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This course is a continuation study of the basic functional analysis. In this course, along

with the theorems and principles in functional analysis, we will introduce their applications,

particularly in differential equations. The materials of this lecture notes are mainly summarized

from the book [8], [9]. Some of the concepts in [4], [10] and [2] are used. This lecture notes can

only be used for nonprofitable purpose.
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1 Banach spaces and fixed-point theorems

1.1 Topological spaces

We give the general definition of topological spaces, open sets and continuous mappings.

Definition 1.1. (a) Let X be a set and 2% be the collection of all subsets of X. A collection of
X subsets T C 2% is said to be a topology in X if T has the following properties:
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(i) V€T and X €.
(i) If Ver, j=1,--- N, then ViNnVon---NVy €.
(73i) If {Va}aer is an arbitrary collection of members of T (finite, countable, or uncountable),

then Jyer Va € 7.

(b) If T is a topology in X, then (X,7) is called a topological space, and the members of T are
called the open sets in X.

(¢c) A set E C X is closed if its complement E° is open. Hence () and X are closed, finite unions

of closed sets are closed, and arbitrary intersections of closed sets are closed.

(d) If X and Y are topological spaces and if f is a mapping of X into Y, then f is said to be
continuous provided that f~1(V) is an open set in X for every open set V in'Y. It can be

shown that f is continuous iff f~1(B) is a closed set in X for each closed set B inY .

(e) The closure E of a set E C X is the smallest closed set in X which contains E. (The
following argument proves the existence of & : The collection @QQ of all closed subsets of X

which contain E is not empty, since X € Q; let E be the intersection of all members of Q.)

(f) A set K C X is compact if every open cover of K contains a finite subcover. In particular,

if X is itself compact, then X is called a compact space.
(9) Let p € X. A neighborhood of p is an open set containing p.

(h) X is a Hausdorff space if the following is true : If p € X, ¢ € X, and p # q, then p has a
neighborhood U and q has a neighborhood V' such that U NV = 0.

(i) X islocally compact if every point of X has a neighborhood whose closure is compact.

(j) Heine-Borel Theorem: The compact subsets of the euclidean space R? are precisely those that

are closed and bounded.

(k) From this it follows easily that R? is a locally compact Hausdorff space. Also, every metric

space is a Hausdorff space.
Remark 1.2. To avoid terminology complexisty, when there is not much confusion in the contert,
we often simply say X is a topological space without emphasizing its topology T.
1.2 Metric spaces

Definition 1.3. (a) A metric space is an ordered pair (M, d) where M is a set and d is a metric

on M, i.e., a function d: M x M — R such that for any x,y,z € M, the following holds:
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) >0  non-negativity

)=0&x =y identity of indiscernibles

) =d(y,xz) symmetry

x,z) <d(z,y)+d(y,z) subadditivity or triangle inequality

(b) Every metric space is a topological space in a natural manner. Let (M,d) be a metric space.

For each x € M, we define the open ball of radius r > 0 about x as the set
B(x,r)={y e M : d(z,y) <r}.

The notation By(x) for such a ball is also often used.

These open balls form the base for a topology on M, making it a topological space. Explicitly,
a subset U of M is called open if for every x in U there exists an r > 0 such that B(x,r) is

contained in U. The complement of an open set is called closed.

(c) A topological space which can arise in this way from a metric space is called a metrizable

space.

(d) A sequence (z,) in a metric space M is said to converge to the limit x € M iff for every

e > 0, there exists a natural number N such that d(x,,x) < e for alln > N.
(e) A subset A of the metric space M is closed iff every sequence in A that converges to a limit
in M has its limit in A.
1.3 Banach spaces

We give the definition of Banach spaces and some examples. Let F be R or C, where R and C

are the set of real and complex numbers respectively.

Definition 1.4. (a) Let X be a vector space over F. A seminorm on X is a functionp: X —

[0, 4+00) having the properties:

(i) p(z +y) < p(x) +p(y) for all z,y € X.
(ii) p(azx) = |alp(x) for alla € F and z € X.

(b) It follows from (ii) that p(0) = 0. A norm is a seminorm p such that x = 0 if p(xz) = 0.

Usually a norm is denoted by || - ||.
(c) A normed space is a pair (X,| - ||), where X is a vector space and || - | is a norm on X.

(d) A normed space (X,|| -||) is a metric space with the natural metric defined by the norm:

d(z,y) = |z =y, for all z,y € X.
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(e) A Banach space is a normed space that is complete with respect to the metric defined by the
norm.

Example 1.5. Banach spaces: Cla,b], LP(Q).

1.4 Open and closed sets in normed spaces

Definition 1.6. (a) Let X be a normed space. For fized ug € X and r > 0, denote the ball
B(ug,r) :={u e X : |Ju—up| <r}.
(b) A subset M of X is called open iff, for each point ug € M, there is a ball B(ug,r) such that
B(ugp,r) C M.
(c) A subset M of X is called closed iff M = X\ M :={u e X :u & M} is open.

Proposition 1.7. Let X be a normed space and M C X. Then M is closed iff for any sequence
{un} C M with uy, — u in X, there holds u € M.

ERH. M. 453, O

1.5 The Banach fixed-point theorem—contraction principle

Definition 1.8. Let (X, || -||) be a normed space over F and M be a closed nonempty subset of X.
A map A: M — M 1is said to be A-contractive provided

|Au — Av|| < A||u — ||, for all u,v € M.

