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Abstract

For analytic quasiperiodic Schrödinger cocycles, Goldstein and Schlag [13] proved
that the Lyapunov Exponent is Hölder continuous provided that the base frequency
ω satisfies strong Diophantine condition. In this paper, we give a refined large devi-
ation theorem, which implies the Hölder continuity of the Lyapunov exponent for all
Diophantine frequencies ω, even for weak Liouville ω, which improves the result of
[13].

Keywords: Hölder continuity; Lyapunov exponents; quasiperiodic Schrödinger operators.

1 Introduction and the Main result

In this paper we study Hölder continuity of the Lyapunov exponent of cocycles associated
with 1-D quasiperiodic operators on l2(Z)

(Hφ)(n) = φ(n− 1) + φ(n+ 1) + v(x+ nω)φ(n), n ∈ Z, (1.1)

where x ∈ T, ω ∈ R\Q, and assume v : T → R is real analytic on T. Consider SL2(R)
valued matrixes

A(x,E) =

(
E − v(x) −1

1 0

)
, E ∈ R, x ∈ T. (1.2)

We call (ω,A) a Schrödinger cocycle associated with (1.1). For n ∈ N, set

Mn(x,E) =
1∏

k=n

A(x+ kω,E), (1.3)

un(x) =
1

n
‖Mn(x,E)‖, (1.4)

Ln(ω,E) =

∫
T
un(x)dx.

∗The corresponding author.
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‖ · ‖ in (1.4) can be any type of matrix norm on SL2(R). Notice that ‖M‖ ≥ 1 if
M ∈ SL2(R). Mn, un and Ln can be defined for n ∈ Z. Actually for n > 0, let

M−n = A−1(x− (n− 1)ω) · · ·A−1(x− ω)A−1(x).

Since A ∈ SL2(R) and the dynamic on the base space is uniquely ergodic, the approximate
behavior of Ln in both cases n→ +∞ and n→ −∞ will be the same. Thus we focus on
n ∈ N all through this paper.

The Lyapunov exponent associated with the cocycle (ω,A) is defined as:

Definition 1.1
L(ω,E) = lim

n→+∞
Ln(ω,E). (1.5)

Remark 1.1 The limit (1.5) exists and is equal to limn→+∞ un(x) for a.e. x by subaddi-
tive Ergodic Theorem.

We assume that the potential v has a bounded extension on the complex strip |=Z| < ρ
and define its norm as

‖v‖ρ = sup
|=Z|<ρ

|v(Z)|. (1.6)

If E ∈ (−∞,−2 + ‖v‖ρ]
⋃

[2 + ‖v‖ρ,+∞), the cocycle is uniformly hyperbolic, thus the
regularity of L(E) is not an issue. So without loss of generality, we assume |E| ≤ 2+‖v‖ρ.
Simple computation shows that sup|=Z|<ρ ‖A(Z)‖, sup|=Z|<ρ ‖A−(Z)‖ ≤ 3 + 2‖v‖ρ and

sup
|=Z|<ρ

|un(Z)| ≤ log(3 + 2‖v‖ρ) := Cv (1.7)

Before coming to the main result of this paper, we have to introduce one last important
concept.

Definition 1.2 (Deviation Set) For κ > 0, n ∈ N, let

Ωn(κ) = {x ∈ T :| un(x)− Ln(E) |> κ}.

Fix ω ∈ R\Q, consider the continued fraction expansion ω = [a1, a2, · · ·] with conver-
gent ps

qs
for s = 1, 2, · · ·. Let

β = β(ω) = lim sup
s

log qs+1

qs
.

Our main result is the following theorem:

Theorem 1 (Refined Large Deviation Theorem) For any κ > 0, let Cv be the con-
stant in (1.7). There exist some absolute constants c0, c1 which are independent of κ,Cv,
such that if β < c0 · κCv and n > N(κ,Cv), then

mesΩn(κ) < e
− c1
C3
v
κ3n

. (1.8)
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Remark 1.2 Goldstein and Schlag [13] established so-called sharp large deviation theo-
rem saying that

mesΩn(κ) < e−cκn (1.9)

for strong Diophantine frequencies ω 1. They also got

mesΩn(κ) < e−C(κ)nσ , σ ∈ (0, 1) (1.10)

under the usual Diophantine condition. While for any irrational frequency ω, Bourgain
and Jitomirskaya [9] proved

mesΩn(κ) < e−cκq, q < cκ2n. (1.11)

(1.10),(1.11) account for the weaker regularity for general frequencies. The word ‘Refined’
in Theorem 1 indicates that we removed the exponent σ ∈ (0, 1) as well as removed the
restriction q < cκ2n for 0 ≤ β(ω)� 1, which enables us to establish Hölder continuity of
the Lyapunov Exponent for all Diophantine, and some weak Liouville frequencies.

