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Abstract

For a re-entrant line operating under the last-buffer–first-serve service policy, there have been two independent proofs of
a heavy traffic limit theorem. The key to these proofs is to prove the uniform convergence of a critical fluid model. We give
a new proof for the uniform convergence of the fluid model.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

This paper is concerned with diffusion approxi-
mations for re-entrant lines operating under the last-
buffer–first-serve (LBFS) service policy. A re-entrant
line is a special type of multiclass queueing network
that was first introduced in [8]. In a re-entrant line,
all jobs follow a deterministic route. In this paper, we
assume that all jobs make K visits to J stations of the
network. Jobs in the kth stage of their visits are called
class k jobs, and the station they visit is denoted by
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station s(k). In other words, each job that enters from
the outside of the network is a class 1 job; after it
completes the service at station s(1), it turns into a
class 2 job and is routed to station s(2), and so on.
After service completion at station s(K), a class K
job leaves the network. We assume that each station
has a single server and an infinite waiting room. We
further assume that the network is operated under
the LBFS service policy. Namely, when a server
switches from one job to another, the new job will
be taken from the leading (the longest waiting) job at
the highest (the last) nonempty class at the server’s
station. For concreteness, we also assume that the
service policy is preemptive resume. That is, when
a job in a higher class than the one currently being
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served arrives at the server’s station, the service of
the current job is interrupted. When service of all jobs
in higher classes is completed, the interrupted service
continues from where it left off. For each class k, let
Qk(t) indicate the number of class k jobs in the net-
work at time t, k = 1, 2, . . . , K . For each station j, let
Wj(t) denote the amount of work for server j (mea-
sured in units of remaining service time) embodied in
those jobs that are at station j at time t. If no more ar-
rivals (either external and internal) are allowed at sta-
tion j after time t, server j needs to work Wj(t) addi-
tional units of time before the station is empty. The dif-
fusion approximation addresses the weak convergence
of a scaled version of the K-dimensional queue length
process Q={Q(t), t �0} and the J-dimensional work-
load process W = {W(t), t �0} under a heavy traffic
condition. It is typical the workload limit W ∗ is a J-
dimensional reflecting Brownian motion, and the K-
dimensional queue length limit Q∗ is a constant multi-
ple of the J-dimensional workload limit W ∗. Namely,
there exists some constant, K × J matrix � such that

Q∗(t) = �W ∗(t), t �0, (1)

a condition known as state space collapse; see, for
example, [1,10].

Bramson and Dai [2] and Chen and Ye [3] inde-
pendently established the diffusion approximations for
LBFS re-entrant lines by verifying the uniform conver-
gence of the corresponding fluid model. Both proofs
are long and difficult to follow. In this paper, we give a
simple proof of the uniform convergence by construct-
ing a suitable linear Lyapunov function. Our analysis
of the Lyapunov function is a refinement of the one
first done in [5]. Readers are referred to [5] for de-
tailed discussions on fluid models and their analysis.
We also refer readers to [2,3] and references therein
for detailed discussions on diffusion approximations
of queueing networks.

Now we introduce some notation for our network.
Let � > 0 be the arrival rate of jobs from the outside
and mk > 0 be the mean service time of class k jobs,
k=1, . . . , K . We use u(�)/� to denote the interarrival
time between the (� − 1)th and the �th externally ar-
riving job; we use mkvk(�) to denote the service time
of the �th class k job. We assume u = {u(�), ��1}
and vk = {vk(�), ��1}, k = 1, . . . , K , are indepen-
dent, identically distributed sequences, and these se-
quences are mutually independent. We assume that

E(u(1))=1, E(vk(1))=1, a=var(u(1)) < ∞, and bk=
var(vk(1)) < ∞. We denote by C(j) = {k : s(k) = j}
the set of classes that are served at station j, and by
C=(Cjk) the J ×K matrix with Cjk=1 when s(k)=j ,
and Cjk =0, otherwise. To avoid triviality, we assume
thatC(j) �= ∅ for all j=1, . . . , J, i.e., all stations must
be visited at least once. Let P = (Pk�) be the K × K

routing matrix, i.e., Pk� =1 when �= k +1 and 0 oth-
erwise. We use m= (mk) to denote the K-dimensional
(column) vector of mean service times, and M to de-
note the corresponding diagonal matrix diag(m). Let
� = �Cm be the J-dimensional vector of traffic inten-
sities. The jth component of � is �j = �

∑
k∈C(j)mk .