Such a map A on M is said to be a A-contraction or a \-contractive operator.

Theorem 1.9. Let (X, | -||) be a Banach space over F and M be a closed nonempty subset of X.
Suppose A : M — M is A-contractive with 0 < X\ < 1, then the operator A admits a unique fized
point in M, i.e. there exists a unique u € M such that Au = u. Moreover, for any ug € M, the
sequence {uy} constructed by un+1 = Aun, n=0,1,2,--- converges to the unique fized point u. In

addition the iteration sequence {uy} satisfies the following estimates:

e Error estimates. For alln =0,1,--- we have the so-called a priori estimate
lun = ull < A"(L = A) " lur — uoll, (1.1)
and the so-called a posteriori estimate

st = ull < AQ =X Jnrr = unll. (1.2)
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e Rate of convergence. For all alln=20,1,--- we have

ltnsr — ull < Alles, — ul]. (13)

This theorem was proved by Banach in 1920, and is called the Banach fixed-point theorem, and
is also called the contraction principle. The phase a priori means from the earlier and a posteriori

means from the later.
WEB]. For any n € Z4,

[tnt1 = unll = [[Aun = Aun || < Allun — tpaf] < - < Alus — o (1.4)
Then for any n,m € Z,

tn — Unsm| < Jun — ung1ll + [[unsr — ung2ll + -+ [[Unsm—1 — Untmll
< (N N AP gy — |
oo
<N N Jur — g
k=1
=A\"(1- )\)_1||u1 — ]|

It follows from 0 < A < 1 that A — 0 as n — oo. Hence the sequence {u,} is Cauchy. Since X is
a Banach space which is complete, then the Cauchy sequence {u,} converges, i.e.

lim u, — v in X.
n—oo

Since A maps M into M, we have {u,} C M. Since M is closed, we have the limit u € M.
Moreover,
[unt1 — Aul| = [[Aup — Aul] < Allun — ull. (1.6)
Passing n — oo in (1.6) implies

u = Au. (1.7)

The rate of convergence (1.3) following directly from (1.6) and (1.7). Passing m — oo in (1.5)
implies the a priori estimate (1.1).

For any n,m € Z.,

[tn41 = Ungmst || < luntr — unsoll + [unt2 — tnssll + - 4 [unsm — Ungmal]

(1.8)
SAHN 4+ A un — tnsa |-

Passing m — oo in (1.8) implies the a posteriori estimate (1.2). O
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1.6 Applications to ODEs

We want to solve the following initial-value problem

u'(z) = F(z,u), € [zg—h,z0+ h],

(1.9)
u(xo) = uo.
Here zg and ug are given. Let h > 0, r > 0, and define
Xh:C[xo—h,SUo-l-h], Mh,T:{UEXh . ||u—u0|| ST} (1.10)

Clearly X}, is a Banach space and Mj, , is a closed subset of X. It is straightforward to show that the

initial value problem (1.9) of differential equation is equivalent to the following integral equation:
xX

u(z) = ug +/ F(y,u(y))dy, =« € [zo— h,zo+ h]. (1.11)
o

Thus we turn to consider the integral equation (1.11) along with the iteration method:

T

Unt1(T) = uo + / F(y,un(y))dy, =z € [zo— h,zo+ h]. (1.12)

Zo

We have the following result:

Proposition 1.10. [The Picard-Lindeléf Theorem] Assume that the function F : [xg—hg, o+ ho] X
[uo—ro, up+ro] — R is continuous and the partial derivative F, : [xo—ho, xo+ho] X [uo—70, uo+10] —
R is also continuous, where hg > 0, rqg > 0 are fired numbers. Choose 0 < h < hg, 0 < r < rg such

that

hmax{|F(z,u)|: x € [xg — h,zq + h],u € [ug — r,up + 7]} < r, (1.13)
hmax{|F,(z,u)| : x € [xg — h,xo + h],u € [ug — r,up + r|} < 1. ‘

Then
(i) The problem (1.11) has a unique solution w € My, .. This is also the unique solution to (1.9).
(i) The sequence {u,} constructed by (1.12) converges to this unique solution u in Xj,.
(iii) There holds the error estimates:
ot — ]l € A= N) s = woll, fumser — wll <AL= X Munss —wall,  (114)

where

A= hmax{|F,(x,u)| : z € [xg — h,zo + h],u € [ug — r,up + 7]} < 1. (1.15)

iERA. Under the assumptions in Proposition 1.10, it is not difficult to check that the operator A
defined through

(Au)(x) := up + /m F(y,u(y))dy, forallx € [zg— h,zo+ h] (1.16)
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maps Mj,, into M}, ., and satisfies
|Au — Av|| < Mju —wvl|, for all u, v e My, (1.17)

where 0 < X < 1 is defined as (1.15). This means that A : M}, , — M}, , is a contractive map. By
the contraction principle, A admits a unique fixed point v € Mj,,, i.e. Au = u which is exactly
(1.11). The other results follow directly from Theorem 1.9.

O

1.7 Continuity

In the following three subsections, we will discuss the continuity, convexity and compactness
in normed spaces.

