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Abstract. We generalize Gordon type argument to quasi-periodic
operators with finite range interaction and prove that these opera-
tors have no point spectrum when the rational approximation rate
of the base frequency is comparably large. We also show that this
kind of argument may not be true in the infinite range interaction
cases, where we find some point spectrum.

1. Introduction

We consider the quasi-periodic operators Lf,φ,α acting on l2(Z) :

(1) (Lf,φ,αu)n =
∑

k∈Z\{0}
fkun−k + 2 cos 2π(φ + nα)un,

where α ∈ R\Q, f(θ) ∈ Cω
h (T,R) with zero average and fk are fourier

coefficients of f(θ) such that

(2) f(φ) =
∑

1≤|k|≤D

fke
2πiφ, f−k = f̄k, 1 ≤ D ≤ ∞.

If D < ∞ and fD 6= 0, then f(θ) is a real trigonometric polynomial and
we shall call Lf,φ,α operators with finite range interactions. If D = ∞,
we call Lf,φ,α operators with infinite range interactions or long range
operators. In this paper, we discuss the absence and presence of point
spectrum of the operators Lf,φ,α with respect to parameters (α, D). To
measure how Liouvillean α is, we denote

(3) β(α) := lim sup
n→∞

ln qn+1

qn

,

where pn

qn
is the n−th convergent of α.

The operator Lf,φ,α is of special interest and importance. Firstly,
it is a natural generalization of the almost Mathieu operator (AMO)
by letting D = 1 and f−1 = f1 = λ−1 (up to a multiplying constant).
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Secondly, it is the Aubry dual (Fourier type transformation) of classical
Schrödinger operator on l2(Z) :

(4) (Hf,θ,αu)n = un+1 + un−1 + f(θ + nα)un,

where α ∈ R\Q, f(θ) ∈ Cω
h (T,R). Readers can consult Haro and

Puig’s recent paper [10] for more relationship between these two oper-
ators.

We first recall some results about the point spectrum of the almost
Mathieu operator. In studying the problem of absence of point spec-
trum of the almost Mathieu operator H2λ cos 2π,θ,α, Gordon type argu-
ment is one of the most efficient ways. The original Gordon’s lemma is
due to Gordon [9] and was first applied to AMO by Avron and Simon
[5]. It says that if β(α) = ∞, then H2λ cos 2π,θ,α has no point spectrum
for any θ, λ. Combined with some finer estimate and the explicit for-
mula of the Lyapunov exponent of AMO, Gordon type argument can
actually shows that if λ < eβ/2, then H2λ cos 2π,θ,α has no point spectrum
for any θ. It was conjectured by Jitomirskaya in [12] that the optimal
condition for H2λ cos 2π,θ,α to have purely singular continuous spectrum
should be 1 < λ < eβ, which still remains open.

On the other hand, it was proved by Avila and Jitomirskaya in [2]
that if λ > e16β/9, then H2λ cos 2π,θ,α has Anderson localization (pure
point spectrum with exponentially decaying eigen-functions) for a.e. θ.
And the optimal condition for AMO to exhibit Anderson localization
was conjectured to be λ > eβ in [2], which also remains open.

Next we want to see what happens to both sides of the above ques-
tions when we generalize AMO to the operators Lf,φ,α. Our first ques-
tion will be:

Question 1: When will the operators Lf,φ,α still possess some point
spectrum and when not?

We shall see below that the answers to Question 1 may be different
according to choice of the parameters (α, D).

For any 1 ≤ D ≤ ∞, Bourgain and Jitomirskaya [6] proved that if
α is Diophantine, and λ is large enough, then Lλ−1f,φ,α has Anderson
localization for a.e. φ. This result was later generalized by Avila-
Jitomirskaya [3], who proved that if β(α) < ∞, λ > λ0(β, f), then
Lλ−1f,φ,α has Anderson localization for a.e. φ.

With the help of Gordon type argument, we have the following an-
swers to Question 1 in the opposite direction of the above results.
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Theorem 1.1. Suppose that α ∈ R\Q, D < ∞, denote ‖f‖1 =∑
1≤|k|≤D |fk|. If

(5) β(α) > 2D ln
‖f‖1

|fD| ,

then for

(6) λ <
1

4

(|fD|e
β

2D − ‖f‖1

)
,

Lλ−1f,φ,α has no point spectrum for any φ ∈ T.

Remark 1.1. Theorem 1.1 holds automatically when β = ∞ and D <
∞.