In the next section, we state the main theorem of
this paper. The LBFS fluid model will be introduced
in Section 3. There we prove that the fluid model is
uniformly convergent, a fact that will be the key to the
proof of our main theorem.

2. Main results

As a standard procedure, we consider a sequence
of queueing networks, indexed by n = 1, 2, . . . . We
assume that the network topology and the routing in
the sequence do not depend on n. Thus, each network
in the sequence is the same one as described in the
previous section except that, for the nth network, the
external arrival rate is �n and the mean service time
for class k jobs is mn

k . (The arrival rate and mean ser-
vice times are the only network parameters that de-
pend on n.) Thus, in the nth network, {u(�)/�n, ��1}
and {vn

k (�) = mn
kvk(�), ��1}, k = 1, . . . , K , are the

interarrival and service time sequences. All processes
associated with the nth network are appended with
a superscript n. For example, Qn(t) and Wn(t) de-
note the queue length vector and the workload vec-
tor, respectively, at time t in the nth network. In ad-
dition to the queue length and workload processes,
we now introduce the J-dimensional idle-time process
Yn = {Yn(t), t �0}. For station j in the nth network,
Yn

j (t) denotes the total amount of time that the server
at station j has been idle over [0, t].

Formally, the diffusion approximation is concerned
with the following weak convergence result

(Q̂n, Ŵ n, Ŷ n) �⇒ (Q∗, W ∗, Y ∗) as n → ∞, (2)
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where

Q̂n(t) = 1√
n
Qn(nt),

Ŵn(t) = 1√
n
Wn(nt),

Ŷ n(t) = 1√
n
Yn(nt).

The weak convergence in (2), denoted by �⇒, is on
the (K + 2J )-dimensional path space DK+2J [0, ∞)

that is endowed with the Skorokhod J1 topology; for
weak convergence and the path space, see, for exam-
ple, [7]. To state our theorem precisely, we first intro-
duce assumptions on the sequence of networks.

We assume that, as n → ∞,

�n → �, mn
k → mk, k = 1, . . . , K , (3)

and �n → e at the rate
√

n(�n − e) → �, (4)

where e is the J-dimensional vector of ones and � is
some J-dimensional vector. Note that (3) and (4) imply
that each station is critically loaded in the limit, i.e.,

�j = �
∑

k∈C(j)

mk = 1 for each station j . (5)

Let � be the K × J matrix given by

�kj =
{1/mk if k ∈ C(j)and is the

lowest priority class at station j,

0 otherwise.

It serves as the lifting matrix in (1) under the LBFS
service policy. For the existence of diffusion approxi-
mation, we assume that the initial data satisfy the fol-
lowing:

Ŵn(0) ⇒ � as n → ∞ for some nonnegative

random vector � (6)

and

|Q̂n(0) − �Ŵn(0)| → 0 in probability as n → ∞. (7)

In defining the limit process in our theorem, we set

R = (I + CM(I − P ′)−1P ′�)−1,

� = R�, (8)

� = �RCM
(

diag(b1, b2, . . . , bK)

+ (I − P ′)−1 diag(�2a, 0, . . . , 0)

×(I − P)−1
)

MC′R′, (9)

where prime denotes the transpose. It follows from
Theorems 3.1 and 3.2 of [6] that the inverse in (8)
exists, and thus the matrix R is defined. The matrix
� is necessarily nonnegative definite. In the following
theorem, we assume that the matrix � is positive defi-
nite (The formula � in (9) follows from (3.13) of [1].
There is a typo in (3.8) of [2]).