In normed spaces, continuity is equivalent to sequential continuity:

Proposition 1.11. Let X and Y be normed spaces over F and A : X — Y is an operator from X

toY. Then the following statements are equivalent:

(i) A is continuous, i.e. A~Y(V) is an open set in X for every open set V in'Y, or equivalently,

A=YV is a closed set in X for every closed set V in'Y .

(ii) A is sequentially continuous, i.e. for each sequence {u,} that converges to u in X, there holds

Au,, — Au in Y.

(iii) For each w € X and each € > 0, there is a number §(e,u) such that for all 4 € X satisfying
& —ul|| <6, there holds || At — Au|| < e.

JE8]. (i) = (ii). Suppose A is continuous, i.e. A7!(V) is a closed set in X for every closed set
VinY. Let u, = v in X, we want to show Au, — Au in Y. By contradiction we suppose Au,
does not converge to Au in Y, i.e. there exists g > 0 and there exists a subsequence Au,, such
that ||Au,, — Au|| > &o. Define V:={v € Y : ||v — Au|| > gp}. Clearly V is a closed set in Y and
{Auy,} C V. Then U := A71(V) is a closed set in X and {u,, } C U. Since u,, — u in X, and U

is closed, we thus have u € U. This means Au € V which implies a contradiction:
0= |[Au — Aul| > «o.

(ii) = (iii). Suppose A is sequentially continuous. We want to prove statement (iii). By
contradiction we suppose that there exists ug € X and g¢ > 0 such that for each § > 0, there exists
ug satisfying |lus — uo|| < d such that || Aus — Aug|| > €. By choosing 6 = 1/n, n=1,2,---, we
obtain a sequence {u,} which converges to ug and ||Au, — Aug|| > €o for all n. A contradiction

with the sequential continuity of A.
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(iii) = (i). Let V C Y be open. We want to prove A~(V) is open in X. Given u € A=1(V), we
have Au € V. Since V is open, there exists ¢ > 0 such that B(Au,e) = {v €Y : [[v—Au| <e} C Y.
By (ii), there exists 6 > 0, such that for all ||& — u|| <  there holds ||Au — Au|| < e. We thus have
At € B(Au,e) C V for all || — u|| < §. This means B(u,e) C A~Y(V). Thus A~(V) is an open
set in X.

O]

1.8 Convexity

Definition 1.12. (a) Let X be a vector space (linear space), a subset M C X is called convex iff

au+ (1—a)ve M, forallu, ve M, 0 <a<1.

(b) Let M be a convex set. The function f: M — R is called convex iff
flau+ (1 —a)v) < af(u)+ (1 —a)f(v), forallu, ve M, 0 <a <1

Intuitively, the convexity of M means that the entire line segment joining two points in M is
contained in M. The convexity of the real function f : [a,b] — R means that the chords always lie

above the graph of f.
Example 1.13. o The open and closed balls in a normed space are conve.
e The norm function || - || is continuous and convez.
Definition 1.14. Let X be a vector space over F and let M be subset of X. Define:

(a) span M := smallest linear subspace of X containing M. span M is called the linear hull of
M.

(b) co M := smallest convex set of X containing M. co M is called the convex hull of M.
If moreover X is a normed space, define:
(c) M := smallest closed set of X containing M and is called to be the closure of M.

(d) € M := smallest closed convex set of X containing M and is called the closed convex hull of

M.
(e) int M := largest open set of X contained in M and is called the interior of M.
(f) OM := M — int M is called the boundary of M.

(f) ext M :=int (M€) is called the exterior of M.
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Proposition 1.15. Let M be a nonempty subset of the normed space X over F. Then the following
hold true:

(i) u € span M iff there exist uy,- -+ ,un, € M and oy, -+ ,ap € F such that u = ajuy + - - - apy,.

(ii) uw € co M iff there exist uy, -+, up € M and 0 < aq,- -y < 1 satisfying a1 + -+ ap, =1

such that u = ayuq + -+ - Uy,
(i) uw € M iff there exist a sequence {u,} in M such that u, — u in X.

ERR. W&, 453, O

1.9 Compactness

It turns out that most of the statements on finite dimensional spaces have nice generalizations
to a certain class of subsets or operators on infinite dimensional spaces, namely, to the compact
sets and operators.

1.9.1 Compact sets

Definition 1.16. Let X be a normed space over F and let M be subset of X.

(a) M s called sequentially compact iff each sequence in M admits a convergent subsequence

with limit in M.

(b) M is called relatively sequentially compact iff each sequence in M admits a convergent

subsequence with limit in X.

(c) Let e > 0. A set {xo € M : v € I} is said to be an e-net for M if

M C U B(zq,¢).
acl

(d) M is said to be totally bounded if it has a finite e-net for every € > 0.

(e) A closed subset M is said to have the finite intersection property for closed sets if every

decreasing sequence of closed, nonempty sets in M has nonempty intersection.

Proposition 1.17. Let M be a nonempty subset of the normed space X over F. Then M is

sequentially compact iff M is relatively sequentially compact and closed.
IER. B 252, O

Proposition 1.18. Let M be a nonempty subset of the Banach space X over F. Then M is
relatively sequentially compact iff M is totally bounded.
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JEBA. We first suppose that M is relatively sequentially compact. By contradiction, we suppose
that M is not totally bounded, i.e. there exists €y > 0 such that there is no finite £y net of M.
Given x; € M, since M has no finite €9 net, we have M ¢ B.,(z1). Thus, there exists o € M and

x2 & Bey(x1) which means ||za — z1|| > €. By induction, we find a sequence {z,} C M satisfying
|Tm — znl| > €0, forallm, neZ,.