In order to prove Hölder continuity of the Lyapunov Exponent, we also need to assume
that the Lyapunov Exponent is positive. When L(E) = 0, E ∈ σ(H), the regularity of a
dual quantity(integrated density of states, I.D.S.) is more often studied. We refer to Avila,
Jitomirskaya [3] for more results on the regularity of the I.D.S.

We focus on regularity of the Lyapunov Exponent under the following conditions.

Condition 1.1 (Positivity of L(E))

L(E) > γ > 0, for E ∈ [E1, E2]. (1.12)

Now take κ = 1
100γ in Theorem 1. Combine Theorem 1 with the avalanche principle,

the Hölder continuity of L(E) can be proved easily following the iteration steps developed
by Goldstein and Schlag in [13]. More precisely, we have:

Theorem 2 Suppose that Condition 1.1 holds. Let Cv be the constant in (1.7) and let c0
be the constant in Theorem 1. Assume that β < c0

100 ·
γ
Cv

. Then

|L(E)− L(E′)| ≤ C|E − E′|τ , E,E′ ∈ [E1, E2],

where the Hölder exponent τ = c2 · 2−
200Cv
γ · γ

3

C4
v

. The constant C depends on Cv, γ and the

length of the interval [E1, E2], while c2 is an absolute constant independent of Cv, γ.

Remark 1.3 Based on (1.9), Goldstein and Schlag in [13] proved that L(E) is a Hölder
continuous function on a neighborhood of any point where it is positive provided that the
base frequency ω is strong Diophantine. We improve their result by not only removing the
strong Diophantine condition restriction but also extending the Hölder continuity to the
weak Liouville case(β(ω) � 1). Meanwhile, since L(E) is known to be discontinuous at
rational ω, it might escape any modulus of continuity for Baire generic ω(this argument
appears, albeit briefly, in the paper of Avila and Jitomirskaya [3]). This fact indicates that
we can not expect the Hölder continuity to hold for all β > 0 and our restriction on β is
reasonable, although might not be optimal.

1Strong Diophantine means that ω ∈ (0, 1) satisfies ‖nω‖1 := infm∈Z |nω − m| ≥ Cω
|n|(log |n|)a for all

n 6= 0 and some fixed a > 1, which is stronger than the usual Diophantine condition ‖nω‖1 ≥ Cω

|n|b for all

n 6= 0 and some fixed b > 1. Notice that β(ω) = 0 if ω is Diophantine.
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Remark 1.4 Though in Theorem 2 we focus on Schrödinger cocycle, the conclusion holds
for any quasi-periodic SL2(R) cocycles (ω,A(x,E)) which are analytic in both x and E.

Similar results hold for quasi-periodic linear equation. Consider Hill’s equation

−y′′(t) + qθ(t)y(t) = Ey(t), t ∈ R, (1.13)

where qθ(t) = Q(θ1 + t, θ2 +ωt). Q is an real analytic function from T2 to R. We can prove
that the Lyapunov exponent γ(E) associated with this equation is Hölder continuous w.r.t.
E provided β(ω)� 1 and γ(E) > 0. Actually, let sl2(R) be the set of 2× 2 real matrices

of zero trace, let aθ(t) =

(
0 1

qθ(t)− E 0

)
: T2 → sl2(R) and z =

(
y
y′

)
. Write (1.13)

as the family of differential systems
z′ = aθz. (1.14)

For each θ ∈ T2, let Φθ,E(t) be the fundamental matrix solution of equation (1.14). The
family of maps Φθ,E(t) : T2 × R→ SL2(R) is called a continuous cocycle.

