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摘要

This course is a continuation study of the basic functional analysis. In this course, along
with the theorems and principles in functional analysis, we will introduce their applications,
particularly in differential equations. The materials of this lecture notes are mainly summarized
from the book [8], [9]. Some of the concepts in [4], [10] and [2] are used. This lecture notes can
only be used for nonprofitable purpose.
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1 Banach spaces and fixed-point theorems

1.1 Topological spaces

We give the general definition of topological spaces, open sets and continuous mappings.

Definition 1.1. (a) Let X be a set and 2X be the collection of all subsets of X. A collection of
X subsets τ ⊂ 2X is said to be a topology in X if τ has the following properties:
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(i) ∅ ∈ τ and X ∈ τ .

(ii) If Vj ∈ τ, j = 1, · · · , N , then V1 ∩ V2 ∩ · · · ∩ VN ∈ τ .

(iii) If {Vα}α∈I is an arbitrary collection of members of τ (finite, countable, or uncountable),
then

∪
α∈I Vα ∈ τ.

(b) If τ is a topology in X, then (X, τ) is called a topological space, and the members of τ are
called the open sets in X.

(c) A set E ⊂ X is closed if its complement Ec is open. Hence ∅ and X are closed, finite unions
of closed sets are closed, and arbitrary intersections of closed sets are closed.

(d) If X and Y are topological spaces and if f is a mapping of X into Y , then f is said to be
continuous provided that f−1(V ) is an open set in X for every open set V in Y . It can be
shown that f is continuous iff f−1(B) is a closed set in X for each closed set B in Y .

(e) The closure Ē of a set E ⊂ X is the smallest closed set in X which contains E. (The
following argument proves the existence of E : The collection Q of all closed subsets of X
which contain E is not empty, since X ∈ Q; let Ē be the intersection of all members of Q.)

(f) A set K ⊂ X is compact if every open cover of K contains a finite subcover. In particular,
if X is itself compact, then X is called a compact space.

(g) Let p ∈ X. A neighborhood of p is an open set containing p.

(h) X is a Hausdorff space if the following is true : If p ∈ X, q ∈ X, and p ̸= q, then p has a
neighborhood U and q has a neighborhood V such that U ∩ V = 0.

(i) X is locally compact if every point of X has a neighborhood whose closure is compact.

(j) Heine-Borel Theorem: The compact subsets of the euclidean space Rd are precisely those that
are closed and bounded.

(k) From this it follows easily that Rd is a locally compact Hausdorff space. Also, every metric
space is a Hausdorff space.

Remark 1.2. To avoid terminology complexisty, when there is not much confusion in the context,
we often simply say X is a topological space without emphasizing its topology τ .

1.2 Metric spaces

Definition 1.3. (a) A metric space is an ordered pair (M,d) where M is a set and d is a metric
on M , i.e., a function d : M ×M → R such that for any x, y, z ∈M , the following holds:
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– d(x, y) ≥ 0 non-negativity

– d(x, y) = 0 ⇔ x = y identity of indiscernibles

– d(x, y) = d(y, x) symmetry

– d(x, z) ≤ d(x, y) + d(y, z) subadditivity or triangle inequality

(b) Every metric space is a topological space in a natural manner. Let (M,d) be a metric space.
For each x ∈M , we define the open ball of radius r > 0 about x as the set

B(x, r) = {y ∈M : d(x, y) < r}.

The notation Br(x) for such a ball is also often used.

These open balls form the base for a topology on M, making it a topological space. Explicitly,
a subset U of M is called open if for every x in U there exists an r > 0 such that B(x, r) is
contained in U . The complement of an open set is called closed.

(c) A topological space which can arise in this way from a metric space is called a metrizable
space.

(d) A sequence (xn) in a metric space M is said to converge to the limit x ∈ M iff for every
ε > 0, there exists a natural number N such that d(xn, x) < ε for all n > N .

(e) A subset A of the metric space M is closed iff every sequence in A that converges to a limit
in M has its limit in A.

1.3 Banach spaces

We give the definition of Banach spaces and some examples. Let F be R or C, where R and C
are the set of real and complex numbers respectively.

Definition 1.4. (a) Let X be a vector space over F. A seminorm on X is a function p : X →
[0,+∞) having the properties:

(i) p(x+ y) ≤ p(x) + p(y) for all x, y ∈ X.

(ii) p(αx) = |α|p(x) for all α ∈ F and x ∈ X.

(b) It follows from (ii) that p(0) = 0. A norm is a seminorm p such that x = 0 if p(x) = 0.
Usually a norm is denoted by ∥ · ∥.

(c) A normed space is a pair (X, ∥ · ∥), where X is a vector space and ∥ · ∥ is a norm on X.

(d) A normed space (X, ∥ · ∥) is a metric space with the natural metric defined by the norm:
d(x, y) := ∥x− y∥, for all x, y ∈ X.
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(e) A Banach space is a normed space that is complete with respect to the metric defined by the
norm.

Example 1.5. Banach spaces: C[a, b], Lp(Ω).

1.4 Open and closed sets in normed spaces

Definition 1.6. (a) Let X be a normed space. For fixed u0 ∈ X and r > 0, denote the ball

B(u0, r) := {u ∈ X : ∥u− u0∥ < r}.

(b) A subset M of X is called open iff, for each point u0 ∈ M , there is a ball B(u0, r) such that
B(u0, r) ⊂M .

(c) A subset M of X is called closed iff M c = X \M := {u ∈ X : u ̸∈M} is open.

Proposition 1.7. Let X be a normed space and M ⊂ X. Then M is closed iff for any sequence
{un} ⊂M with un → u in X, there holds u ∈M .

证明. 略。练习。

1.5 The Banach fixed-point theorem—contraction principle

Definition 1.8. Let (X, ∥ · ∥) be a normed space over F and M be a closed nonempty subset of X.
A map A :M →M is said to be λ-contractive provided

∥Au−Av∥ ≤ λ∥u− v∥, for all u, v ∈M.

Such a map A on M is said to be a λ-contraction or a λ-contractive operator.

Theorem 1.9. Let (X, ∥ · ∥) be a Banach space over F and M be a closed nonempty subset of X.
Suppose A : M → M is λ-contractive with 0 ≤ λ < 1, then the operator A admits a unique fixed
point in M , i.e. there exists a unique u ∈ M such that Au = u. Moreover, for any u0 ∈ M , the
sequence {un} constructed by un+1 = Aun, n = 0, 1, 2, · · · converges to the unique fixed point u. In
addition the iteration sequence {un} satisfies the following estimates:

• Error estimates. For all n = 0, 1, · · · we have the so-called a priori estimate

∥un − u∥ ≤ λn(1− λ)−1∥u1 − u0∥, (1.1)

and the so-called a posteriori estimate

∥un+1 − u∥ ≤ λ(1− λ)−1∥un+1 − un∥. (1.2)
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• Rate of convergence. For all all n = 0, 1, · · · we have

∥un+1 − u∥ ≤ λ∥un − u∥. (1.3)

This theorem was proved by Banach in 1920, and is called the Banach fixed-point theorem, and
is also called the contraction principle. The phase a priori means from the earlier and a posteriori
means from the later.

证明. For any n ∈ Z+,

∥un+1 − un∥ = ∥Aun −Aun−1∥ ≤ λ∥un − un−1∥ ≤ · · · ≤ λn∥u1 − u0∥. (1.4)

Then for any n,m ∈ Z+,

∥un − un+m∥ ≤ ∥un − un+1∥+ ∥un+1 − un+2∥+ · · ·+ ∥un+m−1 − un+m∥

≤ (λn + λn+1 + · · ·+ λn+m−1)∥u1 − u0∥

≤ λn
∞∑
k=1

λk∥u1 − u0∥

= λn(1− λ)−1∥u1 − u0∥.

(1.5)

It follows from 0 ≤ λ < 1 that λn → 0 as n→ ∞. Hence the sequence {un} is Cauchy. Since X is
a Banach space which is complete, then the Cauchy sequence {un} converges, i.e.

lim
n→∞

un → u in X.

Since A maps M into M , we have {un} ⊂ M . Since M is closed, we have the limit u ∈ M .
Moreover,

∥un+1 −Au∥ = ∥Aun −Au∥ ≤ λ∥un − u∥. (1.6)

Passing n→ ∞ in (1.6) implies
u = Au. (1.7)

The rate of convergence (1.3) following directly from (1.6) and (1.7). Passing m → ∞ in (1.5)
implies the a priori estimate (1.1).

For any n,m ∈ Z+,

∥un+1 − un+m+1∥ ≤ ∥un+1 − un+2∥+ ∥un+2 − un+3∥+ · · ·+ ∥un+m − un+m+1∥

≤ (λ+ λ2 + · · ·+ λm)∥un − un+1∥.
(1.8)

Passing m→ ∞ in (1.8) implies the a posteriori estimate (1.2).
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1.6 Applications to ODEs

We want to solve the following initial-value problem

u′(x) = F (x, u), x ∈ [x0 − h, x0 + h],

u(x0) = u0.
(1.9)

Here x0 and u0 are given. Let h > 0, r > 0, and define

Xh = C[x0 − h, x0 + h], Mh,r = {u ∈ Xh : ∥u− u0∥ ≤ r}. (1.10)

Clearly Xh is a Banach space and Mh,r is a closed subset of X. It is straightforward to show that the
initial value problem (1.9) of differential equation is equivalent to the following integral equation:

u(x) = u0 +

∫ x

x0

F (y, u(y))dy, x ∈ [x0 − h, x0 + h]. (1.11)

Thus we turn to consider the integral equation (1.11) along with the iteration method:

un+1(x) = u0 +

∫ x

x0

F (y, un(y))dy, x ∈ [x0 − h, x0 + h]. (1.12)

We have the following result:

Proposition 1.10. [The Picard-Lindelöf Theorem] Assume that the function F : [x0−h0, x0+h0]×
[u0−r0, u0+r0] → R is continuous and the partial derivative Fu : [x0−h0, x0+h0]×[u0−r0, u0+r0] →
R is also continuous, where h0 > 0, r0 > 0 are fixed numbers. Choose 0 < h ≤ h0, 0 < r ≤ r0 such
that

hmax{|F (x, u)| : x ∈ [x0 − h, x0 + h], u ∈ [u0 − r, u0 + r]} ≤ r,

hmax{|Fu(x, u)| : x ∈ [x0 − h, x0 + h], u ∈ [u0 − r, u0 + r]} < 1.
(1.13)

Then

(i) The problem (1.11) has a unique solution u ∈Mh,r. This is also the unique solution to (1.9).

(ii) The sequence {un} constructed by (1.12) converges to this unique solution u in Xh.

(iii) There holds the error estimates:

∥un − u∥ ≤ λn(1− λ)−1∥u1 − u0∥, ∥un+1 − u∥ ≤ λ(1− λ)−1∥un+1 − un∥, (1.14)

where
λ := hmax{|Fu(x, u)| : x ∈ [x0 − h, x0 + h], u ∈ [u0 − r, u0 + r]} < 1. (1.15)

证明. Under the assumptions in Proposition 1.10, it is not difficult to check that the operator A
defined through

(Au)(x) := u0 +

∫ x

x0

F (y, u(y))dy, for all x ∈ [x0 − h, x0 + h] (1.16)
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maps Mh,r into Mh,r, and satisfies

∥Au−Av∥ ≤ λ∥u− v∥, for all u, v ∈Mh,r, (1.17)

where 0 ≤ λ < 1 is defined as (1.15). This means that A : Mh,r → Mh,r is a contractive map. By
the contraction principle, A admits a unique fixed point u ∈ Mh,r, i.e. Au = u which is exactly
(1.11). The other results follow directly from Theorem 1.9.

1.7 Continuity

In the following three subsections, we will discuss the continuity, convexity and compactness
in normed spaces.

In normed spaces, continuity is equivalent to sequential continuity:

Proposition 1.11. Let X and Y be normed spaces over F and A : X → Y is an operator from X

to Y . Then the following statements are equivalent:

(i) A is continuous, i.e. A−1(V ) is an open set in X for every open set V in Y , or equivalently,
A−1(V ) is a closed set in X for every closed set V in Y .

(ii) A is sequentially continuous, i.e. for each sequence {un} that converges to u in X, there holds
Aun → Au in Y .

(iii) For each u ∈ X and each ε > 0, there is a number δ(ε, u) such that for all ũ ∈ X satisfying
∥ũ− u∥ < δ, there holds ∥Aũ−Au∥ < ε.

证明. (i) ⇒ (ii). Suppose A is continuous, i.e. A−1(V ) is a closed set in X for every closed set
V in Y . Let un → u in X, we want to show Aun → Au in Y . By contradiction we suppose Aun
does not converge to Au in Y , i.e. there exists ε0 > 0 and there exists a subsequence Aunk

such
that ∥Aunk

− Au∥ ≥ ε0. Define V := {v ∈ Y : ∥v − Au∥ ≥ ε0}. Clearly V is a closed set in Y and
{Aunk

} ⊂ V . Then U := A−1(V ) is a closed set in X and {unk
} ⊂ U . Since un → u in X, and U

is closed, we thus have u ∈ U . This means Au ∈ V which implies a contradiction:

0 = ∥Au−Au∥ ≥ ε0.

(ii) ⇒ (iii). Suppose A is sequentially continuous. We want to prove statement (iii). By
contradiction we suppose that there exists u0 ∈ X and ε0 > 0 such that for each δ > 0, there exists
uδ satisfying ∥uδ − u0∥ ≤ δ such that ∥Auδ − Au0∥ ≥ ε0. By choosing δ = 1/n, n = 1, 2, · · · , we
obtain a sequence {un} which converges to u0 and ∥Aun − Au0∥ ≥ ε0 for all n. A contradiction
with the sequential continuity of A.
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(iii) ⇒ (i). Let V ⊂ Y be open. We want to prove A−1(V ) is open in X. Given u ∈ A−1(V ), we
have Au ∈ V . Since V is open, there exists ε > 0 such that B(Au, ε) = {v ∈ Y : ∥v−Au∥ < ε} ⊂ Y.

By (ii), there exists δ > 0, such that for all ∥ũ− u∥ < δ there holds ∥Aũ−Au∥ < ε. We thus have
Aũ ∈ B(Au, ε) ⊂ V for all ∥ũ − u∥ < δ. This means B(u, ε) ⊂ A−1(V ). Thus A−1(V ) is an open
set in X.

1.8 Convexity

Definition 1.12. (a) Let X be a vector space (linear space), a subset M ⊂ X is called convex iff

αu+ (1− α)v ∈M, for all u, v ∈M, 0 ≤ α ≤ 1.

(b) Let M be a convex set. The function f :M → R is called convex iff

f(αu+ (1− α)v) ≤ αf(u) + (1− α)f(v), for all u, v ∈M, 0 ≤ α ≤ 1.

Intuitively, the convexity of M means that the entire line segment joining two points in M is
contained in M . The convexity of the real function f : [a, b] → R means that the chords always lie
above the graph of f .

Example 1.13. • The open and closed balls in a normed space are convex.

• The norm function ∥ · ∥ is continuous and convex.

Definition 1.14. Let X be a vector space over F and let M be subset of X. Define:

(a) spanM := smallest linear subspace of X containing M . spanM is called the linear hull of
M .

(b) coM := smallest convex set of X containing M . coM is called the convex hull of M .

If moreover X is a normed space, define:

(c) M := smallest closed set of X containing M and is called to be the closure of M .

(d) coM := smallest closed convex set of X containing M and is called the closed convex hull of
M .

(e) intM := largest open set of X contained in M and is called the interior of M .

(f) ∂M :=M − intM is called the boundary of M .

(f) extM := int (M c) is called the exterior of M .
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Proposition 1.15. Let M be a nonempty subset of the normed space X over F. Then the following
hold true:

(i) u ∈ spanM iff there exist u1, · · · , un ∈M and α1, · · · , αn ∈ F such that u = α1u1+ · · ·αnun.

(ii) u ∈ coM iff there exist u1, · · · , un ∈M and 0 ≤ α1, · · ·αn ≤ 1 satisfying α1 + · · ·+ αn = 1

such that u = α1u1 + · · ·αnun.

(iii) u ∈M iff there exist a sequence {un} in M such that un → u in X.

证明. 略。练习。

1.9 Compactness

It turns out that most of the statements on finite dimensional spaces have nice generalizations
to a certain class of subsets or operators on infinite dimensional spaces, namely, to the compact
sets and operators.

1.9.1 Compact sets

Definition 1.16. Let X be a normed space over F and let M be subset of X.

(a) M is called sequentially compact iff each sequence in M admits a convergent subsequence
with limit in M .

(b) M is called relatively sequentially compact iff each sequence in M admits a convergent
subsequence with limit in X.

(c) Let ε > 0. A set {xα ∈M : α ∈ I} is said to be an ε-net for M if

M ⊂
∪
α∈I

B(xα, ε).

(d) M is said to be totally bounded if it has a finite ε-net for every ε > 0.

(e) A closed subset M is said to have the finite intersection property for closed sets if every
decreasing sequence of closed, nonempty sets in M has nonempty intersection.

Proposition 1.17. Let M be a nonempty subset of the normed space X over F. Then M is
sequentially compact iff M is relatively sequentially compact and closed.

证明. 略。练习。

Proposition 1.18. Let M be a nonempty subset of the Banach space X over F. Then M is
relatively sequentially compact iff M is totally bounded.
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证明. We first suppose that M is relatively sequentially compact. By contradiction, we suppose
that M is not totally bounded, i.e. there exists ε0 > 0 such that there is no finite ε0 net of M .
Given x1 ∈M , since M has no finite ε0 net, we have M ̸⊂ Bε0(x1). Thus, there exists x2 ∈M and
x2 ̸∈ Bε0(x1) which means ∥x2 − x1∥ ≥ ε0. By induction, we find a sequence {xn} ⊂M satisfying

∥xm − xn∥ ≥ ε0, for all m, n ∈ Z+.

This implies that {xn} has no Cauchy subsequence and then no convergent subsequence. This
contradicts with the fact that M is relatively sequentially compact.

We next suppose that M is totally bounded. Let {xn} be a sequence in M . Since M is totally
bounded, it has a finite ε-net for every ε > 0. We first choose ε = 1, then there exists finite 1 net
{y1, · · · , yk} of M . Since the sequence {xn} ⊂

∪k
i=1B1(yi), there is at least one ball B1(yi) that

contains infinite terms in the sequence {xn}. These infinite terms form a subsequence {x(1)n }.
Now for the subsequence {x(1)n }, since there is a finite 1/2 net of M , again denoted by

{y1, · · · , yk}, then {x(1)n } ⊂ M ⊂
∪k

i=1B1/2(yi). This means there at least one ball say B1/2(yi)

that contains infinite terms in the sequence {x(1)n }. These infinite terms form a subsequence {x(2)n }.
Continuing this construction for ε = 1/m, m = 1, 2, · · · , we obtain the subsequences

x
(1)
1 , x

(1)
2 , · · ·x(1)n , · · · ,

x
(2)
1 , x

(2)
2 , · · ·x(2)n , · · · ,

...

x
(m)
1 , x

(m)
2 , · · ·x(m)

n , · · · ,
...

(1.18)

which have the following property: for each m ∈ Z+, {x(m+1)
n } is a subsequence of {x(m)

n }, and

∥x(m)
n1

− x(m)
n2

∥ ≤ ∥x(m)
n1

− yi∥+ ∥yi − x(m)
n2

∥ ≤ 1/m+ 1/m = 2/m, ∀n1, n2 ∈ Z+. (1.19)

Finally consider the diagonal subsequence {x(n)n }. It following from (1.19) that

∥x(n+m)
n+m − x(n)n ∥ ≤ 2

n
, for all n,m ∈ Z+.

This implies that {x(n)n } is a Cauchy sequence, and thus is a convergent sequence in Banach space
X. This proves the relative sequential compactness of M .

Proposition 1.19. Let M be a nonempty closed subset of the normed space X over F. Then M

is sequentially compact iff M has the finite intersection property for closed sets.
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证明. First suppose that M is sequentially compact. Given a decreasing sequence of nonempty
closed sets F1 ⊃ F2 ⊃ · · · ⊃ Fn ⊃ · · · in M , choose xn ∈ Fn for each n ∈ Z+. Then {xn} has a
convergent subsequence {xnk

} with xnk
→ x in M , as k → ∞. Since xnk

∈ Fn for all nk ≥ n and
Fn is closed, then x ∈ Fn for every n ∈ Z+, so x ∈

∩∞
n=1 �Fn. This implies

∩∞
n=1 �Fn ̸= ∅.

We next suppose that M has the finite intersection property for closed sets. Let {xn} be a
sequence in M . Define a decreasing sequence of nonempty closed sets Fn ⊂M as

Fn := Tn, Tn := {xk : k > n}.

Thus, by the finite intersection property of M , there exists

x ∈ �
∞∩
n=1

�Fn.

Choose a subsequence {xnk
} of {xn} as follows. For k = 1, since x ∈ F1 = T 1, there exists xn1 ∈ T1

such that ∥xn1 − x∥ < 1. Similarly, since x ∈ Fn1 = Tn1 , there exists xn2 ∈ Tn1 with n2 > n1 such
that ∥xn2 −x∥ < 1/2. By induction, given xnk

, we choose xnk+1
∈ Tnk

, where nk+1 > nk, such that
∥xnk+1

− x∥ < 1/(k + 1). Then the subsequence xnk
→ x as k → ∞. This proves the sequential

compactness of M .

Lemma 1.20. [Lebesgue Covering Lemma] Let M be a sequentially compact subset of the normed
space X over F. If {Gα ⊂ X : α ∈ I} be an open cover of M , there exists δ > 0 such that for every
x ∈M , there is some α ∈ I with Bδ(x) ⊂ Gα.

证明. By contradiction we suppose that no such δ > 0 exists. Then for every n ∈ Z+ there exists
xn ∈M such that B1/n(xn) is not contained in Gα for any α ∈ I. Since M is sequentially compact,
the sequence {xn} has a convergent subsequence {xnk

} in M . Let x = limk→∞ xnk
∈ M . Then

x ∈ Gα0 for some α0 ∈ I. Since Gα0 is open, there exists ε0 > 0 such that Bε0(x) ⊂ Gα. Since
xnk

→ x and 1/nk → 0 as k → ∞, then there exists N ∈ Z+ such that for k ≥ N there holds
∥xnk

− x∥ < ε0/2 and 1/nk < ε0/2. Hence,

B1/nk
(xnk

) ⊂ Bε0(x) ⊂ Gα0 .

This contradicts to the choice of xn.

Now we are ready to prove the following result:

Proposition 1.21. Let M be a nonempty subset of the Banach space X over F. Then M is
sequentially compact iff M is compact.
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证明. Suppose that M is compact. Firstly M is then closed (why?). Let {Fn}∞n=1� be a decreasing
sequence of closed nonempty subsets of M . We want to show that

∩∞
n=1 �Fn is not empty. By

contradiction we assume that
∩∞

n=1 �Fn is empty. Then, defining Gn := F c
n, one has

∪∞
n=1 �Gn =

X ⊃M . This means then {Gn}∞n=1� is an open cover of M , so it has a finite subcover {Gn}Nn=1 of
M . Thus,

FN =

N∩
n=1

Fn =

(
N∪

n=1

Gn

)c

⊂M c.

A contradiction to the choice of {Fn}. Thus the closed set M has the finite intersection property.
It follows from Proposition 1.19 that M is sequentially compact.

We next suppose that M is sequentially compact. Let {Gα : α ∈ I} be an open cover of M . By
Lemma 1.20, there exists δ > 0 such that for every x ∈M , there is some α ∈ I with Bδ(x) ⊂ Gα.

Since M is sequentially compact, it is totally bounded. Then there exists a finite collection of
balls {Bδ(xi) : i = 1, 2, · · · , n} of radius δ with xi ∈ M, i = 1, 2, · · · , n that covers M , i.e. a finite
δ net of M .

Choose αi ∈ I such that Bδ(xi) ⊂ Gαi . Then {Gαi : i = 1, 2, · · · , n} is a finite subcover of M .
This proves M is compact.