Theorem 2.1. Assume that (3)–(4) and (6)–(7) all
hold and � is positive definite. The weak convergence
(2) holds as n → ∞. Furthermore, the limit process
(Q∗, W ∗, Y ∗), defined on some probability space
(�,F, P), satisfies the following relationships:

(i) P-almost surely, W ∗ has continuous paths with
W ∗(t) ∈ RJ+ for t �0 and

(ii) W ∗(t) = X∗(t) + RY ∗(t) for t �0,
(iii) Under P, X∗ is a Brownian motion with

drift vector � and covariance matrix � such
that X∗(0) has the distribution of �, and
{X∗(t) − X∗(0) − �t, t �0} is martingale with
respect tothe filtration generated by W ∗ and Y ∗,

(iv) For each j = 1, . . . , J , P-almost surely,

(a) Y ∗
j (0) = 0,

(b) Y ∗
j is continuous and nondecreasing,

(c) Y ∗
j can increase only at times t where

W ∗
j (t) = 0,

(v) P-almost surely, Q∗(t) = �W ∗(t) for t �0.

The process W ∗ is known as a semimartingale re-
flecting Brownian motion with reflection matrix R,
drift vector � and covariance matrix � (see [9]). It
follows from Theorems 3.1 and 3.2 of [6] that R is a
completely-S matrix. Thus, W ∗ along with Y ∗ is well
defined, and (W ∗, Y ∗) is unique in distribution. Rela-
tionship (v) is the state space collapse condition (1).

We are going to employ Theorem 5.3 of [2] to prove
the theorem. To employ their theorem, we will check
in the next section that a corresponding fluid model
of the re-entrant network is uniformly convergent with
lifting matrix �.
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3. Fluid model and the simplified proof

In this section, we first introduce the fluid model
of the sequence of reentrant lines. We then define the
notion of uniform convergence for the fluid model.
Finally, we prove that our fluid model is uniformly
convergent with lifting matrix �, thus completing the
proof of Theorem 2.1.

The fluid model for the sequence of re-entrant lines
in Section 2 is defined through the following set of
equations. Here, 	k = 1/mk and 	0 = �.

Q̄k(t) = Q̄k(0) + 	k−1T̄k−1(t) − 	kT̄k(t)

for t �0 and k = 1, . . . , K , (10)

Q̄k(t)�0 for t �0 and k = 1, . . . , K , (11)

T̄k(0) = 0 and T̄k(·) is nondecreasing for

k = 1, . . . , K , (12)

Īk(t) can increase only at times t when∑
�∈C(s(k)),��k

Q̄�(t) = 0, (13)

for k = 1, 2, . . . , K, where

Īk(t) = t −
∑

�∈C(s(k)),��k

T̄�(t) for all t �0.

By convention, T̄0(t) = t in (10). Eqs. (10)–(13) are
known as the fluid model equations operating under
the LBFS service policy. They define the LBFS fluid
model. Since condition (5) holds, the fluid model is
critically loaded. Each solution (Q̄, T̄ ) to (10)–(13) is
a fluid model solution.

Since the rest of the paper is exclusively focused on
the critically loaded LBFS fluid model, for notational
convenience, we drop the bar from a fluid model so-
lution.

Definition 3.1. The fluid model is said to be uniformly
convergent with lifting matrix � if there exists a func-
tion h: R+ → R+ with h(t) → 0 as t → ∞ such that
for each fluid model solution (Q, T ) with |Q(0)| = 1,

|Q(t) − Q(∞)|�h(t), for all t �0,

for some Q(∞) ∈ RK+ satisfying

Q(∞) = �w for some w ∈ RJ+.

In the definition, any norm | · | on RK can be em-
ployed. For concreteness, for a vector x = (xk) ∈
RK , we define |x| = ∑

k|xk|. To prove that our fluid
model is uniformly convergent, we introduce some
more notation. For each station j with 1�j �J , define
Kj = min{k : k ∈ C(j)}, the lowest class at station j.
Without loss of generality, we assume that

K1 < · · · < KJ .