The (maximal) Lyapunov exponent of the family (1.13) or (1.14) is defined as

γ(E) = lim
|t|→∞

1

|t|
log ‖Φθ,E(t)‖, (1.15)

the limit exists and is constant θ-a.e.(ω ∈ R\Q).
We take the Poincaré map of (1.14), then the discrete version of (1.15) would be

γd(E) = lim
|n|→∞

1

|n|
log ‖Φθ,E(n)‖,

and of course γ(E) = γd(E). Notice that the base dynamic is now reduced to the one-
frequency map θ2 7→ θ2 + ω and Φθ,E(n) has the form of matrices product just as Mn in
(1.3). Moreover, the fundamental matrix solution Φθ,E(t) is analytic in θ,E. According
to Remark 1.4, γ(E) is Hölder continuous at E with γ(E) > 0 if β(ω)� 1.

Now, we consider regularity of L(E) associated with (1.1) with potentials of the form
v = λv0, where v0 : T 7→ R is a nonconstant real analytic function and λ > 0 is called
the coupling constant. In general, the positivity of L(E) is hard to predict. However, if
we assume that the potential has the form λv0, there are plenty of results to guarantee
the positivity of L(E) by assuming that λ is large enough. The operators associated with
the one parameter family of potential λv0 are extensively studied. The most thoroughly
studied example is the almost Mathieu operator when taking v0(x) = 2 cos(2πx). In the
following, we state the results of Theorem 1,2 for this family of potentials.

Sorets and Spencer [17] proved that (1.12) holds for λ > λ0. Bourgain, Goldstein [8]
gave an alternative proof of Sorets and Spencer’s result [17]. We cite the results as follows:

Proposition 1 (Sorets and Spencer [17]) For any nonconstant real analytic potential
v0 with an analytic extension on |=Z| < ρ, there is a λ0 depends on ‖v0‖∞ and ρ, such
that for all E and λ > λ0, the Lyapunov exponent of v = λv0 satisfying:

L(ω,E) > cv0 log λ,

where cv0 depends only on ‖v0‖∞ and ρ.
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If we take λ0 large enough, it can also be proved that L(ω,E) > 1
2 log λ := γ. Without

loss of generality, we assume that ‖v0‖ρ ≤ 1. Notice that in this case, Cv = 2 log λ and
the quotient γ

Cv
satisfies

1 >
γ

Cv
≥ 1

4
,

which is uniformly bounded from below(w.r.t. E).

Follow the proof of Theorem 1 and 2, we have in this case:

Theorem 3 There exist constants λ0, N0 which depend only on v0 and some absolute
constants c′0, c

′
1, such that if λ > λ0, β(ω) < c′0 and n > N0, then

mes{x ∈ T :| un(x)− Ln(E) |> 1

100
log λ} < e−c

′
1n.

Theorem 4 Let λ0, c
′
0 be the constant in Theorem 3. There exist constants C ′, τ ′ which

depend only on v0, such that if λ > λ0, β < c′0, then

|L(E)− L(E′)| ≤ C ′λ|E − E′|
τ ′

log λ , E,E′ ∈ [−2 + λ, 2 + λ].

Remark 1.5 According to the proof(see Section 3), the constant C in Theorem 2 is locally
independent of Cv . Correspondingly, if we require |E−E′| � 1, the conclusion of Theorem
4 will be

|L(E)− L(E′)| ≤ C ′|E − E′|
τ ′

log λ .

Background and Related Results. In recent years, lots of progresses in cocyles have
been made in order to understand the spectral properties of the Schrödinger operators
(1.1). Besides the Lyapunov exponent, another important subject is the I.D.S. N(E),
which is connected with the Lyapunov exponent via the Thouless formula:

L(E) =

∫
log |E − E′|dN(E′).

Lots of work has been done concerning the regularity of L(E) and N(E), see [3, 9,
13, 18]. It is known that the I.D.S. is a continuous increasing function and it is locally
constant outside the spectrum, see [4]. And the continuity of N(E) is not enough to
conclude the continuity of the Lyapunov exponent. However, by Hilbert transform and
the theory of singular integral operator, the Hölder continuity of L(E) and N(E) do pass
from each other by Thouless formula(see details in [13]).