1.10 Compact operators

Definition 1.22. Let X and Y be Banach spaces over F, and A : X → Y be a continuous operator.
A : X → Y is called compact iff A(U) is compact in Y (or A(U) is relatively compact) for every
bounded set U ⊂ X.

Example 1.23. Consider the integral operator

Au(x) :=

∫ b

a
F (x, y, u(y))dy for all x ∈ [a, b],

where −∞ < a < b < +∞. Set

Q := {(x, y, u) ∈ R3 : x, y ∈ [a, b], |u| ≤ r}, r > 0 is fixed.

Set
X := C[a, b], M := {u ∈ X : ∥u∥ ≤ r}.

Suppose F : Q→ R is continuous. Then the operator A :M → X is compact. (why?)

Proposition 1.24. Let X and Y be Banach spaces over F, and A : X → Y be a compact
operator. Let M ⊂ X be a bounded subset. Then there exists a sequence of continuous operators
{An :M → Y }∞n=1 such that

sup
u∈M

∥Au−Anu∥ ≤ 1/n, dim spanAn(M) <∞, An(M) ⊂ coA(M).
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证明. Since M is bounded, then A(M) is relatively compact. Thus, for any n ∈ Z+, there exists a
finite 1/n-net for A(M). That is, there is a finite set {vj : j = 1, 2, · · · , Jn} such that

min
1≤j≤Jn

∥Au− vj∥ < 1/n, for all u ∈M. (1.20)

Define the Schauder operator An :M →M :

Anu :=

∑Jn
j=1 aj(u)vj∑Jn
j=1 aj(u)

, for all u ∈M, (1.21)

where
aj(u) = max{1/n− ∥Au− vj∥, 0}, for all u ∈M. (1.22)

By (1.20), for each u ∈ M , there exists some j ∈ {1, 2, · · · , Jn} such that ∥Au − vj∥ < 1/n.
Thus

Jn∑
j=1

aj(u) > 0, for all u ∈M.

Clearly
spanAn(M) ⊂ span {vj : j = 1, · · · , Jn}

is finite dimensional.
Since A is continuous, the norm function ∥ · ∥ is continuous, together with the fact that the

composition of continuous operators is continuous (why?), we know that aj :M → R is continuous
and An :M → Y is continuous. Moreover, An(M) ⊂ coA(M), and for each u ∈M ,

∥Anu−Au∥ =
∥
∑Jn

j=1 aj(u)(vj −Au)∥∑Jn
j=1 aj(u)

≤
∑Jn

j=1 aj(u)∥(vj −Au)∥∑Jn
j=1 aj(u)

=

∑
aj(u)̸=0 aj(u)∥(vj −Au)∥∑Jn

j=1 aj(u)
≤
∑

aj(u) ̸=0 aj(u)n
−1∑Jn

j=1 aj(u)

≤ 1/n.

(1.23)

1.11 Finite-dimensional Banach spaces

Finite-dimensional normed spaces enjoy similar properties as classical Rd.

Proposition 1.25. • If X is a finite dimensional normed space over F, then any two norms
on X are equivalent.

• Each finite dimensional normed space is complete, i.e. is a Banach space.

• Each finite-dimensional linear subspace of a normed space is closed.
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• A subset of a finite-dimensional normed subspace is relatively compact iff it is bounded, and
is compact iff it is bounded and closed.

• Any two finite dimensional normed spaces with the same dimension are homeomorphic.

证明. 略。练习。

1.12 The Minkowski functional and homeomorphisms

Definition 1.26. Let X and Y be normed spaces. A map A : X → Y is called homeomorphism
(or topological isomorphism) provided:

• A is continuous.

• A is bijective.

• A−1 is also continuous.

We then say X is homeomorphic (or isomorphic) to Y

Proposition 1.27. Let M be a closed, bounded, convex, nonempty subset of a normed space X,
and intM ̸= ∅. Then there exists a homeomorphism A : X → X such that A(M) = B where B
is the closed ball B := {u ∈ X : ∥u∥ ≤ 1}. This means M is homeomorphic to the closed ball
B := {u ∈ X : ∥u∥ ≤ 1}.

Before proving Proposition (1.27), we first recall the concept of Minkowski functional.

Definition 1.28 (Minkowski functional). Let M be a closed, bounded, convex, nonempty subset of
a normed space X, and 0 ∈ intM. The Minkowski functional p : X → R of the set M is defined as

p(u) := inf{λ > 0 : λ−1u ∈M}, for all u ∈ X. (1.24)

The Minkowski functional is well defined (why?). The intuitive meaning of p(u) is that, the ray
through the point u and the origin intersects the boundary ∂M of the set M at the point p(u)−1u.

The Minkowski functional has the following properties:

Lemma 1.29. The following are true:

(i) There exists a, b > 0 such that a∥u∥ ≤ p(u) ≤ b∥u∥ for all u ∈ X.

(ii) For all α ≥ 0, u ∈ X, there holds p(αu) = αp(u).

(iii) For all u, v ∈ X, there holds p(u+ v) ≤ p(u) + p(v) (triangle inequality).

(iv) p : X → R is continuous.
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(v) M = {u ∈ X : p(u) ≤ 1}.

Proof of Lemma 1.29. (i). By definition, we have p(u) ≥ 0 for all u ∈ X and p(0) = 0. Given
u ̸= 0. Since 0 ∈ intM , there exists r > 0 such that

{x ∈ X : ∥u∥ ≤ r} ⊂M.

We then have ∥λ−1u∥ = r for λ := r−1∥u∥. Hence λ−1u ∈ M . Then the definition of p(u) makes
sense and

p(u) ≤ r−1∥u∥.

Since M is bounded, i.e. there exists R > 0 such that

∥v∥ ≤ R, for all v ∈M.

Thus, λ−1u ∈M implies ∥λ−1u∥ ≤ R, i.e. λ ≥ R−1∥u∥. This implies

p(u) ≥ R−1∥u∥.

(ii) Firstly p(0) = 0. Let α > 0. Observe that λ−1u ∈M iff (αλ)−1αu ∈M .

(iii) Given u, v ∈ X. For any ε > 0, choosing α, β such that

p(u) < α < p(u) + ε, p(v) < β < p(v) + ε.

Then α−1u, β−1v ∈M . Let γ = α+ β. Since γ−1α+ γ−1β = 1 and M is convex, we have

γ−1(u+ v) = γ−1α(α−1u) + +γ−1β(β−1v) ∈M.

Thus
p(u+ v) ≤ γ = α+ β < p(u) + p(v) + 2ε

Letting ε→ 0 implies (iii).

(iv). It follows from (iii) that

p(u) ≤ p(v) + p(u− v), p(v) ≤ p(u) + p(v − u).

Using (i) implies

|p(u)− p(v)| ≤ max{p(u− v), p(v − u)} ≤ b∥u− v∥, for all u, v ∈ X.

This implies that p is continuous.

(v). Given u ∈ M . Since 0 ∈ M and M is convex, we have µu ∈ M for all 0 ≤ µ ≤ 1. Hence
λ−1u ∈M for all γ ≥ 1. This implies that p(u) ≤ 1.
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Conversely suppose that p(u) ≤ 1 for some u ∈ X. We want to show that u ∈ M . If u = 0,
then u ∈M . Suppose now that u ̸= 0. Then p(u) > 0 and by the definition of p(u), there holds

λ−1u ∈M, for all λ > p(u).

Passing λ→ p(u) and using the fact that M is closed, we have

p(u)−1u ∈M, for all u ∈ X. (1.25)

Using 0 ∈M and p(u)−1 ≥ 1, the convexity of M implies u ∈M .

Proof of Proposition (1.27). If X = {0}, then M = B = {0}, and the statement if trivial. We
suppose X ̸= {0} and let u0 ∈ M be an interior point. Replacing u with u − u0, we may assume
that u0 = 0.

Step 1. The homeomorphism. Define A : X → X as

Au :=
p(u)

∥u∥
u, u ∈ X, u ̸= 0; A0 = 0. (1.26)

By (i) in Lemma 1.29, we have

∥Au∥ ≤ b∥u∥, for all u ∈ X. (1.27)

Thus A : X → X is continuous.

The map A : X → X is bijective (why?) and its inverse is given as

A−1v :=
∥v∥
p(v)

v, v ∈ X, v ̸= 0; A−10 = 0. (1.28)

Again by (i), there holds
∥A−1v∥ ≤ a∥v∥, for all v ∈ X. (1.29)

Thus A−1 is continuous, and A : X → X is a homeomorphism.

Step 2. A(M) = B. Given u ∈M , one has p(u) ≤ 1. Thus

∥Au∥ = p(u) ≤ 1.

So Au ∈M . This proves A(M) ⊂ B.
Given v ∈ B, ∥v∥ ≤ 1. By (1.25) and the convexity of M , we have

A−1v =
∥v∥
p(v)

v ∈M.

This means A−1B ⊂M . So B = AA−1(B) ⊂ A(M). Thus A(M) = B.
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1.13 The Brouwer fixed-point theorem

We recall the following classical result:

Theorem 1.30. If 1 ≤ d < ∞, B = the closed unit ball of Rd, and f : B → B is a continuous
map, then there is a point x in B such that f(x) = x.

A more general version is the following, which can be seen as a corollary for the above theorem:

Theorem 1.31. Let M be a compact, convex, nonempty set in a finite dimensional normed space
over F. Then the continuous operator

A :M →M

has a fixed point.

A direct corollary is the following:

Corollary 1.32. Let K be a subset of a finite dimensional normed space over F. If K is
homeomorphic to a set M as considered in Theorem 1.31, the continuous operator

A : K → K

has a fixed point.

Proof of Corollary 1.32. Let H :M → K be a homeomorphism. Then the operator

Ã := H−1 ◦A ◦H :M →M

is continuous. By Theorem 1.31, there exists u ∈M such that

u = Ãu = H−1 ◦A ◦Hu,

which is equivalent to
Hu = A ◦Hu

This means v = Hu ∈ K is a fixed point of A.

To prove Theorem 1.31 by using Theorem 1.30, we need the following result, which says that
a

Example 1.33. Each continuous function A : [a, b] → [a, b] has a fixed point.

The Brouwer fixed point theorem can be proved by using the Sperner simplex and the Sperner’s
lemma, which is a combinatorial analog of the Brouwer fixed point theorem, which is equivalent to
it. At this moment we will not address this proof. One can find in Section 1.14 in [8]. Other proofs
can be found in algebraic topology books, e.g. in the book Dugundji [5].
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1.14 The Schauder fixed point theorem

Theorem 1.34. Let M be a closed, bounded, convex, nonempty subset in a normed space X over
F. If A :M → X is a compact operator and A(M) ⊂M , then there exists u ∈M such that Au = u.

This theorem was proved by Schauder in 1930. If X has finite dimension, the Schauder fixed
point theorem coincides with the Brouwer fixed point theorem.

证明. Let K = A(M). Since A is a compact operator, then K is compact. Since A(M) ⊂ M

and M is closed, then K ⊂ M . Since K is compact, for each n ∈ Z+, there is a finite 1/n-net
{v1, · · · , vJn} ⊂ K such that

K ⊂
Jn∪
j=1

B1/n(vj).

Let Xn := span {vj : j = 1, · · · , Jn}. For each n, let An :M → X be the Schauder operators define
as in Proposition 1.24 associate with the above 1/n-net. Thus

sup
u∈M

∥Au−Anu∥ ≤ 1/n, spanAn(M) ⊂ Xn, An(M) ⊂ coA(M). (1.30)

Since A(M) ⊂M and M is convex, we have

An(M) ⊂ coA(M) ⊂M. (1.31)

By (1.30) and (1.31), we have
An(M) ⊂Mn :=M ∩Xn. (1.32)

Clearly, Xn is a finite dimensional normed space, and Mn is a closed, bounded, convex,
nonempty subset of Xn, and An : Mn → Mn is continuous. By the Brouwer fixed point theorem,
there exists un ∈Mn such that Anun = un. Then, using (1.30) implies

∥Aun − un∥ = ∥Aun −Anun∥ ≤ 1/n. (1.33)

Since {un}∞n=1 ⊂ Mn ⊂ M , the compactness of the operator A : M → M implies that there
exists a subsequence {unk

} such that

lim
k→∞

Aunk
= v ∈M, (1.34)

where we used the property that M is closed.
By (1.33) and (1.34), we have

∥v − unk
∥ ≤ ∥v −Aunk

∥+ ∥unk
−Aunk

∥ → 0.

This implies unk
→ v. Since the map A :M →M is continuous, we finally obtain that

Av = lim
k→∞

Aunk
= v.
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1.15 Application to ODEs

We want to solve the following initial-value problem

u′(x) = F (x, u), x ∈ [x0 − h, x0 + h],

u(x0) = u0.
(1.35)

Here x0 and u0 are given. Let h > 0, r > 0, and define

Xh = C[x0 − h, x0 + h], Mh,r = {u ∈ Xh : ∥u− u0∥ ≤ r}. (1.36)

Clearly Xh is a Banach space and Mh,r is a closed subset of X. It is straightforward to show that the
initial value problem (1.35) of differential equation is equivalent to the following integral equation:

u(x) = u0 +

∫ x

x0

F (y, u(y))dy, x ∈ [x0 − h, x0 + h]. (1.37)

We have the following result:

Proposition 1.35. [The Peano Theorem] Assume that the function F : [x0 − h0, x0 + h0]× [u0 −
r0, u0 + r0] → R and the partial derivative Fu : [x0 − h0, x0 + h0] × [u0 − r0, u0 + r0] → R are
continuous, where h0 > 0, r0 > 0 are fixed numbers. Choose 0 < h ≤ h0, 0 < r ≤ r0 such that

hmax{|F (x, u)| : x ∈ [x0 − h, x0 + h], u ∈ [u0 − r, u0 + r]} ≤ r. (1.38)

Then the problem (1.37) has a unique solution u ∈Mh,r. This is also the unique solution to (1.35).

证明. Define the operator A :Mh,r → Xh through

(Au)(x) := u0 +

∫ x

x0

F (y, u(y))dy, for all x ∈ [x0 − h, x0 + h]. (1.39)

Clearly Xh is a Banach space, and Mh,r is a bounded, closed, convex, nonempty subset in Xh.
Under the assumptions in Proposition 1.35, we have that (why?)

(i) A :Mh,r → Xh is continuous.

(ii) A(Mh,r) is equicontinuous.

(iii) A(Mh,r) ⊂Mh,r.

By the Arzelá-Ascoli theorem, above three properties imply that A(Mh,r) is relatively compact
in Xh. This means the operator A : Mh,r → Xh is compact. Hence, by the Schauder fixed
point theorem, A admits a unique fixed point u ∈ Mh,r, i.e. Au = u which is exactly (1.37).
Differentiating the integral equation (1.37) implies that u is also a solution to the original problem
(1.35).
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1.16 The Leray-Schauder principle and a priori estimates

Let X be a Banach space and A : X → X is a continuous operator. We want to solve the
equation

u = Au, u ∈ X (1.40)

by using properties of the parametrized equation

u = tAu, u ∈ X, 0 ≤ t ≤ 1. (1.41)

For t = 0, equation (1.41) has the trivial solution u = 0, whereas (1.41) coincides with (1.40)
if t = 1. The following condition is crucial:

(A). A priori estimate. There is a number r > 0 such that if u is a solution to (1.41), then

∥u∥ ≤ r, for all 0 ≤ t ≤ 1. (1.42)

Theorem 1.36. Let X be a Banach space over F. Suppose that the operator A : X → X is compact
and satisfies condition (A). Then the original equation (1.40) has a solution.

This theorem was proved by Leray and Schauder in 1934. Roughly speaking, Theorem 1.36
corresponds to the following important principle in mathematics:

A priori estimates yield existence.

证明. Set M := {u ∈ X : ∥u∥ ≤ 2r}. We define the operator

Bu :=


Au, ∥Au∥ ≤ 2r,

2rAu

∥Au∥
, ∥Au∥ > 2r.

Obviously, ∥Bu∥ ≤ 2r for all u ∈ X, i.e. B(M) ⊂M .
We claim that B :M →M is compact. Firstly, we show that B :M →M is continuous. Let

u0 ∈ M . If ∥Au0∥ < 2r or ∥Au0∥ > 2r, the continuity of A implies that B is continuous at u0.
Indeed, for example if ∥Au0∥ < 2r, the continuity of A implies that there exists δ0 > 0 such that
for all ∥u− u0∥ < δ0 there holds ∥Au∥ < 2r. Then the continuity of A implies that for any ε > 0,
there exists 0 < δ < δ0 such that for all ∥u− u0∥ < δ there holds ∥Bu−Bu0∥ = ∥Au−Au0∥ < ε.

If ∥Au0∥ = 2r. Then Bu0 = Au0 = 2rAu
∥Au∥ . For any 0 < ε < r, there exists δ > 0 such that for

all ∥u− u0∥ < δ0 there holds ∥Au−Au0∥ < ε. This gives

r < 2r − ε = ∥Au0∥ − ε < ∥Au∥ < ∥Au0∥+ ε = 2r + ε < 3r. (1.43)
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Then
∥Bu−Bu0∥ = ∥Bu−Au0∥ ≤ max

{
∥Au−Au0∥,

∥∥∥∥2rAu∥Au∥
−Au0

∥∥∥∥}
≤ ∥Au−Au0∥+

∥∥∥∥2rAu∥Au∥
−Au0

∥∥∥∥
≤ ∥Au−Au0∥+

∥∥∥∥ 2r

∥Au∥
(Au−Au0)

∥∥∥∥+ ∥∥∥∥( 2r

∥Au∥
− 1

)
Au0

∥∥∥∥
≤ ∥Au−Au0∥+

2r

∥Au∥
∥Au−Au0∥+

∥Au0∥
∥Au∥

|2r − ∥Au∥|

≤ 5ε.

(1.44)

Now we show that the compactness of B. Let {un} be a sequence in M . Then there there
exists a subsequence, still denoted by {un} such that either ∥Aun∥ ≤ 2r for all n, or ∥Aun∥ > 2r

for all n. (why?)
If ∥Aun∥ ≤ 2r for all n, then Bun = Aun for all n. Then the compactness of A implies that

there exists a convergent subsequence of {Bun} in M .
We now consider the case ∥Aun∥ > 2r for all n. Since A : X → X is compact, and {un} is a

bounded sequence, then there exists a subsequence {vn} of {un} such that

Avn → z in X.

Since ∥Avn∥ > 2r for all n, then 1
∥Avn∥ ≤ 1/(2r) is bounded. So there exists a subsequence {wn}

such that
1

∥Awn∥
→ α.

Hence
Bwn =

2rwn

∥Awn∥
→ 2rαz.

We obtain a convergent subsequence of {Bun}. So B :M →M is compact.
We apply the Schauder fixed point theorem to the compact operator B :M →M to obtain a

fixed point u ∈M of B such that
u = Bu.

If ∥Au∥ ≤ 2r, then Bu = u, and hence u = Au.
The case ∥Au∥ > 2r is impossible by the a priori estimate (A). Otherwise if ∥Au∥ > 2r, we

have ∥u∥ = ∥Bu∥ = 2r, and
u = Bu = tAu, t :=

2r

∥Au∥
< 1.

The a priori estimate (A) implies that ∥u∥ ≤ r, a contradiction.

A typical application of the Leray-Schauder fixed point theorem is the existence theory of
generalized solutions (finite energy weak solutions) to the Navier-Stokes equations. See Section
5.17 in [9].
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1.17 Subsolutions and supersolutions, the iteration method in ordered Banach
spaces

The idea of ordered Banach spaces is to introduce a relation u ≤ v in Banach spaces, which
generalizes the corresponding relation for real numbers.

Definition 1.37. A subset X+ of a normed space X is called an order cone provided

(i) X+ is closed, convex, nonempty, and X+ ̸= {0}.

(ii) If u ∈ X+ and α ≥ 0, then αu ∈ X+.

(iii) If u ∈ X+ and −u ∈ X+, then u = 0.

Given u, v ∈ X. We define the relation ≤ by

u ≤ v iff v − u ∈ X+.

By an ordered normed space (ordered Banach space), we understand a normed space (Banach
space) together with an order cone.

If u ≤ v, we define the order interval

[u, v] := {w ∈ X : u ≤ w ≤ v}.

The order cone X+ is called normal iff there a number C > 0 such that

0 ≤ u ≤ v =⇒ ∥u∥ ≤ C∥v∥.

Example 1.38. • X = R, X+ = R≥0 := {u ∈ X : u ≥ 0}. X+ is normal.

• X = Rd, X+ = Rd
≥0 := {u = (u1, · · · , ud) ∈ X : uj ≥ 0, j = 1, · · · , d}. X+ is normal.

• X = C[a, b], X+ := {u ∈ X : u(x) ≥ 0, x ∈ [a, b]}. X+ is normal.

The following proposition shows that the relation u ≤ v has the usual properties.

Proposition 1.39. Let (X,X+) be an ordered Banach space. Let u, v, w, un, vn ∈ X+, α ≥ 0.
Then

(i) u ≤ v and v ≤ w imply u ≤ w.

(ii) u ≤ v and v ≤ u imply u = v.

(iii) u ≤ v implies u+ w ≤ v + w and αu ≤ αv.

(iv) un ≤ vn and un → u, vn → v imply u ≤ v.
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(v) If the order cone X+ is normal, then u ≤ v ≤ w implies

∥v − u∥ ≤ C∥w − u∥, ∥w − v∥ ≤ C∥w − u∥.

证明. 练习。

We want to solve the equation

u = Au, u0 ≤ u ≤ v0, u ∈ X, (1.45)

by means of the two-iteration method:

un+1 = Aun, vn+1 = Avn, n = 0, 1, · · · , (1.46)

where u0 ≤ v0 are given in the ordered Banach space X.
We have the following theorem:

Theorem 1.40. Let (X,X+) is an ordered Banach space with normal order cone X+. Suppose

• A : [u0, v0] ⊂ X :→ X is compact.

• A is monotone increasing, i.e. u ≤ v implies Au ≤ Av.

• u0 is a subsolution of (1.45), i.e. u0 ≤ Au0.

• v0 is a supersolution of (1.45), i.e. v0 ≥ Av0.

Then the iteration sequences {un} and {vn} constructed in (1.46) converge to u and v which
are solutions of the original equation (1.45), respectively. In addition, we have the error
estimates:

u0 ≤ u1 ≤ · · · ≤ un ≤ u ≤ v ≤ vn ≤ vn−1 ≤ · · · ≤ v0, for all n. (1.47)

This theorem corresponds to the following general existence principle in mathematics:

The existence of both a subsolution and a supersolution yields the existence of a solution.

证明. By induction and the monotonicity of A, we have

u0 ≤ u1 ≤ · · · ≤ un ≤ vn ≤ vn−1 ≤ · · · ≤ v0, for all n. (1.48)

Since the order cone X+ is normal, by Proposition 1.39, we have

∥v0 − un∥ ≤ C∥v0 − u0∥, ∥v0 − vn∥ ≤ C∥v0 − u0∥, for all n.

Thus {un} and {vn} are both bounded. By the compactness of A, there exists a subsequence {unk
}

and a subsequence {vnk
} such that

Aunk
→ u, Avnk

→ v.
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Thus, given ε > 0, there exists nε ∈ Z+ such that

∥unε − u∥ = ∥Aunε−1 − u∥ ≤ ε, ∥vnε − v∥ = ∥Avnε−1 − v∥ ≤ ε.

Passing nk → ∞ in (1.48) implies

unε ≤ un ≤ u, v ≤ vn ≤ vnε , for all n ≥ nε,

Again by Proposition 1.39, there holds

∥u− un∥ ≤ C∥u− unε∥ ≤ Cε, ∥vn − v∥ ≤ C∥vnε − v∥ ≤ Cε, for all n ≥ nε.

This means
un → u, vn → v.

Finally, the continuity of A and passing n→ ∞ in (1.46) implies that u and v are solutions to
(1.45).

1.18 Linear operators

Definition 1.41. Let X and Y be linear spaces over F. The operator A : X → Y is called linear
iff

A(αu+ βv) = αAu+ βAv, for all u, v ∈ X, α, β ∈ F.