This implies that {x,} has no Cauchy subsequence and then no convergent subsequence. This
contradicts with the fact that M is relatively sequentially compact.

We next suppose that M is totally bounded. Let {x,} be a sequence in M. Since M is totally
bounded, it has a finite e-net for every € > 0. We first choose € = 1, then there exists finite 1 net
{y1,--- ,yx} of M. Since the sequence {z,} C Ule Bi(yi), there is at least one ball By(y;) that
contains infinite terms in the sequence {z,}. These infinite terms form a subsequence {x,(ll)}.

Now for the subsequence {xg)}, since there is a finite 1/2 net of M, again denoted by
{y1," -+ ,yx}, then {537(11)} CMC Ule Bi/2(yi). This means there at least one ball say By /s (y:)

that contains infinite terms in the sequence {xg)}. These infinite terms form a subsequence {acg)}.

Continuing this construction for e = 1/m, m =1,2,--- | we obtain the subsequences
1 1 1
RO ORI
2 2 2
RO I

(1.18)

RO O N

which have the following property: for each m € Z, {:c%mﬂ)} is a subsequence of {m%m)}, and

|2 — 2 < Nl —yill + llys — &l || < 1/m+1/m = 2/m, Yni,ng € Z+.. (1.19)

ni

Finally consider the diagonal subsequence {m%n)} It following from (1.19) that

(n+m)

2
w20 < =, for all n,m € Z.

[

This implies that {:c;n)} is a Cauchy sequence, and thus is a convergent sequence in Banach space

X. This proves the relative sequential compactness of M.

O]

Proposition 1.19. Let M be a nonempty closed subset of the normed space X over F. Then M

s sequentially compact iff M has the finite intersection property for closed sets.
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JEB]. First suppose that M is sequentially compact. Given a decreasing sequence of nonempty
closed sets F} D Fy D --- D F, D --- in M, choose z,, € F,, for each n € Z,. Then {x,} has a
convergent subsequence {zy, } with x,, — x in M, as k — oo. Since z,, € F), for all n; > n and
F, is closed, then x € F, for every n € Zy, so z € (|, F,. This implies (72, F, # 0.

We next suppose that M has the finite intersection property for closed sets. Let {z,} be a

sequence in M. Define a decreasing sequence of nonempty closed sets F,, C M as
F,:=T,, T,:={xy:k>n}

Thus, by the finite intersection property of M, there exists
o0
T E ﬂ F,.
n=1

Choose a subsequence {x,, } of {z,} as follows. For k = 1, since z € | = T, there exists x,,, € Ty
such that ||z,, — z|| < 1. Similarly, since x € F,,, = T, there exists z,,, € T,,, with ny > ny such
that ||z, — || < 1/2. By induction, given x,,, we choose xn, ,, € Ty, , where ngy1 > ng, such that
|Zn,,, — || < 1/(k+1). Then the subsequence x,,, — x as k — oo. This proves the sequential
compactness of M.

O

Lemma 1.20. [Lebesgue Covering Lemma] Let M be a sequentially compact subset of the normed
space X over F. If {Go C X : o € I} be an open cover of M, there exists 6 > 0 such that for every
x € M, there is some « € I with Bs(x) C G,.

iEBA. By contradiction we suppose that no such § > 0 exists. Then for every n € Z there exists
T, € M such that By, (zy) is not contained in G, for any a € I. Since M is sequentially compact,
the sequence {z,} has a convergent subsequence {x,,} in M. Let = limy_ oo zn, € M. Then
x € Gg, for some o € I. Since G, is open, there exists g9 > 0 such that B, (z) C G,. Since
— x and 1/n; — 0 as k — oo, then there exists N € Z; such that for £ > N there holds

Ty,

|zn, — x| < e0/2 and 1/ny < £0/2. Hence,
By, (n,) C Bey () C G-

This contradicts to the choice of z,,.

Now we are ready to prove the following result:

Proposition 1.21. Let M be a nonempty subset of the Banach space X over F. Then M is

sequentially compact iff M is compact.
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JERA. Suppose that M is compact. Firstly M is then closed (why?). Let {F,}>2; be a decreasing
sequence of closed nonempty subsets of M. We want to show that (),~, F, is not empty. By
contradiction we assume that (|°2, F), is empty. Then, defining G,, := F¢, one has |J;- | G, =

X D M. This means then {G,}>°; is an open cover of M, so it has a finite subcover {G,,}]_; of
M. Thus,

N N ¢
Fy = ﬂan: <U1Gn> c M°.

A contradiction to the choice of {F,,}. Thus the closed set M has the finite intersection property.
It follows from Proposition 1.19 that M is sequentially compact.

We next suppose that M is sequentially compact. Let {G,, : @ € I} be an open cover of M. By
Lemma 1.20, there exists 6 > 0 such that for every x € M, there is some « € [ with Bs(z) C G,.

Since M is sequentially compact, it is totally bounded. Then there exists a finite collection of
balls {Bs(z;) : i =1,2,--- ,n} of radius ¢ with x; € M, i =1,2,--- ,n that covers M, i.e. a finite
0 net of M.

Choose «; € I such that Bs(z;) C Go,. Then {G,, : i =1,2,--- ,n} is a finite subcover of M.
This proves M is compact.