We focus on the regularity of Lyapunov exponent. Under the assumption that v(x)
possesses a certain degree of regularity and that ω is a generic irrational number, the
recent regularity results of L(E) and N(E) are as follows:

For real analytic potential v on T1, Bourgain and Jitomirskaya proved in [9] that
L(ω,E) is continuous in E for any ω and jointly continuous in (ω,E) in R\Q×R. Bourgain
[7] extended the continuity result of [9] to real analytic potential v on Td, d > 1. Consider
L(ω,A) as a function on T × C l(T, SL2(R))(l = 0, 1, · · · ,∞, ω), Jitokirskaya, Koslover
and Schulteis [16] proved that the L : T×Cω(T, SL2(R))→ [0,∞) is jointly continuous in
(ω,A)(actually, they study more general M2(C) cocycles). When regularity of the cocycles
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is weakened, things may be different. Furman [12] proved that for irrational rotation,
the Lyapunov exponent is discontinuous at every non-uniformly hyperbolic cocycle in
C0 topology. Bochi [10] proved that cocycles which are either hyperbolic or have zero
Lyapunov exponent are dense in C0(T, SL2(R)). Wang and You [18] proved that for any
l = 0, 1, · · · ,∞ and any fixed ω of bounded type, there is Dl ∈ C l(T, SL2(R)) such that
the Lyapunov exponent is discontinuous at (ω,Dl) in C l-topology.

Besides the result mentioned in Remark 1.3, Goldstein and Schlag [13] also proved
certain weaker Hölder regularity for analytic v on Td, d ≥ 1 in the regime L(E) > 0 for
all Diophantine frequcneies. We would like to emphasize that in [8],[13], etc, Bourgain,
Goldstein and Schlag developed a series of powerful methods to study analytic Schrödinger
operators, e.g., large deviation theorem, avalanche principle, estimates of semi-algebra sets
and Green’s function. Lack of space forbids further discussion about all their results. As we
will see later, our paper strongly rely on large deviation theorem and avalanche principle.

For analytic potential v on T1, there are some sharp estimates about the Hölder expo-
nent of L(E) and N(E) with Diophantine frequency. An almost precise estimate (12 − ε
Hölder regularity) for the almost Mathieu operator at high coupling is contained in [6].
The Hölder exponent can be estimated by 1

2k − ε for v being small C∞ neighborhood of
a trigonometric polynomial of degree k [14]. Avila and Jitomirskaya [3] get the sharp 1

2
Hölder exponent of the I.D.S. for analytic potential v and Diophantine ω in the reducibility
regime(λ < λ(v)). We would like to emphasize that all the regularity results above(beyond
continuity) require the base frequency ω to be Diophantine.

Craig and Simon [11] proved the log-Hölder continuity of N(E) associated with a gen-
eral bounded ergodic stationary process. That is the only issue in which the regularity
of N(E)(beyond continuity) with Liouville frequency was once dealt with. However, the
log-Hölder continuity in [11] is obvious from the nonnegativity of L(E) and the Thouless
formula. And it is much weaker than the Hölder continuity. Our contribution in this
paper is to prove the Hölder continuity of L(E) with Liouville frequency for the first time,
though still not for all frequencies. We would like to refer the reader to [5, 15] for more
background and discussions.

We would like to list the following questions which are also very interesting. The first
one is about the restriction on the size of β. We believe the requirement β � 1 in Theorem
1,2 is technical and the Hölder continuity should hold for some larger β. Meanwhile, as
mentioned in Remark 1.3, L(E) might escape any modulus of continuity for Baire generic
ω(see [1],[3]). Thus, it is expected that things will deteriorate for β extremely large. It is
reasonable to ask whether there is L0(β) such that if L(E) > L0(β), then L(E) is Hölder
continuous in E?

Secondly, except [3],[14], little is known about the sharp Hölder exponent of the Lya-
punov exponent for general v when L(E) > 0. Both in our present paper(Theorem 4) as
well as in Goldstein and Schlag [13], the Hölder exponent would become worse as λ gets
larger, which contradicts the intuition that the Hölder exponent should be improved with
an increase of λ. This is probably due to some shortcoming of the method.