We introduce the range space Range(A) := A(X) and the kernel of A (or the null space of A):
N(A) = kerA := {u ∈ X : Au = 0}. A linear operator is injective iff its kernel is {0}.

The following proposition says that the continuity and boundedness of a linear operator are
equivalent:

Proposition 1.42. Let X and Y be normed spaces over F, and let A : X → Y be a linear operator,
then the following statements are equivalent:

• A : X → Y is continuous.

• A : X → Y is continuous at some point u0 ∈ X.

• A : X → Y is continuous at {0}.

• A : X → Y is bounded: there exists C > 0 such that ∥Au∥ ≤ C∥u∥ for all u ∈ X.

证明. 练习。
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Proposition 1.43. Let L(X,Y ) denote the space of linear continuous operators A : X → Y where
X is a normed space and Y is a Banach space over F. Then L(X,Y ) is a Banach space over F
with respect to the operator norm:

∥A∥ := sup
u̸=0

∥Au∥
∥u∥

= sup
∥u∥=1

∥Au∥. (1.49)

Remark that we do not require X to be complete.

证明. It is straightforward to show that L(X,Y ) is a linear space and (1.49) defines a norm on it.
Now we show that L(X,Y ) is complete. Let {An} be a Cauchy sequence in L(X,Y ). This

means, for each ε > 0, there exists nε ∈ Z+ such that

∥An −Am∥ ≤ ε, for all n,m ≥ nε. (1.50)

Then for each u ∈ X, there holds

∥Anu−Amu∥ ≤ ε∥u∥, for all n,m ≥ nε. (1.51)

This implies that {Anu} is Cauchy in Y . Since Y is a Banach space, the sequence {Anu} converges,
and we denote its limit as Au:

Au := lim
n→∞

Anu, for all u ∈ X.

It is direct to show that A : X → Y is a linear and bounded operator. Moreover, passing m → ∞
in (1.51) implies that

∥Anu−Au∥ ≤ ε∥u∥, for all n ≥ nε, (1.52)

for all u ∈ X. Thus ∥An −A∥ ≤ ε for all n ≥ nε, i.e. An → A in L(X,Y ).
This proves each Cauchy sequence in L(X,Y ) is convergent, i.e. L(X,Y ) is a Banach space.

1.19 The dual space

Definition 1.44. Let X be a normed space over F. By a linear continuous functional on X we
understand a linear continuous operator f : X → F. The collection of all continuous functionals
on X is called the dual space of X, and is denoted by X∗.

Clearly X∗ = L(X,F). Since F is a Banach, we have X∗ armed with the operator norm

∥f∥ := sup
∥v∥=1

|f(v)|

is a Banach space. We often use the following notation:

⟨f, u⟩ = f(u), for all u ∈ X, f ∈ X∗.



1 BANACH SPACES AND FIXED-POINT THEOREMS 27

Example 1.45. Let (Ω, µ) be a measure space. If 1 < p < ∞ Then Lp(Ω, µ)∗ = Lp′(Ω, µ) with
1/p+ 1/p′ = 1.

If moreover (Ω, µ) is a σ-finite measure space, then L1(Ω, µ)∗ = L∞(Ω, µ)

What about L∞(Ω, µ)∗? Let (Ω, µ) be a complete σ-finite space. Then (L∞(Ω, µ))∗ is the
collection of all finitely additive finite signed (complex) measures which are absolutely continuous
with respect to µ, equipped with the total variation norm. See Theorem IV.8.16 in [6], page 296.
See Chapter 6 in [7] for some related definitions.

1.20 The Hahn-Banach Theorem

The Hahn-Banach Theorem is the most important result about the structure of linear
continuous functionals on normed spaces. In terms of geometry, the Hahn-Banach theorem
guarantees the separation of convex sets in normed spaces by hyperplanes.

Theorem 1.46 (The Hahn-Banach Theorem for the linear spaces). We assume that

(i) L is a linear subspace of the real linear space X.

(ii) p : X → R is a sublinear functional, that is for all u, v ∈ X and all α ≥ 0, there holds

p(u+ v) ≤ p(u) + p(v), p(αu) = αp(u).

(iii) f : L→ R is a linear functional such that

f(u) ≤ p(u) for all u ∈ L.

Then f can be extended to a linear functional F : X → R such that

F (u) = f(u) for all u ∈ L; F (u) ≤ p(u) for all u ∈ X.

Note that the substance of the theorem is not that the extension exists but that an extension
can be found that remains dominated by the same sublinear functional p.

Theorem 1.47 (The Hahn-Banach Theorem for the normed spaces). We assume that

(i) L is a linear subspace of the normed space X over F.

(ii) f : L→ F is a linear functional such that

|f(u)| ≤ α∥u∥ for all u ∈ L and some fixed α ≥ 0.

Then f can be extended to a linear functional F : X → F such that

F (u) = f(u) for all u ∈ L; |F (u)| ≤ α∥u∥ for all u ∈ X.
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The proof of the Hahn-Banach theorems can be found in each textbook on functional analysis.

Corollary 1.48. Let X be a normed space over F. Then for each nonzero u0 ∈ X, there exists a
functional F ∈ X∗ such that

F (u0) = ∥u0∥, ∥F∥ = 1.

证明. Indeed, we set L := span {u0} and

f(u) := λ∥u0∥, for all u = λu0 ∈ L.

Obviously, |f(u)| = ∥u∥ for all u ∈ L. By the Hahn-Banach theorem, there exists a linear continuous
functional F ∈ X∗ such that

F (u) = f(u) for all u ∈ L; |F (u)| ≤ ∥u∥ for all u ∈ X.

Clearly ∥F∥ = 1.

Two direct consequences of the above example are the following:

Corollary 1.49. Let X be a normed space over F. Then for each u ∈ X,

∥u∥ = max
F∈X∗,∥F∥≤1

|F (u)|.

Corollary 1.50. Let X be a normed space over F and u ∈ X. Then u = 0 iff

F (u) = 0 for all F ∈ X∗.

1.21 The dual space of C[a, b]

We first recall some concepts about BV functions.

Definition 1.51 (Functions of bounded variation). • Let −∞ < a < b < ∞. The function
g : [a, b] → R is called to be of bounded variation, a BV function for short, iff

V b
a (g) := sup

P∈P

nP−1∑
i=0

|g(xi+1)− g(xi)| < +∞, (1.53)

where the supremum is taken over the set

P := {P = {x0, · · · , xnP } : P is a partition of [a, b] satisfying a = x0 < x1 · · · < xnP = b }.

• The functional V b
a (g) is called the total variation of g on interval [a, b].

• A function g : [a, b] → C is called BV, iff its real part and imaginary part are both BV.
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We introduce some properties of BV functions, and the proofs are left to the students.

Theorem 1.52 (Jordan decomposition of a BV function). Let −∞ < a < b < ∞. The function
g : [a, b] → R is of bounded variation iff it can be written as the difference g = g1 − g2 of two
non-decreasing functions on [a, b].

This result is known as the Jordan decomposition of a function and it is related to the Jordan
decomposition of a measure.

Proposition 1.53. • If g is differentiable and its derivative g′ is Riemann-integrable on [a, b],
then g ∈ BV [a, b] and its total variation is V b

a (g) =
∫ b
a |g′(x)|dx.

• A BV function is differentiable almost everywhere.

Proposition 1.54 (The Stieltjes integral). Let −∞ < a < b <∞. Let f : [a, b] → C be continuous,
and let Let g : [a, b] → C be of BV. We assume that g is normalized such that it is right-continuous.
Then the approximating sum

S(P, f, g) =

n−1∑
i=0

f(xi)(g(xi+1)− g(xi))

converges as the norm of the partition (i.e. the length of the longest subinterval)

P = {a = x0 < x1 < · · · < xn = b}

of the interval [a, b] tends to zero. This limit is called the Stieltjes integral (or the Riemann-Stieltjes
integral) and is denoted by ∫ b

a
f(x) dg(x).

Moreover, there holds the estimate∣∣∣∣∫ b

a
f(x) dg(x)

∣∣∣∣ ≤ max
[a,b]

|f(x)|V b
a (g).

The Stieltjes integral is a generalization of the classical Riemann integral. Indeed, by taking
g(x) = x, the Stieltjes integral becomes the Riemann integral.

If f : R → C is continuous, and let Let g : R → C is BV on each compact interval, we then set∫ +∞

−∞
f(x) dg(x) := lim

b→+∞,a→−∞

∫ b

a
f(x) dg(x)

provided the limit exists.

Now we are ready to state the result about the dual space of C[a, b].
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Proposition 1.55. Let −∞ < a < b < ∞. Then f ∈ C[a, b]∗ iff there exists a BV function
ρ : [a, b] → R such that

f(u) =

∫ b

a
u(x) dρ(x), for all u ∈ C[a, b], (1.54)

where the integral represents a Stieltjes integral. Moreover,

∥f∥ = V b
a (ρ).

证明. We know that C[a, b] is a Banach space with norm ∥u∥ = sup[a,b] |u(x)|. Let f be defined as
(1.54). By Proposition 1.54, one has

|f(u)| ≤ ∥u∥V b
a (ρ), for all u ∈ C[a, b].

Hence f ∈ C[a, b]∗.

Given f ∈ C[a, b]∗, now we prove that f has a representation of the form (1.54).
Let Y denote the space of all bounded functions u : [a, b] → R. Then Y is a normed space with

the same norm ∥ · ∥. Since C[a, b] is a subspace of Y , it follows from the Hahn-Banach theorem
that f can be extended to a linear continuous functional

F : Y → R with ∥F∥ = ∥f∥.

Set ρ(t) := F (vt) for all t ∈ [a, b] where

vt(x) :=

1, a ≤ x ≤ t,

0, t < x ≤ b.
(1.55)

We claim that ρ is a BV function on [a, b] and V b
a (ρ) ≤ ∥f∥. Let a = x0 < x1 < · · · < xn = b be a

partition of [a, b]. Define si := sgn (ρ(xi+1)− ρ(xi)). Then

∆n :=

n−1∑
i=0

|ρ(xi+1)− ρ(xi)| =
n−1∑
i=0

si (ρ(xi+1)− ρ(xi))

=

n−1∑
i=0

si
(
F (vxi+1)− F (vxi)

)
= F

(
n−1∑
i=0

si(vxi+1 − vxi)

)

≤ ∥F∥

∥∥∥∥∥
n−1∑
i=0

si(vxi+1 − vxi)

∥∥∥∥∥ .
(1.56)

By the definition in (1.55),

(vxi+1 − vxi)(x) =

1, xi < x ≤ xi+1,

0, otherwise,
for all i = 0, 1, · · · , n− 1. (1.57)
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Thus, for each x0 ∈ [a, b], there exists a unique i0 such that xi0 < x ≤ xi0+1. Thus∣∣∣∣∣
n−1∑
i=0

si(vxi+1 − vxi)(x0)

∣∣∣∣∣ = ∣∣∣si(vxi0+1 − vxi0
)(x0)

∣∣∣ = 1.

This implies that ∥∥∥∥∥
n−1∑
i=0

si(vxi+1 − vxi)

∥∥∥∥∥ = 1.

Hence,
∆n ≤ ∥F∥ = ∥f∥.

By taking the supreme of the partitions to ∆n, we obtain V b
a (ρ) ≤ ∥f∥.

In the last step, we show that ρ is the BV function such that the representation formula (1.54)
holds. Again let a = x0 < x1 < · · · < xn = b be the uniform partition of [a, b]: xi := a+ i

n(b− a).
Given u ∈ C[a, b], we consider a sequence of step functions in Y defined as

un :=

n−1∑
i=0

u(xi)(vxi+1 − vxi)(x)

Since u is continuous on closed interval [a, b], it is uniform continuous. Then it is straightforward
to show that

un → u in Y , as n→ ∞. (1.58)

Since

F (un) =

n−1∑
i=0

u(xi)
(
F (vxi+1)− F (vxi)

)
=

n−1∑
i=0

u(xi)
(
ρxi+1 − ρxi

)
,

and ρ ∈ BV [a, b], by Proposition 1.54, we have

lim
n→∞

F (un) = lim
n→∞

n−1∑
i=0

u(xi)
(
ρxi+1 − ρxi

)
=

∫ b

a
u(x) dρ(x).

On the other hand, by the continuity of F and (1.58), we have

f(u) = F (u) = lim
n→∞

F (un) =

∫ b

a
u(x) dρ(x).

We thus complete the proof.

1.22 Banach algebras and operator functions

Definition 1.56. By a Banach algebra B over F we understand a Banach space over F where an
additional multiplication AB is defined such that
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•
AB ∈ B, for all A,B ∈ B. (1.59)

• For all A,B,C ∈ B and α ∈ F,

(AB)C = A(BC), A(B + C) = AB +AC, (B + C)A = BA+ CA, α(AB) = (αA)B = A(αB)

(1.60)

• For all A,B ∈ B,
∥AB∥ ≤ ∥A∥∥B∥. (1.61)

• e is called an identity of Banach algebra B provided

eA = Ae = A for all A ∈ B, ∥e∥ = 1. (1.62)

We remark that the condition (1.61) is not essential. If B is an algebra and has a norm ∥ · ∥
relative to which B is a Banach space and is such that the map of B × B → B : (A,B) → AB is
bounded, then there is an equivalent norm on B that satisfies (1.61). (why?)

If B has an identity e, then the map α → αe is an isomorphism of F into B and ∥αe∥ = |α|.
So it will be assumed that F ⊂ B via this identification. Thus the identity will be denoted by 1.

The content of the next proposition is that if B does not have an identity, it is possible to find
a Banach algebra B1 that contains B, that has an identity, and is such that dimB1/B = 1.

Proposition 1.57. If Banach algebra B over F does not have an identity, let B1 := B × F. Define
algebraic operations on B1 by

(i) (A,α) + (B, β) = (A+B,α+ β),

(ii) β(A,α) = (βA, βα),

(iii) (A,α)(B, β) = (AB + αB + βA, αβ),

for all A,B ∈ B, all α, β ∈ F.
Define ∥(A,α)∥ = ∥A∥ + |α|. Then B1 with this norm and the algebraic operations defined

in (i), (ii), and (iii) is a Banach algebra with identity (0, 1) and A → (A, 0) is an isometric
isomorphism of B into B1.

证明. Exercise.

Now we come back the statement:
If B is an algebra and has a norm ∥ · ∥ relative to which B is a Banach space and is such that

the map of B × B → B : (A,B) → AB is bounded, then there is an equivalent norm on B that
satisfies (1.61).
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To prove this statement, we consider the Banach algebra B1 defined as in Proposition 1.57.
For each A ∈ B, we consider the linear operator

LA : B1 → B1; LA(B, β) = (AB + βA, 0) for each (B, β) ∈ B1.

We claim that ∥A∥′ := ∥LA∥ is a equivalent to the norm of B, and B is a Banach algebra with
respect to the norm ∥ · ∥′. Indeed, on one hand, since the map of B × B → B : (A,B) → AB is
continuous, there holds

∥LA(B, β)∥B1 = ∥(AB + βA, 0)∥B1 ≤ C∥A∥∥B∥+ |β|∥A∥ ≤ C∥A∥(∥B∥+ |β|) = C∥A∥∥(B, β)∥B1 .

This implies that
∥A∥′ = ∥LA∥ ≤ C∥A∥.

On the other hand, direct calculation gives

∥LA(0, 1)∥B1 = ∥(A, 0)∥B1 = ∥A∥ = ∥A∥∥(0, 1)∥B1

This implies that the operator norm of LA satisfies

∥A∥′ = ∥LA∥ ≥ ∥A∥.

We thus have that the new norm ∥A∥′ = ∥LA∥ is a equivalent to the norm of B. Since LAB =

LA ◦ LB, we thus have

∥AB∥′ = ∥LAB∥ = ∥LA ◦ LB∥ ≤ ∥LA∥∥LB∥ = ∥A∥′∥B∥′

and we finally show that B is a Banach algebra with respect to the norm ∥ · ∥′.

Example 1.58. • Let X be a compact space, then C(X) is a Banach algebra with the pointwise
multiplication: (fg)(x) = f(x)g(x). Note that C(X) is albelian and has an identity: the
constant 1.

• If Xis a locally compact space, C0(X) is a Banach algebra with the multiplication defined
pointwisely as in the preceding example. C0(X) is abelian, but if X is not compact, C0(X)

does not have an identity: 1 ̸∈ C0(X).

• If (Ω, µ) is a σ-finite measure space, then L∞(Ω, µ) is an abelian Banach algebra with identity.

• Let X be a Banach space. Then L(X,X) with multiplication defined by composition is a
Banach algebra with identity: the identity mapping. If dimX ≥ 2, L(X,X) is not abelian.

We refer to Chapter 5 of Conway [4] for more details about examples.
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Proposition 1.59. Let B be a Banach algebra with identity e, and let A,B,An, Bn ∈ B for all n.
Then

• ∥Ak∥ ≤ ∥A∥k for all k = 0, 1, · · · , where we set A0 = e.

• If An → A and Bn → B in B, then AnBn → AB in B

证明. Exercise.

1.23 Infinite series in normed spaces

Definition 1.60. Let X be a normed space over F. Let {uj}∞j=0 be a sequence in X. We set

∞∑
j=0

uj := lim
n→∞

n∑
j=0

uj

provided the limit exists in X. This infinite series is called absolutely convergent iff
∞∑
j=0

∥uj∥ <∞.

Proposition 1.61. Each absolutely convergent infinite series in a Banach space is convergent.

证明. Exercise.

1.24 Operator functions in Banach algebra

Proposition 1.62. Let z ∈ F where F = R or F = C. Define

F (z) :=

∞∑
j=0

ajz
j

where
∞∑
j=0

|aj ||z|j <∞ for all |z| < r with a fixed r > 0.

Let B is a Banach algebra and let A ∈ B such that ∥A∥ < r. Then the following infinite series

F (A) :=

∞∑
j=0

ajA
j

converges in B.

证明. Let A ∈ B with ∥A∥ < r. Then the positive series
∞∑
j=0

aj∥Aj∥ ≤
∞∑
j=0

aj∥A∥j
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converges. This means the series
∞∑
j=0

ajA
j

is absolutely convergent. Hence,

F (A) :=
∞∑
j=0

ajA
j

converges in B.

In particular, the result in Proposition 1.62 holds for linear operators in B = L(X,X) where
X is a Banach space. In the following, we give more properties of the infinite series on Banach
algebras. The results are given for the special case B = L(X,X) where X is a Banach space, while
they hold for all Banach algebras.

Proposition 1.63 (The exponential function). Let X be a Banach space over F. Then

(i) The infinite series

eA :=
∞∑
j=0

1

j!
Aj (1.63)

converges absolutely for all A ∈ L(X,X).

(ii) For each A ∈ L(X,X) and all t, s ∈ F,

etAesA = e(t+s)A. (1.64)

(iii) Let A,B ∈ L(X,X) satisfying AB = BA, then

eAeB = eA+B. (1.65)

证明. (i). This follows from the fact that

ez =

∞∑
j=0

zj

j!
(1.66)

converges absolutely for all z ∈ C.

(ii). This is a direct consequence of (iii).

(iii) Let A,B ∈ L(X,X) satisfying AB = BA. We denote the partial sum

Sn(A) :=

n∑
j=0

Aj

j!
, Sn(B) :=

n∑
j=0

Bj

j!
, Sn(A+B) :=

n∑
j=0

(A+B)j

j!
. (1.67)
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Since AB = BA, direct calculation implies

Sn(A)Sn(B)− S2n(A+B) =
n∑

j=0

Aj

j!

n∑
k=0

Bk

k!
−

2n∑
l=0

(A+B)l

l!

=
n∑

j=0

n∑
k=0

AjBk

j!k!
−

2n∑
l=0

l∑
j=0

1

l!

l!

j!(l − j)!
AjBl−j

=

n∑
j=0

n∑
k=0

AjBk

j!k!
−

2n∑
l=0

∑
j+k=l

1

j!k!
AjBk

=
n∑

j=0

n∑
k=0

AjBk

j!k!
−

∑
0≤j+k≤2n

1

j!k!
AjBk

=
n∑

j=0

n∑
k=0

AjBk

j!k!
−

n∑
j=0

n∑
k=0

AjBk

j!k!
−

2n∑
j=n+1

2n−j∑
k=0

AjBk

j!k!
−

2n∑
k=n+1

2n−k∑
j=0

AjBk

j!k!

= −
2n∑

j=n+1

2n−j∑
k=0

AjBk

j!k!
−

2n∑
k=n+1

2n−k∑
j=0

AjBk

j!k!
.

(1.68)
This implies that

∥Sn(A)Sn(B)− S2n(A+B)∥ ≤
2n∑

j=n+1

∥A∥j

j!

2n−j∑
k=0

∥B∥k

k!
+

2n∑
k=n+1

∥B∥k

k!

2n−k∑
j=0

∥A∥j

j!

≤ e∥B∥
2n∑

j=n+1

∥A∥j

j!
+ e∥A∥

2n∑
k=n+1

∥B∥k

k!
.

(1.69)

Passing n→ ∞ in (1.68) and using Proposition 1.59 implies (1.65).

Proposition 1.64 (The geometric series). Let X be a Banach space over F with X ̸= {0}. For
each operator A ∈ L(X,X) with ∥A∥ < 1, the infinite series

B :=
∞∑
j=0

Aj

converges absolutely to an operator B ∈ L(X,X). In addition,

B = (I −A)−1,

where I is the identity operator.

证明. The classical geomotric series
∞∑
j=0

zj
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converges absolutely for all z ∈ C with |z| < 1. Thus the series
∞∑
j=0

Aj

converges absolutely provided ∥A∥ < 1.
Clearly,

(I −A)B = B −AB =

∞∑
j=0

Aj −
∞∑
j=0

Aj+1 = A0 = I

and
B(I −A) = B −BA =

∞∑
j=0

Aj −
∞∑
j=0

Aj+1 = A0 = I

Hence B = (I −A)−1.

Let X and Y be Banach spaces over F with X ̸= {0} and Y ̸= {0}. Denote Linv(X,Y ) the set
of all operators A ∈ L(X,Y ) such that the inverse operator A−1 exists and A−1 ∈ L(Y,X).

Proposition 1.65. If A ∈ Linv(X,Y ) and B ∈ L(Y,X) with

∥B∥ < ∥A−1∥−1,

then A−B ∈ Linv(X,Y ).

证明. Let A ∈ Linv(X,Y ). It follows from AA−1 = I that A−1 ̸= 0. Hence ∥A−1∥ ̸= 0 and ∥A−1∥−1

is well defined.
Since

∥A−1B∥ ≤ ∥A−1∥∥B∥ < 1,

we have that (I −A−1B) ∈ L(X,X) is invertible with

(I −A−1B)−1 =

∞∑
j=0

(A−1B)j .

Hence,
A(I −A−1B) = A−B

is invertible.

Corollary 1.66. The subset Linv(X,Y ) is open in L(X,Y ).
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1.25 Applications to linear differential equations in Banach spaces

Definition 1.67. Let X be a normed space over F, let U(t0) ⊂ R be a open neighborhood of the
point t0 ∈ R, and let

u : U(t0) ⊂ R → X

be a function with values in X. We define the derivative

u′(t0) := lim
h→0

u(t0 + h)− u(t0)

h

provided the limit exists in X.

Proposition 1.68. If the derivative u′(t0) exists, then the function u is continuous at the point t0.

证明. The identity
u(t0 + h)− u(t0) = h · u(t0 + h)− u(t0)

h

yields
u(t0 + h)− u(t0) → 0 in X, as h→ 0.

Proposition 1.69. Let X be a Banach space over F, let u : R → X, and let A ∈ L(X,X). Given
initial datum u0 ∈ X, the following initial-valued problem:

u′(t) = Au(t), −∞ < t < +∞,

u(0) = u0
(1.70)

admits a unique solution given by

u(t) = etAu0, for all t ∈ R. (1.71)

Example 1.70. X = Rd, A = (ajk)1≤j,k≤d is a real d × d matrix, x(t) = (x1, · · · , xd)(t) ∈ Rd.
Then the equation

x′(t) = Ax(t), x(0) = x0 ∈ Rd

has a unique solution x(t) = etAx0.