O

1.10 Compact operators

Definition 1.22. Let X and Y be Banach spaces over F, and A : X — Y be a continuous operator.

A: X =Y is called compact iff A(U) is compact in'Y (or A(U) is relatively compact) for every
bounded set U C X.

Example 1.23. Consider the integral operator

b
Au(x) ::/ F(z,y,u(y))dy for all x € [a,b],
where —oo < a < b < +o00. Set
Q= {(z,y,u) €ER®: z,y € [a,b], [u| <7}, 7 >0 is fized.

Set
X =Cla,b], M:={ueX:|ul<r}

Suppose F' : QQ — R is continuous. Then the operator A : M — X is compact. (why?)

Proposition 1.24. Let X and Y be Banach spaces over F, and A : X — Y be a compact
operator. Let M C X be a bounded subset. Then there exists a sequence of continuous operators
{4, : M = Y}, such that

sup ||[Au — Apu|| < 1/n, dim spanA, (M) < co, A,(M) C co A(M).
ueM
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JERA. Since M is bounded, then A(M) is relatively compact. Thus, for any n € Z., there exists a
finite 1/n-net for A(M). That is, there is a finite set {v; : j =1,2,---,J,} such that

min [|Au —vj|| < 1/n, for all u € M. (1.20)
1<j<Jn

Define the Schauder operator A,, : M — M :

JIn
raj(u)vj
Apu = M, for all u € M, (1.21)

JIn
j=1 a;(u)
where
aj(u) = max{1l/n — [|[Au — v;||,0}, for all ue M. (1.22)
By (1.20), for each u € M, there exists some j € {1,2,---,J,} such that ||[Au —v;|| < 1/n.
Thus

Jn
Zaj(u) >0, forallue M.
j=1

Clearly
span A, (M) Cspan{v; : j=1,---,Jp}

is finite dimensional.

Since A is continuous, the norm function | - || is continuous, together with the fact that the
composition of continuous operators is continuous (why?), we know that a; : M — R is continuous
and A, : M — Y is continuous. Moreover, A, (M) C co A(M), and for each u € M,

132571 aj(u) (v — Au)| _ > aj(w)]| (v — Aw)|

| A — Aul| =

Jn - Jn
Zj:l a;(u) j=1 a;(u)
o s — AW sy (1.23)
- JIn — Jn
j=1 aj(u) j=1 a;(u)
<1/n.
O
1.11 Finite-dimensional Banach spaces
Finite-dimensional normed spaces enjoy similar properties as classical R,
Proposition 1.25. e If X is a finite dimensional normed space over F, then any two nmorms

on X are equivalent.
e Fach finite dimensional normed space is complete, i.e. is a Banach space.

e Fach finite-dimensional linear subspace of a normed space is closed.
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o A subset of a finite-dimensional normed subspace is relatively compact iff it is bounded, and
is compact iff it is bounded and closed.

o Any two finite dimensional normed spaces with the same dimension are homeomorphic.

ERR. W&, 453, O

1.12 The Minkowski functional and homeomorphisms

Definition 1.26. Let X and Y be normed spaces. A map A : X — Y is called homeomorphism

(or topological isomorphism) provided:
o A is continuous.
o A is bijective.
e A7l s also continuous.
We then say X is homeomorphic (or isomorphic) to'Y

Proposition 1.27. Let M be a closed, bounded, convexr, nonempty subset of a normed space X,
and int M # (. Then there exists a homeomorphism A : X — X such that A(M) = B where B
is the closed ball B := {u € X : ||u|| < 1}. This means M is homeomorphic to the closed ball
B:={ue X :|ul <1}.

Before proving Proposition (1.27), we first recall the concept of Minkowski functional.

Definition 1.28 (Minkowski functional). Let M be a closed, bounded, convex, nonempty subset of

a normed space X, and 0 € int M. The Minkowski functional p : X — R of the set M is defined as
p(u) :=1inf{\ > 0: \"lu € M}, forallueX. (1.24)

The Minkowski functional is well defined (why?). The intuitive meaning of p(u) is that, the ray
through the point u and the origin intersects the boundary OM of the set M at the point p(u)~lu.

The Minkowski functional has the following properties:
Lemma 1.29. The following are true:
(i) There exists a,b > 0 such that al|lu|| < p(u) < b||u|| for allu e X.
(7i) For all a« > 0, u € X, there holds p(au) = ap(u).
(11i) For all u,v € X, there holds p(u+ v) < p(u) + p(v) (triangle inequality).

(iv) p: X — R is continuous.
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(v) M ={ue X :p(u) <1}.

Proof of Lemma 1.29. (i). By definition, we have p(u) > 0 for all v € X and p(0) = 0. Given
u # 0. Since 0 € int M, there exists r > 0 such that

{reX:||u|| <r}c M.

We then have |A\~tu|| = r for A := r~!|u||. Hence A\~'u € M. Then the definition of p(u) makes
sense and
p(u) <77 ull.

Since M is bounded, i.e. there exists R > 0 such that
|lv]| < R, forallve M.
Thus, A~'u € M implies [|[A\"'u|| < R, i.e. A > R7!|jul|. This implies
p(u) = R ful|.
(ii) Firstly p(0) = 0. Let a > 0. Observe that A=tu € M iff (a)\)"tau € M.
(iii) Given u,v € X. For any € > 0, choosing «, 8 such that
p(u) <a<p(u)+e, pv)<p<p)+e.
Then o 'u, 37'v € M. Let v = ac+ B. Since v '+~ '8 =1 and M is convex, we have
Y u+v) =7 tala ) + +971B(B ) € M.