We also want to know more about the Anderson Localization(A.L.) of the quasiperi-
odic operator with Liouville frequencies. It is believed that Anderson Localization should
also hold for Liouville frequencies provided condition such as λ > Cecβ. Avila and Jito-
mirskaya [2] proved A.L. for almost Mathieu operator when λ > e

16
9
β. You and Zhou [19]
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also got A.L. for long range operator with cosine potential when λ > Ceβ using duality.
These results strongly rely on the cosine potential. For general potentials, according to [8],
A.L. follows from large deviation theorem of type mesΩn(n−σ) < e−cn

σ
and semi-algebraic

set theorem. Our present refinement of LDT for Liouville frequencies seems unable to es-
timate mesΩn(n−σ). Moreover, the method in [8] need to remove a zero-measure set from
the Diophantine set, which is not applicable for Liouville frequencies. In general, proving
A.L. for Liouville frequencies seems to be a real challenge and new ideas are required.

The rest of the paper is organized as follows. Section 2 is devoted to the proof of
the Refined Large Deviation Theorem(Theorem 1). In Section 3, the Refined LDT will
be combined with avalanche principle to obtain estimates on convergence of Ln(E). The
proof of the Hölder continuity of L(E)(Theorem 2) is also completed there.

Our proof builds on some ideas and techniques in [9, 13], see also in [5], Chap.VII. Some
precise estimates on the continued fraction expansion of ω appear in the proof of Theorem
1, which are new. The proof in Section 3 is standard, which is essentially contained in [13].
Still, we sketch the proof associated with our notations in order to get an exact expression
of the Hölder exponent in Theorem 2,4 and leave it to Appendix 1(Section 3).

2 Proof of the Refined Large Deviation Theorem

The proof of Theorem 1 follows the outlines of [9]. In [9](see Lemma 4), Bourgain and
Jitomirskaya proved a large deviation theorem in ‘weak sense’ to prove the continuity
of L(E) for any irrational frequency. With more complicated and precise analysis on the
continued fraction expansion and the approximant of the frequency, we get a refined Large
Deviation Theorem, which implies the desired Hölder continuity immediately.

First, we introduce some notations needed in the proof.

Notation 1 For n,R,K ∈ N, let un(x) be as in (1.4).

1. Expand un(x) into its Fourier series and denote the Fourier coefficient as û(k), i.e.,

un(x) =
∑
k∈Z

û(k)e2πikx, û(k) =

∫
x∈T

un(x)e−2πikxdx

2. Consider the Féjèr average uR(x) of un(x) along the orbit and denote the Féjèr
kernel as FR(k),

uR(x) =
∑
|j|<R

R− |j|
R2

un(x+ jω), FR(k) =
∑
|j|<R

R− |j|
R2

e2πikjω.

With 1,2, we have

uR(x) =
∑
|j|<R

R− |j|
R2

∑
k∈Z

û(k)e2πik(x+jω) =
∑
k∈Z

û(k)FR(k)e2πikx
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3. Truncate uR(x) into two parts:

uI(x) =
∑

0<|k|<K
û(k)FR(k)e2πikx, uII(x) =

∑
|k|≥K

û(k)FR(k)e2πikx.

With 2,3, we have
uR(x) = Ln + uI(x) + uII(x).

With these notations, we are ready to show for fixed κ and appropriate choices of n,R,K, β(ω):

Lemma 2.1

1.
|un(x)− uR| <

κ

3

2.
|uI | <

κ

3

3.

‖uII‖2L2(T) ≤ (6C1Cv)
2 2

K

where K > exp{ κ3

3000C3
3C

3
v
n} and the constants C1, C3(independent of γ) will be specified

later, Cv is in (1.7).

Once Lemma 2.1 is established, we come to the

Proof of Theorem 1: It is clear that

mesΩn = mes{x ∈ T :| un(x)− Ln(E) |> κ}

≤ mes{x ∈ T :| un(x)− uR(x) |> κ

3
}+mes{x ∈ T :| uI |>

κ

3
}+mes{x ∈ T :| uII |>

κ

3
}

≤ 1

(κ3 )2
‖uII‖22

≤ 9

κ2
· (6C1Cv)

2 2

K

≤ 18

κ2
(6C1Cv)

2 · exp{− κ3

3000C3
3C

3
v

n}

≤ exp{− 1

6000C3
3C

3
v

· κ3 · n} 2

Now we turn back to the proof of Lemma 2.1, we need the following lemmas:

Lemma 2.2 For any n,R ∈ N, k ∈ Z,

1.

|un(x)− uR| ≤ 2Cv ·
R

n
(2.1)
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2.

|û(k)| ≤ C1

sup|=Z|<ρ |un(Z)|
|k|

≤ C1Cv
|k|

(2.2)