证明. Existence. Let h ∈ R. It follows from

ehA =
∞∑
j=0

1

j!
(hA)j = I + hA+

h2

2!
A2 + · · ·

that
∥h−1(ehA − I)−A∥ = ∥

∞∑
j=2

hj−1

j!
Aj∥ ≤ |h|

∞∑
j=2

|h|j−2

j!
∥A∥j

≤ ∥A∥2e|h|∥A∥|h| → 0, as h→ 0.

(1.72)
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Since
e(t+h)A = etAehA = ehAetA for all t, h ∈ R,

we get for u(t) = etAu0 that

∥h−1(u(t+ h)− u(t))−Au(t)∥ = ∥h−1(e(t+h)Au0 − etAu0)−AetAu0∥

= ∥
(
h−1(ehA − I)−A

)
etAu0∥

≤ ∥h−1(ehA − I)−A∥ · ∥etA∥ · ∥u0∥ → 0, as h→ 0.

(1.73)

This implies that u′(t) = Au(t) for all t ∈ R. In addition u(0) = e0Au0 = u0.

Uniqueness. Let u(t) and v(t) be two solution to (1.70). Let w(t) = u(t)− v(t). Then

w′(t) = Aw(t), t ∈ R; w(0) = 0. (1.74)

We shall show that w(t) = 0 for all t ∈ R. Given f ∈ X∗. By (1.74), we have⟨
f, w′(t)

⟩
= ⟨f,Aw(t)⟩ for all t ∈ R.

Since f : X → R is linear and continuous, we thus have

d

dt
⟨f, w(t)⟩ = lim

h→0

⟨f, w(t+ h)⟩ − ⟨f, w(t)⟩
h

= lim
h→0

⟨
f,
w(t+ h)− w(t)

h

⟩
=

⟨
f, lim

h→0

w(t+ h)− w(t)

h

⟩
=
⟨
f, w′(t)

⟩
= ⟨f,Aw(t)⟩ for all t ∈ R.

(1.75)

Since w(t) is differentiable at each t ∈ R, so w(t) : R → X is continuous at each t ∈ R. Thus
the function

t→ ⟨f,Aw(t)⟩

is continuous at all t ∈ R, due to the continuity of f and A. Integrating (1.75) in t and observing
⟨f,Aw(0)⟩ = 0, we obtain

⟨f, w(t)⟩ =
∫ t

0

⟨
f,Aw(t′)

⟩
dt′ for all t ∈ R. (1.76)

Thus, for all t with |t| ≤ h where h > 0, there holds

| ⟨f, w(t)⟩ | ≤
∫ t

0

∣∣⟨f,Aw(t′)⟩∣∣ dt′
≤
∫ t

0
∥f∥ ∥A∥ ∥w(t′)∥dt′.

(1.77)

By Corollary 1.49, we have for all t ∈ [−h, h] that
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∥w(t)∥ = sup
f∈X∗,∥f∥≤1

| ⟨f, w(t)⟩ | ≤
∫ t

0
∥A∥ ∥w(t′)∥dt′ ≤ h∥A∥ max

|t′|≤h
∥w(t′)∥. (1.78)

This implies that
max
|t|≤h

∥w(t)∥ ≤ h∥A∥max
|t|≤h

∥w(t)∥. (1.79)

If A = 0, clearly w(t) = 0 for all t ∈ R.
If A ̸= 0, we choose h := 1

2∥A∥ . It follows from (1.79) that

max
|t|≤h

∥w(t)∥ ≤ h∥A∥max
|t|≤h

∥w(t)∥ =
1

2
max
|t|≤h

∥w(t)∥,

and a consequence is that max|t|≤h ∥w(t)∥ = 0. We proved that w(t) = 0 for all t ∈ [−h, h].
Now we apply the same result to the initial-value problems

w′(t) = Aw(t), t ∈ R; w(±h) = 0, (1.80)

to deduce that w(t) = 0 for all t ∈ [−2h, 2h]. Continuing this, we obtain w(t) = 0 for all t ∈ R.

1.26 Applying to the spectrum

Definition 1.71. Let A ∈ L(X,X) with X a nontrivial Banach space over C.

• A complex number λ is called an eigenvalue of the operator A provided there exists a nonzero
vector u ∈ X such that

Au = λu. (1.81)

• The resolvent set ρ(A) of A is defined to be the collection of all complex numbers λ such that
(A− λI)−1 : X → X exists and (A− λI)−1 ∈ L(X,X). If λ ∈ ρ(A), the operator (A− λI)−1

is called a resolvent of A.

• The spectrum σ(A) is defined as σ(A) = ρ(A)c.

Proposition 1.72. Let A ∈ L(X,X) with X a nontrivial Banach space over C. Then

(i) The resolvent set ρ(A) is open in C.

(ii) The spectrum σ(A) is compact in C and

|λ| ≤ ∥A∥, for all λ ∈ σ(A).

(iii) Each eigenvalue of A belongs to the spectrum of A.
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证明. (i). Let λ ∈ ρ(A), then A− λI ∈ Linv(X,X). Let µ ∈ C, we have

∥(A− λI)− (A− µI)∥ = ∥(µ− λ)I∥ = |λ− µ|.

By (1.66), we know that Linv(X,X) is an open set in L(X,X). Thus for all µ with |λ−µ| sufficient
small, we have (A− µI) ∈ Linv(X,X), i.e. µ ∈ ρ(A). This means ρ(A) is open.

(ii). If λ > ∥A∥, then
∥λ−1A∥ = |λ−1| ∥A∥ < 1.

It follows from (1.65) that
λ−1A− I ∈ Linv(X,X).

This implies that
A− λI = λ(λ−1A− I) ∈ Linv(X,X).

This means λ ∈ ρ(A), i.e. λ ̸∈ σ(A). Thus, for any λ ∈ σ(A), there holds |λ| ≤ ∥A∥. Consequently,
the spectrum σ(A) = ρ(A)c is closed and bounded in C, i.e. σ(A) is compact in C.

(iii). If λ ̸∈ σ(A), i.e. λ ∈ ρ(A), by definition we know that (A − λI) ∈ Linv(X,X). If there
exists u ∈ X such that Au = λu, there must hold

u = (A− λI)−1(A− λI)u = (A− λI)−1(0) = 0.

This means λ is not an eigenvalue of A.

2 Hilbert spaces, orthogonality, and variational problems

2.1 Hilbert spaces

Definition 2.1. • Let X be a linear space over K. An semi-inner product on X is a function,
denoted by (·, ·) or (·|·) : X ×X → K, such that for all u, v, w ∈ X and all α, β ∈ K:

(i) (u, u) ≥ 0.

(ii) (αu+ βv,w) = α(u,w) + β(v, w).

(iii) (u, v) = (v, u), where α denotes the complex conjugate of α for each α ∈ K.

• The property (ii) implies that for all u, v ∈ X:

(u,0) = (u, 0 · 0) = 0(u,0) = 0, (0, v) = (0 · 0, v) = 0(0, v) = 0.

In particular (0,0) = 0.
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• An inner product is a semi-inner product that also satisfies the following property: (u, u) = 0

iff u = 0.

• Let u, v ∈ X. We say u is orthogonal to v iff (u, v) = 0.

We recall some basic properties about inner product. The proofs can be found in many
textbooks on functional analysis, see for example [4].

Proposition 2.2. Let X be a linear space with semi-inner product (·, ·). Then

|(u, v)| ≤ (u, u)
1
2 (v, v)

1
2 , for all u, v ∈ X.

Moreover, equality occurs iff there are α, β ∈ F both not 0, such that

(αu+ βv, αu+ βv) = 0.

Proposition 2.3. Let X be a linear space with inner product (·, ·). Then X is a normed space
with respect to the norm

∥u∥ := (u, u)
1
2 , for all u ∈ X.

Let X be a linear space with inner product (·, ·). We know from Proposition 2.3 that X is
a normed space. In the sequel, we will give the natural topology to each linear space with inner
product (·, ·) where the norm is defined as in Proposition 2.3.

Proposition 2.4. Let X be a linear space with inner product (·, ·). Then

• The inner product is continuous in the sense that if

un → u, vn → v, as n→ ∞,

then
(un, vn) → (u, v), as n→ ∞.

• Let M be a dense subset of X. If

(u, v) = 0 for all v ∈M,

then u = 0.

Definition 2.5 (Hilbert space). Let X be a linear space with inner product (·, ·). If X is a Banach
space with respect to the natural norm given in Proposition 2.3, we say X is a Hilbert space.

Example 2.6. Rd, L2(Ω), W 1,2(Ω), Hs(Rd), and so on.
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2.2 Friedrichs’ mollifier and density of smooth functions in Lp spaces

The standard Friedrichs’ mollifier is base on the C∞
c function

ϕ(x) = ϕ̃(|x|) := c e
−1

1−|x|2 , |x| < 1; ϕ(x) := 0, |x| ≥ 1, (2.1)

where c is the renormalized constant defined as

c =

(∫
|x|<1

e
−1

−1−|x|2 dx
)−1

.

It can be shown that

• ϕ ≥ 0, ϕ ∈ C∞
c (Rd), suppϕ ⊂ B(0, 1).

•
∫
Rd ϕ(x)dx = 1.

We remark that any C∞
c function satisfying the above two properties can be used to define the

standard Friedrichs’ mollifier, not necessarily the precise form in (2.1).
For any 0 < ε < 1, the standard Friedrichs’ mollifier is defined as

ϕε(·) =
1

εd
ϕ(

·
ε
). (2.2)

Then

• ϕε ≥ 0, ϕ ∈ C∞
c (Rd), suppϕε ⊂ B(0, ε).

•
∫
Rd ϕε(x)dx = 1.

For any u ∈ L1
loc(Rd), one can define its mollification

Sε[u](x) :=

∫
Rd

ϕε(x− y)u(y)dy, (2.3)

and we have

Proposition 2.7. Let u ∈ L1
loc(Rd). Then Sε[u] ∈ C∞(Rd).

证明. Exercise.

Moreover:

Proposition 2.8. Let Ω be an open set in Rd.

(i) If u ∈ Cc(Ω), then

∥Sε[u]∥L∞(Rd) ≤ ∥u∥L∞(Ω), Sε[u] → u in L∞(Ω).
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(ii) If u ∈ Lp(Ω), 1 ≤ p <∞, then

∥Sε[u]∥Lp(Ω) ≤ ∥u∥Lp(Ω), Sε[u] → u in Lp(Ω).

证明. We first prove (i). For any x ∈ Ω, direct calculation gives

|Sε[u](x)| ≤
∫
Rd

ϕε(x− y)|u(y)|dy ≤ ∥u∥L∞(Ω)

∫
Rd

ϕε(x− y)dy = ∥u∥L∞(Ω), (2.4)

and

Sε[u](x)− u(x) =

∫
Rd

ϕε(x− y)u(y)dy − u(x) =

∫
Rd

ϕε(y)u(x− y)dy − u(x)

= ε−d

∫
Rd

ϕ(y/ε)u(x− y)dy − u(x) =

∫
Rd

ϕ(y)u(x− εy)dy − u(x)

=

∫
Rd

ϕ(y)
(
u(x− εy)− u(x)

)
dy ≤

∫
|y|≤1

ϕ(y)dy sup
|y|≤1

∣∣(u(x− εy)− u(x)
∣∣.

(2.5)

Since u ∈ Cc(Ω) is continuous and of compact support, u is then uniform continuous on Rd. Thus,

sup
x∈Ω

sup
|y|≤ε

∣∣(u(x− y)− u(x)
∣∣→ 0, as ε→ 0.

Hence,
sup
x∈Ω

∥Sε[u](x)− u(x)∥ ≤ sup
x∈Ω

sup
|y|≤1

∣∣(u(x− εy)− u(x)
∣∣→ 0. (2.6)

We then prove (ii). Let 1 ≤ p <∞. By Minkowski’s integral inequality, we have

∥Sε[u](x)∥Lp(Ω) =

∥∥∥∥∫
Rd

ϕε(y)u(x− y)dy
∥∥∥∥
Lp(Ω)

≤
∫
Rd

ϕε(y)∥u(x− y)∥Lp(Ω) dy = ∥u∥Lp(Ω). (2.7)

Again by Minkowski’s integral inequality, direct calculation gives

∥Sε[u]− u∥Lp(Ω) =

∥∥∥∥∥
∫
|y|≤1

ϕ(y)
(
u(x− εy)− u(x)

)
dy
∥∥∥∥∥
Lp(Ω)

≤ sup
|y|≤1

∥u(x− εy)− u(x)∥Lp(Ω)

(2.8)

Since Cc(Ω) is dense in Lp(Ω) for each 1 ≤ p < ∞ (see Theorem 3.14 in [7]), for any δ > 0,
there exists u(δ) ∈ Cc(Ω) such that

∥u(δ) − u∥Lp(Ω) ≤ δ.

Thus,

∥Sε[u]− u∥Lp(Ω) ≤
∥∥∥Sε[u(δ)]− u(δ)

∥∥∥
Lp(Ω)

+
∥∥∥Sε[u(δ) − u]

∥∥∥
Lp(Ω)

+
∥∥∥u(δ) − u

∥∥∥
Lp(Ω)

≤
∥∥∥Sε[u(δ)]− u(α)

∥∥∥
Lp(Ω)

+ 2δ

≤ sup
|y|≤1

∥∥∥u(δ)(x− εy)− u(δ)(x)
∥∥∥
Lp(Ω)

+ 2δ.

(2.9)
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Passing ε→ 0 in above equation implies

lim
ε→0

∥Sε[u]− u∥Lp(Ω) ≤ 2δ, (2.10)

where the limit
lim
ε→0

sup
|y|≤1

∥∥∥u(δ)(x− εy)− u(δ)(x)
∥∥∥
Lp(Ω)

= 0

can be shown by the uniform continuity of uδ on its compact support. Finally passing δ → 0 implies
our desired convergence result.

Let Ω be an open set in Rd. Let C0(Ω) be the set of all continuous functions that vanish at
infinity, i.e. a continuous function u ∈ C0(Ω) iff for any ε > 0, there exists a compact set Kε ⊂ Ω

such that |u| ≤ ε in Ω \Kε. Armed with the natural L∞ norm for continuous functions, C0(Ω) is
a Banach space. We then have

Proposition 2.9. The set C∞
c (Ω) is dense in C0(Ω) and C∞

c (Ω) is dense in Lp(Ω) for all 1 ≤ p <

∞.

证明. We prove the first part. Given u ∈ C0(Ω). We would like to show that for any given δ > 0,
there exists v ∈ C∞

c (Ω) such that
sup
x∈Ω

|u(x)− v(x)| ≤ δ. (2.11)

Firstly, by the definition of C0(Ω), there exists a compact set Kδ ⊂ Ω such that

sup
x∈Ω\Kδ

|u(x)| ≤ δ/3. (2.12)

Since Kδ is compact and Ω is open, and Kδ ⊂ Ω, there exists δ0 > 0 such that

Kδ,2δ0 := {x ∈ Rd : dist (x,Kδ) ≤ 2δ0} ⊂ Ω. (2.13)

Clearly Kδ,2δ0 is compact and K ⊂ Kδ,2δ0 .
We then introduce

u(δ)(x) = u(x) if x ∈ Kδ,δ0 , u(δ)(x) = 0 if x ∈ Ω \Kδ,δ0 , (2.14)

where
Kδ,δ0 := {x ∈ Rd : dist (x,Kδ) ≤ δ0}.

Let 0 < ε < δ0 and consider Sε[u(δ)]. We introduce the following lemma, and the proof is left
as an exercise:

Lemma 2.10. For any u ∈ L1
loc(Ω),

suppSε[u] ⊂ B(0, ε) + suppu = {x+ y : |x| ≤ ε, y ∈ suppu}. (2.15)
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By the above lemma,

suppSε[u(δ)] ⊂ B(0, ε) +Kδ,δ0 ⊂ Kδ,2δ0 ⊂ Ω.

This means Sε[u(δ)] ∈ C∞
c (Ω). Moreover, by the proof of Proposition 2.8, we have for all x ∈ Kδ:

|Sε[u(δ)](x)− u(x)| = |Sε[u(δ)](x)− u(δ)(x)| =
∣∣∣∣∫

Rd

ϕ(y)
(
u(x− εy)− u(x)

)
dy
∣∣∣∣

≤ sup
|y|≤1

∣∣(u(δ)(x− εy)− u(δ)(x)
∣∣

≤ sup
|y|≤1

∣∣(u(x− εy)− u(x)
∣∣

(2.16)

where we used the fact that x − εy ∈ Kδ,δ0 for all |y| ≤ 1, x ∈ Kδ. Since u is uniform continuous
on compact set Kδ,δ0 , we thus have for ε small that

sup
x∈Kδ

|Sε[u(δ)](x)− u(x)| ≤ δ/3. (2.17)

Thus for each x ∈ Ω \Kδ,

|Sε[u(δ)](x)− u(x)| ≤ |Sε[u(δ)](x)|+ |u(x)|

≤
∫
Rd

ϕ(y)|u(δ)(x− εy)|dy + δ/3

≤ sup
|y|≤ε

|u(δ)(x− y)|+ δ/3.

(2.18)

Since x ∈ Ω \Kδ and Ω \Kδ is an open set, for ε sufficient small, we have x− y ∈ Ω \Kδ provided
|y| ≤ ε. Thus,

|Sε[u(δ)](x)− u(x)| ≤ sup
z∈Ω\Kδ

|uδ(z)|+ δ/3 ≤ δ/3 + δ/3 < δ, for each x ∈ Ω \Kδ. (2.19)

Then by (2.17) and (2.19), we obtain that

sup
x∈Ω

|Sε[u(δ)](x)− u(x)| ≤ δ, (2.20)

where Sε[u(δ)] ∈ C∞
c (Ω).

We now prove the second part. Given u ∈ Lp(Ω). We may employ the argument in the proof
of the first part by observing the fact that for any δ > 0 there exists a compact subset Kδ of Ω

such that (why?)
∥u∥Lp(Ω\Kδ) ≤ δ.

We may also direct use the fact that Cc(Ω) is dense in Lp(Ω) to prove our result. Given
u ∈ Lp(Ω) with 1 ≤ p <∞. For any δ > 0, there exists u(δ) ∈ Cc(Ω) such that

∥u− u(δ)∥Lp(Ω) ≤ δ/2.
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By Proposition 2.9 and Lemma 2.10, we have for sufficient small ε that

Sε[u
(δ)] ∈ C∞

c (Ω), ∥Sε[u(δ)]− u(δ)∥Lp(Ω) ≤ δ/2.

Finally
∥Sε[u(δ)]− u∥Lp(Ω) ≤ δ.

A direct corollary is the following:

Corollary 2.11. Let Ω be a nonempty open set in Rd and let u ∈ Lp(Ω), 1 < p <∞. If∫
Ω
u v dx = 0, for all v ∈ C∞

c (Ω),

then u(x) = 0 for almost all x ∈ Ω.

Problem: What the case p = 1, p = +∞?

证明. Exercise.

2.3 The space C∞
c and integration by parts

The classical integration by parts formula reads as follows:∫ b

a
u′ v dx = u v|ba −

∫ b

a
u v′ dx (2.21)

with the boundary integral
u v|ba = u(b) v(b)− u(a) v(a). (2.22)

In particular, if v(a) = v(b) = 0, there holds∫ b

a
u′ v dx = −

∫ b

a
u v′ dx (2.23)

In higher dimensions, similar integration by parts formula holds:

Proposition 2.12. • Let Ω ⊂ Rd be a bounded open set with C1 boundary. Then for all
u, v ∈ C1(Ω), there holds∫

Ω
(∂ju) v dx =

∫
∂Ω
u v nj dS −

∫
Ω
u (∂jv)dx, (2.24)

where n⃗ = (n1, · · · , nd) is the outer unit normal vector to the boundary ∂Ω.

• For all u ∈ C1(Ω), v ∈ C1
c (Ω) with Ω ⊂ Rd an open set, there holds∫

Ω
(∂ju) v dx = −

∫
Ω
u (∂jv)dx. (2.25)

证明. Exercise.
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2.4 Bilinear forms

Definition 2.13. (i) Let X be a normed space over F. By a bounded blinear form on X we
mean a function

a : X ×X → F

that has the following two properties:

– Bilinearity. For all u, v, w ∈ X and α, β ∈ F,

a(αu+ βv,w) = αa(u,w) + βa(v, w), a(w,αu+ βv) = αa(w, u) + βa(w, v).

– Boundedness. There is a constant C > 0 such that

|a(u, v)| ≤ C∥u∥∥v∥, for all u, v ∈ X.

(ii) In addition, a bilinear form a(·, ·) is called symmetric provided

a(u, v) = a(v, u), for all u, v ∈ X.

(ii) Moreover, a(·, ·) is called positive provided

a(u, u) ≥ 0, for all u ∈ X.

And a(·, ·) is called strictly positive provided there is a constant c > 0 such that

a(u, u) ≥ c∥u∥2, for all u ∈ X.

A bounded bilinear form is continuous:

Proposition 2.14. Let a : X×X be a bounded bilinear form on normed space X. If un → u, vn → v

in X as n→ ∞, then a(un, vn) → a(u, v).

2.5 Quadratic variational problems

In general, variational problems represent the problems of finding minimum or maximum values
of functionals.

Theorem 2.15. Let X be a real Hilbert space. Let a : X×X → R is a symmetric, bounded, strictly
positive, blinear form, and let b : X → R is a linear continuous functional. Define the functional
F : X → R as

F (u) =
1

2
a(u, u)− b(u), for all u ∈ X.

Then the variational problem:

find u ∈ X such that F (u) = inf
v∈X

F (v) (2.26)
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admits a unique solution u ∈ X; moreover, u is the unique solution to the so-called variational
equation:

a(u, v) = b(v), for all v ∈ X. (2.27)

证明. Step 1. Existence. Let α := infv∈X F (v) and let {un} be a sequence in X such that

F (un) → α, as n→ ∞.

Since a is strictly positive and b is continuous, there holds

F (v) =
1

2
a(v, v)− b(v) ≥ c∥v∥2

2
− ∥b∥∥v∥ → +∞, as ∥v∥ → ∞.

This implies that the sequence {un} is bounded.
By the bilinearity and symmetry of a, one has

2a(un, un) + 2a(um, um) = a(un − um, un − um) + a(un + um, un + um).

Hence

4 [F (un) + F (um)] = 2a(un, un) + 2a(um, um)− 4b(un)− 4b(um)

= a(un − um, un − um) + a(un + um, un + um)− 4b(un + um)

= a(un − um, un − um) + 8F

(
un + um

2
,
un + um

2

)
≥ c∥un − um∥2 + 8α,

(2.28)

where c > 0 is the positive constant related to the strict positivity of a. This implies

c∥un − um∥2 ≤ 4 [F (un) + F (um)]− 8α→ 0, (2.29)

as m → ∞, n → ∞. This means that {un} is a Cauchy sequence. Since X is complete, we thus
have

un → u in X, as n→ ∞.

By the continuity of F , we thus have

F (u) = lim
n→∞

F (un) = α = inf
v∈X

F (v) = min
v∈X

F (v).

This means u is a solution to the variational problem (2.26).

Step 2. Solution of the variational equation. Let u be a solution to the variational
problem (2.26). Fix v ∈ X and define

φ(t) := F (u+ tv) =
t2

2
a(v, v) + t[a(u, v)− b(v)] +

1

2
a(u, u)− b(u), ∀t ∈ R.
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Since u is the point such that F (v) achieve its minimum, the smooth function φ(t) achieve its
minimum at t = 0. Then necessarily φ′(0) = 0, which is exactly the variational equation

a(u, v)− b(v) = 0.

Step 3. Uniqueness. Let u1 and u2 be two solutions to the variational problem. Then

a(u1, v) = b(v), a(u2, v) = b(v), ∀v ∈ X.

Thus
a(u1 − u2, v) = 0 ∀v ∈ X.

