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Abstract. In this note, it is shown that some Hamiltonian partial differential

equations such as semi-linear schrödinger equations, semi-linear wave equa-

tions and semi-linear beam equations are partial integrable, i.e., they possess
integrable invariant manifolds foliated by invariant tori which carry periodic or

quasi-periodic solutions. The linear stability of the obtained invariant mani-

folds is also concluded. The proofs are based on a special invariant property of
the considered equations and a symplectic change of variables firstly observed

in [26].

1. Introduction. Hamiltonian partial differential equations have strong backgrounds
in mathematical physics. Many famous equations, such as Schrödinger equations,
wave equations and KdV equations, have Hamiltonian structures and thus can be
regarded as Hamiltonian systems. In some special cases, they are integrable and
exhibit a rich structure of periodic, quasi-periodic, almost periodic or soliton solu-
tions. Research along this line has formed a big branch in mathematical physics.
Unfortunately, most of the equations are not integrable, for example the semi-linear
Schrödinger equation with periodic boundary conditions

iut −4u + mu + f(|u|2)u = 0, x ∈ Td, (1.1)

if f(x) 6= x. However, it defines an infinite dimensional Hamiltonian dynamical
system in some functional spaces (e.g., the Sobolev space Hr(Td) on torus for
some r). And in a neighborhood of the trivial solution u = 0, equation (1.1) can
be regarded as a perturbation of the linear equation iut − 4u + mu = 0, thus
it is a nearly integrable Hamiltonian system. In recent years, the local dynamics
in a neighborhood of u = 0, especially the existence of periodic and quasi-periodic
solutions of small amplitude for such kind of Hamiltonian PDEs, has received broad
attention.

So far there are two main approaches to deal with the periodic and quasi-periodic
solutions of Hamiltonian PDEs. The first one is the infinite dimensional KAM the-
ory which is the extension of the classical KAM theory, see Wayne [25], Kuksin [20],
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Pöschel [22], Chierchia and You [12], Geng and You [14]. The second approach is
the Craig-Wayne-Bourgain method. It is a generalization of the Liapunov-Schmidt
reduction and the Newtonian method. The reader is referred to Craig–Wayne [13],
Bourgain [6, 7, 8, 9].

Concerning the periodic solutions, there are also some recent results by Berti,
and Bolle [4, 5], Gentile and Mastropietro [15, 16], Gentile and Procesi [17]. All
the work follows the main line of Craig-Wayne-Bourgain’s approach. In [4, 5], the
Q-equations are solved by variational methods, while in [15, 16, 17] the P -equations
are solved by the Lindstedt series method. We remark that the small divisor is the
key obstacle in all the approaches mentioned above.

When constructing some special kind of periodic solutions, the small divisor
problem does not appear. In [21], the existence of a two-dimensional disc foliated
by periodic solutions of a one-dimensional Schrödinger equation was shown. In the
proof (Appendix 3 of [21]), the special form of the nonlinear term f(|u|2)u in (1.1)
plays an important role. When constructing some kind of periodic solutions of the
semi-linear wave equations Bambusi [1] noticed that the Craig-Wayne-Bourgain’s
approach does not really involve the small divisor problem. Thus the periodic
solutions can be easily constructed by the implicit function theorem. Using also
the Craig-Wayne-Bourgain’s approach, Yuan [27] further constructed some running
wave-like quasi-periodic solutions for nonlinear Shrödinger equations. Also, in his
proof, there is no small divisor problem.

In this note, we prove that some Hamiltonian PDEs such as the semi-linear
schrödinger equations mentioned above, semi-linear wave equations and semi-linear
beam equations actually have a lot of 2d-dimensional invariant manifolds. And the
partial differential equations restricted to such invariant manifolds are integrable.
Moreover, the manifolds are foliated by invariant tori. The solutions on each torus
are either periodic or quasi-periodic. Our proof is completely different from that
of the above mentioned papers and much simpler. A special symmetry property of
the considered equations and a symplectic change of variables firstly observed by
Xu-You in [26] play key roles on our proof.

To the authors’ knowledge, there is no result on the partial integrability for non-
integrable partial differential equations, i.e., on the existence of integrable manifolds.

2. The existence of invariant integrable manifolds. In this section, we will
prove an existence theorem of invariant manifolds of infinite dimensional Hamilton-
ian systems. Moreover, the systems are integrable when restricted on the invariant
manifold. This theorem can be applied to Schrödinger equations, wave equations
and beam equations.

