| < +oo} <n. (3.9
ox®
If (3.9) is not true, then there exists> 0 such that foix = X
0% —
< =
rank{g, 8Xa|Va, la| < |}
Thus there is a neighbourhood x, By,, such that orB,,,
0% —
< =
rank{g, axawa, la] < I} n
There exists sufficiently large > | such thaty € By,, so forx =x,

rank{g, ngWa, la| < I} =

This contradicts with (3.8) and then (3.9) holds.
ForVasg, az,...,an € Z" let

[e%1 le7) an
f(x)=det<a g 9%g 0 9).

Oxa’ gxaz’ "7 gxan

By (3 9),f(xo) = 0. Derivatingf (x) and using (3.9) again, it follows that for
Va, 2T =0 for x = x. Sincef (x) is analytic on(2, sof(x) = 0 on (2. This

il axa
contradicts with the condition (3.6), and thus the result is proved.
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Remark 3.2.By Remark 1.3, on some local domain we can obtain a more ac-
curate measure estimate for the parameter set, where the invariant tori exist. By
Remark 1.3 and Remark 3.1, for the subQetof {2 in Theorem A we may have

the estimate$? — £2.| < cAn, whereN is a positive integer.
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