Taking v = u1 = u2 and using the strict positivity of bilinear form a implies that u1 = u2.

2.6 A variational problem: Dirichlet problem of Laplacian operator

Let Ω be a bounded open set in Rd. Let f ∈ L2(Ω) and let X be a suitable Banach space to
be determined and we define the functional on X:

F (v) :=
1

2

∫
Ω
|∇xv|2 dx−

∫
Ω
f v dx, ∀v ∈ X. (2.30)

Let g be a suitable function. We then consider the following variational problem:

find u ∈ Xg := {v ∈ X : v = g on ∂Ω} such that F (u) = infv∈Xg F (v). (2.31)

Here Xg is called the set of admissible functions for the variational problem (2.31).
In the following subsections, we will study this variational problem step by step.

2.6.1 The Euler-Lagrange equation

Along with (2.30) and (2.31), we consider the following boundary-value problem of the
Laplacian operator:

−∆u = f in Ω,

u = g on ∂Ω.
(2.32)

The boundary condition in (2.32) is about the value of the unknown on the boundary. Such a
boundary condition is called the Dirichlet boundary condition, and the related boundary-value
problem is called a Dirichlet problem. The connection between the variational problem (2.31) and
the Dirichlet problem (2.32) is given in the following:

Proposition 2.16. Let Ω be a bounded open set in Rd and let f : Ω → R and g : ∂Ω → R be
continuous functions. If u ∈ C2(Ω) is a solution to the variational problem (2.31) in X = C2(Ω),
then u is a solution to the Dirichlet problem (2.32).
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The equation (2.32) is called the Euler-Lagrange equation to the (2.31).

证明. Step 1. Admissible functions. Let u be a solution to the variational problem (2.31).
Then, for each v ∈ C∞

c (Ω) and each t ∈ R, the function

w := u+ tv

is admissible for the variational problem (2.31) in X = C2(Ω), i.e.

w ∈ C2(Ω), w = g on ∂Ω.

Step 2. Reduction to a minimum problem for real functions. For each fixed v ∈
C∞
c (Ω), we set

ϕ(t) := F (u+ tv) =
1

2

∫
Ω
|∇x(u+ tv)|2 dx−

∫
Ω
f (u+ tv)dx, ∀ t ∈ R.

Then ϕ is a differentiable function on R. Moreover, since u is a solution to the variational problem,
the function ϕ : R → R admits a minimum at t = 0. Hence

ϕ′(0) =

∫
Ω
∇xu · ∇xv dx−

∫
Ω
f v dx = 0. (2.33)

This holds true for each v ∈ C∞
c (Ω).

Step 2. The Euler-Lagrange equation. Applying integration by parts to (2.33) implies

−
∫
Ω
(∆xu+ f)v dx = 0, ∀ v ∈ C∞

c (Ω). (2.34)

This implies ∆xu+ f = 0 in G. (why?)

Remark 2.17 (Lack of classical solutions). By Proposition 2.16, each sufficient smooth solution
to the variational problem (2.31) is also a solution to the Dirichlet problem (2.32). However, the
are reasonable situations where the variational problem (2.31) lacks smooth solutions.

One may ask, why not to use general Theorem thm-variational-1 to solve the variational
problem (2.31) in some reasonable space X? Then the functional F (v) can be written as

F (v) =
1

2
a(v, v)− b(v)

where
a(u, v) :=

∫
Ω
∇xu · ∇xv dx, b(v) :=

∫
Ω
f v dx.
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To apply Theorem 2.15, we need a to be a symmetric, bounded, and strictly positive blinear form
in Hilbert space X, and we need b to be bounded in X. Thus, the reasonable choice the norm for
X is

∥u∥X :=

(∫
Ω
(|∇xu|2 + |u|2)dx

) 1
2

. (2.35)

However, to define this norm we need u ∈ C1(Ω). However, this norm ∥ · ∥X in (2.35) does not
coincide with the norm of C1(Ω). We need more general definition for derivatives. This is going to
be done in the next subsection.

2.7 Generalized derivatives

The point of departure for the definition of generalized derivatives is the classical integration-
by-parts formula: let u ∈ C1(Ω) with Ω ⊂ Rd an open set, then∫

Ω
u(∂jv)dx = −

∫
Ω
(∂ju)v dx, for all v ∈ C∞

c (Ω). (2.36)

Setting w = ∂ju gives the formula∫
Ω
u(∂jv)dx = −

∫
Ω
wv dx, for all v ∈ C∞

c (Ω). (2.37)

The point is that this formula remains valid for certain nonsmooth functions u and w.

Definition 2.18. Let Ω be a nonempty open set in Rd. Let u ∈ L1
loc(Ω). If there exists w ∈ L1

loc(Ω)

such that (2.37) holds, we call w a generalized derivative of the function u in Ω. As in the classical
case, we write w = ∂ju.

Proposition 2.19. The generalized derivative is uniquely determined up to a set of measure zero.

To prove this result, we need the show that Corollary 2.11 still holds for the case p = 1 and
p = ∞. That is:

Corollary 2.20. Let Ω be a nonempty open set in Rd and let u ∈ Lp(Ω), 1 ≤ p ≤ ∞. If∫
Ω
u v dx = 0, for all v ∈ C∞

c (Ω), (2.38)

then u(x) = 0 for almost all x ∈ Ω.

Proof of Corollary 2.20. The cases 1 < p < ∞ is already proved. We still need to handle the case
p = 1 and p = ∞.

Case p = ∞. This case is easier to prove. Given u ∈ L∞(Ω) satisfying (2.11). Define

Ωn := Ω ∩B(0, n), n ∈ Z+, (2.39)
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be a sequence of bounded open subsets of Ω such that

Ω =

∞∪
n=1

Ωn. (2.40)

Thus, for any n ∈ Z+, one has u ∈ Lp(Ωn) for all 1 ≤ p ≤ ∞. Moreover,∫
Ωn

u v dx =

∫
Ω
u v dx = 0, for all v ∈ C∞

c (Ωn). (2.41)

Applying the result of the case 1 < p < ∞, we have u(x) = 0 for almost all x ∈ Ωn. Since
a countable union of measure zero sets are still measure zero, we have u(x) = 0 for almost all
x ∈ Ω =

∪∞
n=1Ωn..

Case p = 1. Let u ∈ L1(Ω) satisfy (2.38). For any compact set K ⊂ Ω, we define v as

v =

sgnu, on K,

0, on Rd \K.
(2.42)

Then, for ε sufficient small, we have Sε[v] ∈ C∞
c (Ω) where Sε is the standard Friedrichs’

mollification.
By Minkowski’s inequality, there holds

∥Sε[v]∥L∞ ≤ ∥v∥L∞ ≤ 1.

Moreover, since v ∈ Lp(Ω) for any p ∈ [1,∞], there holds

Sε[v] → v in Lp(Ω).

This implies, up to a subsequence, that

Sε[v] → v a.e. in Ω.

By Lebesgue’s dominated convergence theorem,∫
K
u v dx =

∫
Ω
u v dx = lim

ε→0

∫
Ω
uSε[v]dx = 0.

By the definition of v, we finally obtain ∫
K
|u|dx = 0,

which implies
u = 0 a.e. in K.

Since K is arbitrarily chosen in Ω, we derive that

u = 0 a.e. in Ω.

In this case, we may also employ Lusin’s theorem which is recalled below:
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Lemma 2.21. Let f : Rd → C be a measurable function. Given ε > 0, for every measurable set A
of finite measure there is a compact set E with |A\E| < ε such that f restricted to E is continuous.
Moreover, we can find a continuous function fε : Rd → C with compact support that coincides with
f on E and such that sup

x∈Rd

|fε(x)| ≤ sup
x∈Rd

|f(x)|.

Again let Ωn be defined as in (2.39). Clearly Ωn is a bounded subset of Ω and is certainly of
finite measure. Then, by Lusin’s theorem, for each ε > 0, there exists a compact set En ⊂ Ωn and
a continuous function uε : Ωn → C with compact support such that

uε(x) = u(x), ∀x ∈ En,ε, sup
x∈Ωn

|uε(x)| ≤ sup
x∈Ωn

|u(x)|.

Since En,ε ⊂ Ωn, then for each v ∈ C∞
c (En,ε) ⊂ C∞

c (Ωn) ⊂ C∞
c (Ω), there holds∫

En,ε

fε v dx =

∫
En,ε

f v dx =

∫
Ω
f v dx = 0. (2.43)

This implies
f(x) = fε(x) = 0, ∀x ∈ En,ε.

(why?). Since this holds for all ε > 0, we obtain

f(x) = 0, ∀x ∈ E :=
∞∪
k=1

En,εk

for each sequence εk satisfying εk → 0 as k → ∞. Moreover

|Ωn \ E| = |
∞∩
k=1

Ωn \ En,εk | = 0

due to the fact
|Ωn \ En,εk | ≤ εk → 0.

Hence,
f(x) = 0, a.a x ∈ Ωn

and furthermore
f(x) = 0, a.a x ∈ Ω.

Proof of Proposition 2.19. Let Ω be a nonempty open set in Rd and define Ωn as in (2.39). Let
u ∈ L1

loc(Ω). Suppose w1, w2 ∈ L1
loc(Ω) both satisfies (2.37). Then∫

Ω
(w1 − w2) v dx = 0, for all v ∈ C∞

c (Ω).
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This implies ∫
Ωn

(w1 − w2) v dx = 0, for all v ∈ C∞
c (Ωn).

Since w1 − w2 ∈ L1(Ωn), applying Corollary 2.20 implies

w1(x) = w2(x) a.a. x ∈ Ωn

and furthermore
w1(x) = w2(x) a.a. x ∈ Ω.

Example 2.22. u(x) = |x|, x ∈ (−1, 1). The generalized derivative u′ = w with

w(x) =

1, 0 < x < 1,

− 1, − 1 < x < 0,

Exercise: Prove that w does not admit a generalized derivative in the sense of Definition 2.18.
More generally, any continuous and piecewise C1 function admits a generalized derivative that

is in L∞
loc.

Remark 2.23. For every u ∈ L1
loc(Ω), the theory of distribution gives a meaning to ∂xju as

an element of the much larger space of distributions D′(Ω), which is the space of bounded linear
functionals on D(Ω) := C∞

c (Ω). We will not go into the details of the theory of distribution. The
students can learn from the book [3].

2.8 Sobolev spaces

Now we give the definition of Sobolev spaces

Definition 2.24. Let Ω ⊂ Rd be a nonempty open set. For each 1 ≤ p ≤ ∞, the Sobolev space
W 1,p(Ω) consists precisely of all the functions

u ∈ Lp(Ω)

that have generalized derivatives

∂xju ∈ Lp(Ω), j = 1, · · · , d.

We also use the classical notation for the generalized gradient ∇u = (∂1u, · · · , ∂du).

Remark 2.25. There are other ways to define the Sobolev spaces. These definitions are equivalent.
One can also use the language of distributions. By the theory of distributions by L. Schwartz,

each function u ∈ L1
loc(Ω) admits a derivative in the sense of distributions:

⟨∂ju, v⟩ = −⟨u, ∂jv⟩ = −
∫
Ω
u (∂jv)dx, for all v ∈ C∞

c (Ω).
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This derivative is an element of the much larger space of distributions D′(Ω) which is the collection
of all linear bounded functionals of the space D(Ω) = C∞

c (Ω). We say that u ∈W 1,p(Ω) if u ∈ Lp(Ω)

and its distributional derivative happens to lie in Lp(Ω), which is a subspace of D′(Ω).
When Ω = Rd and p = 2, Sobolev spaces can also be defined by using the Fourier transform:

W 1,2(R2) consists of all functions
u ∈ L2(R2)

for which the Fourier transform û satisfy

(1 + |ξ|2)û(ξ) ∈ L2(Rd).

To define the Fourier transform of some u ∈ L2(Rd), one needs to use the Plancherel theorem
and a density argument of Schwartz functions. (How?)

Proposition 2.26. Let Ω be an open set of Rd and let 1 ≤ p ≤ ∞. Equipped with the norm

∥u∥W 1,p(Ω) :=
(
∥u∥pLp(Ω) + ∥∇u∥pLp(Ω)

) 1
p
, 1 ≤ p <∞,

∥u∥W 1,∞(Ω) := ∥u∥L∞(Ω) + ∥∇u∥L∞(Ω), p = ∞
(2.44)

for all u ∈W 1,p(Ω), the Sobolev space W 1,p(Ω) is a Banach space.
In particular if p = 2, the Sobolev space W 1,2(Ω) is a Hilbert space equipped with the inner

product:

(u, v)W 1,2 = (u, v)L2 + (∇u,∇v)L2 =

∫
Ω
u v̄ dx+

∫
Ω
∇u · ∇v̄ dx for all u, v ∈W 1,2(Ω). (2.45)

Moreover, W 1,p(Ω) is reflexive provided 1 < p <∞ and is separable provided 1 ≤ p <∞.

证明. Step 1. Norm.

Step 2. Completeness.

Step 3. Hilbert space

Step4. Reflexive and separable. We consider the linear mapping

F :W 1,p(Ω) → (Lp(Rd))d+1, F (u) = (u,∇u). (2.46)

Clearly F is an isometry from W 1,p(Ω) into (Lp(Rd))d+1. Indeed:

∥F (u)∥(Lp(Rd))d+1 = ∥u∥Lp(Ω) + ∥∇u∥Lp(Ω) = ∥u∥W 1,p(Ω). (2.47)

Since W 1,p(Ω) is a Banach space, F (W 1,p(Ω)) is a closed subspace of (Lp(Rd))d+1. If 1 < p <

∞, (Lp(Rd))d+1 is reflexive. Thus, by the fact that any closed subspace of a reflexive Banach space
is reflexive, we know that F (W 1,p(Ω)) is reflexive. Thus W 1,p(Ω) is also reflexive.

If 1 ≤ p <∞, (Lp(Rd))d+1 is reflexive. By the fact that any subset of a separable metric space
is also separable, we know that F (W 1,p(Ω)) is separable. Thus W 1,p(Ω) is also separable.
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We now give some properties of Sobolev spaces.

Proposition 2.27. (i) Let Ω be an open set of Rd. Let {un} be a sequence in W 1,p(Ω) such that
un → u in Lp(Ω) and ∇un converges to some limit in Lp(Ω)d. Then

u ∈W 1,p(Ω), un → u in W 1,p(Ω).

(ii) Let 1 < p ≤ ∞, let un → u in Lp(Ω) and {∇un} be bounded in Lp(Ω)d. Then u ∈W 1,p(Ω).

证明. (i). Suppose that ∇un → v in Lp(Ω)d. Thus, for any test function ϕ ∈ C∞
c (Ω)d, there holds∫

Ω
(∇un) · ϕdx→

∫
Ω
v · ϕdx,∫

Ω
(∇un) · ϕdx = −

∫
Ω
undivϕdx→ −

∫
Ω
udivϕdx.

(2.48)

This implies that ∫
Ω
udivϕdx = −

∫
Ω
v · ϕdx. (2.49)

This means ∇u = v in the generalized sense. Hence

u ∈W 1,p(Ω), un → u in W 1,p(Ω).

(ii). When 1 < p ≤ ∞, we know that each bounded sequence in Lp(Ω) admits a weakly-star
convergent subsequence. So there exists v ∈ Lp(Ω)d such that∫

Ω
∇un · ϕdx =

∫
Ω
v · ϕdx, for all ϕ ∈ C∞

c (Ω)d.

Similarly as above, we then have that ∇u = v in the generalized sense. Hence ∇u ∈ Lp(Ω) and
u ∈W 1,p(Ω).

We remark that in case (ii), we know that u ∈W 1,p(Ω), but we do not know whether un → u

in u ∈W 1,p(Ω).

We introduce the zero extension of a function in Ω. Given a function f defined in Ω, � we
denote by f̃ its zero extension in Rd�, that is, �

f̃(x) = f(x) for all x ∈ Ω, f̃(x) = 0 for all x ∈ Rd \ Ω.

Proposition 2.28. Let Ω be an open set of Rd, let u ∈W 1,p(Ω) and let v ∈ C∞
c (Ω). Then

ũv ∈W 1,p(Rd), ∂xj (ũv) = ṽ∂xju+ ũ∂xjv.
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证明. It suffices to prove that
∂xj (ũv) = ṽ∂xju+ ũ∂xjv

in the generalized sense in Rd. Given a test function ϕ ∈ C∞
c (Rd), there holds vϕ ∈ C∞

c (Ω). Thus,∫
Rd

ũv(∂jϕ)dx =

∫
Ω
uv(∂jϕ)dx =

∫
Ω
u(∂j(vϕ))dx−

∫
Ω
u(∂jv)ϕdx

= −
∫
Ω
(∂ju)(vϕ)dx−

∫
Ω
u(∂jv)ϕdx

= −
∫
Ω

(
(∂ju)v + u(∂jv)

)
ϕdx

= −
∫
Rd

(
ṽ∂xju+ ũ∂xjv)

)
ϕdx.

(2.50)

This means
∂xj (ũv) = ṽ∂xju+ ũ∂xjv

in the generalized sense in Rd. Since u ∈W 1,p(Ω), we have

ũv ∈ Lp(Rd), ∇(ũv) = ṽ∇u+ ũ∇v ∈ Lp(Rd).

This means ũv ∈W 1,p(Rd).

Remark 2.29. Given u ∈W 1,p(Ω), in general ũ ̸∈W 1,p(Rd). (why?)

We know investigate the density of smooth functions in Sobolev spaces.

Theorem 2.30 (Friedrichs). Let u ∈W 1,p(Ω)� with 1 ≤ p <∞. Then there exists a sequence {un}
in C∞

c (Rd) such that
un → u in Lp(Ω�)

and
∇un → ∇u in Lp(ω) for all ω ⊂⊂ Ω.

For the case Ω = Rd, there exists a sequence {un} in C∞
c (Rd) such that

un → u in W 1,p(Rd).

To prove this theorem, we need the following lemma:

Lemma 2.31. Let u ∈ W 1,p(Rd) with 1 ≤ p ≤ ∞ and v ∈ L1(Rd). Then the convolution
v ∗ u ∈W 1,p(Rd) and

∂xj (v ∗ u) = v ∗ (∂xju), j = 1, · · · , d.
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Proof of Lemma 2.31. By Young’s inequality, we have that v ∗ u ∈ Lp(Rd) and

∥v ∗ u∥Lp(Rd) ≤ ∥v∥L1(Rd)∥u∥Lp(Rd).

Thus, given each test function ϕ ∈ C∞
c (Rd), by Hölder’s inequality and Young’s inequality,∫

Rd×Rd

|v(x− y)||u(y)||ϕ(x)|dxdy =

∫
Rd

|ϕ(x)|
∫
Rd

|v(x− y)||u(y)|dy dx

≤ ∥ϕ(x)∥Lp′∥|v| ∗ |u|∥Lp

≤ C∥v∥L1(Rd)∥u∥Lp(Rd)

<∞.

(2.51)

This implies that

F (x, y) = v(x− y)u(y)ϕ(x) ∈ L1(Rd × Rd), ∀ϕ ∈ C∞
c .

Then, by Fubini’s theorem, by setting v̌(·) = v(·), we have∫
Rd

v ∗ u(x)(∂jϕ)(x)dx =

∫
Rd

∫
Rd

v(x− y)u(y)dy(∂jϕ)(x)dx

=

∫
Rd

u(y)dy
∫
Rd

v(x− y)(∂jϕ)(x)dx

=

∫
Rd

u(y)
(
v̌ ∗ (∂jϕ)

)
(y)dy

=

∫
Rd

u(y)∂j
(
v̌ ∗ ϕ

)
(y)dy

= −
∫
Rd

(∂ju)(y)
(
v̌ ∗ ϕ)

)
(y)dy

= −
∫
Rd

(∂ju)(y)

∫
Rd

v̌(y − x)ϕ(x)dxdy

= −
∫
Rd

(v ∗ ∂ju)(x)ϕ(x)dx,

(2.52)

where we used the fact that (why?)

v̌ ∗ (∂jϕ) = ∂j
(
v̌ ∗ ϕ

)
.

We thus derive that
∂xj (v ∗ u) = v ∗ (∂xju) ∈ Lp(Rd), j = 1, · · · , d.

Hence, the convolution v ∗ u ∈W 1,p(Rd) and we complete the proof.

Proof of Theorem 2.30. Given u ∈ W 1,p(Ω)� with 1 ≤ p < ∞. We consider the zero extension ũ

defined as
ũ(x) = u(x) for all x ∈ Ω, ũ(x) = 0 for all x ∈ Rd \ Ω.
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Let ϕn be the standard Friedrichs’ mollifier with ε = 1/n, n ∈ Z+, and consider the mollification
sequence

un := Sn[ũ] := ϕn ∗ ũ ∈ C∞
c (Ω).

By Proposition 2.8, we know that

∥un∥Lp(Rd) ≤ ∥ũ∥Lp(Rd) = ∥u∥Lp(Ω), un → ũ in Lp(Rd).

In particular,
un → ũ = u in Lp(Ω).

We next show that
∇un → ∇u in Lp(ω) for all ω ⊂⊂ Ω.

Given ω ⊂⊂ Ω, we fix a function χ ∈ C∞
c (Ω) such that

0 ≤ χ ≤ 1, χ = 1 on a neighborhood of ω.

By the property on the support of the convolution, we have for n large enough that

supp (ϕn ∗ (χ̃u)− ϕn ∗ ũ) = supp (ϕn ∗ ((α̃− 1)ũ)

⊂ suppϕn + supp ((α̃− 1)ũ)

⊂ B(0, 1/n) + supp (α̃− 1)

⊂ ωc.

(2.53)

Thus, if n is large enough, there holds

ϕn ∗ (χ̃u) = ϕn ∗ ũ on ω. (2.54)

By Proposition 2.28 and Lemma 2.31, we know that

∂xj (ϕn ∗ (χ̃u)) = ϕn ∗ ∂xj (χ̃u) = ϕn ∗
(
χ̃∂xju+ ∂̃xjχu

)
(2.55)

in Rd in the generalized sense. Since(
χ̃∂xju+ ∂̃xjχu

)
∈ Lp(Rd),

then
∂xj (ϕn ∗ (χ̃u)) →

(
χ̃∂xju+ ∂̃xjχu

)
in Lp(Rd). (2.56)

In particualar,
∂xj (ϕn ∗ (χ̃u)) →

(
χ̃∂xju+ ∂̃xjχu

)
= ∂xju in Lp(ω). (2.57)

Together with (2.54), we obtain

∂xj (ϕn ∗ (ũ)) → ∂xju in Lp(ω). (2.58)
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We see that un satisfies our desired convergence properties, except that un ∈ C∞(Rd) is not
necessarily compactly supported. While, this can be remided be introducing a classical cut off
functions in the following way. Let χ0 ∈ C∞

c (B(0, 1)) be a cut-off function satisfying

0 ≤ χ0 ≤ 1, χ0 = 1 on B(0, 1/2) (2.59)

and set

χn(·) = χ0(·/n) satisfying χn ∈ C∞
c (B(0, n)), 0 ≤ χn ≤ 1, χn = 1 on B(0, n/2). (2.60)

Then, it can be shown that the sequence χnun ∈ C∞
c fulfills our desired request (why?).

In the case Ω = Rd, it can be shown that the sequence

un = χn(ϕn ∗ u)

has the desired properties.

Remark 2.32. • It can be shown (Meyers-Serrin’s theorem) that if u ∈W 1,p(Ω�) with 1 ≤ p <

∞ and Ω ⊂ Rd an open set, then there exists a sequence {un} in C∞(Ω�) ∩W 1,p(Ω�) such
that un → u in W 1,p(Ω�). The proof of this result is fairly delicate (see, e.g., R. Adams [1]).

• In general, if� Ω is an arbitrary open set and if u ∈W 1,p(Ω�), there need not exist a sequence
{un} in C∞

c (Rd�)∩W 1,p(Ω�) such that un → u in W 1,p(Ω�), even when p <∞. However, this
is true if Ω is regular, of class C1.