We emphasize that Gordon type argument is not necessarily to be
restricted to quasi-periodic Schrödinger operators, readers can consult
[7, 8] for more discussions and applications of Gordon type argument
on Schrödinger operators (including operators which are not quasi-
periodic). Instead of proving Theorem 1.1 directly, we would like to
study the following operators:

(7) (HD
V,θ,αu)n =

∑

1≤|k|≤D

fkun−k + V (θ + nα)un, n ∈ Z

and generalize the Gordon type argument to the above operators. In
the operators HD

V,θ,α, V is assumed to be Lipschitz continuous on T,

f : T → R is a real trigonometric polynomial, with f−k = f̄k, fD 6= 0.
Denote ‖V ‖∞ = supθ∈T |V (θ)|, then we have:

Theorem 1.2. For Lipschitz continuous potential V , if

(8) β(α) > 2D ln
2‖V ‖∞ + ‖f‖1

|fD| ,

then HD
V,θ,α has purely continuous spectrum for any θ ∈ T.

Theorem 1.2 is no longer applicable when D = ∞, therefore, the
remaining question will be:

Question 2: If β = ∞ and D = ∞, could Lf,φ,α possess some point
spectrum?

We give an answer to this question in the following theorem:

Theorem 1.3. Let h > 0, α ∈ R\Q, then there exists ε0 = ε0(h) such
that we have the following:
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(a): There is a local dense set of f ∈ Cω
h (T,R) in

{
f ∈ Cω

h (T,R) :

‖f‖h ≤ ε0

}
such that Lf,φ,α has point spectrum with exponen-

tially decay eigenfunctions for some φ ∈ T.
(b): Moreover, if β(α) = ∞, then there also exists a global dense set

of f ∈ Cω
h (T,R), such that Lf,φ,α has no point spectrum for any

φ ∈ T.

Remark 1.2. Gordon’s lemma gives a criterion for absence of point
spectrum for all phases, this can be generalized to finite range interac-
tion case, see Theorem 1.1, however, Theorem 1.3 (a) shows that this
is not always true when D = ∞.

2. Preliminaries

2.1. Fibered rotation number. An analytic quasi-periodic SL(2,R)
cocycle (α, A) is a skew product defined as

(α, A) : T× R2 → T× R2

(θ, v) 7→ (θ + α, A(θ) · v),

where α ∈ R\Q, A ∈ Cω(T, SL(2,R)).
Denote by P1 be the projection space of R2 and by π : R → P1 the

projection π(x) = e2πix. Assume that A(·) is furthermore homotopic
to the identity. The map

F : T× P1 → T× P1

(θ, v) 7→ (θ + α,
A(θ)v

‖A(θ)v‖)

admits a continuous lift F̃ : T × R → T × R of the form F̃ (θ, x) =
(θ +α, x+ f(θ, x)) such that f(θ, x+1) = f(θ, x) and π(x+ f(θ, x)) =

A(θ)π(x)/‖A(θ)π(x)‖. We say that F̃ is a lift for the cocycle (α, A).
Since θ 7→ θ +α is uniquely ergodic on T, then for every (θ, x) ∈ T×R
the limit

rotf (α, A) := lim
n→±∞

1

n

n−1∑

k=0

f(F̃ k(θ, x)) modZ,

exists, is independent of (θ, x), the chosen lift F̃ , and the convergence is
uniform in (θ, x) [13]. We call it the fibered rotation number of (α, A).

Recall that two cocycles (α, Ai), i = 1, 2 are conjugated means that
there exists B ∈ Cω(2T, SL(2,R)) such that

A1(θ) = B(θ + α)A2(θ)B(θ)−1.

Denote it by (α, A1) = AdB(α, A2). Fibered rotation number is a con-
jugacy invariant in the following sense:
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Proposition 2.1 (Krikorian, [14]). Let (α, Ai) ∈ R\Q×Cω(T, SL(2,R)),
i = 1, 2 be two conjugated quasi-periodic cocycles. If the conjugacy
B ∈ Cω(2T, SL(2,R) and has degree k, then

rotf (α, A1) = rotf (α, A2) +
1

2
kα mod Z,

3. Finite range interaction case

In this section, we generalize Gordon type argument to the quasi-
periodic operators with finite range interaction HD

V,θ,α defined in (7).
Consider the eigenvalue equations of the corresponding operators:∑

1≤|k|≤D

fkun−k + V (θ + nα)un = Eun.