3.

|FR(k)| ≤ 6

1 +R2‖kω‖2
(2.3)

Lemma 2.3 Let p
q be the approximants of ω, then ∀|k| < q

2 , ‖kw‖ ≥ 1
2q . Also we have

1. ∑
1≤|k|< q

4

1

1 +R2‖kω‖2
≤ C2

q

R

2. ∀l ≥ 1 ∑
|k|∈[ q

4
l, q

4
(l+1))

1

1 +R2‖kω‖2
≤ C2(1 +

q

R
)

The proof of Lemma 2.2,2.3 is essentially contained in [5, 9], while some details in [5]
are missing and the constant Cv has not been specified in those papers. In order to get a
precise expression of the Hölder exponent, we rewrite the details of the proof in Appendix
2 with precise estimates of Cv.

Now take R = [ κ
6Cv

n], C3 = 50C1C2, K = [exp{ κ2

200C2
3C

2
v
R}] and β < κ

40C3Cv
. Since

qk → +∞ monotonously , there is s ∈ N such that κ
10C3Cv

R ∈ [qs, qs+1). With these
settings, we have

Proof of Lemma 2.1:

Part 1: By (2.1) and the choice of n,R,

|un(x)− uR| ≤ 2Cv ·
R

n

≤ 2Cv ·
κ

6Cv
n

n
≤ κ

3
. 2

Part 2:

uI =
∑

1≤|k|< qs
4

û(k)FR(k)e2πikx + (2.4)

∑
qs
4
≤|k|< qs+1

4

û(k)FR(k)e2πikx + (2.5)

∑
qs+1

4
≤|k|<K

û(k)FR(k)e2πikx. (2.6)

With Lemma 2.2,2.3, we have

| (2.4) |≤
∑

1≤|k|< qs
4

C1Cv ·
6

1 +R2‖kω‖2
≤ 6C1C2Cv

qs
R
≤ C3Cv

qs
R
,
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and

| (2.5) | ≤
[qs+1/qs]+1∑

l=1

∑
|k|∈[ qs

4
l, qs

4
(l+1))

C1Cv
|k|

6

1 +R2‖kω‖2

≤
qs+1∑
l=1

∑
|k|∈[ qs

4
l, qs

4
(l+1))

C1Cv
qs
4 l

6

1 +R2‖kω‖2

≤
qs+1∑
l=1

C1Cv
qs
4 l
· 6C2(1 +

qs
R

)

≤ C1Cv
qs
4

6C2(1 +
qs
R

)2 log qs+1

≤ C3Cv(
log qs+1

qs
+

log qs+1

R
).

(2.6) can be estimated in the same way as (2.5), i.e.,

| (2.6) | ≤
K∑
l=1

∑
|k|∈[ qs+1

4
l,
qs+1

4
(l+1))

C1Cv
|k|

6

1 +R2‖kω‖2

≤ C3Cv(
logK

qs+1
+

logK

R
).

All together with the above estimates, we have

|uI | ≤ C3Cv(
qs
R

+
log qs+1

qs
+

log qs+1

R
+

logK

qs+1
+

logK

R
).

Recall the choice of n,R,K(for n sufficiently large), we see

qs ≤
κ

10C3Cv
R < R,

κ

10C3Cv
R ≤ qs+1,

log qs+1

qs
≤ 2β ≤ κ

20C3Cv
,

qs+1 ≤ exp{β κ

10C3Cv
R} ≤ exp{ κ2

400C2
3C

2
v

R} ≤ K ≤ exp{ κ2

200C2
3C

2
v

R},

thus

|uI | ≤ C3Cv
( κ

10C3Cv
+ 2

log qs+1

qs
+

logK
κR

10C3Cv

+
logK

R

)
≤ C3Cv

( κ

10C3Cv
+ 4β +

20C3Cv
κ

logK

R

)
≤ κ

10
+

κ

10
+

κ

10

≤ κ

3
. 2

Part 3:

‖uII‖22 = ‖
∑
|k|≥K

û(k)FR(k)e2πikx‖22
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≤
∑
|k|≥K

|û(k)FR(k)|2

≤
∑
|k|≥K

∣∣∣C1Cv
|k|

· 6
∣∣∣2

≤ (6C1Cv)
2 2

K
. 2

3 Appendix 1: Proof of Theorem 2

When establishing the large deviation theorem, the Hölder continuity directly follows from
the method in [13]. We rewrite the proof here associated with the notations in Theorem 1
because we want to indicate the exact expression of the Hölder exponent τ , which is not so
explicit in [13]. Especially the relation between τ and γ,Cv has not been specified in [13].
With the expression we get in this part, the Hölder exponent in Theorem 4 would be τ ′

log λ ,
which obviously gets worse as λ goes larger. Actually, this phenomenon also appears in
[13](but was not indicated there) and it contradicts the intuition that the Hölder exponent
should be improved with an increase of λ, which leaves an open question about the sharp
Hölder exponent.

Recall that in Condition 1.1., L(E) > γ > 0 for E ∈ [E1, E2], now take κ = 1
100γ in

Theorem 1, we actually have

Theorem 5 Assume that Condition 1.12 holds. Let Cv be as in (1.7). If β < γ
4000C3Cv

and n > N(γ,Cv), then

mes{x ∈ T :| un(x)− Ln(E) |> 1

100
γ} < e−cn, (3.1)

where c = 1
6000·1003C3

3
· γ

3

C3
v

, the constant C3 is independent of γ,Cv.

Denote c′ = 1
6·109C3

3
below.

We need the following Theorem:

Theorem 6 (Avalanche Principle,Goldstein and Schlag [13]) Let B1, · · · , Bm be a
sequence of unimodular 2× 2-matrices. Suppose that

min
1≤j≤m

‖Bj‖ ≥ µ > m and (3.2)

max
1≤j<m

[log ‖Bj+1‖+ log ‖Bj‖ − log ‖Bj+1Bj‖] <
1

2
logµ. (3.3)

(3.4)

Then

| log ‖Bm · · ·B1‖+
m−1∑
j=2

log ‖Bj‖ −
m−1∑
j=1

log ‖Bj+1Bj‖ |< CA
m

µ
, (3.5)

where CA is an absolute constant.

11



The following proposition can also be found in the first paragraph of the proof of Lemma
4.2 in [13]:

Proposition 2 For any ñ, γ , let t = [100Cvγ ] + 2 < 200Cv
γ := t0, then is n ∈ [ñ, 2t0 ñ] such

that

0 ≤ Ln(E)− L2n(E) <
1

100
γ. (3.6)

Now based on the standard iteration approach(see Section 5,6 in [13] and Chapter VII

in [5]), let n0 = n be given by Proposition 2 and set ns+1 = ns[
e
c
2ns

ns
], we have for s ≥ 1

Proposition 3 (Iteration of Ln(E))

1s

| Lns+1(E) + Lns(E)− 2L2ns(E) |< 3e−
c
4
ns ,

| L2ns+1(E) + Lns(E)− 2L2ns(E) |< 3e−
c
4
ns . (3.7)

2s

| Lns+1(E)− L2ns+1(E) |< 6e−
c
4
ns <

1

100
γ. (3.8)

3s

| Lns+1(E)− Lns(E) |< 15e−
c
4
ns−1 , n0 = n. (3.9)

Note that 10 follows from Theorem 5,6 and Proposition 2, and 20 follows from 10. For
s ≥ 0, Theorem 5,6 and 2s implies 1s+1, and 1s+1 implies 2s+1. Then the iteration carries
on. For s ≥ 1, 3s follows from 1s and 2s−1. At each step, one may use the fact that

γ ≤ Ln ≤ Cv, c′ � 1 =⇒ 99

100
γ � 1

2
c′
γ

Cv
≥ 1

2
c′
γ3

C3
v

=
c

2
,

and (CA + 8Cv)e
− c

2
n < 2e−

c
4
n.