Let Zd
1 = Zd\{e1, · · · , ed}, where ei’s are vectors in Zd with the i-th component

1 and other components zero. z = (zn) is a vector of infinite dimension indexed by
n ∈ Zd

1. We introduce the following weighted norm for z,

‖z‖a,ρ =
∑

n∈Zd
1

|zn||n|ae|n|ρ,

‖z̄‖a,ρ =
∑

n∈Zd
1

|z̄n||n|ae|n|ρ,

where |n| =
√

n2
1 + · · ·+ n2

d, n = (n1, · · · , nd) and a ≥ 0, ρ ≥ 0. In order to get
smooth solutions, we assume that a is sufficiently large when ρ = 0. Let la,ρ be the
space of (z, z̄) with ‖z‖a,ρ, ‖z̄‖a,ρ finite, and denote the space Td × Rd × la,ρ × la,ρ
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by Pa,ρ, which is a Banach space and endowed with the symplectic structure dI ∧
dθ + i

∑
n

dzn ∧ dz̄n, and thus a symplectic space.

Consider an infinite dimensional Hamiltonian system defined on Pa,ρ with Hamil-
tonian

H = 〈ω, I〉+
∑

n∈Zd
1

Ωn(ξ)znz̄n + P (θ, I, z, z̄). (2.1)

We assume that ∇P ≡ (∂P
∂θ , ∂P

∂I , ∂P
∂zn

, ∂P
∂z̄n

) defines a map from Pa,ρ into itself.
Moreover, we assume that P satisfies the Symmetry Property:

P (θ, I −
∑

n∈Zd
1

〈n, ω〉znz̄n, e−i〈n,θ〉zn, ei〈n,θ〉z̄n)

is independent of θ. We denote P (θ, I −
∑

n∈Zd
1

〈n, ω〉znz̄n, e−i〈n,θ〉zn, ei〈n,θ〉z̄n) by

P1(I, z, z̄).
Remark Later, we will see that this symmetry property is satisfied by Hamiltonian
PDEs that do not explicitly contain the space variables.

Theorem 1. Suppose that for fixed I = I0,
∑

n∈Zd
1

(Ωn − 〈n, ω〉)znz̄n + P1(I0, z, z̄)

has a critical point, then (2.1) has an invariant torus which carries periodic or
quasi-periodic solutions.

In order to prove Theorem 1, we need the following lemma.

Lemma 2.1. For any {kn, n ∈ Zd
1} ⊂ Zd with1 |kn| < C|n|, the map Ψ : (θ, I, z, z̄) ∈

Pa,ρ → (x, y, w, w̄) ∈ Pa,ρ defined by





x = θ

y = I −
∑

n∈Zd
1

znz̄nkn

wn = e−i〈kn,θ〉zn

w̄n = ei〈kn,θ〉z̄n

(2.2)

is symplectic, where i stands for
√−1.

The proof of the lemma is straightforward. The reader is referred to Xu-You [26].

Proof of Theorem 1. Due to the symmetry property, the symplectic change of
variables Ψ with kn = n, transforms (2.1) into the following

H1 = 〈ω, I〉+
∑

n∈Zd
1

(Ωn − 〈n, ω〉)znz̄n + P1(I, z, z̄). (2.3)

1|kn| < C|n| is assumed to guarantee the convergence of
X

n∈Zd
1

znz̄nkn. It is not essential.
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The corresponding Hamiltonian system is

dθ

dt
= ω +

∂P1(I0, z, z̄)
∂I

dI

dt
= 0,

dzn

dt
= i[(Ωn − 〈n, ω〉)zn +

∂P1(I0, z, z̄)
∂z̄n

], n 6= e1, · · · , ed,

dz̄n

dt
= −i[(Ωn − 〈n, ω〉)z̄n +

∂P1(I0, z, z̄)
∂zn

], n 6= e1, · · · , ed. (2.4)

If, for I = I0, P (I0, z, z̄) has a critical point z = z(I0), z̄ = z̄(I0), then the Hamil-
tonian system (2.4) has an invariant torus T = Td×{I0}×{z(I0}×{z̄(I0}. The fre-
quency vector of the solutions on the invariant torus is ω̃ = ω+∂P1

∂I |I=I0,z=z(I0),z̄=z̄(I0).
The solutions are periodic if all components of ω̃ are rationally dependent. Other-
wise, the solutions are quasi-periodic. If all Ωn − 〈n, ω〉 are positive, then (2.3) is
positive definite while treating I as a parameter. It follows that the invariant man-
ifolds are stable in the sense of Lyapunov. It is obvious that Ψ(T) is an invariant
torus of (2.1).

The following result is an immediate consequence of Theorem 1.

Theorem 2. Suppose that |Ωn − 〈n, ω〉| has a lower bound C > 0 ( independent of
n ) for all n ∈ Zd

1. Then (2.3) is integrable on a 2d-dimensional invariant manifold
M2d, i.e., M2d is foliated by d-dimensional invariant tori and solutions on each
torus are periodic or quasi-periodic. If all Ωn−〈n, ω〉 are positive, then the invariant
manifolds are stable in the sense of Lyapunov.