Since f−D 6= 0, this equation can be rewritten as a skew-product system
of order 2D.

X(n) = A(θ + nα, E, α)X(n− 1),

where

X(n) =




un+D

un+D−1

· · ·
un−D+1


 ∈ C2D,

and

A(θ, E, α) =


−f−D+1

f−D
−f−D+2

f−D
· · · E−V (θ)

f−D
· · · −fD−1

f−D
− fD

f−D

1 0 · · · · · · · · · 0 0
0 1 0 · · · · · · 0 0
0 0 1 · · · · · · 0 0
· · · · · · 0 1 0 · · · · · ·
· · · · · · 0 0 1 0 0
0 0 · · · · · · 0 1 0




(9)

The proof of Theorem 1.2 will follow the proof of the original Gor-
don’s lemma. In the following, we denote An = A

(
θ + (n− 1)α

)
and

Mn(θ, A, α) =





AnAn−1 · · ·A1, n > 0
Id, n = 0
A−1
−n−1 · · ·A−1

−1A
−1
0 , n < 0

Set
X(n) = Mn(θ, E,

p

q
)X(0), X(0) ∈ C2D,

first we prove that:
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Lemma 3.1. The following estimate holds:

max
0<|i|≤2D,i∈Z

{‖X(iq)‖} ≥ 1

2D
‖X(0)‖.

Proof. Denote M = Mq(θ, E, p
q
) for short. Since M is q periodic, then

M i = Miq(θ, E, p
q
) and M iX(0) = X

(
iq

)
. By Cayley-Hamilton Theo-

rem, there exist c0, c1, · · · , c2D ∈ C such that

c2DM2D + c2D−1M
2D−1 + · · ·+ c1M + c0Id = 0.

Suppose that

|cj| = max
0≤k≤2D,k∈N

|ck|
for some j ∈ {0, · · · , 2D}, without loss of generality, we assume that
|cj| = 1. Notice that M ∈ SL(2D,C) is invertible, then

c2DM2D−j + c2D−1M
2D−1−j + · · ·+ cjId + · · ·+ c1M

1−j + c0M
−j = 0.

Consequently, we have

‖X(0)‖
≤ ‖c2DM2D−jX(0) + · · ·+ cj+1MX(0)

+cj−1M
−1X(0) + · · ·+ c1M

1−jX(0) + c0M
−j(0)‖

≤ ‖X(
(2D − j)q

)‖+ · · ·+ ‖X(
q
)‖(10)

+‖X(− q
)‖+ · · ·+ ‖X(

(1− j)q
)‖+ ‖X(

(−j)q
)‖.

There are exact 2D terms in (10), thus at least one of them must be
larger than 1

2D
‖X(0)‖. Notice that j takes values in 0, · · · , 2D, then

we conclude that there exists i ∈ {±1, · · · ,±2D} such that ‖X(
iq

)‖ ≥
1

2D
‖X(0)‖. ¤
Now we approximate a quasi-periodic operator by periodic operators,

suppose that αk = pk

qk
is the best rational approximation of α, for each

k ∈ N, set

(11) A(k)
n = A

(
θ + (n− 1)

pk

qk

)
, M (k)

n = Mn(θ, E, αk).

Now we can estimate the approximation error ‖Mn −M
(k)
n ‖, we are

going to show the following lemma:

Lemma 3.2. Suppose that V is Lipschitz continuous with Lipschitz
constant C1, then the following conclusion holds: for any k ∈ N,

sup
|n|≤2Dqk

sup
θ∈T

‖Mn −M (k)
n ‖ ≤ 4D2C1 · qk

qk+1

(2‖V ‖∞ + ‖f‖1

|fD|
)2Dqk

.
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Proof. As a result of the Lipschitz continuity of V and explicit form of
A(θ, E, α) in (9), we have for any qk,

(12) sup
|i|≤2Dqk

sup
θ∈T

‖Ai − A
(k)
i ‖ <

2DC1

|fD|qk+1

.