Here is a simple characterization of W 1,p functions:

Proposition 2.33. Let u ∈ Lp(Ω) with 1 < p ≤ ∞. The following properties are equivalent:

(i) u ∈W 1,p(Ω).

(ii) There exists a constant C such that∣∣∣∣∫
Ω
u∂xjϕdx

∣∣∣∣ ≤ C∥ϕ∥Lp′ (Ω), ∀ϕ ∈ C∞
c (Ω), ∀j = 1, 2, · · · , d.

(iii) There exists a constant C such that for all ω ⊂⊂ Ω and all h ∈ Rd with |h| < dist (ω, ∂Ω)
there holds

∥τhu− u∥Lp(ω) ≤ C|h|,

where τhu(·) := u(· + h). (Note that τhu(x) = u(x + h) makes sense for x ∈ ω and |h| <
dist (ω, ∂Ω�).)
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Moreover, in (ii) and (iii) one can take C = ∥∇u∥Lp(Ω).

If Ω = Rd, there holds
∥τhu− u∥Lp(Rd) ≤ |h|∥∇u∥Lp(Rd).

证明. (i) ⇒ (ii). This is rather obvious.

(ii) ⇒ (i). Since 1 < p ≤ ∞, we have that 1 ≤ p′ < ∞. Thus C∞
c (Ω) is dense in Lp′(Ω). By

density argument and property (ii),

Φ(v) := −
∫
Ω
u∂xjv dx, ∀v ∈ Lp′(Ω) (2.61)

defines a linear bounded functional in Lp′(Ω) for each j = 1, 2, · · · , d. Since the dual space of Lp′(Ω)

is Lp(Ω) when 1 ≤ p′ <∞, there exists w ∈ Lp(Ω) such that

Φ(v) =

∫
Ω
w v dx, ∀v ∈ Lp′(Ω). (2.62)

By (2.61) and (2.62), we know that

∂xju = w ∈ Lp(Ω). (2.63)

This is true for each j = 1, 2, · · · , d. Hence u ∈W 1,p(Ω).

(i) ⇒ (iii). Let ω ⊂⊂ Ω and h ∈ Rd with |h| < dist (ω, ∂Ω). Assume first that u ∈ C∞
c (Rd).

Then
u(x+ h)− u(x) =

∫ 1

0

d

dt
(u(x+ th))dt =

∫ 1

0
h · ∇u(x+ th)dt, ∀x ∈ ω. (2.64)

This implies for 1 ≤ p <∞ that

|u(x+ h)− u(x)|p ≤ |h|p
∫ 1

0
|∇u(x+ th)|p dt, ∀x ∈ ω, (2.65)

where we used Hölder’s inequality. Then

∥τhu− u∥pLp(ω) =

∫
ω
|u(x+ h)− u(x)|p dx

≤ |h|p
∫
ω

∫ 1

0
|∇u(x+ th)|p dtdx

≤ |h|p
∫ 1

0

∫
ω′
|∇u(y)|p dy dt

≤ |h|p
∫
ω′
|∇u(y)|p dy,

(2.66)

where ω′ := {y : dist (y, ω) < |h|} ⊂⊂ Ω. This gives that

∥τhu− u∥Lp(ω) ≤ |h|∥∇u∥Lp(ω′), ∀u ∈ C∞
c (Rd). (2.67)
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Assume now that u�W 1,p(Ω�) with 1 ≤ p <∞. By Theorem 2.30, there exists a sequence {un}
in C∞

c (Rd) such that
un → u in Lp(Ω�)

and
∇un → ∇u in Lp(ω) for all ω ⊂⊂ Ω.

Applying (2.67) to {un} and passing n→ ∞, we obtain (iii) for every u ∈W 1,p(Ω�), 1 ≤ p <∞.
Applying the above result for p <∞ and passing p→ ∞ in (2.67) gives our desired result for

p = ∞.

(iii) ⇒ (ii). Given ϕ ∈ C∞
c (Ω�). Let ω be a neighborhood of suppϕ such that suppϕ ⊂ ω ⊂⊂ Ω.

By (iii), for all h ∈ Rd with |h| < dist (ω, ∂Ω) there holds

∥τhu− u∥Lp(ω) ≤ C|h|,

Thus ∣∣∣∣∫
Ω
(τhu− u)ϕdx

∣∣∣∣ = ∣∣∣∣∫
ω
(τhu− u)ϕdx

∣∣∣∣ ≤ C|h|∥ϕ∥Lp′ (Ω). (2.68)

On the other hand, since∫
Ω
(τhu− u)ϕdx =

∫
ω
(u(x+ h)− u(x))ϕ(x)dx =

∫
ω
u(y)(ϕ(y − h)− ϕ(y))dy, (2.69)

it follows that ∣∣∣∣∫
ω
u(y)

(ϕ(y − h)− ϕ(y))

|h|
dy
∣∣∣∣ ≤ C|h|∥ϕ∥Lp′ (Ω). (2.70)

Choosing h = tej , t ∈ R, and passing t→ 0 implies (ii).

Now we prove that for each 1 ≤ p ≤ ∞, there holds

∥τhu− u∥Lp(Rd) ≤ |h|∥∇u∥Lp(Rd), ∀u ∈W 1,p(Rd).

When 1 ≤ p < ∞, we can apply Theorem 2.30 and using density argument to prove it, as in
the case for general domain Ω.

For p = ∞ and u ∈ W 1,∞(Rd), let h ∈ Rd. We consider B(0, n), n ∈ Z+. Applying the result
for Ω := B(0, n+ |h|+ 1) gives

∥τhu− u∥L∞(B(0,n)) ≤ |h|∥∇u∥L∞(B(0,n+|h|+1)) ≤ |h|∥∇u∥L∞(Rd).

Passing n→ ∞ gives our desired result.

Remark 2.34. From the proof of Proposition 2.33, we see that the constrain p > 1 is used only
when proving (i) by using (ii). When p = 1, the following implications remain true:

(i) ⇒ (ii) ⇔ (iii).
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The functions that satisfy (ii) (or (iii)) with p = 1 are called functions of bounded variation.
In the language of distributions, a function of bounded variation is an L1 function such that all its
first derivatives, in the sense of distributions, are bounded measures. This space plays an important
role in many applications.

Remark 2.35. From Proposition 2.33, we see that each function u ∈ W 1,∞(Ω�) has a continuous
representative on Ω, that is there exists a continuous function ũ ∈ C(Ω) such that u = ũ a.e. in
Ω�, and we will no longer distinguish them two. Moreover, if Ω� is connected then

|u(x)−u(y)| ≤ ∥∇u∥L∞(Ω)distΩ (x, y), ∀x, y ∈ Ω. (2.71)

where distΩ(x, y) denotes the geodesic distance from x to y in Ω�; in particular, if Ω� is convex then
distΩ(x, y) = |x−y|.

From here one can also deduce that if u�W 1,p(Ω�) for some 1 ≤ p ≤ ∞ and some open set Ω,
and if ∇u = 0 a.e. in Ω�, then u is constant on each connected component of �Ω.

Proposition 2.36 (differentiation of a product). Let Ω be an open set in Rd and let u, v ∈
W 1,p(Ω) ∩ L∞(Ω) with 1 ≤ p ≤ ∞. Then the product uv ∈W 1,p(Ω) ∩ L∞(Ω) and

∂j(uv) = (∂ju)v + u(∂jv), j = 1, · · · , d (2.72)

in the generalized sense in Ω.

证明. It is sufficient to prove (2.72) (why?). That is for each ϕ ∈ C∞
c (Ω), there holds∫

Ω
uv(∂jϕ)dx = −

∫
Ω
∂j(uv)ϕdx = −

∫
Ω
[(∂ju)v + u(∂jv)]ϕdx. (2.73)

We start with the case 1 ≤ p < ∞. By Theorem 2.30, there exists two sequences {un} and
{vn} in C∞

c (Rd) such that
un → u, vn → v, in Lp(Ω�)

and
∇un → ∇u, ∇vn → ∇v in Lp(ω) for all ω ⊂⊂ Ω.

Moreover, from the proof of Theorem 2.30, we know that

∥un∥L∞(Rd) ≤ ∥u∥L∞(Ω), ∥vn∥L∞(Rd) ≤ ∥v∥L∞(Ω).

For each ϕ ∈ C∞
c (Ω), integration by parts gives∫

Ω
unvn(∂jϕ)dx = −

∫
Ω
∂j(unvn)ϕdx = −

∫
Ω
[(∂jun)vn + un(∂jvn)]ϕdx. (2.74)

Passing n→ ∞ in (2.74) implies (2.73). (why?)
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We then consider the case p = ∞. Given ϕ ∈ C∞
c (Ω), there exists a bounded open set ω ⊂⊂ Ω

such that suppϕ ⊂ ω. To prove (2.73), we can work in ω instead of Ω. Since u, v ∈W 1,∞(ω)∩L∞(ω)

then u, v ∈ W 1,p(ω) ∩ L∞(ω) for all 1 ≤ p ≤ ∞. Then employing the proof of the case 1 ≤ p < ∞
gives us (2.73).

Proposition 2.37 (differentiation of a composition). Let Ω be an open set in Rd and let u ∈
W 1,p(Ω)∩L∞(Ω) with 1 ≤ p ≤ ∞. Let G ∈ C1(R) be such that G(0) = 0 and |G′(s)| ≤M, ∀s ∈ R
for some constant M . Then the composition

G ◦ u ∈W 1,p(Ω), ∂j(G ◦ u) = (G′ ◦ u)(∂ju), j = 1, · · · , d. (2.75)

证明. We have that |G(s)| ≤M |s| for all s ∈ R. Thus |G◦u| ≤M |u| and G◦u ∈ Lp(Ω). Similarly,
|(G′ ◦ u)(∂ju)| ≤M |∂ju| ∈ Lp(Ω). It is left to verify for each ϕ ∈ C∞

c (Ω) there holds∫
Ω
(G ◦ u)(∂jϕ)dx = −

∫
Ω
(G′ ◦ u)(∂ju)ϕdx, j = 1, · · · , d. (2.76)

When 1 ≤ p <∞, by Theorem 2.30, there exists a sequence {un} in C∞
c (Rd) such that

un → u, in Lp(Ω�)

and
∇un → ∇u, in Lp(ω) for all ω ⊂⊂ Ω.

Moreover, from the proof of Theorem 2.30, we know that

∥un∥L∞(Rd) ≤ ∥u∥L∞(Ω).

On the other hand, integration by parts implies∫
Ω
(G ◦ un)(∂jϕ)dx = −

∫
Ω
(G′ ◦ un)(∂ju)ϕdx, j = 1, · · · , d. (2.77)

Then passing n→ ∞ in (2.77) implies (2.76). (why?)

When p = ∞, we consider a bounded open set ω ⊂⊂ Ω such that suppϕ ⊂ ω. Then u ∈W 1,p(ω)

for all 1 ≤ p ≤ ∞. Then applying the argument for the case p <∞ implies (2.76).

Proposition 2.38 (change of variables formula). Let Ω and Ω′ be two open sets in Rd and let
H : Ω′ → Ω be a bijective map such that H ∈ C1(Ω′), H−1 ∈ C1(Ω), and the Jacobian matrices
JocH = (∂jHi)1≤i,j≤d ∈ L∞(Ω′), JocH−1 = (∂jH

−1
i )1≤i,j≤d ∈ L∞(Ω). Let u ∈ W 1,p(Ω) with

1 ≤ p ≤ ∞. Then u ◦H ∈W 1,p(Ω′) and

∂yju(H(y)) =
d∑

i=1

(∂xiu)(H(y))∂yjHi(y), j = 1, · · · , d. (2.78)
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证明. Clearly, by the property of H, we have

u ◦H ∈ Lp(Ω′), (∂xiu)(H(y))∂yjHi(y) ∈ Lp(Ω′)

for all 1 ≤ i, j ≤ d. It remains to show (2.78). That is for all ψ ∈ C∞
c (Ω′) and all j = 1, · · · , d,

there holds ∫
Ω′
u(H(y))∂yjψ(y)dy = −

∫
Ω′

d∑
i=1

(∂xiu)(H(y))∂yjHi(y)dy, (2.79)

When 1 ≤ p <∞, by Theorem 2.30, there exists a sequence {un} in C∞
c (Rd) such that

un → u, in Lp(Ω�)

and
∇un → ∇u, in Lp(ω) for all ω ⊂⊂ Ω.

Thus, by the property of H, we have (why?)

un ◦H → u ◦H, in Lp(Ω�)

and
(∂xiun)(H(y))∂yjHi(y) → (∂xiu)(H(y))∂yjHi(y), in Lp(ω′) for all ω′ ⊂⊂ Ω′.

On the other hand, integration by parts implies∫
Ω′
un(H(y))∂yjψ(y)dy = −

∫
Ω′

d∑
i=1

(∂xiun)(H(y))∂yjHi(y)dy, (2.80)

for all ψ ∈ C∞
c (Ω′) and all j = 1, · · · , d. Then passing n→ ∞ in (2.80) implies (2.79).

When p = ∞, we consider a bounded open set ω ⊂⊂ Ω such that suppϕ ⊂ ω. Then u ∈W 1,p(ω)

for all 1 ≤ p ≤ ∞. Then applying the argument for the case p <∞ implies (2.79).

2.9 The spaces Wm,p(Ω)

Let Ω ⊂ Rd be an open set, let m ≥ 2 be an integer and let 1 ≤ p ≤ ∞. We define

Wm,p(Ω) := {u ∈ Lp(Ω) : ∂αxu ∈ Lp(Ω) for all multi-index α such that |α| ≤ m} (2.81)

where the derivative ∂αx = ∂α1
x1
∂α2
x2

· · · ∂αd
xd

is defined in the generalized sense in Ω.

The space Wm,p(Ω) equipped with the norm

∥u∥Wm,p(Ω) :=
∑

0≤|α|≤m

∥∂αxu∥Lp(Ω) (2.82)
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is a Banach space.

The space Hm(Ω) :=Wm,2(Ω) equipped with the inner product

(u, v)Hm(Ω) :=
∑

0≤|α|≤m

(∂au, ∂αv)L2(Ω) (2.83)

is a Hilbert space.

Remark 2.39. One can show that if �Ω is ’smooth enough’ with �∂Ω bounded, then the norm on
Wm,p(Ω) is equivalent to the norm

∥u∥Lp(Ω) +
∑

|α|=m

∥∂αxu∥Lp(Ω). (2.84)

More precisely, it can be proved that for every multi-index β with 0 < |β| < m and for every
ε > 0, there exists a constant C depending on Ω�, ε, α, such that

∥∂βu∥Lp(Ω) ≤ ε
∑

|α|=m

∥∂αxu∥Lp(Ω) + C∥u∥Lp(Ω), ∀u ∈Wm,p(Ω). (2.85)

We refer to Adams [1] for the details and the proofs.

2.10 Extension operators

It is often convenient to establish properties of functions in W 1,p(�Ω) by beginning with the
case �Ω = Rd, for example the Sobolev Inequalities. It is therefore useful to be able to extend
a function u ∈ W 1,p(�Ω) to a function u ∈ W 1,p(�Rd). This is not always possible for a general
domain Ω. However, if Ω� is ’smooth’, such an extension can be constructed. Let us begin by
making precise the notion of a smooth open set.

We first introduce some notations. Given x ∈ Rd, we write

x = (x′, xd) with x′ ∈ Rd−1, x′ = (x1, x2, · · · , xd−1),

and set

|x′| =

(
d−1∑
i=1

x2i

) 1
2

.

We define
Rd
+ := {x = (x�, xd) ∈ Rd : xd > 0},

Rd
− := {x = (x�, xd) ∈ Rd : xd < 0},

Q := {x = (x�, xd) ∈ Rd : |x′| < 1, |xd| < 1},

Q+ := Q ∩ Rd
+,

Q− := Q ∩ Rd
−,

Q0 = {x = (x′, 0) : |x�| < 1}.�

(2.86)
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Definition 2.40. Let Ω ∈ Rd be an open set with boundary Γ := ∂Ω. We say Ω �is of class C1 if:

(i) There exists an open cover {Ωi}i≥0 of Ω such that

Ω0 ⊂ Ω, dist(Ω0, ∂Ω) > 0,

and
for each i ≥ 1, Ωi is bounded and Ωi ∩ ∂Ω ̸= ∅, ∂Ω ⊂

∪
i≥1

Ωi,

and either the family {Ωi}i≥0 is finite or

there exists k0 ∈ Z+ such that |i− j| ≥ k0 =⇒ Ωi ∩ Ωj = ∅.

(ii) For each i ≥ 1, there exists a bijective map Hi : Q→ Ωi such that

Hi ∈ C1(Q), H−1
i ∈ C1(Ωi), Hi(Q+) = Ωi ∩Q, Hi(Q0) = Ωi ∩ (∂Ω)�. (2.87)

The map Hi is called a local chart (or local coordinates) of the boundary ∂Ω.

(iii) There exist a C∞ partition of unity {φ}i≥0 subordinate to the cover {Ωi}i≥0 and constants
C1 and C2 such that

sup
i≥0

∥φi∥W 1,∞(Rd) ≤ C1, sup
i≥1

∥(Hi,H
−1
i )∥W 1,∞(Q)×W 1,∞(Ωi) ≤ C2. (2.88)

The C1 character (or C1 norm) of Ω is defined by C1 + C2.

• We say Ω is of class Lipschitz if in the above definition, the local coordinates Hi, i ≥ 1 are
merely uniform Lipschitz functions. The rest of the definition remains unchanged.

• Similarly, one can define a Cm, m ≥ 2 domain or a Cm,α, m ≥ 0 domain.

In the above definition, we used a C∞ partition of unity. Here we recall its definition:

Definition 2.41. A C∞ partition of unity subordinate to an open cover {Ωi}i∈N of the open set Ω
is a sequence of smooth functions {φi}i∈N with the following properties:

(i) For every i, φi ∈ C∞
c (Ωi), 0 ≤ φi ≤ 1.

(ii) For each compact subset K ⊂ Ω, only a finite number of the functions φi are not zero on K.

(iii) For all x ∈ Ω,
∑

i≥0 φi(x) = 1.

A classical result on the C∞ partition of unity is the following:



2 HILBERT SPACES, ORTHOGONALITY, AND VARIATIONAL PROBLEMS 69

Lemma 2.42. Let Ω ⊂ Rd be an open set with bounded boundary Γ := ∂Ω. Then there exists a
finite open cover {Ωi}Ni=0 of Ω such that

Ω0 ⊂ Ω, dist(Ω0, ∂Ω) > 0,

and
for each i ≥ 1, Ωi is bounded and Ωi ∩ ∂Ω ̸= ∅, ∂Ω ⊂

∪
i≥1

Ωi.

Moreover, there exists a C∞ partition of unity {φ}i≥0 subordinate to the cover {Ωi}i≥0.

证明. Exercise.

The main result is the following:

Theorem 2.43. Suppose that �Ω is of class C1 in the sense of Definition 2.40 (or Ω = Rd
+). Then

there exists a linear extension operator

E :W 1,p(Ω�) →W 1,p(Rd), 1 ≤ p ≤ ∞,

such that for all u ∈W 1,p(Ω�), there holds

Eu|Ω� = u, ∥Eu∥Lp(Rd) ≤ C∥Eu∥Lp(Ω), ∥u∥W 1,p(Rd) ≤ C∥u∥W 1,p(Ω), (2.89)

where C depends only on �Ω through C1, C2 in Definition 2.40.

Remark 2.44. We remark that the same result holds if �Ω is of class Lipschitz, slightly weaker
than C1. This can be seen from the proof that the estimate constant C in (2.89) depends only on
the Lipschitz norm, that is W 1,∞ norm, of the local chart and the C∞ partition of unity. The proof
is left to the students.

We shall begin by proving a simple but fundamental lemma concerning the extension by
reflection.

Lemma 2.45. Given u ∈ W 1,p(Q+) with 1 ≤ p ≤ ∞, one defines the function u∗ on Q to be the
extension by reflection, that is,

u∗(x′, xd) =

u(x
′, xd), if xd > 0,

u(x′,−xd), if xd < 0.
(2.90)

Then u∗ ∈W 1,p(Q) and

∥u∗∥Lp(Q) ≤ 2∥u∥Lp(Q+), ∥u∗∥W 1,p(Q) ≤ 2∥u∥W 1,p(Q+). (2.91)
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证明. First of all, it is clear that ∥u∗∥Lp(Q) ≤ 2∥u∥Lp(Q+). We shall furthermore prove that

∂u∗

∂xi
=

(
∂u

∂xi

)∗
for 1 ≤ i ≤ d− 1,

∂u∗

∂xd
=

(
∂u

∂xd

)#
, (2.92)

where
(

∂u
∂xi

)∗
denotes the extension by reflection of ∂u

∂xi
as in (2.90), and

(
∂u
∂xd

)#
denotes the

extension by minus-reflection in Q defined as

f#(x′, xd) =

f(x
′, xd), if xd > 0,

− f(x′,−xd), if xd < 0
(2.93)

for a function f defined in Q+.

Choose η ∈ C∞(R) satisfying

η(t) = 0, t ≤ 1/2; η(t) = 1, t ≥ 1.

Then define
ηk(·) = η(k·), k ∈ Z+.

Given φ ∈ C∞
c (Q). For 1 ≤ i ≤ d− 1, we have∫

Q
u∗
∂φ

∂xi
dx =

∫
Q+

u(x′, xd)
∂φ

∂xi
(x)dx+

∫
Q−

u(x′,−xd)
∂φ

∂xi
(x)dx

=

∫
Q+

u(x′, xd)
∂φ

∂xi
(x′, xd)dx+

∫
Q+

u(x′, xd)
∂φ

∂xi
(x′,−xd)dx.

(2.94)

We would like to switch the partial derivative in (2.94) to u by the definition of generalized
derivatives, but this cannot be done directly because a C∞

c (Q) function is not in general a proper test
function for u in Q+. While, by using the property of η, we know that supp (ηk(xd)φ(x

′,±xd)) ⊂ Q+

for all k ∈ Z+. So ηk(xd)φ(x′,±xd) is a good test function in Q+ and there holds∫
Q+

u(x′, xd)
∂
(
ηk(xd)φ(x

′, xd)
)

∂xi
dx = −

∫
Q+

∂u(x′, xd)

∂xi

(
ηk(xd)φ(x

′, xd)
)

dx,∫
Q+

u(x′, xd)
∂
(
ηk(xd)φ(x

′,−xd)
)

∂xi
dx = −

∫
Q+

∂u(x′, xd)

∂xi

(
ηk(xd)φ(x

′,−xd)
)

dx.
(2.95)

Since for 1 ≤ i ≤ d− 1,

∂

∂xi
(ηk(xd)φ(x

′,±xd)) = ηk(xd)
∂φ(x′,±xd)

∂xi
,

we then have∫
Q+

u(x′, xd)ηk(xd)
∂φ(x′, xd)

∂xi
dx = −

∫
Q+

∂u(x′, xd)

∂xi

(
ηk(xd)φ(x

′, xd)
)

dx,∫
Q+

u(x′, xd)ηk(xd)
∂φ(x′,−xd)

∂xi
dx = −

∫
Q+

∂u(x′, xd)

∂xi

(
ηk(xd)φ(x

′,−xd)
)

dx.
(2.96)
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By Lebesgue’s dominated convergence theorem, passing k → ∞ in (2.96) implies∫
Q+

u(x′, xd)
∂φ(x′, xd)

∂xi
dx = −

∫
Q+

∂u(x′, xd)

∂xi
φ(x′, xd)dx,∫

Q+

u(x′, xd)
∂φ(x′,−xd)

∂xi
dx = −

∫
Q+

∂u(x′, xd)

∂xi
φ(x′,−xd)dx.

(2.97)

Combining (2.94) and (2.97) , we are led to∫
Q
u∗
∂φ

∂xi
dx = −

∫
Q+

∂u(x′, xd)

∂xi
φ(x′, xd)dx−

∫
Q+

∂u(x′, xd)

∂xi
φ(x′,−xd)dx

= −
∫
Q+

∂u(x′, xd)

∂xi
φ(x′, xd)dx−

∫
Q−

∂u(x′,−xd)
∂xi

φ(x′, xd)dx

= −
∫
Q

(
∂u

∂xi

)∗
(x)φ(x)dx, 1 ≤ i ≤ d− 1.