3. Applications. Theorem 2 can be applied to various x, t independent Hamilton-
ian PDEs. Since the proofs are similar, we only give the full proof in the case of
Schödinger equations in this note. The analogous results for beam equations and
wave equations are presented without proof.

3.1. Higher dimensional Schrödinger equations. We consider the d-dimensional
Schrödinger equations with periodic boundary condition

iut + Au + f(|u|2)u = 0, Au = −4u + mu, x ∈ Td, t ∈ R. (3.1)

For simplicity, we assume that f is analytic in a neighborhood of 0 ∈ C and vanishes
at zero. Actually, f only needs to be C2 in this paper.

Equation (3.1) can be rewritten as Hamiltonian equation

ut = i
∂H

∂ū
(3.2)

and the corresponding Hamiltonian is

H =
1
2
(Au, u) +

∫

Td

g(|u|2) dx, (3.3)

where (·, ·) denotes the inner product in L2 and g is a primitive of f .
The eigenvalues of A in L2(Td) are {µn = |n|2 + m}. The corresponding eigen-

functions φn(x) =
√

1
(2π)d ei〈n,x〉 form a complete orthogonal basis of L2(Td).
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Lemma 3.1. u(t, x) =
∑

n∈Zd

qn(t)φn(x) is a formal solution of (3.1) if and only if

q = (qn(t)) is a solution of the lattice Hamiltonian equations

q̇n = i(µnqn +
∂G

∂q̄n
), (3.4)

with the Hamiltonian

H =
∑

n∈Zd

µnqnq̄n + G =
∑

n∈Zd

µnqnq̄n +
∫

Td

g(|u|2)dx . (3.5)

Moreover, the solution q = (qn(t)) of (3.4) with
∑

n∈Zd

|qn(t)||n|r < ∞ corresponds to

a solution of (3.1) in Hr(Td).

Let Λ be the set of vectors of infinite dimension indexed by n ∈ Zd
1 with finite

number of nonzero components in the set of nonnegative integers Z+. For α =
(αn) ∈ Λ, we denote

∏
n∈Zd

+
qαn
n by qα.

Lemma 3.2. Let G ≡ ∫
Td g(|u|2)dx =

∑

α,β∈Λ

Gαβqαq̄β, then the coefficients Gαβ

satisfy
Gαβ = 0 if

∑

n∈Zd

(αn − βn)n 6= 0, (3.6)

where αn and βn are components of α and β respectively.

To prove this lemma, firstly, we observe that g(q, q̄) is real analytic in q, q̄ since
f(u) is real analytic in u. Then making use of u(t, x) =

∑

n∈Zd

qnφn(x), we may

rewrite g as follows
g(|u|2) =

∑

α,β∈Λ

gαβqαq̄βφαφ̄β ,

hence

G(q, q̄) ≡
∫

Td

g(|
∑

n∈Zd

qnφn|2)dx =
∑

α,β∈Λ

Gαβqαq̄β ,

so Gαβ = 0, if
∑

n∈Zd

(αn − βn)n 6= 0. (3.7)

As in [21, 22, 12, 14], the perturbation G in (3.5) has the following regularity
property.

Lemma 3.3. For any fixed a ≥ 0, ρ > 0, the gradient Gq̄ is real analytic as a map
in a neighborhood of the origin with

‖Gq̄‖a,ρ ≤ c‖q‖2a,ρ. (3.8)

Next we introduce the standard action-angle variables (θ, I) = ((θ1, · · · , θd), (I1, · · · , Id))
in the (qe1 , · · · , qed

, q̄e1 , · · · , q̄ed
)-space for (3.5) by setting 2

qej
=

√
2Ije

iθj =
√

2Ije
i〈ej ,θ〉, q̄ej

=
√

2Ije
−iθj =

√
2Ije

−i〈ej ,θ〉, j = 1, · · · , d,

2At this stage, one can see that the tangential sites are not necessary to be fixed as {e1, · · · , ed},
they could be any d independent vectors {v1, · · · , vd}. In this case, we let qi = fi(I)ei〈vi,θ〉, i =

1, · · · , d, where fi is chosen so that the change of variables is symplectic.
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and setting qn = zn, q̄n = z̄n, n 6= e1, · · · , ed, let Zd
1 = Zd \ {e1, · · · , ed}, so that the

system (3.4) becomes

dθj

dt
= ωj +

∂P

∂Ij
,

dIj

dt
= − ∂P

∂θj
, j = 1, · · · , d, (3.9)

dzn

dt
= −i(Ωnzn +

∂P

∂z̄n
),

dz̄n

dt
= i(Ωnz̄n +

∂P

∂zn
), n ∈ Zd

1,

where P is just G with the (qe1 , · · · , qed
, q̄e1 , · · · , q̄ed

, qn, q̄n)-variables expressed in
terms of the (θ, I, zn, z̄n) variables. The Hamiltonian associated to (3.9) (with
respect to the symplectic structure dI ∧ dθ + i