On the other hand, notice that

σ(HD
V,θ,α) ⊂ [−‖V ‖∞ − ‖f‖1, ‖V ‖∞ + ‖f‖1],

then for |E| ≤ ‖V ‖∞ + ‖f‖1, the maximal norm of A(θ, E, α) satisfies

(13) ‖A(θ, E, α)‖ ≤ 2‖V ‖∞ + ‖f‖1

|fD| ,

for any θ ∈ T, α ∈ R.
Therefore, when 0 < n ≤ 2Dqk, according to estimates (12) and

(13), we have

‖Mn −M (k)
n ‖

=
∥∥∥

n∑
i=1

An · · ·Ai+1

(
Ai − A

(k)
i

)
A

(k)
i−1 · · ·A(k)

1

∥∥∥

≤
n∑

i=1

(2‖V ‖∞ + ‖f‖1

|fD|
)n−i

· 2DC1

|fD|qk+1

·
(2‖V ‖∞ + ‖f‖1

|fD|
)i−1

≤ 2nDC1

|fD|qk+1

(2‖V ‖∞ + ‖f‖1

|fD|
)n−1

≤ 4D2C1
qk

qk+1

(2‖V ‖∞ + ‖f‖1

|fD|
)2Dqk

.

The above proof holds true for −2Dqk ≤ n < 0. ¤

Proof of Theorem 1.2: Take

ε = β − 2D ln
(2‖V ‖∞ + ‖f‖1

|fD|
)

> 0.

By the definition (3), there exist subsequence {qki
} and K such that

for all ki > K

ln qki+1

qki

> β − ε

2
.



8 JIANGONG YOU, SHIWEN ZHANG, AND QI ZHOU

By Lemma 3.2, for any ki > K, and for all θ ∈ T and |n| ≤ 2Dqki
,

‖Mn −M (ki)
n ‖

≤ 4D2C1
qki

qki+1

(2‖V ‖∞ + ‖f‖1

|fD|
)2Dqki

= 4D2C1qki
exp

{
qki

(
2D ln

(2‖V ‖∞ + ‖f‖1

|fD|
)− ln qki+1

qki

)}

≤ 4D2C1qki
exp{−1

2
qki

ε}.
Letting qki

→∞, we have:

sup
|n|≤2Dqki

sup
θ∈T

‖Mn −M (ki)
n ‖ −→ 0.

Set X(0) =




uD−1

uD−2

· · ·
u−D


 6= 0, and

X(n) = Mn(θ, E, α)X(0), X(k)(n) = Mn(θ, E,
pk

qk

)X(0).

By Lemma 3.1, for all θ ∈ T1, E ∈ R, and any k ∈ N,

max
0<|i|≤2D,i∈Z

{‖X(iqk)‖} ≥ 1

2D
‖X(0)‖.

Then we have for i = ±1, · · · ,±2D and for any θ ∈ T,

lim
qki
→∞

‖X(iqki
)−X(ki)(iqki

)‖ ≤ lim
qki
→∞

sup
|n|≤2Dqki

sup
θ∈T

‖Mn−M (ki)
n ‖‖X(0)‖ = 0.

i.e., there is a sequence nk with |nk| → ∞ such that
√
|unk

|2 + |unk−1|2 + · · ·+ |unk−2D+1|2 ≥ 1

4D

√
|uD−1|2 + · · ·+ |u−D|2

Therefore, HD
V,θ,αu = Eu has no l2 solution for any θ ∈ T if β(α) satis-

fies (8). ¤

Proof of Theorem 1.1: If D < ∞, we apply Theorem 1.2 to the
operator Lλ−1f,φ,α = HD

V,φ,α with V (φ) = 2 cos 2πφ. Clearly, (8) gives
the estimate

β > 2D ln
λ−1‖f‖1 + 2‖V ‖∞

λ−1|fD| ,

which immediately implies

(14) λ <
1

4

(|fD|e
β

2D − ‖f‖l1
)
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since ‖V ‖∞ = 2.
Notice that λ > 0, thus the above estimate makes sense only when

the right hand side of (14) is positive. ¤

4. Long-range case

In this section, we show that Gordon’s lemma is not always true
for quasi-periodic long-range operators. The basis are the newly de-
veloped reducible theory for Liouvillean frequency [15] and the duality
argument. Recall that (α, A) is reducible, if it can be conjugated to a
constant cocycle. A cocycle (α, A1) is said to be rotations reducible if
it is conjugated to a cocycle (α,A2) ∈ R/Q× Cω(T, SO(2,R)). Read-
ers can consult [15] for classical results on reducibility and rotations
reducibility and the reference therein.

Proof of Theorem 1.3 (a): We first recall the following rotations
reducible result for SL(2,R) cocycle with Liouvillean frequency, which
was first proved in the continuous case [11], and then was proved in
the cocycle case by local embedding theorem [15]. Similar result can
be found in [1].

