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Abstract. We obtain a (weak) phase transition result for one-dimension
continuous analytic quasi-periodic Schödinger operators, which is proved
by semi-global reducibility theory of analytic quasi-periodic linear sys-
tems with two frequencies.

1. Introduction and main results

In this paper, we are interested in the spectrum of analytic quasi-periodic
Schrödinger equation defined on L2(R):

(1.1) (HλV,α,θy)(t) = −y′′(t) + λV (θ1 + t, θ2 + αt)y(t) = Ey(t),

where V : T2 → R is an analytic potential. In it, θ ∈ T2 is called the phase,
α ∈ R\Q is called the frequency and λ ∈ R is called the coupling constant.
The spectrum ofHλV,α,θ, which we denote by Σ(HλV,α), is independent of the
phase θ. The operators come from the study of quasi-crystals and become
a central research subject in the spectral theory of Schrödinger operators.
The discrete version of the operator is

(1.2) (LλV,α,θu)n = un+1 + un−1 + λV (θ + nα)un.

An extensively studied example is almost Mathieu operator, where V (θ) =
2 cos 2πθ.

One remarkable feature of almost Mathieu operator is that it reveals a
phase transition phenomenon. It has been proved that L2λ cos,α,θ has purely
absolute continuous spectrum for all α, θ if λ < 1 [1, 4, 6, 20], while L2λ cos,α,θ

has pure point for a.e. α, θ if λ > 1 [20]. Thus λ = 1 is a phase transition
point and actually the spectrum is purely singular continuous for a.e. α,
θ[7]. In physics, it means that when the coupling constant λ changes, it
undergos a metal-insulator transition at λ = 1.

For the discrete Schrödinger operator LλV,α,θ with general analytical po-
tential, the picture is less clear, but the coupling constant λ still plays the
role of the transition parameter. One knows that for small λ, the operator
has purely absolutely continuous spectrum and good transport properties
[6, 16], and for large λ, the operator has pure point spectrum and related
localization type phenomenon [12]. Recently Bjerklöv and Krikorian [11]
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obtained the first example which has the coexistence of absolutely continu-
ous spectrum and pure point spectrum. Related result can be found in [9].
Before that, people usually believe that in general the coexistence of the
spectrum does not occur for a fixed λ in discrete case.

However the spectrum of the continuous Schrödinger operator HλV,α,θ

is totally different. For a fixed large coupling constant λ, the operator
usually has mixed spectrum. In the bottom of the spectrum, the operator
HλV,α,θ often has point spectrum or positive Lyapunonv exponent. More
precisely, Frölish-Spencer-Wittner [18] proved that if V (θ1, θ2) = cos(2πθ1)+
cos(2πθ2), then the spectrum in the interval

[inf Σ(HλV,α), inf Σ(HλV,α) + const(λ, α)]

is pure point for a.e. θ, provide that λ is large enough and α is Diophantine.
Recall that α is Diophantine (denote α ∈ DC(γ, τ)), if there exist γ, τ > 1

such that ‖kα‖T ≥ γ−1

|k|τ , 0 6= k ∈ Z. Later, Bjerklöv [8] proved that if α ∈
DC(τ, γ), and V attains its minimum value at most finitely many points in
T 2(without lose of generality, we assume that minV = 0), then there is a
constant c0 = c0(V ) and a λ0 = λ0(V, τ, γ) > 0, such that for all λ > λ0,

we have L(E) ≥ c0
√
λ for all [0, λ

2
3 ]. On the other side, the operator has

absolutely continuous spectrum in the upper part of the spectrum. From
Eliasson’s result [16], we know that there is c1 = c1(V, τ, γ), such that the
spectrum in Σ(HλV,α) ∩ [c1(V, τ, γ)λ2,∞) is purely absolutely continuous.

So there are phase transitions somewhere in E ∈ [λ
2
3 , c1(V, τ, γ)λ2]. In this

paper, we will try to locate the transition energy more precisely. Intuitively,
the transition occurs at the place where E and λ maintain a kind of balance.
If we can take lnE

lnλ as the transition parameter, then the transition happens

roughly at lnE
lnλ = 1. The precise result is the following:

Theorem 1.1. Let α ∈ DC(τ, γ), V ∈ Cω(T2,R) which attains its mini-
mum value at most finitely many points, then for arbitrary small ε > 0,

(1) the spectrum in Σ(HλV,α) ∩ (−∞, λ1−ε] is singular,
(2) the spectrum in Σ(HλV,α)∩[λ1+ε,∞) is purely absolutely continuous,

provided that λ > λ1 where λ1 = λ1(V, τ, γ, ε) > 0 is a big constant.

Remark 1.1. It is plausible that Σ(HλV,α) ∩ (−∞, λ1−ε] is actually pure
point. A related result is due to Bjerklöv [10], who proved that if V is C2

and has a unique non-degenerate minimum, then for large λ, HλV,α,θ has
eigenvalue in the bottom of the spectrum for some θ ∈ T2.

Theorem 1.1 (1) was pointed to us by Bjerklöv, and the proof is essen-
tially contained in [8]. The main contribution of this paper is Theorem 1.1
(2). Actually, we can prove a stronger result which covers some Liouvillean
frequencies. We recall that the frequency α is not super-liouvillean, if

β̃(α) := sup
n→∞

ln ln qn+1

ln qn
<∞,
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then our result is the following:

Theorem 1.2. Let α ∈ R\Q with β̃(α) <∞, V ∈ Cω(T2,R),

(1) there exist C1 = C1(V ) > 0, λ2 = λ2(β̃) > 0, such that for all
λ > λ2, the spectrum in Σ(HλV,α)∩ [C1(V )λ,∞) is purely absolutely
continuous.