Let K = {1, . . . , K}, L = {K1, . . . , KJ }, and H =
K\L. For a fluid model solution (Q, T ), a time t
is said to be a regular point of (Q, T ) if (Q, T ) is
differentiable at t. Whenever a derivative is considered
at time t, it is assumed that t is a regular point of the
corresponding fluid model solution.

Theorem 3.1. Assume that (5) holds. There exists a

 > 0 such that for any fluid model solution (Q, T )

with |Q(0)|�1,

Q�(
 + t) = 0 for t �0 and � ∈ H, (14)

Q�(
 + t) = Q�(
) for t �0 and � ∈ L. (15)

Condition (14) is known as the SHP-condition in
[4]. Using a sufficient condition established in [4],
Chen and Ye [3] proved Theorem 2.1 using a direct,
lengthy proof of the SHP-condition.

Proof of Theorem 3.1. In view of
∑

�∈HQ�(t) =∑J
j=1

∑Kj+1−1
�=Kj +1Q�(t), with convention that KJ+1 =

K + 1, it suffices to prove that there exist constants

1 > 
2 > · · · > 
J such that for any fluid model solu-
tion (Q, T ) with |Q(0)|�1 and j = 1, . . . , J ,

Kj+1−1∑
�=Kj +1

Q�(t) = 0 for each t �
j , (16)

	�Ṫ�(t) = � for ��Kj

and each regular point t �
j . (17)

We now use the backward induction on j to prove (16)
and (17). We first need to prove that (16) and (17) hold
for j =J . Since this proof is identical to the one in the
induction step, we omit it. Assume that (16) and (17)
hold for J, J − 1, . . . , i + 1 with i�1. We now prove
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that (16) holds for j = i. Let

Fi(t) =
Ki+1−1∑
�=Ki+1

Q�(t) and Li(t) =
Ki+1−1∑

�=1

Q�(t).

We claim that for any regular t �
i+1,

Fi(t) > 0 implies L̇i(t)� − �, (18)

where

� = � min
1� i �J

⎛
⎝1 − �

∑
�∈C(i),� �=Ki

m�

⎞
⎠ .

Note that � > 0 by (5). To see (18), assume that
Fi(t) > 0. Let k be the last class � in Ki < � < Ki+1
with Q�(t) > 0. We calculate 	kṪk(t) first. Since
Q�(·) is a Lipschitz continuous function, by Lemma
2.2 of [5], Q�(t) = 0 implies Q̇�(t) = 0. Then from
the definition of k,

	�Ṫ�(t) = 	kṪk(t) for k�� < Ki+1.

By the induction assumption,

	�Ṫ�(t) = � for ��Ki+1.

By (13),
∑

�∈C(j),��kṪ�(t) = 1, where j = s(k) and

k > Kj . Therefore,

	kṪk(t) = 1 − �
∑

�∈C(j),��Ki+1
m�∑

�∈C(j),k ��<Ki+1
m�

. (19)

From (10) and (19),

L̇i(t) =
k∑

�=1

Q̇�(t) = � − 	kṪk(t)

= �
∑

�∈C(j),��k m� − 1∑
�∈C(j),k ��<Ki+1

m�

�
�
∑

�∈C(j),��=Kj
m� − 1∑

�∈C(j),k ��<Ki+1
m�

��

⎛
⎝�

∑
�∈C(j),��=Kj

m� − 1

⎞
⎠ � − �.