Thus
p(ut+v) <v=a+p<p(u)+pv)+2

Letting ¢ — 0 implies (iii).
(iv). It follows from (iii) that
p(u) < p(v) +p(u—wv), p(v) <pu)+p(v—u).
Using (i) implies
Ip(u) — p(v)| < max{p(u —v),p(v —u)} < b|lu—ov|, foralluvelX.

This implies that p is continuous.

(v). Given v € M. Since 0 € M and M is convex, we have yu € M for all 0 < p < 1. Hence
A~y € M for all v > 1. This implies that p(u) < 1.
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Conversely suppose that p(u) < 1 for some u € X. We want to show that v € M. If u = 0,
then u € M. Suppose now that u # 0. Then p(u) > 0 and by the definition of p(u), there holds

My e M, for all A > p(u).
Passing A — p(u) and using the fact that M is closed, we have
p(u)'ue M, foralluc X.

Using 0 € M and p(u)~! > 1, the convexity of M implies u € M.

(1.25)

Proof of Proposition (1.27). If X = {0}, then M = B = {0}, and the statement if trivial. We

suppose X # {0} and let ug € M be an interior point. Replacing u with u — ug, we may assume

that ug = 0.

Step 1. The homeomorphism. Define A: X — X as

Au : p(u)u’ ue X, u#0; A0=0.

|l

By (i) in Lemma 1.29, we have
||Aul| < b||u||, for all u € X.

Thus A : X — X is continuous.

The map A : X — X is bijective (why?) and its inverse is given as

Ay = Mv, veX,v#0;, Al0=0.
p(v)

Again by (i), there holds
A= || < alfv]|, for all v € X.

Thus A~ is continuous, and A : X — X is a homeomorphism.

Step 2. A(M) = B. Given u € M, one has p(u) < 1. Thus
[Au] = p(u) < 1.

So Au € M. This proves A(M) C B.
Given v € B, ||lv|| < 1. By (1.25) and the convexity of M, we have

Sty = ol

p(v)
This means A~'B C M. So B = AA~Y(B) Cc A(M). Thus A(M) = B.

(1.26)

(1.27)

(1.28)

(1.29)
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1.13 The Brouwer fixed-point theorem
We recall the following classical result:

Theorem 1.30. If 1 < d < oo, B = the closed unit ball of R?, and f : B — B is a continuous
map, then there is a point x in B such that f(z) = x.

A more general version is the following, which can be seen as a corollary for the above theorem:

Theorem 1.31. Let M be a compact, convex, nonempty set in a finite dimensional normed space
over F. Then the continuous operator
A:M—->M

has a fixed point.
A direct corollary is the following:

Corollary 1.32. Let K be a subset of a finite dimensional normed space over F. If K is

homeomorphic to a set M as considered in Theorem 1.31, the continuous operator
A: K- K

has a fixed point.

Proof of Corollary 1.32. Let H : M — K be a homeomorphism. Then the operator
A=H'oAoH:M - M
is continuous. By Theorem 1.31, there exists u € M such that
w=Au=H ‘o Ao Hu,

which is equivalent to
Hu= Ao Hu

This means v = Hu € K is a fixed point of A.
O

To prove Theorem 1.31 by using Theorem 1.30, we need the following result, which says that

a
Example 1.33. Fach continuous function A : [a,b] — [a,b] has a fized point.

The Brouwer fixed point theorem can be proved by using the Sperner simplex and the Sperner’s
lemma, which is a combinatorial analog of the Brouwer fixed point theorem, which is equivalent to
it. At this moment we will not address this proof. One can find in Section 1.14 in [8]. Other proofs

can be found in algebraic topology books, e.g. in the book Dugundji [5].
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1.14 The Schauder fixed point theorem

Theorem 1.34. Let M be a closed, bounded, convex, nonempty subset in a normed space X over

F. If A: M — X is a compact operator and A(M) C M, then there exists u € M such that Au = u.

This theorem was proved by Schauder in 1930. If X has finite dimension, the Schauder fixed

point theorem coincides with the Brouwer fixed point theorem.

JEBA. Let K = A(M). Since A is a compact operator, then K is compact. Since A(M) C M
and M is closed, then K C M. Since K is compact, for each n € Zy, there is a finite 1/n-net

{v1,--,v;,} C K such that
In

K | By (v)).
j=1

Let X, :==span{vj:j=1,---,J,}. Foreachn,let A, : M — X be the Schauder operators define

as in Proposition 1.24 associate with the above 1/n-net. Thus

sup [|[Au — Ayul| <1/n, spanA,(M)C X,, A,(M) C coA(M). (1.30)
ueM

Since A(M) C M and M is convex, we have

Ap(M) CcoA(M) C M. (1.31)
By (1.30) and (1.31), we have

Ap(M) C M, :=MnX,. (1.32)

Clearly, X, is a finite dimensional normed space, and M, is a closed, bounded, convex,
nonempty subset of X,,, and A, : M,, — M, is continuous. By the Brouwer fixed point theorem,

there exists u, € M, such that A,u, = u,. Then, using (1.30) implies
| A, — up|| = [[Aun — Apun|| < 1/n. (1.33)