(2) there exist C2 = C2(V, β̃) > 0, such that for all λ ∈ R+, the spectrum

in Σ(HλV,α) ∩ [C2(V, β̃)λ,∞) is purely absolutely continuous.

As in [16], we rewrite the system (1.1) as{
ẋ = (A(

√
E) + F (θ))x

θ̇ = ω0 = (1, α),
(1.3)

where

A(
√
E) =

√
EJ =

√
E

(
0 1
−1 0

)
, F (θ) =

λV (θ)

2
√
E

(
−1 −1
1 1

)
,

then the proof of Theorem 1.1 and Theorem 1.2 are based on reducibility
theory of general analytic quasi-periodic sl(2,R) system (ω,A):{

ẋ = A(θ)x

θ̇ = ω,
(1.4)

since reducibility in the spectrum implies absolutely continuous spectrum.
Recall that (ω,A) is reducible (resp. rotations reducible), if there exist B ∈
Cω(2T2, SL(2,R)) and A∗ ∈ sl(2,R)(resp. A∗ ∈ Cω(T2, so(2,R)) such that
B conjugates (ω,A) to (ω,A∗).

We first review the local reducibility theory, i.e., A(θ) in (1.4) is close to
constants. In this respect, the rotation number (consult 2.2 for its definition)
is an important quantity. If α ∈ DC(γ, τ) and the perturbation is small
enough (smallness depend on (γ, τ)), Dinaburg-Sinai [15] proved that for a
positive measure set of rotation numbers, the systems are reducible. Later,
Eliasson [16] proved that actually for a full measure set of rotation numbers,
the systems are reducible. We remark that what we are interested in is the
region E > cλ. In this region F (θ) defined in (1.3) could be arbitrary large.
So Eliasson’s perturbative result can not be applied.

Similar problem arises in proving non-perturbative reducibility (the s-
mallness of perturbation does not depend on the Diophantine constants) of
system (1.3). If ω = ω0 = (1, α) with α Diophantine, full measure non-
perturbative reducibility was obtained by Hou-You [19]. One can also con-
sult similar result for Schrödinger cocycles [6, 23]. If α is not Diophantine,
and the systems (1.3) are close to constants, then Avila-Fayad-Krikorian [5]
and Hou-You [19] proved that for positive measure rotation number, the
systems are rotations reducible. Full measure rotations reducibility was ob-
tained by Hou-You [19] and You-Zhou [25]. In fact, Hou-You proved that
for all rotation numbers, the systems (ω0, A + F (θ)) are almost reducible,
provided that F is small enough, and the smallness doesn’t depend on α.
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Recall that (ω,A) is almost reducible if the closure of its analytical conjugacy
class contains a constant.

We point out that the method developed in [19] highly depends on the
fact that ω0 = (1, α). A natural question is that whether Hou-You’s almost
reducibility result still holds for ω = (ω1, ω2) with arbitrary small |ω|? Es-
pecially, if ω is Diophantine, whether non-perturbative reducibility holds for
two-frequencies quasi-periodic linear systems with frequency ω? Rewriting
ω = 1

λ(1, α), it means that whether the size of the perturbation does not
depend on λ when α is Diophantine. Unfortunately, the answers to both
questions are negative due to the following reasons.

If A is zero matrix, then non-perturbative result doesn’t hold for systems
(ω,A + F (θ)) if no further assumption is added, since it could be non-
uniformly hyperbolic [7]. If A is parabolic, non-perturbative result is also
not always true, which is due to the following counter-example derived from
[24], in it, Sorets and Spencer proved that if the potential V (θ) = cos 2πθ1 +
cos 2πθ2, then when λ is large enough, there is a set E composed of intervals
of width

√
λ separated by O(λ−1) such that for any E ∈ E , γ(E) ∼

√
λ and

E ∩ Σ(HλV,α) 6= ∅. The eigenvalue equation HλV,α,θy = Ey is equivalent to ẋ =
((

0 1
0 0

)
+

(
0 0

λ−1(cos 2πθ1 + cos 2πθ2)− λ−2E 0

))
x

θ̇ = 1
λ(1, α),

which is non-uniformly hyperbolic and thus not reducible if E ∈ E∩Σ(HλV,α)
and λ is sufficiently large.

Although there are above counterexamples, we still hope to get some
positive and interesting results. Based on the above discussion, it is natu-
ral to introduce the following concept: semi-global regime.1 For a bound-
ed analytic (possibly matrix valued) function F defined on |Imθ| < h, let
‖F‖h = sup|Imθ|<h ‖F‖. We denote by Cωh (T2, ∗) the set of all these ∗-valued

functions (∗ will usually denote R, sl(2,R)). Consider the quasi-periodic
linear system (ω,A + F (θ)), where A ∈ sl(2,R), F (θ) ∈ Cωh (T2, sl(2,R)).
We say that the system (ω,A + F (θ)) is semi-global (or we say the system
(ω,A + F (θ)) is in the semi-global regime) if A is non-singular(detA 6= 0)
and ‖F‖h ≤ c‖A‖ where c is a small constant independent of ω.

We only consider the elliptic case A = ρJ since the hyperbolic case is triv-
ial, then by time rescaling, the system we are interested in can be rewritten
as {

ẋ = (λρJ + λF (θ))x

θ̇ = ω0 = (1, α)
(1.5)

where α ∈ R\Q, F ∈ Cωh (T2, sl(2,R)). Let the sequences (qn) be the de-
nominators of best rational approximations of α. According to qn, we define

1The authors would like to thank Haken Eliasson for useful discussions about this
concept.
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the forbidden intervals by

In = [(
1

2ρ
+ 1)e

qnh
4(1+χ) , (

1

ρ
+ 1)

16χ

h
ln qn+1],

where h, ρ have been defined before and χ > 1 is an absolute constant
defined in Theorem 4.1 (one can also consult Theorem 1.1 of [19]). We
remark that In might be empty if the jumping form qn to qn+1 is not very
big. The following is the main result of this paper.