It follows from (18) that for any s�
i+1, Fi(t) = 0
for some t ∈ (s, s + Li(s)/�). In particular,

Fi(t) = 0 for some t ∈ (
i+1, 
i+1 + Li(
i+1)/�),

(20)

and Fi(t) equals to 0 infinitely many times after time

i+1. We next show that for any two time points t1 and
t2 with 
i+1 � t1 < t2,

Fi(t1) = Fi(t2) = 0 implies that

Fi(t) = 0 for all t ∈ (t1, t2). (21)

To see this, we first claim that L̇i(t)�0 for t �
i+1.
This claim holds trivially when Li(t) = 0. Suppose
that Li(t) > 0. The claim can be proved by mimicking
the proof of (18) with k being defined to be the last
class � with 1�� < Ki+1 and Q�(t) > 0. Suppose that
(21) does not hold, i.e., Fi(t) > 0 for some t ∈ (t1, t2).
Then there exists some interval (s1, s2) ⊂ (t1, t2) such
that Fi(t) > 0 for all t ∈ (s1, s2). It follows (18) that

Li(t1)�Li(s1) > Li(s2)�Li(t2). (22)

On the other hand, let

Gi(t) =
∑

k∈C(i)

mk

k∑
�=1

Q�(t)

be the total workload at station i. It follows from fluid
model equations (10)–(13) and (5) that

Ġi(t) = 1 −
∑

�∈C(i)

Ṫ�(t)�0,

thus

Gi(t1)�Gi(t2). (23)

By the induction assumption, Q�(t1) = 0 for � > Ki

and � ∈ C(i). Thus,

Gi(t1) =
∑

k∈C(i)

mk

Ki∑
�=1

Q�(t1)

=
⎛
⎝ Ki∑

�=1

Q�(t1)

⎞
⎠

⎛
⎝ ∑

k∈C(i)

mk

⎞
⎠

= Li(t1)

⎛
⎝ ∑

k∈C(i)

mk

⎞
⎠ . (24)

Similarly, we have

Gi(t2) = Li(t2)

⎛
⎝ ∑

k∈C(i)

mk

⎞
⎠ . (25)
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It follows from (22) and (24)–(25) that

Gi(t1) = Li(t1)

⎛
⎝ ∑

k∈C(i)

mk

⎞
⎠ > Li(t2)

⎛
⎝ ∑

k∈C(i)

mk

⎞
⎠

= Gi(t2),

contradicting (23). Thus, we have proved (21).
It follows from (20) and (21) that Fi(t) = 0 for

t �
i+1 + Li(
i+1)/�. Note that Li(
i+1)�Li(0) +
�
i+1 �1 + �
i+1. By setting


i = 1 + (� + �)
i+1

�
,

which is independent of fluid model solutions, we have
Fi(t) = 0 for t �
i , thus proving (16) for j = i.

It remains to prove that (17) holds for j=i. Let t �
i

be a regular point. Since Q�(t)=0 for Ki < � < Ki+1,
	�Ṫ�(t) = 	Ki

ṪKi
(t) for Ki < � < Ki+1. It suffices to

prove that

	Ki
ṪKi

(t) = �. (26)

We first assume that QKi
(t) > 0. In this case, (26)

follows from (5) and (19), with k = Ki and j = i in
(19).

Clearly, if Q�(t) = 0 for all 1���Ki , (26)
holds. Now we assume that QKi

(t) = 0, but∑
1��<Ki

Q�(t) > 0. Since
∑

�∈C(i)Ṫ�(t)�1, similar
to the derivation of (19), with k = Ki and j = i, we
have

	Ki
ṪKi

(t)�
1 − �

∑
�∈C(i),��Ki+1

m�∑
�∈C(i),Ki ��<Ki+1

m�

= �.

On the other hand, let k be the last class � with
1�� < Ki and Q�(t) > 0. Then 	kṪk(t) is given by
(19), which is greater than or equal to �. Therefore,
we have proved (26), thus completing the induction
step. �

Proof of Theorem 2.1. We employ Theorem 5.3 of
[2] to prove the theorem. To employ the theorem, one
needs to check that the matrix R in (8) is completely-
S and that the fluid model is uniformly convergent
with lifting matrix �. The completely-S condition is

satisfied due to Theorems 3.1 and 3.2 of [6]. From (15)
of Theorem 3.1, the fluid model is uniformly conver-
gent with lifting matrix �. Thus, Theorem 2.1 follows
from Theorem 5.3 of [2]. �
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