When the iteration is established for all s ≥ 1, {3s}s≥1 implies

| L(E)− Ln1(E) |≤ 20e−
c
4
n0 , (3.10)

and finally from 10 and (3.10)

| L(E) + Ln(E)− L2n(E) |< 30e−
c
4
n. (3.11)

For E′ satisfying |E − E′| � 1, we can also get

| L(E′) + Ln(E′)− L2n(E′) |< 30e−
c
4
n. (3.12)

Now we can turn to the proof of Theorem 2. Obviously, for any n

‖∂EMn(E)‖ ≤ n(eCv)n−1,

then

|Ln(E)− Ln(E′)| ≤ enCv |E − E′|. (3.13)

12



From (3.11,3.12) and (3.13),

|L(E)− L(E′)| ≤ 60e−
c
4
n + 2enCv |E − E′|, (3.14)

where c is in (3.1).
For any |E − E′| � 1, E,E′ ∈ [E1, E2], let B = 3t0Cv, τ = c

8B , where t0 = 200Cv
γ

is the constant in Proposition 3.6. Let ñ = [ 1B log 1
|E−E′| ], there is n ∈ [ñ, t0ñ] satisfying

Proposition 3.6, thus (3.14) holds for such n. Direct computation shows that

|E − E′|−
1
2B < en < |E − E′|−

t0
B .

Then
|L(E)− L(E′)| ≤ 60|E − E′|

c
8B + 2|E − E′|−

2t0Cv
B

+1 ≤ 62|E − E′|
c

8B ,

the Hölder exponent

τ =
c

8B
=

1

6000 · 1003C3
3

· γ
3

C3
v

· 1

24 · 2
200Cv
γ · Cv

. 2

4 Appendix 2: Proof of Lemma 2.2,2.3

Proof of Lemma 2.2:

Proof of (2.1): because of (1.7), it is easy to show that∣∣∣un(x+ jω)− un(x)
∣∣∣ ≤ 2Cv

|j|
n
, ∀j ∈ Z.

Then

|un(x)− uR| =
∣∣∣ ∑
|j|<R

R− |j|
R2

(
un(x)− un(x+ jω)

)∣∣∣ ≤ 2Cv
R

n
.

(2.2) is shown in ref. [8] (see also ref. [5], Chap. IV).

(2.3) is mentioned in ref.[5](Chap. V, Page 26) without proof. Compute directly, we
see

FR(k) =
sin2 (πRkω)

R2 sin2 (πkω)
≤ sin2 (πR‖kω‖)

4R2‖kω‖2
.

(2.3) follows from dividing the situations into R‖kω‖ ≥ 1 and R‖kω‖ < 1. And it is
obvious that coupling constant has nothing to do with Cv.

Proof of Lemma 2.3:

Original idea can be found in [9], Lemma 4. However, they bound the second part in
Lemma 2.3 by 1 +C( qR)2. Since we need to consider the case q > R, we rewrite the proof
here to remove the squre and also indicate that the constant is independent of Cv.

13



Since p
q is the approximant of ω, |ω − p

q | <
1
q2

. Then for |k| < q
2 , |kω − kp

q | <
k
q2
< 1

2q

and hence ‖kω‖ ≥ 1
2q . Then for any k1, k2 ∈ (0, q4 ], |k1±k2| < 1

2q . Thus
∣∣∣‖k1ω‖−‖k2ω‖∣∣∣ =

‖(k1 ± k2)ω‖ > 1
2q . We see that ‖kiω‖, i = 1, · · · , [ q4 ] are 1

2q departed and the smallest

one is more than 1
2q . We rearrange them increasingly as ‖ki1ω‖ < ‖ki2ω‖ < · · ·. Thus

‖kisω‖ ≥ s
2q .

Hence ∑
1≤|k|< q

4

1

1 +R2‖kω‖2
≤

q/4∑
s=1

1

1 +R2( s2q )2
≤ 2q

R

∫
dx

1 + x2
≤ π q

R
.

Moreover, if Il = [ q4 l,
q
4(l + 1)), l ≥ 1, we divide Il into two sets, S1 = {k ∈ Il, |kω −

[kω]| < 0.5}, S2 = {k ∈ Il, |kω − [kω]| > 0.5}. Then for k1, k2 ∈ Il belong to the same

subset(S1 or S2), |k1 − k2| < q
2 and

∣∣∣‖k1ω‖ − ‖k2ω‖∣∣∣ = ‖(k1 − k2)ω‖ > 1
2q . Thus, the

increasing rearrangement still carries on. However, the smallest one of {‖kω‖, k ∈ Il}
might be less than 1

2q . Hence∑
|k|∈[ q

4
l, q

4
(l+1))

1

1 +R2‖kω‖2
≤ 1

1 +R2‖ki1ω‖2
+ 2

∑
s≥1

1

1 +R2( s2q )2
≤ 1 + 2π

q

R
. 2
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