Theorem 1.3. Suppose that α ∈ R\Q, ρ > 0, 0 < h < 1, λ ∈ R+. There
exists ε0 = ε0(h, ρ, χ) such that if ‖F‖h < ε0, then we have the following:

(1) If λ ∈ R\
⋃∞
n=1 In, then the system (1.5) is almost reducible.

(2) If λ ∈
⋃∞
n=1 In, then L(ω0, λρJ + λF (θ)) ≤ ε0e−

λh(ρ+1)
8ρ .

We give some comments to Theorem 1.3 and the concept of semi-global
reducibility. Firstly we emphasize again that, for a fixed n, the forbidden
interval In might be empty, it is interesting to investigate what happens in
those forbidden intervals. We believe that they include some non-uniformly
hyperbolic systems which are obviously not reducible. Secondly, the results
with small λ has been covered by Hou-You [19]. The main contributions
of this paper is to deal the large λ. Thirdly, by time rescaling, one can
easily transform these results into almost reducibility of the system (ω0

λ , A+
F (θ)). We just point out that time rescaling is key part of renormalizaiton
of quasi-periodic linear systems [14], we hope this result can be helpful for
a better understanding of time rescaling. Finally, semi-global systems are
good candidates to understand why non-perturbative reducibility doesn’t
hold for three dimensional systems. In three dimensional quasi-periodic
linear systems, our semi-global results can also be used to construct almost
reducible system with Liouvillean frequency. We will come back to this issue
elsewhere.

2. preliminaries

2.1. Continued Fraction Expansion. Let α ∈ (0, 1) be irrational. Define
a0 = 0, α0 = α, and inductively for k ≥ 1,

ak = [α−1k−1], αk = α−1k−1 − ak = G(αk−1) = { 1

αk−1
},

Let p0 = 0, p1 = 1, q0 = 1, q1 = a1, then we define inductively

pk = akpk−1 + pk−2

qk = akqk−1 + qk−2.

The sequence (qn) is the sequence of denominators of best rational approx-
imations of α since we have

(2.1) ∀1 ≤ k < qn, ‖kα‖T ≥ ‖qn−1α‖T,
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and

(2.2) ‖qnα‖T ≤
1

qn+1
.

2.2. Lyapunov exponent, rotation number. Let Φt(θ) be the basic ma-
trix solution of quasi-periodic systems (1.3). We call that

L(ω,A) = lim
t→+∞

1

t

∫
T

ln |Φt(θ)|dθ

the Lyapunov exponent of the system (ω,A).
The rotation number of (1.3) is defined as

ρ(ω,A) = lim
t→+∞

arg(Φt(θ)x)

t
,

where 0 6= x ∈ R2, and arg denote the angle. The rotation number ρ is well-
defined and does not depend on θ and x [21]. ρ is said to be Diophantine
w.r.t. ω with some constants γ, τ > 1 if

|〈k, ω〉 − 2ρ| ≥ γ−1

|k|τ
, k ∈ Z2\{0}.

3. A basic proposition

The key part in the proof of the main results is to get rid of the non-
abelian part of λF (θ) roughly, and transform (ω0, λρJ + λF (θ)) to{

ẋ = (λρJ + λϕ(θ)J + F̃ (θ))x

θ̇ = ω0 = (1, α)

with ‖F̃ (θ)‖ ∼ e−λσ and ϕ(θ) = O(ε0).
First we give some notations which will be used in the sequel. Let ξ =

|ω0|
2ρ + 1, and denote

(TKf)(θ) =
∑

k∈Z2,|k|<K

f̂(k)e2πi<k,θ>,

(RKf)(θ) =
∑

k∈Z2,|k|≥K

f̂(k)e2πi<k,θ>.

To avoid a flood of constants, in the following, we will use c to denote the
numerical constant regardless of its quantity. With the above notations, our
main proposition will be the following:

Proposition 3.1. Suppose that ρ > 0, 0 < h < 1, λ > 1, F ∈ Cωh (T2, sl(2,R)).
Then there exists ε0 depending on ρ, h but not on λ, such that if ‖F‖h ≤
ε0, then there exists U ∈ Cωh (T2, SL(2,R)), which conjugates the system
(ω0, λρJ + λF (θ)) to{

ẋ = (λρJ + λϕ(θ)J + F̂ (θ))x

θ̇ = ω0 = (1, α)
(3.1)
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with the estimates

‖ϕ(θ)‖h ≤ 2ε0,(3.2)

‖F̂‖ 3h
4
≤ ε0λe−[

λ
ξ
]h
4 .(3.3)

Furthermore, we have R[λ/ξ]ϕ(θ) = 0.

The proposition can be proved in several different ways. We will provide
two different proofs. Both are interesting since they represent two different
ways to understand the semi-global problem.

The basic observation of the first proof is that as a result of fast rotation
λρJ , we can remove lower order terms of the non-abelian part of the pertur-
bation. This can be done by Implicit Functional Theorem or by homotopy
method. The key is to solve homological equations depending on θ

∂ωy(θ) + iλ(ρ+ b(θ))y(θ) = λf(θ),

up to a very small error.
In the second proof, we use the “cheap trick” which was developed in

[5, 17]. In this proof, we consider the equivalent system (ω0
λ , ρJ+F (θ)). The

idea is to take advantage of large λ. More precisely, we view (ω0
λ , ρJ +F (θ))

as a perturbation of (0, ρJ + F (θ)). The conjugation of the latter one is
actually the diagonalization in usual algebraic sense:

B−1(θ)(ρJ + F (θ))B(θ) = ρ(θ)J.