∑

n∈Zd
1

dzn ∧ dz̄n) is given by

H = 〈ω(m), I〉+
∑

n∈Zd
1

Ωn(m)znz̄n + P (θ, I, z, z̄), (3.10)

with ω(m) = (1 + m, · · · , 1 + m),Ωn(m) = |n|2 + m,n ∈ Zd\{e1, · · · , ed}. Let

P (θ, I, z, z̄) =
∑

k∈Zd,l∈Zd
+,α,β∈Λ

PklαβI lei〈k,θ〉zαz̄β .

By (3.7), it is easy to verify that

Pklαβ = 0, if k +
∑

n∈Zd
1

(αn − βn)n 6= 0. (3.11)

It follows that
P (θ, I −

∑

n∈Zd
1

〈n, ω〉znz̄n, ei〈n,θ〉zn, e−i〈n,θ〉z̄n)

is independent of θ. We denote it by P1(I, z, z̄,m).
By the change of variables Ψ in Lemma 2.1, we arrive at a Hamiltonian as follows

H = 〈ω(m), I〉+
∑

n∈Zd
1

Ω̃n(m)znz̄n + P1(I, z, z̄, m), (3.12)

where ω = (1 + m, · · · , 1 + m), Ω̃n(m) = |n|2 + m − (1 + m)(
∑d

i=1 ni). For m in
a bounded interval, Ω̃ is positive if n is sufficiently large. So there are only finite
number of mi’s such that Ω̃n = 0. Excluding the set of such m’s from the interval,
we have |Ω̃n| > C(m) > 0.

Now we are ready to apply Theorem 2 to get the following result.

Theorem 3. Except for a finite set of m’s, (3.1) has a 2d-dimensional invariant
manifold M foliated by invariant tori. The solutions of each torus are periodic or
quasi-periodic of the form u(x1 − ω1t, · · · , xd − ωdt). If all Ω̃n are positive, the
obtained torus is linearly stable, otherwise it is unstable.

Remark The invariant manifold we constructed is local. The size of the manifolds
are not uniform, but dependent on m.
Remark The nonlinear term could be as more general as f(u, ū).
Remark Since e1, · · · , ed can be replaced by any independent vectors v1, · · · , vd

in Zd, one can prove that the equation can be integrable on infinitely many 2d-
dimensional invariant manifolds by this method. We don’t know whether or not
the equation is integrable on any higher dimensional manifolds.
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Remark With a result of Bourgain on periodic solutions of Schrodinger equations,
one can further proves the existence of quasi-periodic solutions of (1.1) with d + 1
frequencies by constructing periodic solutions of (3.5).

3.2. Beam equations and wave equations. In this subsection, we state similar
results for beam equations and wave equations. The proofs are omitted since they
proceed along the same line as that of the Schrodinger equations.

Consider dD beam equations

utt + (−4+ m)2u + f(u) = 0, x ∈ Td, t ∈ R, (3.13)

where f(u) is a real–analytic function near u = 0 with f(0) = f ′(0) = 0.

Theorem 4. Except for a finite set of m’s, there is a 2d-dimensional manifolds in
Hr(Td) such that the restriction of the beam equation on this manifold is integrable.
The solutions on the manifold are periodic or quasi-periodic of the form
u(x1 − ω1t, · · · , xd − ωdt).

For wave equations

utt −4u + mu + f(u) = 0, x ∈ Td, t ∈ R, (3.14)

where f(u) is a real–analytic function near u = 0 with f(0) = f ′(0) = 0, we have
the following result.

Theorem 5. Suppose that the parameter m ∈ (−1, 0). Then there is a 2d-dimensional
manifold in Hr(Td) such that the restriction of the wave equation on this manifold
is integrable. The solutions on the manifold are periodic or quasi-periodic of the
form u(x1 − ω1t, · · · , xd − ωdt).

Remark The restriction on m is to guarantee the assumptions of Theorem 2 to
be satisfied. This restriction is not essential for the existence of periodic or quasi-
periodic solutions, but we do not know if it is essential for the existence of integrable
sub-manifolds.
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[21] Kuksin, S. B. and Pöschel, J., Invariant Cantor manifolds of quasiperiodic oscillations for a

nonlinear Schrödinger equation, Ann. Math., 143(1996), 149–179.
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