(2.98)

This means
∂u∗

∂xi
=

(
∂u

∂xi

)∗
for 1 ≤ i ≤ d− 1.

Now we turn to consider the derivative on xd. Given φ ∈ C∞
c (Q), direct calculation gives∫

Q
u∗
∂φ

∂xd
dx =

∫
Q+

u(x′, xd)
∂φ

∂xd
(x)dx+

∫
Q−

u(x′,−xd)
∂φ

∂xd
(x)dx

=

∫
Q+

u(x′, xd)
∂φ

∂xd
(x′, xd)dx+

∫
Q+

u(x′, xd)
∂φ

∂xd
(x′,−xd)dx

=

∫
Q+

u(x′, xd)
∂(φ(x′, xd))

∂xd
dx−

∫
Q+

u(x′, xd)
∂(φ(x′,−xd))

∂xd
dx

=

∫
Q+

u
∂ψ

∂xd
dx,

(2.99)

where
ψ(x′, xd) := φ(x′, xd)− φ(x′,−xd).

Note that ψ(x′, 0) = 0, then there exists a constant M such that |ψ(x′, xd)| ≤M |xd| on Q.
Since ηk(xd)ψ(x′, xd) ∈ C∞

c (Q+), then∫
Q+

u(x′, xd)
∂
(
ηk(xd)ψ(x

′, xd)
)

∂xd
dx = −

∫
Q+

∂u(x′, xd)

∂xd

(
ηk(xd)ψ(x

′, xd)
)

dx. (2.100)

Here
∂
(
ηk(xd)ψ(x

′, xd)
)

∂xd
= ηk(xd)

∂ψ(x′, xd)

∂xd
+ kη′(kxd)ψ(x

′, xd) (2.101)

We claim that ∫
Q+

u(x′, xd)kη
′(kxd)ψ(x

′, xd)dx→ 0, as k → ∞. (2.102)
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Indeed, we have∣∣∣∣∫
Q+

u(x′, xd)kη
′(kxd)ψ(x

′, xd)dx
∣∣∣∣ ≤ k∥η′∥L∞M

∫
x∈Q+, 1

2k
≤xd≤ 1

k

|u(x′, xd)||xd|dx

≤ ∥η′∥L∞M

∫
x∈Q+, 1

2k
≤xd≤ 1

k

|u(x′, xd)|dx
(2.103)

which goes to zero as k → ∞ because u is integrable in Q+.
By (2.100), (2.101) and (2.102) and passing k → ∞, we have∫

Q+

u
∂ψ

∂xd
dx = −

∫
Q+

∂u

∂xd
ψ dx. (2.104)

Together with (2.99), we finally obtain∫
Q
u∗
∂φ

∂xd
dx =

∫
Q+

u
∂ψ

∂xd
dx = −

∫
Q+

∂u

∂xd
ψ dx = −

∫
Q

(
∂u

∂xd

)#
φdx. (2.105)

This means
∂u∗

∂xd
=

(
∂u

∂xd

)#
.

Remark 2.46. The conclusion of Lemma 2.45 remains valid if Q+ is replaced by Rd
+ (the proof is

unchanged). This establishes Theorem 2.43 for Ω� = Rd
+.

Now we are ready to prove Theorem 2.43:

Proof of Theorem 2.43. The case Ω = R+ can be proved by using the extension by reflection, as
in Lemma 2.45. Suppose that �Ω is of class Lipschitz with ∂Ω bounded. By Definition 2.40, there
exists an open cover {Ω}i≥0 and a local chart {Hi}i≥0 satisfy the stated property in Definition
2.40. Let {Hi}i≥0 be the related local chart. By Lemma 2.42, there exists a C∞ partition of unity
{φ}i≥0 related to the open cover {Ωi}i≥0.

Let u ∈W 1,p(Ω). By the definition of a C∞ partition of unity, we have the decomposion

u =
∑
i≥0

φiu =
∑
i≥0

ui in Ω, ui := φiu. (2.106)

Now we extend each of the functions ui to Rd, distinguishing u0 and ui, i ≥ 1.

Extension of u0. Since φ0 ∈ C∞
c (Ω0) with Ω0 ⊂ Ω, by Proposition 2.28, the zero extension

of u0 = φ0u, denoted by ũ0, is in W 1,p(Rd), and there holds

∂xj (ũ0) = ∂xj (ũφ0) = φ̃0∂xju+ ũ∂xjφ0.

Thus
∥ũ0∥Lp(Rd) ≤ C∥u∥Lp(Ω), ∥ũ0∥W 1,p(Rd) ≤ C∥u∥W 1,p(Ω).
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Extension of ui, i ≥ 1.
Consider the restriction of u to Ωi ∩ Ω � and ”transfer” this function to Q+ with the help of

Hi . More precisely, set
vi(y) = u(Hi(y)), y ∈ Q+.

We know from Proposition 2.38 that vi ∈ W 1,p(Q+). Then define the extension of vi on Q by
reflection of vi as in Lemma 2.45, and we denote this extension by v∗i . We know that v∗i ∈W 1,p(Q).

Then we ”retransfer” v∗i to Ωi using H−1
i :

wi = v∗i (H
−1
i (x)), x ∈ Ωi.

Then wi ∈W 1,p(Ωi), wi = u in Ωi ∩ Ω, and

∥wi∥Lp(Ωi) ≤ C∥u∥Lp(Ωi∩Ω), ∥wi∥W 1,p(Ωi) ≤ C∥u∥W 1,p(Ωi∩Ω). (2.107)

Finally define ûi a function on Rd as

ûi := ˜φi(x)wi(x) :=

φi(x)wi(x), x ∈ Ωi,

0, x ∈ Rd \ Ωi.

Then ûi ∈W 1,p(Rd), ûi = ui in Ω, and

∥ûi∥W 1,p(Rd) ≤ C∥wi∥W 1,p(Ωi) ≤ C∥u∥W 1,p(Ω∩Ωi). (2.108)

Extension opeartor. Our desired extension operator E :W 1,p(Ω) →W 1,p(Rd) as

Eu := ũ0 +
∑
i≥1

ûi = φ0u+
∑
i≥1

φi(x)wi(x), (2.109)

where naturally we omit the zero extension notation ˜ outside of the support of suppφi. Clearly

supp ũ0 ⊂ Ω0, supp ûi ⊂ Ωi, i ≥ 1. (2.110)

Now we show that Eu ∈ W 1,p(Rd). By the property (i) in Definition 2.40, for each x ∈ Rd, the
definition of Eu(x) in (2.109) is a finite sum; moreover, for each x ∈ Rd, wewrite

Eu(x) = ũ0(x) +

k0∑
j=1

∑
m≥0

ûmk0+j(x) =: ũ0(x) +

k0∑
j=1

vj(x), (2.111)

with
vj :=

∑
m≥0

ûmk0+j , 1 ≤ j ≤ k0.

Then there holds for each 1 ≤ j ≤ k0 that

supp ûmk0+j ⊂ Ωmk0+j , Ωm1k0+j ∩ Ωm2k0+j = ∅, ∀ m1 ̸= m2. (2.112)
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When 1 ≤ p <∞, for for each 1 ≤ j ≤ k0,∫
Rd

|vj(x)|p dx =

∫
∪m≥0Ωmk0+j

|
∑
m≥0

ûmk0+j(x)|p dx

=

∫
∪m≥0Ωmk0+j

|
∑
m≥0

ûmk0+j(x)|p dx

=
∑
m≥0

∫
Ωmk0+j

|
∑
m≥0

ûmk0+j(x)|p dx

=
∑
m≥0

∫
Ωmk0+j

|ûmk0+j(x)|p dx.

(2.113)

Together with (2.119) and (2.108), we deduce∫
Rd

|vj(x)|p dx =
∑
m≥0

∫
Ωmk0+j

|ûmk0+j(x)|p dx

≤ Cp
∑
m≥0

∫
Ωmk0+j

|wmk0+j(x)|p dx

≤ Cp
∑
m≥0

∫
Ω∩Ωmk0+j

|u(x)|p dx

= Cp

∫
∪m≥0Ω∩Ωmk0+j

|u(x)|p dx

≤ Cp

∫
Ω
|u(x)|p dx.

(2.114)

That is
∥vj∥Lp(Rd) ≤ C∥u∥Lp(Ω). (2.115)

Now we consider ∥∇vj∥Lp(Rd). For each φ ∈ C∞
c (Rd), there are only finite number of φi that

are nonzero on suppφ. Thus∫
Rd

vj∂φ dx =

∫
Rd

(∑
m≥0

ûmk0+j

)
∂φ dx

=

∫
Rd

(∑
m≥0

φmk0+jwmk0+j

)
∂φ dx

=
∑
m≥0

∫
Rd

(
φmk0+jwmk0+j

)
∂φ dx

= −
∑
m≥0

∫
Rd

(
∂φmk0+jwmk0+j + φmk0+j∂wmk0+j

)
φdx

= −
∫
Rd

∑
m≥0

(
∂φmk0+jwmk0+j + φmk0+j∂wmk0+j

)
φdx.

(2.116)

This implies that
∇vj =

∑
m≥0

(
∇φmk0+jwmk0+j + φmk0+j∇wmk0+j

)
. (2.117)
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Again by the property (2.112), similarly as the derivation of (2.114) and (2.115), we can deduce

∥∇vj∥Lp(Rd) ≤ C∥u∥W 1,p(Ω). (2.118)

Hence Eu ∈W 1,p(Rd) and

∥Eu∥Lp(Rd) ≤ ∥ũ0∥Lp(Rd) +
∑

1≤j≤k0

∥vj∥Lp(Rd) ≤ C∥u∥Lp(Ω),

∥∇Eu∥Lp(Rd) ≤ ∥∇ũ0∥Lp(Rd) +
∑

1≤j≤k0

∥∇vj∥Lp(Rd) ≤ C∥u∥W 1,p(Ω).
(2.119)

We complete the proof.

Remark 2.47. If ∂Ω is bounded and then is compact, there exists a finite subcover {Ωi}Ni=0 of the
cover {Ω}i≥1. By Lemma 2.42, there exists a C∞ partition of unity {φ}Ni=0 related to the finite
subcover {Ωi}Ni=0. Let u ∈ W 1,p(Ω). By the definition of a C∞ partition of unity, we have the
decomposition of finite sum

u =
N∑
i=0

φiu =
N∑
i=0

ui in Ω, ui := φiu. (2.120)

Corollary 2.48. . Assume that Ω� is of class C1, and let u ∈ W 1,p(Ω�) with 1 ≤ p < ∞. Then
there exists a sequence {un} in C∞

c (Rd) such that un → u in W 1,p(Ω�). In other words, C∞
c (Rd)

functions form a dense subspace of W 1,p(Ω�).

证明. By Theorem 2.43, there exists an extension Eu ∈ W 1,p(Rd) such that Eu = u in Ω. From
the proof of Theorem 2.30, we know the sequence χnS1/n[Eu] converges to Eu in W 1,p(Rd) and
thus it answers the problem.

2.11 Sobolev inequalities

2.11.1 The case Ω = Rd

Theorem 2.49. Let p ≥ 2 and 1 ≤ p < d. Then

W 1,p(Rd) ⊂ Lp∗(Rd), with 1

p∗
=

1

p
− 1

d
, (2.121)

and there exists a constant C = C(p, d) such that

∥u∥Lp∗ (Ω) ≤ C∥∇u∥Lp(Ω), ∀u ∈W 1,p(Rd). (2.122)
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Remark 2.50. The constant C = C(p, d) can be chosen as

C(p, d) =
p(d− 1)

d− p
.

But this constant is not optimal. For the optimal constants, we refer to the paper Best constant in
Sobolev in equality by Giorgio Talenti.

Remark 2.51. The value p∗ can be obtained by a simple scaling argument (scaling arguments, dear
to the physicists, sometimes give useful information with a minimum of effort). Indeed, assume
that there exist constants C and q with 1 ≤ q ≤ ∞ such that

∥u∥Lq(Rd) ≤ C∥∇u∥Lp(Rd), ∀u ∈ C∞
c (Rd),

then necessarily q = p∗. To see this, fix any function u ∈ C∞
c (Rd), and plug into the above equality

with uλ(x) = u(λx). We obtain

∥u∥Lq(Rd) ≤ Cλ
1+d

(
1
q
− 1

p

)
∥∇u∥Lp(Rd), ∀λ > 0.

This implies 1 + d
(
1
q −

1
p

)
= 0, i.e., q = p∗.

To prove Theorem 2.49, we need the following lemma:

Lemma 2.52. Let d ≥ 2 and let f1, f2, · · · , fd ∈ Ld−1(Rd−1). For x = (x1, x2, · · · , xd) ∈ Rd we set

x̃i = (x1, x2, · · · , xi−1, xi+1, · · · , xd) ∈ Rd−1, 1 ≤ i ≤ d,

i.e., xi is omitted from x = (x1, x1, · · · , xd). Then the function

f(x) = f1(x̃1)f2(x̃2) · · · fd(x̃d), x ∈ Rd,

belongs to L1(Rd) and

∥f∥L1(Rd) ≤
d∏

i=1

∥fi∥Ld−1(Rd−1).

证明. When d = 2, we have
f(x1, x2) = f1(x2)f2(x1)

with f1, f2 ∈ L1(R1). Direct calculation gives

∥f∥L1(R2) =

∫
R2

|f(x1, x2)|dx1dx2 =
∫
R

∫
R
|f1(x2)| |f2(x1)| dx1dx2 = ∥f1∥L1(R1)∥f2∥L1(R1).

(2.123)
We then complete the proof for the case d = 2.

By induction, we assume the result holds true for d and we want to prove the result for d+ 1.
We first fix xd+1. By Hölder’s inequality, there holds∫

Rd

|f(x)|dx1dx2 · · · dxd ≤ ∥fd+1∥Ld(Rd)

[∫
Rd

|f1 · · · fd|d
′ dx1dx2 · · · dxd

] 1
d′

, (2.124)
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with d′ = d/(d−1). Applying the induction assumption to the functions |f1|d
′
, · · · , |fd|d

′ , we deduce∫
Rd

|f1|d
′ · · · |fd|d

′ dx1dx2 · · · dxd ≤
d∏

i=1

∥|fi|d
′∥Ld−1(Rd) =

d∏
i=1

∥fi∥d
′

Ld(Rd−1). (2.125)

By (2.124) and (2.125), we obtain∫
Rd

|f(x)|dx1dx2 · · · dxd ≤ ∥fd+1∥Ld(Rd)

d∏
i=1

∥fi∥Ld(Rd−1), (2.126)

where the integral is taken without xd+1 variable (fixing xd+1).

Now we vary xd+1. Since fi(x̃i) ∈ Ld(Rd), 1 ≤ i ≤ d, then the function xd+1 → ∥fi∥Ld(Rd−1)

belongs to Ld(R), 1 ≤ i ≤ d. As a consequence, their product function

xd+1 →
d∏

i=1

∥fi∥Ld(Rd−1)

belongs to L1(R) and (why?)∫
Rd

|f(x)|dx1dx2 · · · dxddxd+1 ≤ ∥fd+1∥Ld(Rd)

d∏
i=1

∥fi∥Ld(Rd) =
d+1∏
i=1

∥fi∥Ld(Rd). (2.127)

Now we are ready to prove Theorem 2.49.

Proof of Theorem 2.49. We begin with the case p = 1 and u ∈ C1
c (Rd). We have

|u(x1, · · · , xd)| =
∣∣∣∣∫ x1

−∞

∂u

∂x1
(t, x2, · · · , xd)dt

∣∣∣∣
≤
∫ +∞

−∞

∣∣∣∣ ∂u∂x1 (x1, x2, · · · , xd)
∣∣∣∣dx1, (2.128)

and similarly,

|u(x1, · · · , xd)| ≤
∫ +∞

−∞

∣∣∣∣ ∂u∂xi (x1, x2, · · · , xd)
∣∣∣∣dxi =: fi(x̃i), for each 1 ≤ i ≤ d. (2.129)

Thus,

|u(x)|d ≤
d∏

i=1

fi(x̃i), (2.130)

and

|u(x)|d/(d−1) ≤
d∏

i=1

|fi(x̃i)|1/(d−1). (2.131)

We deduce from Lemma 2.52 that∫
Rd

|u(x)|d/(d−1) dx ≤
d∏

i=1

∥fi∥1/(d−1)

L1(Rd−1)
=

d∏
i=1

∥∥∥∥ ∂u∂xi
∥∥∥∥1/(d−1)

L1(Rd)

. (2.132)
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As a consequence, we have

∥u∥Ld/(d−1) ≤
d∏

i=1

∥∥∥∥ ∂u∂xi
∥∥∥∥1/d
L1(Rd)

. (2.133)

This completes the proof of the SGN inequality (2.122) with p = 1 and u ∈ C1
c (Rd).

We now turn to the case 1 < p < d, still with u ∈ C1
c (Rd). Let m ≥ 1. Applying (2.133) to

|u|m−1u implies

∥u∥m
Lmd/(d−1) ≤ m

d∏
i=1

∥∥∥∥|u|m−1 ∂u

∂xi

∥∥∥∥1/d
L1(Rd)

≤ m∥u∥m−1

L(m−1)p′

d∏
i=1

∥∥∥∥ ∂u∂xi
∥∥∥∥1/d
Lp

. (2.134)

Then choose m such that

md/(d− 1) = (m− 1)p′, i.e. m = (d− 1)p∗/d.

Clearly m ≥ 1 when 1 < p < d. Hence

∥u∥Lp∗ ≤ m
d∏

i=1

∥∥∥∥ ∂u∂xi
∥∥∥∥1/d
Lp

. (2.135)

We thus complete the proof for 1 ≤ p < d with u ∈ C1
c (Rd).

Finally, we use density argument to finish the proof for general u ∈ W 1,p(Rd). By Theorem
2.30, there exists a sequence {un} in C∞

c such that un → u in W 1,p(Rd). Moreover, one can also
suppose, by extracting a subsequence if necessary, that un → u a.e. in Rd. We have shown

∥un∥Lp∗ ≤ C∥∇un∥Lp .

It follows from Fatou’s lemma that

u ∈ Lp∗ , ∥u∥Lp∗ ≤ C∥∇u∥Lp .

Corollary 2.53. Let 1 ≤ p < d. Then

W 1,p(Rd) ⊂ Lq(Rd), ∀q ∈ [p, p∗]

with continuous injection.

证明. By interpolation. Exercise.

Theorem 2.54. Let d ≥ 2. We have

W 1,d(Rd) ⊂ Lq(Rd), ∀q ∈ [d,+∞). (2.136)

If d = 1, we have
W 1,1(R) ⊂ L∞(R). (2.137)
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证明. First consider the case d = 1. Assume u ∈ C1
c (Rd). Taking p = d in (2.134) implies

∥u∥m
Lmd/(d−1) ≤ m

d∏
i=1

∥∥∥∥|u|m−1 ∂u

∂xi

∥∥∥∥1/d
L1(Rd)

≤ m∥u∥m−1
L(m−1)d/(d−1)

d∏
i=1

∥∥∥∥ ∂u∂xi
∥∥∥∥1/d
Ld

≤ ∥u∥m−1
L(m−1)d/(d−1)∥∇u∥Ld , ∀m ≥ 1.

(2.138)

By Young’s inequality, we have

∥u∥Lmd/(d−1) ≤ C (∥u∥L(m−1)d/(d−1) + ∥∇u∥Ld) , ∀m ≥ 1. (2.139)

Taking m = d in (2.139) gives

∥u∥
Ld2/(d−1) ≤ C(∥u∥Ld + ∥∇u∥Ld) = C∥u∥W 1,d . (2.140)

Then by interpolation, we have

∥u∥Lq ≤ C∥u∥W 1,d , ∀d ≤ q ≤ d2(d− 1). (2.141)

Then we can reiterating this argument with m = d+ 1, m = d+ 2, etc., we arrive at

∥u∥Lq ≤ C∥u∥W 1,d , ∀q ∈ [N,+∞), (2.142)

with a constant C depending on q and d. The proof will then be completed by density argument.
(why?)

For d = 1. We consider u ∈ C∞
1 (R). Then

|u(x)| ≤
∣∣∣∣∫ x

−∞
u′(t)dt

∣∣∣∣ ≤ ∫ x

−∞
|u′(t)|dt ≤ ∥u′∥L1 .

Now we can apply density argument to finish the proof. (How?)

Remark 2.55. From the proof, we see that the constant C in Theorem 2.54 will go to infinity if q
goes to infinity.

Theorem 2.56 (Morrey). Let d ≥ 1 and p > d. We have

W 1,p(Rd) ⊂ L∞(Rd) (2.143)

with continuous injection. Furthermore, for all u ∈W 1,p(Rd), we have

|u(x)− u(y)| ≤ C|x− y|α∥∇u∥Lp , a.e. x, y ∈ Rd, (2.144)

where α = 1− d
p and C is constant depending only on p and d.
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Remark 2.57. Inequality (2.144) implies the existence of a Hölder continuous function ũ ∈ Cα(Rd)

such that u = ũ a.e. on Rd. Indeed,let A ⊂ Rd be a set of measure zero such that (2.144) holds
for x, y ∈ Rd \ A; since Rd \ A is dense in Rd, the function u|Rd\A admits a (unique) continuous
extension to Rd. In other words, every function u ∈ W 1,p(Rd) with p > d admits a continuous
representative. When it is useful, we replace u by its continuous representative, and we also denote
by u this continuous representative.

证明. Exercise.

Remark 2.58. From Theorem 2.56, we can deduce that W 1,p(Rd) ⊂ C0(Rd) for all d < p < ∞.
Indeed, for each u ∈ W 1,p(Rd) with d < p < ∞, there exists a sequence {un} in C∞

c (Rd) that
converges to u in W 1,p(Rd). Applying Theorem 2.56, we have that un → u in L∞(Rd), which
means that u ∈ C0(Rd).

Corollary 2.59. Let m ≥ 1 be an integer and p ∈ [1,+∞]. We have

Wm,p(Rd) ⊂ Lq(Rd), with 1

q
=

1

p
− m

d
, if 1

p
− m

d
> 0,

Wm,p(Rd) ⊂ Lq(Rd), ∀q ∈ [1,+∞), if 1

p
− m

d
= 0,

Wm,p(Rd) ⊂ L∞(Rd), if 1

p
− m

d
< 0,

(2.145)

where all these injections are continuous.
Moreover, if m− (d/p) > 0 is not an integer, we have for all u ∈Wm,p(Rd) that

∥∂αu∥L∞(Rd) ≤ C∥u∥Wm,p(Rd), ∀ α ∈ Nd with |α| ≤ k, (2.146)

and for all x, y ∈ Rd,

|∂αu(x)− ∂αu(y)| ≤ C∥u∥Wm,p(Rd)|x− y|θ, ∀ α ∈ Nd with |α| = k, (2.147)

where
k = [m− (d/p)], θ = m− (d/p)− [m− (d/p)] ∈ (0, 1).

证明. Exercise.

Remark 2.60. The case p = 1 and m = d is special. We have W d,1(Rd) ⊂ L∞(Rd). (But it is not
true, in general, that Wm,p ⊂ (Rd) ⊂ L∞(Rd) for p > 1 and m = d/p.) Indeed, for u ∈ C∞

c (Rd),

we have

u(x1, x2, · · · , xd) =
∫ x1

−∞

∫ x2

−∞
· · ·
∫ xd

−∞

∂du

∂x1∂x2 · · · ∂xd

(t1, t2, · · · , td)dt1dt2 · · · dtd,

and thus
∥u∥L∞ ≤ ∥∂du∥L1 , ∀u ∈ C∞

c (Rd).