Thus B will conjugate (ω0
λ , ρJ + F (θ)) to a rotation with a smaller pertur-

bation,

B−1(θ)[(ρJ + F (θ))B(θ)− ∂ω0
λ
B(θ)] = ρ(θ)J −B(θ)−1∂ω0

λ
B(θ),

with the new perturbation of size |ω0|
λ ε0. Using this trick iteratively, one can

get the desired result.

3.1. First approach: Homotopy method. We develop the homotopy
method to eliminate all the non-resonant modes of the perturbation. Similar
proof appeared in [14].

We first give some notations which will be used in the sequel. We recall
sl(2,R) is the set of 2 by 2 matrices with real coefficients of the form(

x y + z
y − z −x

)
where x, y, z ∈ R. It is isomorphic to su(1, 1), the group of matrices of the
form (

it ν
ν̄ −it

)
with t ∈ R, ν ∈ C. We simply denote such a matrix by {t, ν}. The isomor-
phism between sl(2,R) and su(1, 1) is given by B →MBM−1 where

M =

(
1 −i
1 i

)
.
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Direct calculation shows that

M

(
x y + z

y − z −x

)
M−1 =

(
iz x− iy

x+ iy −iz

)
,

thus H :=

(
i 0
0 −i

)
= M

(
0 1
−1 0

)
M−1.

Define

B̃
(nre)
h =

{(
0 T[λ/ξ]g(θ)

T[λ/ξ]ḡ(θ) 0

) ∣∣∣g ∈ Cωh (T2,C)

}
,

B̃
(re)
h =

{(
if(θ) R[λ/ξ]g(θ)

R[λ/ξ]ḡ(θ) −if(θ)

) ∣∣∣f ∈ Cωh (T2,R), g ∈ Cωh (T2,C)

}
,

and define B
(nre)
h = M−1B̃

(nre)
h M, B

(re)
h = M−1B̃

(re)
h M. It follows that

Cωh (T2, su(1, 1)) = B̃
(nre)
h ⊕ B̃

(re)
h ,

Cωh (T2, sl(2,R)) = B
(nre)
h ⊕B

(re)
h .

Let Inre (Ire) be the projection from Cωh (T2, sl(2,R)) onto B
(nre)
h (B

(re)
h )

correspondingly.
We now finish the first proof. Let

Bδ = {U ∈ Cωh (T2, SL(2,R))|‖U − id‖h < δ}, for δ = ε
1
2
0 ,

We define the operator

F : Bδ → B
(nre)
h ,

F(U) = Inre(AdU (λρJ + λF )− U−1∂ωU),

where F ∈ Cωh (T2, sl(2,R)) with ‖F‖h < ε0. We want to construct the
solution of

(3.4) F(Ut) = (1− t)F(U0)

with 0 ≤ t ≤ 1 and initial condition U0 = id.
Direct computation shows that the derivative of F at U is the linear map

from B
(nre)
h to B

(nre)
h given by

DF(U)Y = Inre[U−1((λρJ+λF )Y−Y AdU (λρJ+λF )+∂ω0Y−Y U−1∂ω0U)],

and thus
DF(id)Y = Inre(∂ω0Y − [λρJ + λF, Y ]).

Let D̃F(U) = MDF(U)M−1, F̃ = {F1, F2} ∈ Cωh (T2, su(1, 1)), Ỹ = {0, g} ∈
B̃

(nre)
h , then we have

D̃F(id)Ỹ = Inre(∂ω0 Ỹ − [λρH + λF̃ , Ỹ ])

=

(
0 T[λ/ξ](∂ω0g − 2iλ(ρ+ F1)g)

T[λ/ξ](∂ω0 ḡ + 2iλ(ρ+ F1)ḡ) 0

)
.

Next we prove the existence and boundedness of D̃F(id)−1:
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Lemma 3.1. Suppose that ρ > 0, λ > 1, 0 < h < 1, b ∈ Cωh (T2,R), f ∈
Cωh (T2,C). If ‖b‖h < ε0 < min{ρ, 1}(1ξ )2, then there exists y ∈ Cωh (T2,C)

such that

(3.5) ∂ω0y(θ) + 2iλρy(θ) + 2iλT[λ/ξ](b(θ)y(θ)) = λT[λ/ξ]f(θ)

with R[λ/ξ]y(θ) = 0 and ‖y‖h ≤ cξ
2ρ‖T[λ/ξ]f‖h.

Proof. Comparing the fourier coefficients of (3.5), we have
(3.6)

(i〈k, ω0〉+ 2iλρ)ŷ(k) + 2iλ
∑

q,l:q+l=k

b̂(l)ŷ(q) = λf̂(k) |l|, |q|, |k| < [λ/ξ].

Then (3.6) can be seen as a matrix equation:

(A+B)Y = λF ,

where

A = diag(. . . , i〈k, ω0〉+ 2iλρ, . . .)|k|<[λ/ξ],

B = (2iλb̂(k − l))|k|,|l|<[λ/ξ],k 6=l,

Y = (ŷ(k))T|k|<[λ/ξ], F = (f̂(k))T|k|<[λ/ξ].

If we denote Ωh = diag(. . . e|k|h . . .)|k|<[λ/ξ], then

Ωh(A+B)Ω−1h ΩhY = λΩhF .

Rewrite it as
(Ãh + B̃h)Ỹh = λF̃h,

where Ãh = ΩhAΩ−1h , B̃h = ΩhBΩ−1h , Ỹh = ΩhY , F̃h = ΩhF .