Theorem 4.1. Let α ∈ R\Q, h > 0, R ∈ SL(2,R), A ∈ Cω
h (T,

SL(2,R)). Then there exist ε0 which depends on R, h such that if
‖A − R‖h < ε0, and the rotation number rotf (α, A) is Diophantine
w.r.t. α, then (α, A) is analytically rotations reducible.

We rewrite the Schrödinger operator

(HV,θ,αu)n = un+1 + un−1 + V (θ + nα)un

as a Schrödinger cocycle (α, SV
E ), where

SV
E (θ) =

(
V (θ)− E −1

1 0

)
∈ SL(2,R).

Now suppose that ‖V ‖h ≤ ε0, and rotf (α, SV
E ) is Diophantine w.r.t. α,

then by Theorem 4.1, (α, SV
E ) is rotations reducible, which means there

exist BE ∈ Cω
h∗(2T, SL(2,R)), φE ∈ Cω

h∗(T,R) such that

BE(θ + α)SV
E (θ)BE(θ)−1 = RφE(θ),

by Proposition 2.1, we have

[φE] = rotf (α, SV
E ) +

degBE(θ)α

2
.

Notice that (α, SV
E ) can be accumulated by reducible cocycles. To

see this, we only need to consider the reference systems (α,RTqnφE(θ)),



10 JIANGONG YOU, SHIWEN ZHANG, AND QI ZHOU

which are reducible since TqnφE(θ) =
∑

|k|≤qn
φ̂E(k)e2πikθ are polyno-

mials and
ψE(x + α)− ψE(x) + TqnφE(x)) = [φE]

always has a solution with ψE ∈ Cω
h∗(T,R). As a consequence, the

cocycles
(α, Ak(·, λ)) = AdB−1

E
(α, RTqk

φE(θ))

are reducible since reducibility is conjugacy invariant. Furthermore, we
have for k →∞

‖Ak − SV
E ‖h∗ = ‖BE(θ + α)−1(RφE(θ) −RTqk

φE(θ))BE(θ)‖h∗

≤ ‖B−1
E ‖2

h∗‖Rqk
φE(θ)‖h∗ → 0.

To this stage, we need the following theorem, which states that a non-
Schrödinger perturbations of Schrödinger cocycles can be converted to
a Schrödinger cocyle. The proof can be found in [4].

Theorem 4.2. Let V ∈ Cω
h (T,R) be non-identically zero. There exists

ε > 0, such that if A ∈ Cω
h (T, SL(2,R)) satisfies ‖A− SV

E ‖h < ε, then

there exists Ṽ ∈ Cω
h (T,R), and B ∈ Cω

h (T, SL(2,R)), such that

B(θ + α)A(θ)B(θ)−1 = SṼ
E (θ).

Therefore, when k is large enough, there exists Ṽk ∈ Cω
h∗(T,R), and

Bk ∈ Cω
h∗(T, SL(2,R)), such that

Bk(θ + α)Ak(θ)Bk(θ)
−1 = SṼk

E (θ).

Then (α, SṼk
E ) can be reduced to (α, R[φE ]), consequently the Schrödinger

operator

(15) (HṼk,α,θu)n = un+1 + un−1 + Ṽk(nα + θ)un = Eun,

has Bloch waves with Floquet exponent

[φE] = rotf (α, SV
E ) +

degBE(θ)α

2
+ degBk(θ)α.

Expand Ṽk(θ) into its Fourier series Ṽk(θ) =
∑

m Ṽk(m)e2πimθ, then by
Aubry duality,

(16) (LṼk,ϕ,αψ)n =
∑

m∈Z
Ṽk(m)ψn−m + 2cos2π(ϕ + nα)ψn = Eψn,

has an exponentially decay solution for ϕ = ±[φE]. Thus E is a eigen-
value.

Proof of Theorem 1.3 (b): According to Theorem 1.2, if β(α) = ∞,
then for any finite degree trigonometric polynomials f , the finite range
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operator Lf,φ,α has no point spectrum for any φ. Since trigonometric
polynomials are dense in Cω

h (T,R), we conclude that if β = ∞, then
there is a dense set of f ∈ Cω

h (T,R), such that the operator Lf,φ,α has
no point spectrum for any φ ∈ T.

Acknowledgements

The work was partially supported by NNSF of China (Grant 11031003)
and a project funded by the Priority Academic Program Development
of Jiangsu Higher Education Institutions. Q. Zhou was also supported
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