The case of a general function u ∈W d,1 follows by density.
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2.11.2 The case Ω ⊂ Rd

We first have the following Sobolev embedding theorem:

Theorem 2.61. Let Ω be a domain of class Lipschitz and let 1 ≤ p ≤ ∞. Then we have

W 1,p(Ω) ⊂ Lp∗(Ω),
1

p∗
=

1

p
− 1

d
, if p < d,

W 1,p(Ω) ⊂ Lq(Ω), ∀q ∈ [p,+∞), if p = d,

W 1,p(Ω) ⊂ L∞(Ω), if p > d,

(2.148)

and all these injections are continuous. Furthermore, for all u ∈W 1,p(Ω), we have

|u(x)− u(y)| ≤ C|x− y|α∥∇u∥Lp , a.e. x, y ∈ Ω, (2.149)

where α := 1 − d
p and C is constant depending only on p and d and the Lipschitz character of Ω.

This means, up to a choice of the continuous representative, W 1,p(Ω) ⊂ Cα(Ω).

证明. Using the extension operator in Theorem 2.43. Exercise.

Remark 2.62. An analogy as Corollary 2.59 for Wm,p(Ω) can be obtained simply by replacing Rd

by Ω. We remark that one can prove such a result by using induction argument if Ω is Lipschitz.
One can also prove such a result by employing an extension operator E :Wm,p(Ω) →Wm,p(Rd), but
this would require an extra hypothesis: Ω would have to be of class Cm to construct this extension
operator.

If moreover Ω is bounded, we then have the following compact embedding theorem:

Theorem 2.63 (Rellich-Kondrachov). Let Ω be a bounded domain of class Lipschitz and let 1 ≤
p ≤ ∞. Then we have the following compact injections:

W 1,p(Ω) ⊂c L
q(Ω), ∀q ∈ [1, p∗) with 1

p∗
=

1

p
− 1

d
, if p < d,

W 1,p(Ω) ⊂c L
q(Ω), ∀q ∈ [p,+∞), if p = d,

W 1,p(Ω) ⊂c C
∞(Ω), if p > d.

(2.150)

To prove this compact embedding theorem, we shall need the following two results. The first
one is the following classical Ascoli-Arzelá theorem:

Theorem 2.64 (Ascoli–Arzelá). Let K be a compact metric space and let H be a bounded subset
of C(K). Assume that H is uniformly equicontinuous, that is, for all ε > 0, there exists δ > 0 such
that

dist (x1, x2) ≤ δ =⇒ |f(x1)−f(x2)| ≤ ε, ∀f ∈ H. (2.151)

Then the closure of H in C(K) is compact.
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The proof of the Ascoli-Arzelá theorem can be found in many analysis books, see for example
[7].

The second one is the following theorem which is an “Lp-versions”of the Ascoli–Arzelá theorem.

Theorem 2.65 (Kolmogorov–M. Riesz–Fréchet). Let A be a bounded set in Lp(Rd) with 1 ≤ p <∞
Assume that

lim
h→0

∥τhf−f∥Lp(Rd) = 0 uniformly in f ∈ A, (2.152)

i.e., for all ε > 0, there exists δ > 0 such that

∥τhf−f∥Lp(Rd) ≤ ε, ∀f ∈ A, ∀h ∈ Rd, |h| ≤ δ. (2.153)

Then for any measurable set �Ω ⊂ Rd with finite measure, the closure of

A|Ω := {f |Ω : f ∈ A}

in Lp(Ω) is compact.

Proof of Theorem 2.65. Step 1. Given ε > 0. Let δ(ε) > 0 be such that (2.153) holds. We claim
that

∥Sδ′ [f ]− f∥Lp(Rd) ≤ ε, ∀f ∈ A, ∀0 < δ′ ≤ δ(ε), (2.154)

where Sδ is the standard Fredrichs’ mollifier with kernel ϕδ = 1
δd
ϕ( ·δ ).

Indeed, we have

|Sδ′ [f ](x)− f(x)| ≤
∫

|f(x− y)− f(x)|ϕδ′(y)dy

≤
[∫

|f(x− y)− f(x)|pϕ1/n(y)
]1/p

.

(2.155)

Thus for all 0 < δ′ ≤ δ, by using (2.153), we deduce∫
|Sδ′ [f ](x)− f(x)|p dx ≤

∫ ∫
|f(x− y)− f(x)|pϕδ′(y)dy dx

=

∫
B(0,δ′)

ϕδ′(y)dy
∫

|f(x− y)− f(x)|p dx

≤ εp.

(2.156)

Step 2. We then claim that, for each δ > 0, there exists a constant C(δ) depending only on
δ such that

∥Sδ[f ]∥L∞ ≤ Cδ∥f∥Lp , ∀f ∈ A,

|Sδ[f ](x1)− Sδ[f ](x2)| ≤ Cδ∥f∥Lp |x1 − x2|, ∀f ∈ A, ∀x1, x2 ∈ Rd.
(2.157)
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Indeed, by Hölder’s inequality, we have

|Sδ[f ](x)| ≤ ∥f∥Lp∥ϕδ∥Lp′ ≤ δ−d/p∥ϕ∥Lp′∥f∥Lp ,

|∇Sδ[f ](x)| ≤ ∥f∥Lp∥∇ϕδ∥Lp′ ≤ δ−1−d/p∥∇ϕ∥Lp′∥f∥Lp .
(2.158)

Step 3. Given ε > 0 and Ω� ⊂ Rd of finite measure, there is a bounded measurable subset ω
of � such that

∥f∥Lp(Ω\ω) ≤ ε, ∀f ∈ A. (2.159)

Indeed, we write

∥f∥Lp(Ω\ω) ≤ ∥f − Sδ[f ]∥Lp(Ω\ω) + ∥Sδ[f ]∥Lp(Ω\ω) ≤ ∥f − Sδ[f ]∥Lp(Rd) + ∥Sδ[f ]∥L∞ |Ω \ ω|.

Then by the claims in Step 1 and Step 2, we have for 0 < δ′ ≤ δ(ε/2) that

∥f∥Lp(Ω\ω) ≤ ε/2 + (δ′)−d/p∥ϕ∥Lp′∥f∥Lp |Ω \ ω|.

The claim can be proved by taking ω such that |Ω \ ω| sufficient small.

Step 4. Since Lp(Ω) is a Banach space, by Proposition 1.18, it suffices to show that A|Ω is
totally bounded, i.e., given each ε > 0, there is a finite covering of A|Ω� by balls of radius ε. Given
ε > 0, we fix a bounded measurable set ω such that (2.159) holds. Also we fix δ > 0 such that
(2.153) and (2.154) hold. The family

A′ = {Sδ[f ]|ω̄ : f ∈ A}

satisfies all the assumptions of the Ascoli–Arzelá theorem by using Step 2. Therefore A′ has compact
closure in C(ω̄); consequently A′ also has compact closure in Lp(ω) due to the boundedness of ω.
Hence we may cover A′ by a finite number of balls of radius ε in Lp(ω), that is

A′ ⊂
J∪

j=1

B(gj , ε), for some gj ∈ Lp(ω).

We now consider the zero extensions g̃j : Ω → R defined by

g̃j = gj on ω, g̃j = 0 on Ω \ ω.

Clearly gj ∈ Lp(Ω). We claim that the balls B(gj , 3ε), 1 ≤ j ≤ J covers A|Ω. Indeed, given f ∈ A,
there is some gj such that

∥Sδ[f ]− gj∥Lp(ω) ≤ ε.

Since
∥f − g̃j∥pp =

∫
ω
|f − gj |p dx+

∫
Ω\ω

|f |p dx,
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we have by using Step 1 and Step 3 that

∥f − g̃j∥p ≤ ∥f − Sδ[f ]∥Lp(ω) + ∥Sδ[f ]− gj∥Lp(ω) + εdx ≤ 3ε.

We have shown that A|Ω has a finite 3ε-net in Lp(Ω) for each ε > 0. This means A|Ω is totally
bounded and then relatively compact in Lp(Ω).

Remark 2.66. When trying to establish that a family A in Lp(Ω) has compact closure in Lp(Ω),
with Ω bounded, it is usually convenient to extend the functions to Rd , then apply Theorem 2.65
and consider the restrictions to Ω�.

Remark 2.67. Under the assumptions of Theorem 2.65, we cannot conclude in general that A
itself has compact closure in Lp(Rd) (why?). An additional assumption is required; we describe it
next:

Corollary 2.68. Let A be a bounded set in Lp(Rd) with 1 ≤ p <∞. Assume (2.152) and also that

for all ε > 0, there exists a bounded measurable set Ω ⊂ Rd such that

∥f∥Lp(Rd/\Ω) ≤ ε, ∀ f ∈ A.
(2.160)

Then A has compact closure in Lp(Rd).

证明. Given ε > 0, we fix Ω ⊂ Rd bounded measurable such that (2.160) holds. By Theorem 2.65,
we know that A|Ω has compact closure in Lp(Ω). Hence A|Ω is totally bounded, that is F |Ω� admits
a cover of a finite number of balls of radius ε in Lp(Ω�):

A|Ω ⊂
J∪

j=1

B(gj , ε), for some gj ∈ Lp(Ω).

By similar argument as Step 4 in the proof of Theorem 2.65, we can deduce that the balls
B(g̃j , 2ε), 1 ≤ j ≤ J covers A in Lp(Rd). This implies that A is totally bounded and then is
relatively compact.

Remark 2.69. The converse of Corollary 2.68 is also true (why?). Therefore we have a complete
characterization of compact sets in Lp(Rd).

Proof of Theorem 2.63. The case p > d follows from Theorem 2.61 and the Ascoli–Arzelá theorem.
The case p = d reduces to the case p < d. Therefore, we are left with the case p < d.

Let B be the unit ball in W 1,p(Ω) with 1 ≤ p < d. Let E : W 1,p(Ω) → W 1,p(Rd) be the
extension operator of Theorem 2.43. Set A = E(B), so that B = A|Ω�. We will invoke Theorem
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2.65 to show that B = A|Ω is relatively compact in Lp(Ω). Clearly A is a bounded set in W p(Rd)

by the boundedness of the extension operator. Moreover, Sobolev inequality implies that A is a
bounded set in Lp ∩ Lp∗(Rd). By Proposition 2.33, we know that

∥τhu− u∥Lp(Rd) ≤ |h| ∥∇u∥Lp(Rd), ∀u ∈ A. (2.161)

This implies that the assumptions in Theorem 2.65 are fulfilled. Since Ω is bounded, thus, by
Theorem 2.65, B = A|Ω is relatively compact in Lp(Ω). By interpolation, we know that B is
relatively compact in Lq(Ω) for any q ∈ [1, p∗).

Remark 2.70. Theorem 2.63 is “almost optimal”in the following sense:

(i) If Ω is not bounded, the injection W 1,p(Ω�) ⊂ Lp(Ω) is, in general, not compact.

(ii) The injection W 1,p(Ω) ⊂ Lp∗(Ω�) is never compact even if Ω � is bounded and smooth.

Remark 2.71. Let Ω ⊂ Rd� be a bounded open set of class Lipschitz. Then the norm

|∥u∥| := ∥∇u∥Lp(Ω) + ∥u∥Lq(Ω)

is equivalent to the W 1,p(Ω) norm so long as

1 ≤ q ≤ p∗ if 1 ≤ p < d,

1 ≤ q <∞ if p = d,

1 ≤ q ≤ ∞ if p > d.

(why?)

2.12 The space W 1,p
0 (Ω)

Definition 2.72. Let Ω be an open set in Rd and let 1 ≤ p < ∞; W 1,p
0 (Ω) denotes the closure of

C∞
c (Ω) in W 1,p(Ω). The space W 1,p

0 , equipped with the W 1,p norm, is a separable Banach space,
and is reflexive if 1 < p < ∞. The space W 1,2

0 , equipped with the W 1,2(Ω) inner product, is a
Hilbert space.

Remark 2.73. • Since C∞
c (Rd) is dense in W 1,p(Rd), then W 1,p

0 (Rd) = W 1,p(Rd), for all
1 ≤ p <∞.

• If Ω ̸= Rd, in general W 1,p
0 (Ω) ̸= W 1,p(Ω). However, it is possible that if Rd \ Ω is ”small

enough”, one could have W 1,p
0 (Ω) =W 1,p(Ω). For example, if Ω = Rd \ {0} with d ≥ 2, then

W 1,2
0 (Ω) =W 1,2(Ω).
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The functions in W 1,2
0 (Ω) are “roughly”those of W 1,2(Ω) that “vanish on the boundary ∂Ω.”It is

delicate to make this precise, since a function u ∈W 1,2(Ω) is defined only a.e. in Ω and the measure
of ∂Ω� is zero, and u need not have a continuous representative. The following characterizations
suggest that we “really”have Sobolev functions that are “zero on ∂Ω.”We begin with a simple fact:

Lemma 2.74. Let u ∈ W 1,p(Ω) with Ω an open set in Rd and 1 ≤ p <∞. Assume that suppu is
a compact subset of Ω. Then u ∈W 1,p

0 (Ω).

证明. Since suppu is a compact subset of the open set Ω, there exists a bounded open set Ω′ such
that suppu ⊂ Ω′ ⊂⊂ Ω. Let χ ∈ C∞

c (Ω′) such that χ = 1 on suppu. Then u = χu. We know that
there exists a sequence {un} ⊂ C∞

c (Rd) such that

un → u in Lp(Ω), ∇un → ∇u in Lp(Ω′).

It follows that χun → χu = u in W 1,p(Ω). Thus u ∈W 1,p
0 (Ω).

Theorem 2.75. Suppose that Ω is an open set of class C1. Let 1 ≤ p <∞ and

u ∈W 1,p(Ω) ∩ C(Ω).

The the following two properties are equivalent:

(i) u = 0 on ∂Ω.

(ii) u ∈W 1,p
0 (Ω).

证明. (i) =⇒ (ii). Suppose first that suppu is bounded. Fix a function G ∈ C1(R) such that

|G(t)| ≤ |t|, 0 ≤ G′(t) ≤ 4, ∀ t ∈ R, G(t) =

0, if |t| ≤ 1,

t if |t| ≥ 2.
(2.162)

We consider the sequence
un :=

1

n
G(nu), n ∈ Z+

satisfying

|un| ≤ |u|, un =


0, if |u| ≤ 1

n
,

u if |u| ≥ 2

n
.
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By Proposition 2.37 on the composition of Sobolev functions, we know that un belongs to W 1,p(Ω).
We claim that un → u in W 1,p(Ω). Indeed, by Lebesgue’s dominated convergence theorem, we have∫

Ω
|un − u|p dx =

∫
|u|≥ 2

n

|un − u|p dx+

∫
|u|< 2

n

|un − u|p dx

=

∫
|u|< 2

n

|un − u|p dx

≤
∫
|u|< 2

n

|un|p dx+

∫
|u|< 2

n

|u|p dx

≤ 2

∫
|u|< 2

n

|u|p dx

≤ 2

∫
Ω
1|u|< 2

n
|u|p dx→ 0, as n→ ∞�

(2.163)

and ∫
Ω
|∇un −∇u|p dx =

∫
Ω
|G′(nu)∇u−∇u|p dx

=

∫
|u|> 2

n

|G′(nu)∇u−∇u|p dx+

∫
|u|≤ 2

n

|G′(nu)∇u−∇u|p dx

=

∫
|u|≤ 2

n

|G′(nu)∇u−∇u|p dx

≤
∫
Ω
1|u|≤ 2

n
|G′(nu)− 1|p|∇u|p dx

≤ 3p
∫
Ω
1|u|≤ 2

n
|∇u|p dx→ 3p

∫
Ω
1u=0|∇u|p dx, as n→ ∞.

(2.164)

Now we show that a.e. on {u = 0} := {x ∈ Ω : u(x) = 0}, there holds ∇u = 0. By the definition
of generalized derivatives, there holds∫

Ω
∂juϕdx = −

∫
Ω
u∂jϕdx = 0, for all ϕ ∈ C∞

c ({u = 0}).

This implies that ∂ju = 0 a.e. on {u = 0}. Hence,

lim
n→∞

∫
Ω
|∇un −∇u|p dx ≤ 3p

∫
u=0

|∇u|p dx = 0. (2.165)

On the other hand, since u = 0 on ∂Ω, we have

suppun ⊂ {x ∈ Ω : |u(x)| ≥ 1/n} ⊂ Ω.

Thus suppun is a compact set contained in open set Ω. By Lemma 2.74, un ∈ W 1,p
0 (Ω) and it

follows u ∈W 1,p
0 (Ω).

In the general case in which suppu is not bounded, consider the sequence chinu with χn(·) =
χ( ·

n) where χ ∈ C∞
c (B(0, 1)) satisfying 0 ≤ χ ≤ 1, χ = 1 on B(0, 1/2). From the above, χnu ∈

W 1,p
0 (Ω) and since χnu→ u in W 1,p

0 (Ω), we conclude that u ∈W 1,p
0 (Ω).
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(ii) =⇒ (i). Using local charts it is reduced to the following problem (why?): let u ∈
W 1,p

0 (Q+) ∩ C(Q+), prove that u = 0 on Q0.
Let un be a sequence in C∞

c (Q+) that converges to u in W 1,p(Ω). We have for (x′, xd) ∈ Q+,

|un(x′, xd)| ≤
∫ xd

0

∣∣∣∣∂un∂xd
(x′, t)

∣∣∣∣ dt.

Thus, for 0 < ε < 1,

1

ε

∫
|x′|<1

∫ ε

0
|un(x′, xd)|dx′ dxd ≤ 1

ε

∫
|x′|<1

∫ ε

0

∫ xd

0

∣∣∣∣∂un∂xd
(x′, t)

∣∣∣∣ dtdx′ dxd

≤
∫
|x′|<1

∫ ε

0

∣∣∣∣∂un∂xd
(x′, xd)

∣∣∣∣ dx′ dxd.

Passing n→ ∞ implies

1

ε

∫
|x′|<1

∫ ε

0
|u(x′, xd)|dx′ dxd ≤

∫
|x′|<1

∫ ε

0

∣∣∣∣ ∂u∂xd (x′, xd)
∣∣∣∣ dx′ dxd.

Since u ∈ C(Q+) and ∂xd
u ∈ L1(Q+), passing ε→ 0 gives∫

|x′|<1
|u(x′, 0)|dx′ = 0.

Thus u = 0 on Q0.

Remark 2.76. In the proof of (i) =⇒ (ii), we have not used the smoothness of Ω�. However, the
converse (ii) =⇒ (i) requires a smoothness hypothesis on Ω. (consider for example Ω = Rd \ {0}
with d ≥ 2, p ≤ d).

Here is another characterization of W 1,p
0 .

Proposition 2.77. Suppose Ω is of class C1. Let u ∈ Lp(Ω) with 1 < p < ∞. The following are
equivalent:

(i) u ∈W 1,p
0 (Ω).

(ii) There exists a constant C such that∣∣∣∣∫
Ω
u
∂φ

∂xi
dx
∣∣∣∣ ≤ C∥φ∥Lp′ (Ω) ∀φ ∈ C∞

c (Rd), ∀ i = 1, 2, · · · , d.

(i) The function

ũ(x) =

u(x), x ∈ Ω,

0, x ∈ Rd \ Ω,

belongs to W 1,p(Rd), and in this case

∂ũ

∂xi
=

∂̃u

∂xi
, ∀ i = 1, 2, · · · , d.
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证明. (i) =⇒ (ii). Let {un} be a sequence in C∞
c (Ω) such that un → u in W 1,p. For each

φ ∈ C∞
c (Rd), we have∣∣∣∣∫

Ω
un

∂φ

∂xi
dx

∣∣∣∣ = ∣∣∣∣∫
Ω

∂un
∂xi

φdx

∣∣∣∣ ≤ ∥∥∥∥∂un∂xi

∥∥∥∥
Lp(Ω)

∥φ∥Lp′ (Ω). (2.166)

Passing n→ ∞ in (2.166) implies (ii) with C = ∥∇u∥Lp(Ω).
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3 分析 II 开卷考试题

注意：1，可以查阅资料，但请勿抄袭。2，论证细节需要提供。

Exercise 1. [15 points] Let a < b be two real numbers. Let C[a, b] be the Banach space of
all continuous functions on [a, b] with norm ∥u∥ := maxa≤x≤b |u(x)|. Let f ∈ C[a, b] be a given
function. Show that the nonlinear integral equation

u(x) =

∫ b

a
sinu(x)dx+ f(x)

has a solution u ∈ C[a, b]

Exercise 2. [15 points]
Let a < b be two real numbers. Let K : [a, b]× [a, b] → R be continuous with 0 ≤ K(x, y) ≤ k

for all x, y ∈ [a, b]. Suppose 2(b− 1)k ≤ 1/2. Let u0 ≡ 0, v0 ≡ 2. Prove that both of the iteration
sequences

un+1(x) :=

∫ b

a
K(x, y)un(y)dy + 1,

vn+1(x) :=

∫ b

a
K(x, y)vn(y)dy + 1

converge uniformly on [a, b] to the unique solution u ∈ C[a, b] of the integral equation

u(x) =

∫ b

a
K(x, y)u(y)dy + 1.

Exercise 3.[15 points] Let B be a Banach algebra. A family {ei} in B is called an approximate
identity for B if supi ∥ei∥ < ∞ and for each x ∈ B, there holds eix → x and xei → x. Show that
B has an approximate identity if and only if there is a bounded subset E of B such that for every
ε > 0 and for every x ∈ B there is an e ∈ E such that ∥xe− x∥+ ∥ex− x∥ < ε.

Exercise 4. [15 points] Let Ω be a bounded measurable set in Rd. Let 1 < p < ∞. Let
K : Ω× Ω → C be a measurable function such that

sup
x∈Ω

∫
Ω
|K(x, y)|p′ dy <∞.

Prove that
Tu(x) :=

∫
Ω
K(x, y)u(y)dy

defines a compact operator on Lp(Ω)

Exercise 5.[20 points]
Let ϕ ∈ C∞

c (R) be a nonzero function. Define the sequence {un}∞n=1 by un(x) = ϕ(x+ n) for
all x ∈ R. Let 1 ≤ p ≤ ∞.
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• Show that {un}∞n=1 is bounded in W 1,p(R).

• Prove that there exists no subsequence {unk
} converging strongly in Lq(R), for any 1 ≤ q ≤ ∞.

(This means the compact Sobolev embedding could be wrong for unbounded domains.)

• Show that un → 0 weakly in W 1,p(R), for each p ∈ (1,∞).

Exercise 6. [15 points]
Let Ω be a smooth bounded domain in Rd and let 1 ≤ p ≤ ∞. Prove that for each ε > 0, there

exists C = C(ε,Ω) such that∑
|α|<m

∥∂αu∥Lp(Ω) ≤ ε
∑

|α|=m

∥∂αu∥Lp(Ω) + C(ε,Ω)∥u∥Lp(Ω), ∀u ∈Wm,p(Ω).

Exercise 7. [20 points] (Stability of weak solutions)
Let Ω be a bounded C1 domain in R3. We consider the stationary incompressible Navier-Stokes

equations in Ω

u · ∇u −∆u +∇p = f, div u = 0, (3.1)

subjected to the boundary condition
u = 0 on ∂Ω. (3.2)

Here u = (u1,u2,u3) is the vector valued unknown, the convective term u · ∇u is defined as

u · ∇u :=
3∑

i=1

ui∂iu.

The source term f is supposed to be in L2(Ω;R3).

We say u ∈W 1,2
0 (Ω;R3) satisfying div u = 0 is a turbulent weak solution of (3.1)-(3.2) provided∫

Ω
(u · ∇u) · φdx+

∫
Ω
∇u : ∇φdx =

∫
Ω

f · φdx, ∀φ ∈ C∞
c (Ω;R3), divφ = 0, (3.3)

and ∫
Ω
|∇u|2 dx ≤

∫
Ω

f · u dx. (3.4)

Let {un} ⊂ W 1,2
0 (Ω;R3) satisfying div un = 0 be a sequence of turbulent weak solutions to

(3.1)-(3.2). Prove the following two statements.

• The solution sequence is bounded:

sup
n

∥un∥W 1,2
0 (Ω)

<∞.

• Thus, up to a subsequence, the sequence {un} admits a weak limit u in W 1,2
0 (Ω). Moreover,

the weak limit u is also a turbulent weak solution to (3.1)-(3.2).