Since ‖b‖h ≤ min{ρ, 1}(1ξ )2, we have

(3.7) |i〈k,w0〉+ 2iλρ| ≥ 2λρ− λ/ξ|ω0| ≥ 2λρ(1− |ω0|
|ω0|+ 2ρ

)� 2λ‖b‖h,

which implies that Ãh+ B̃h is diagonal dominated, thus the matrix Ãh+ B̃h
has a bounded inverse. Moreover,

‖(Ãh + B̃h)−1‖ = ‖(I + Ã−1h B̃h)−1Ã−1h ‖

≤ ‖Ã−1h ‖
1

1− ‖Ã−1h ‖‖B̃h‖
≤ cξ

2λρ
.

It follows that

‖y‖h = ‖Ỹh‖ ≤ ‖(Ãh + B̃h)−1‖‖λF̃h‖

≤ ‖(Ãh + B̃h)−1‖‖λT[λ/ξ]f‖h ≤
cξ

2ρ
‖T[λ/ξ]f‖h.

�

By Lemma 3.1, if ‖F‖h ≤ ε0 < min{ρ, 1}(1ξ )2, then we have ‖D̃F(id)−1‖ ≤
cξ
2λρ , therefore ‖DF(id)−1‖ ≤ cξ

2λρ holds. We also need the following:
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Lemma 3.2. Given U ∈ Bδ, the linear operator DF(U)−DF(id) mapping

B
(nre)
h into B

(nre)
h is bounded and

‖DF(U)−DF(id)‖
≤ 2‖U‖h‖U − id‖h[|ω0|(1 + 2‖U‖h) + 2‖λF‖h(1 + ‖U‖h + ‖U‖2h)].

Proof. It is exactly Lemma 4.3 of [14]. �

Consequently, we have

‖DF(U)−1‖ ≤ ‖(I +DF(id)−1(DF(U)−DF(id)))−1‖‖DF(id)−1‖

≤ ‖DF(id)−1‖ 1

1− ‖DF(id)−1‖‖DF(U)−DF(id)‖

≤ cξ

2λρ
,

thus the solution of (3.4) exists and is given by

Ut = id−
∫ t

0
DF(Us)

−1F(id)ds.

Moreover, U1 conjugate the system (ω0, λρJ + λF (θ)) to{
ẋ = (λρJ + λF̃ (re))x

θ̇ = ω0 = (1, α),

where λF̃ (re) = Ire(AdU1(λρJ + λF ) − U−11 ∂ω0U1). It then follows from

section 4.1 of [14] that ‖F̃ re‖h ≤ 2‖Fnre‖h ≤ 2‖F‖h.
By the definition of B

(re)
h , there exist f̃ , g̃1, g̃2 ∈ Cωh (T2,R) such that F̃ (re)

can be written as

F̃ (re)(θ) =

(
0 T[λ/ξ]f̃(θ)

−T[λ/ξ]f̃(θ) 0

)

+

(
R[λ/ξ]g̃1(θ) R[λ/ξ]g̃2(θ) +R[λ/ξ]f̃(θ)

R[λ/ξ]g̃2(θ)−R[λ/ξ]f̃(θ) −R[λ/ξ]g̃1(θ)

)
= ϕ(θ)J + F̂ (θ),

then estimates (3.2) and (3.3) can be proved easily. �

3.2. Second approach: Cheap trick. In this section, we play “cheap
trick” developed in [5, 17] to prove Proposition 3.1, the basis is the following
lemma.

Lemma 3.3. Suppose that h > σ > 0, λ� 1. We consider{
ẋ = (ρ(θ)J + P (θ))x

θ̇ = ω0
λ .

(3.8)
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where ρ ∈ Cωh (T2,R), P ∈ Cωh (T2, sl(2,R)), and denote ρ̃ = inf |Iθ|<h |ρ(θ)|.
Then there exists ε > 0, such that if

(3.9) ‖P‖h < ε < min{1, ρ̃},
then there exist Y ∈ Cωh (T2, sl(2,R)), ρ+ ∈ Cωh (T2,R), P+ ∈ Cωh (T2, sl(2,R))

such that eY conjugates (3.8) to{
ẋ = (ρ+(θ)J + P+(θ))x

θ̇ = ω0
λ .

Moreover, we have the following estimates:

‖Y ‖h ≤
1

2ρ̃
‖P‖h,

‖P+‖h−σ ≤
c|ω|

2λρ̃σ
‖P‖h,

‖ρ+ − ρ‖h ≤ ‖P‖h.

Proof. We approximate the system (3.8) by{
ẋ = (ρ(θ)J + P (θ))x

θ̇ = 0.

Once we have that ε < min{1, ρ̃}, where ρ̃ = inf |Iθ|<h |ρ(θ)|, then the fiber
can be seen as a family of perturbation of elliptic matrix, by simple algebra,
there exist Y ∈ Cωh (T2, sl(2,R)), ρ+ ∈ Cωh (T2,R), such that

e−Y (θ)(ρ(θ)J + P (θ))eY (θ) = ρ+(θ)J.

It is a standard fact that ‖Y ‖h ≤ 1
2ρ̃‖P‖h, ‖ρ+ − ρ‖h ≤ ‖P‖h.

Then B(θ) = eY (θ) conjugates (3.8) to{
ẋ = (ρ+(θ)J + P+(θ))x

θ̇ = ω0
λ

with P+ = −B−1∂ω0
λ
B. By Cauchy estimate, we have

‖P+‖h−σ ≤
|ω0|
λσ
‖Y ‖h ≤

|ω0|
2λρ̃σ

‖P‖h.