Since {u,}o®, C M,, C M, the compactness of the operator A : M — M implies that there

exists a subsequence {uy, } such that

lim Au,, =v e M, (1.34)

k—o00
where we used the property that M is closed.
By (1.33) and (1.34), we have

[0 = tn, || < llv = Avny || + [[tin), — A, [| = 0.
This implies u,, — v. Since the map A : M — M is continuous, we finally obtain that

Av = lim Au,, =v.
k—o0
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1.15 Application to ODEs
We want to solve the following initial-value problem

' (x) = F(x,u), x € [rg—h,z0+ h],

(1.35)
u(xo) = ug.
Here zg and ug are given. Let h > 0, r > 0, and define
Xh:C[xo—h,SUg-l-h], Mh,T:{UEXh : ||u—u0|| ST} (136)

Clearly X}, is a Banach space and Mj, , is a closed subset of X. It is straightforward to show that the

initial value problem (1.35) of differential equation is equivalent to the following integral equation:
xX

u(z) = ug +/ F(y,u(y))dy, =« € [zo— h,zo+ h]. (1.37)
o

We have the following result:

Proposition 1.35. [The Peano Theorem] Assume that the function F : [xg — ho, xo + ho] X [ug —
ro,uo + o] — R and the partial derivative Fy, : [xy — ho,xo + hol X [ug — ro,ug + ro] — R are
continuous, where hg > 0, rg > 0 are fired numbers. Choose 0 < h < hg, 0 <r < rg such that

hmax{|F(z,u)| : € [xg — h,x0 + h|,u € [ug — 1, up + 7]} <. (1.38)
Then the problem (1.37) has a unique solution w € My, ,. This is also the unique solution to (1.35).

#EB]. Define the operator A : My, — X}, through

T

(Au)(z) == up + / F(y,u(y))dy, forall x € [xg— h,z¢+ h]. (1.39)

xo
Clearly X} is a Banach space, and M}, is a bounded, closed, convex, nonempty subset in Xj,.

Under the assumptions in Proposition 1.35, we have that (why?)
(i) A: My, — Xp, is continuous.
(i) A(Mp,,) is equicontinuous.
(iti) A(My,) C My,

By the Arzeld-Ascoli theorem, above three properties imply that A(Mj,) is relatively compact
in Xj3. This means the operator A : M, — X} is compact. Hence, by the Schauder fixed
point theorem, A admits a unique fixed point v € My, i.e. Au = w which is exactly (1.37).
Differentiating the integral equation (1.37) implies that u is also a solution to the original problem
(1.35).

O
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1.16 The Leray-Schauder principle and a priori estimates

Let X be a Banach space and A : X — X is a continuous operator. We want to solve the
equation

u=Au, uvelX (1.40)
by using properties of the parametrized equation
u=tAu, uvelX, 0<t<L (1.41)

For t = 0, equation (1.41) has the trivial solution u = 0, whereas (1.41) coincides with (1.40)
if t = 1. The following condition is crucial:

(A). A priori estimate. There is a number r > 0 such that if u is a solution to (1.41), then
lu| <r, forall 0 <t<1. (1.42)

Theorem 1.36. Let X be a Banach space over F. Suppose that the operator A : X — X is compact

and satisfies condition (A). Then the original equation (1.40) has a solution.

This theorem was proved by Leray and Schauder in 1934. Roughly speaking, Theorem 1.36

corresponds to the following important principle in mathematics:
A priori estimates yield existence.

JERA. Set M :={u € X : ||u|| < 2r}. We define the operator

Au,  |Ad] < 2n,
Bu:= ¢ 2r Au,
_ | Aul| > 2r.
[ Aull

Obviously, ||Bul|| < 2r for all u € X, i.e. B(M) C M.

We claim that B : M — M is compact. Firstly, we show that B : M — M is continuous. Let
ugp € M. If [|Aug|| < 2r or ||Aug|| > 2r, the continuity of A implies that B is continuous at wuyg.
Indeed, for example if ||Aug|| < 2r, the continuity of A implies that there exists o > 0 such that
for all ||u — ug|| < do there holds ||Au|| < 2r. Then the continuity of A implies that for any € > 0,
there exists 0 < § < g such that for all ||u — ug|| < d there holds ||Bu — Bug|| = ||Au — Aug|| < e.

If ||Aug|| = 2r. Then Bug = Aug = ﬁ’;‘—ﬁﬁ. For any 0 < ¢ < r, there exists § > 0 such that for
all ||lu — ugl| < dp there holds ||Au — Aug|| < e. This gives

r<2r—e=|Au| —e < ||Au|| < |[Aug|| +& =2r+¢e < 3r. (1.43)
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Then oA
rAU
|Bu — Bug|| = ||Bu — Aug|| < max{llAu Au] — 20 }
2rAu
< [J[Au — Augl| + ’ — Aug
[[Aw]
1.44)
< HAu AU()” + H AUO H( — 1> Aug (
IIA || [ Aull
< llAu - Augll + 2 | Au — Aug| + 1A% 00 gy
- HA | | Au

< be.

Now we show that the compactness of B. Let {u,} be a sequence in M. Then there there
exists a subsequence, still denoted by {u,} such that either ||Au,| < 2r for all n, or ||Au,| > 2r
for all n. (why?)