�

Proof of Proposition 3.1: Proposition 3.1 follows inductively from Lem-
ma 3.3. We begin with (ω0

λ , ρJ + F (θ)). Let M = [ λh4eξ ], h0 = h,

hj = h(1− j

4M
), j = 1, 2, . . .M,

and let ρ0(θ) = ρ, P0(θ) = F (θ). Assume that for j = 1, 2, · · · , n, one find
Yj(θ), Pj(θ) ∈ Cωhj (T, sl(2,R)), ρj(θ) ∈ Cωhj (T,R) such that eYj conjugate

the system {
ẋ = (ρj−1(θ)J + Pj−1(θ))x

θ̇ = ω0
λ
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to {
ẋ = (ρj(θ)J + Pj(θ))x

θ̇ = ω0
λ

(3.10)

with the estimates

‖Yj‖hj ≤
1

2ρ̃j−1
‖Pj−1‖hj−1

,

‖Pj‖hj ≤
4Mξ

λh
‖Pj−1‖hj−1

≤ (
1

e
)j‖P0‖h,

‖ρj − ρj−1‖hj ≤ ‖Pj−1‖hj−1
,

where ρ̃j = inf |Iθ|<hj |ρj(θ)|.
Since

‖P0‖h ≤ ‖F‖h ≤ ε0 < min{1, ρ}(h
4

)4,

and then

ρ̃n ≥ ρ−
n∑
j=1

‖ρj(θ)− ρj−1(θ)‖hj

≥ ρ−
n∑
j=1

(
1

e
)j−1ε0 > ρ− 2ε0,

therefore we have
‖Pn‖hn < min{1, ρ̃n}.

Apply Lemma 3.3 again, we get eYn+1 which conjugates the system further
to {

ẋ = (ρn+1(θ)J + Pn+1(θ))x

θ̇ = ω0
λ

with the following estimates

‖Yn+1‖hn+1 ≤
1

2ρ̃n
‖Pn‖hn ,

‖Pn+1‖hn+1 ≤
4Mξ

λh
‖Pn‖hn ≤ (

1

e
)n+1‖P0‖h,

‖ρn+1 − ρn‖hn+1 ≤ ‖Pn‖hn .

Let eY =
∏0
j=M eYj , then eY conjugate the system (ω0

λ , ρJ + F (θ)) to{
ẋ = (ρM (θ)J + PM (θ))x

θ̇ = 1
λω0.

(3.11)

Let ϕ(θ) = T[λ/ξ]ρM (θ) − ρ, F̂ = λR[λ/ξ]ρM (θ)J + λPM (θ), and scale the
system, then (3.11) becomes{

ẋ = (λJ + ϕ(θ)J + F̂ (θ))x

θ̇ = ω0.

Furthermore, we have estimates ‖ϕ(θ)‖3h/4 ≤ 2ε0 and
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‖F̂‖ 3h
4
≤ ‖λR[λ/ξ]ρM (θ)‖ 3h

4
+ ‖λPM (θ)‖ 3h

4
≤ ε0λe−

λh
4ξ .

�

4. Proof of Theorem 1.3

By Proposition 3.1, one can reduce (ω0, λρJ+F (θ)) to (ω0, (λρ+λϕ(θ))J+

F̂ (θ)) with

‖ϕ(θ)‖h ≤ 2ε0, ‖F̂‖ 3h
4
≤ ε0λe−[

λ
ξ
]h
4 .

Moreover, R[λ/ξ]ϕ(θ) = 0.
Let qn be the sequence of denominators of the best rational approxima-

tions of α, then for any fixed λ, there exists N such that qN ≤ [λξ ] < qN+1,

where ξ = |ω0|
2ρ + 1.

We now remove the θ dependent terms in ϕ(θ) by

(4.1) ∂ω0ψ(θ) = λϕ(θ)− λϕ̂(0),

which always has a solution since ϕ(θ) is a polynomial. Although ‖ψ‖maybe
very large, we will prove that ‖Imψ(θ)‖ can be well controlled at the cost
of reducing the analytic radius greatly.

Lemma 4.1. Let h > 0, ϕ(θ) ∈ T[λ/ξ]Cω3h
4

(T2,R). If ‖ϕ(θ)‖ 3h
4
≤ ε0 < (h4 )4,

then we have the following:

(1) If qN+1 < e
qNh

4 , then (4.1) has a solution with

‖Imψ(θ)‖ h
2qN

≤ λε
1
2
0 .

(2) Otherwise, (4.1) has a solution with

‖Imψ(θ)‖ 3h
4qN+1

≤ λε
1
2
0 .

Proof. We write ϕ = ϕ1 +ϕ2 where ϕ1(θ) = TqNϕ(θ), ϕ2(θ) = ϕ(θ)−ϕ1(θ).
Then we have

‖ϕ2(θ)‖h
2
≤ ε0e−

qNh

4 ≤ ε0
qN+1

.

Now we need a small trick to estimate the image part of ψ(θ).
Suppose that θ = θ1 + iθ2, then the solution of (4.1) can be written as

ψ(θ) = λ
∑ ϕ̂(k)

i〈k, ω0〉
eikθ1−kθ2 − λ

∑ ϕ̂(k)

i〈k, ω0〉
eikθ1 + λ

∑ ϕ̂(k)

i〈k, ω0〉
eikθ1

= λ
∑ ϕ̂(k)

i〈k, ω0〉
eikθ1

(
1− e−kθ2

)
+ λ

∑ ϕ̂(k)

i〈k, ω0〉
eikθ1 ,

since ϕ(θ) is real analytic, we have that Im
(∑ ϕ̂(k)

i〈k,ω0〉e
ikθ1
)

= 0.
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Denote σ = h
2qN

for simplicity and suppose that qN+1 < e
qNh

4 .

‖Imψ(θ)‖σ ≤
∑

0<|k|<qN

λ|ϕ̂(k)|
|i〈k, ω0〉|

|e−kθ2 − 1|+
∑

qN≤|k|<[λ/ξ]

λ|ϕ̂(k)|
|i〈k, ω0〉|

|e−kθ2 − 1|

≤
∑

0<|k|<qN

λ|ϕ̂(k)|
|i〈k, ω0〉|

e|k|σ|k|σ +
∑

qN≤|k|<[λ/ξ]

λ|ϕ̂(k)|
|i〈k, ω0〉|

e|k|σ|k|σ

≤ λqNε0
σ

(h/2− σ)2
+ λqN+1ε0e

− qNh
4

σ

(h/2− σ)2

≤ λε
1
2
0 ,

the last inequality is possible, since ε0 < (h4 )4. This finishes the proof of the
first statement.

The proof of the second statement is straightforward.

‖Imψ(θ)‖ 3h
4qN+1

≤
∑

0<|k|<[λ/ξ]

λ|ϕ̂(k)|
|i〈k, ω0〉|

|e−kθ2 − 1|

≤
∑

0<|k|<[λ/ξ]

λ|ϕ̂(k)|
|i〈k, ω0〉|

e|k|σ|k|σ

≤ λqN+1ε0
3h

4qN+1(3h/4− 3h/4qN+1)2

≤ λε
1
2
0 .

�

Remark 4.1. The estimates of this lemma are optimal. One may under-
stand this result by Hadamard’s three-lines theorem for subharmonic func-
tion.

If we only eliminate the lower order terms of ϕ(θ) up to qN − 1, then we
have the following:

Lemma 4.2. Let h > 0, ϕ(θ) ∈ Cω3h
4

(T2,R). If ‖ϕ(θ)‖ 3h
4
≤ ε0 < (h4 )4, then

the homological equation

∂ω0ψ(θ) = λTqNϕ(θ)− λϕ̂(0)

has a solution with

(4.2) ‖Imψ(θ)‖ h
2λ
≤ qNε

1
2
0 .

Proof. The proof is essentially included in Lemma 4.1. �

The strategy of the proof is to transform semi-global system into local
system, then apply Hou-You’s result [19] to finish the proof. Before giving
the final proof of Theorem 1.3, we first state Hou-You’s results precisely.
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Theorem 4.1. [19] Let ω0 = (1, α), α ∈ R\Q, 0 < h < 1, A ∈ sl(2,R) and
F ∈ Cωh (T2, sl(2,R)). Then there exists ε > 0 depending on A, h but not on
α, such that if ‖F‖h < ε, then the system (ω0, A+F (θ)) is almost reducible.
In fact, we can select ε = Chχ, where C,χ are absolute constants.

Now we finish the whole proof. According to the growth of qN , we dis-

tinguish the proof into two main cases: qN+1 ≤ e
qNh

4 and qN+1 > e
qNh

4 .

If qN+1 ≤ e
qNh

4 (Diophantine side), we denote λ = λρ + λϕ̂(0) and let
∂ω0ψ(θ) = λϕ(θ)− λϕ̂(0), then we have

∂ω0e
ψ(θ)J = (λJ + ϕ(θ)J + F̂ (θ))eψ(θ)J − eψ(θ)J(λJ + F̃ (θ)),

where F̃ (θ) = e−ψ(θ)J F̂ (θ)eψ(θ)J . It means that (3.1) is conjugated to{
ẋ = (λJ + F̃ (θ))x

θ̇ = ω0.
(4.3)

Note that qN+1 < e
qNh

4 , then by Lemma 4.1 (1), we have the estimate

‖F̃‖ h
2qN

≤ ε0e−
λh
8ξ e2‖Imψ‖h/2qN ≤ ε0e−

λh
16ξ ,

since ξqN ≤ λ, we further have

‖F̃‖ h
2qN

≤ ε0e−
λh
16ξ ≤ C(

h

2qN
)χ.

Applying Theorem 4.1, we prove that the system (4.3) is almost reducible.

If qN+1 > e
qNh

4 ( Liouvillean side), we further divided it into the following
three sub-cases.

Case 1: 16χ
h ln qN+1 ≤ [λξ ] < qN+1. In this case the proof is similar to the

above. Again let ∂ω0ψ(θ) = λϕ(θ) − λϕ̂(0), then eψ(θ)J conjugate (3.1) to
(4.3). By Lemma 4.1 (2), we have

‖F̃‖ 3h
4qN+1

≤ ε0e−
λh
8ξ e

2‖Imψ‖3h/4qN+1 ≤ ε0e−
λh
16ξ .

Since 16χ
h ln qN+1 ≤ [λξ ], we have

‖F̃‖ 3h
4qN+1

≤ ε0e−
λh
16ξ ≤ C(

3h

4qN+1
)χ.

Again, Theorem 1.3 follows from Theorem 4.1.

Case 2: qN ≤ [λξ ] ≤ e
qNh

4(1+χ) . In this case, we let ∂ω0ψ(θ) = λTqNϕ(θ) −
λϕ̂(0). Then eψ(θ)J conjugate (3.1) to (4.3) with

F̃ = e−ψ(θ)J F̂ (θ)eψ(θ)J + λRqNϕ(θ)J.
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By Lemma 4.2, we have

‖F̃‖ h
2λ
≤ ε0e

−λh
8ξ e2‖Imψ‖h/2λ + λε0e

−qNh/4

≤ 2λε0e
−qNh/4.

Since [λξ ] ≤ e
qNh

4(1+χ) , then we have

‖F̃‖ h
2λ
≤ 2λε0e

−qNh/4 ≤ C(
h

2λ
)χ.

Now in this case, Theorem 1.3 follows from Theorem 4.1.

Case 3: e
qNh

4(1+χ) ≤ [λξ ] ≤ 16χ
h ln qN+1.

It is this case that we cann’t prove the almost reducibility. However, we
can give an estimate for their Lyapunov exponents. What we need is the
following result on the continuity of the Lyapunov exponent by Bourgain-
Jitomirskaya [13].

Theorem 4.2. [13] If ω0 = (1, α) with α ∈ R\Q, A ∈ Cω(T2, sl(2,R)), then
A 7→ L(ω0, A) is continuous.

Remark 4.2. The above Bourgain-Jitomirskaya’s result [13] was restricted
to one-frequency Schrödinger cocycles (in particular, SL(2,R) valued) cocy-
cles. But this result can be generalized to the two-frequencies sl(2,R) valued
quasi-periodic linear systems, by standard Poincare map argument.

By Proposition 3.1, the system (ω0, λρJ+λF (θ)) is reduced to (ω0, (λρ+

λϕ(θ))J + F̂ (θ)) with ‖F̂‖ 3h
4
≤ ε0e

−[λ
ξ
]h
4 . Since L(ω0, (λρ + λϕ(θ))J) = 0,

we have

L(ω0, (λρ+ λϕ(θ))J + F̂ (θ)) < ε0e
−[λ

ξ
]h
8

by Theorem 4.2. The invariance of Lyapunov exponent under conjugacy
leads to

L(ω0, λρJ + λF (θ)) < ε0e
−[λ

ξ
]h
8 .

�

5. Applications to the spectrum

In this section, we apply semi-global reducibility results to the spectrum
of continuous quasi-periodic Schödinger operators. When the frequency is
Diophantine, we obtain a (weak) phase transition result.

Proof of Theorem 1.1:
As we have mentioned before, Bjerklöv’s result [8] actually implies that

for arbitrary small ε > 0, then there exists λ1 = λ1(V, τ, γ, ε) > 0, such that

if λ > λ1, E ∈ Σ(HλV,α) ∩ (−∞, λ1−ε], then L(E) > c0
√
λ. By applying

Kotani theory [22], Theorem 1.1 (1) follows immediately, since absolutely
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continuous spectrum is only supported on the spectrum with zero Lyapunov
exponent.

For the second part of Theorem 1.1, we only need to prove the following:

Theorem 5.1. Let α ∈ DC(τ, γ), V ∈ Cω(T2,R), there exists C1 =
C1(V ) > 0, λ2 = λ2(γ, τ) > 0, such that for all λ > λ2, the spectrum
in Σ(HλV,α) ∩ [C1(V )λ,∞) is purely absolutely continuous.

Proof. Consider the following Schödinger equation:

(5.1) (HλV,α,θy)(t) = −y′′(t) + λV (θ1 + t, θ2 + αt)y(t) = λEy(t),

It is easy to see that (5.1) is equivalent to system:

{
ẋ = (

√
λEJ + F (θ))x

θ̇ = ω0 = (1, α),
(5.2)

where

F (θ) =

√
λV (θ)

2
√
E

(
−1 −1
1 1

)
.

In order to prove Theorem 5.1 by applying Theorem 1.3, it is sufficient to
prove that there are no forbidden zones if n is large enough. To see this fact,

we note that qn+1 ≤ qτn
γ since α ∈ DC(γ, τ). Thus there exists K = K(γ, τ)

such that, when n ≥ K,

16χ

h
ln qn+1 ≤

16χ

h
(τ ln qn − ln γ) ≤ e

qnh
4(1+χ) .

This implies that In = ∅.
Once this is proved, we can finish the proof of Theorem 5.1 easily. In fact,

we only need to consider the case E � 1, since we are only interested in the

spectrum with high energy. By Theorem 1.3, if ‖V (θ)

2
√
E
‖h ≤ ε0(h) and

λ ≥ 2qK ≥ qK(
|ω0|
2
√
E

+ 1) = qKξ,

the systems (5.2) are almost reducible. Since all systems are conjugated to
systems in Eliasson’s perturbative regime [16], the spectral result of Theorem
5.1 follows from [16] immediately. �

Proof of Theorem 1.2:
The proof of Theorem 1.2 follows the same line as Theorem 5.1. For the

proof of the first part, we recall qn+1 ≤ eq
β̃
n since β̃(α) < ∞. Thus there

exists K = K(β̃) such that, when n ≥ K,

16χ

h
ln qn+1 ≤

16χ

h
qβ̃n ≤ e

qnh
4(1+χ) .

The rest part of the proof is same as Theorem 5.1, except invoking Avila’s
result (almost reducibility implies purely absolutely continuous spectrum in
Liouville case) [2, 3] instead of Eliasson’s result [16].



18 JIANGONG YOU AND QI ZHOU

For the proof of the second part, we only need to consider the case qN ≤
[λξ ] ≤ 16χ

h ln qN+1 in the proof of Theorem 1.3.

Let ∂ω0ψ(θ) = λTqNϕ(θ)−λϕ̂(0), then eψ(θ)J conjugate (3.1) to (4.3) with

F̃ = e−ψ(θ)J F̂ (θ)eψ(θ)J + λRqNϕ(θ)J.

By Lemma 4.2, we have ‖F̃‖ h
2λ
≤ 2λε0e

−qNh/4. In view of

[
λ

ξ
] ≤ 16χ

h
ln qN+1 ≤

16χ

h
qβ̃N ,

there exists ε0 = ε0(h, β̃) such that the estimate

‖F̃‖ h
2λ
≤ 2λε0e

−qNh/4 ≤ C(
h

2λ
)χ

holds for any N . In fact, we only need to choose

ε0 ≤ min
N

q
−β̃(χ+1)
N eqNh/4.

In this case, there is no forbidden zones. It concludes that the systems

(5.2) are almost reducible for any λ ∈ R+ if ‖F‖h < ε0(h, β̃). The absolute
continuity of the spectrum follows from the almost reducibility. �
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