If ||Auy, || < 2r for all n, then Bu, = Au, for all n. Then the compactness of A implies that
there exists a convergent subsequence of { Bu,} in M.

We now consider the case ||Auy| > 2r for all n. Since A : X — X is compact, and {u,} is a

bounded sequence, then there exists a subsequence {v,} of {u,} such that

Av, — 2z in X.

Since ||Av,|| > 2r for all n, then HAintI < 1/(2r) is bounded. So there exists a subsequence {wy,}
such that

1
— 2
| Awn |
Hence
2rw,
Bw,, = — 2roz.
" [ Aw,||

We obtain a convergent subsequence of {Bu,}. So B : M — M is compact.
We apply the Schauder fixed point theorem to the compact operator B : M — M to obtain a
fixed point u € M of B such that

u = Bu.

If ||Aul|| < 2r, then Bu = u, and hence u = Au.
The case ||Aul|| > 2r is impossible by the a priori estimate (A). Otherwise if ||Aul| > 2r, we

have ||lu|| = ||Bul|| = 2r, and
2r

— <
[ Aull

The a priori estimate (A) implies that ||u|| < r, a contradiction.

u= Bu=tAu, t:=

O]

A typical application of the Leray-Schauder fixed point theorem is the existence theory of
generalized solutions (finite energy weak solutions) to the Navier-Stokes equations. See Section
5.17 in [9).
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1.17 Subsolutions and supersolutions, the iteration method in ordered Banach

spaces

The idea of ordered Banach spaces is to introduce a relation v < v in Banach spaces, which

generalizes the corresponding relation for real numbers.
Definition 1.37. A subset X1 of a normed space X is called an order cone provided
(i) X4 is closed, convex, nonempty, and X4 # {0}.
(ii) If ue X4+ and o > 0, then au € X
(iti) If u € X4+ and —u € X4, then u=0.
Given u,v € X. We define the relation < by
u<v iff v—ueXy.

By an ordered normed space (ordered Banach space), we understand a normed space (Banach
space) together with an order cone.

If uw < v, we define the order interval
[u,v] : ={w € X :u <w < v}.
The order cone X4 is called normal iff there a number C > 0 such that
0<u<v = |ull <Clol.
Example 1.38. ¢ X =R, X} =R>¢:={ue X :u>0}. Xy is normal.
e X =R%, X+:R‘é0 ={u=(u1, - ,uq) € X :u; >0, j=1,---,d}. X4 is normal.
e X =Cla,b], Xy ={ue X :u(x)>0, € la,b]}. Xy is normal.
The following proposition shows that the relation v < v has the usual properties.

Proposition 1.39. Let (X, Xy) be an ordered Banach space. Let u,v,w,u,,vy, € X4, a > 0.
Then

(1) u<wvandv <w imply u < w.
(i) uw < v and v < u imply u = v.
(iii) v < v implies u +w < v+ w and au < av.

(v) up < vy and u, — u, v, — v imply u < v.
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(v) If the order cone X is normal, then u < v < w implies

lo —ull < Cllw —wul], [lw -2 <Cllw—wul.

PERR. 53], O
We want to solve the equation
u=Au, uyg<u<v, ue€lX, (1.45)
by means of the two-iteration method:
Un+1 = Alp, Upt1 = Av,, n=0,1,---, (1.46)

where ug < vg are given in the ordered Banach space X.

We have the following theorem:
Theorem 1.40. Let (X, X ) is an ordered Banach space with normal order cone X.. Suppose
e A:up,v9) C X :— X is compact.
e A is monotone increasing, i.e. u < v implies Au < Av.
e ug is a subsolution of (1.45), i.e. ug < Aug.

e vy is a supersolution of (1.45), i.e. vyg > Avp.

Then the iteration sequences {uy} and {v,} constructed in (1.46) converge to u and v which
are solutions of the original equation (1.45), respectively. In addition, we have the error
estimates:

g <up < - <up<u<v<uv, <v,1 <<, forall n. (1.47)
This theorem corresponds to the following general existence principle in mathematics:
The existence of both a subsolution and a supersolution yields the existence of a solution.
iEB]. By induction and the monotonicity of A, we have
g <up <<y <vp <vpog <o <y, for all n. (1.48)
Since the order cone X is normal, by Proposition 1.39, we have
llvo — un|| < Cllvo —uoll, ||vo — vnll < C|lvo — upl|, for all n.

Thus {u,} and {v,} are both bounded. By the compactness of A, there exists a subsequence {uy, }

and a subsequence {vy, } such that

Aup, — u, Avp, — 0.
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Thus, given € > 0, there exists n. € Z such that
tn, = wll = Aty —ull <2, o, — vl = | Avn, 1 — o] < e.
Passing n; — oo in (1.48) implies
Up, S up <u, v < vy, <wvy, foralln>ng,
Again by Proposition 1.39, there holds
|lu —un|| < Cllu —upn || < Ce, ||vn — | < Cllon, —v| < Ce, for all n > n,.

This means

Up —> Uy, Vp —> V.
Finally, the continuity of A and passing n — oo in (1.46) implies that v and v are solutions to
(1.45).
O

1.18 Linear operators

Definition 1.41. Let X and Y be linear spaces over F. The operator A : X — Y 1is called linear
if
A(au + pv) = aAu+ BAv,  for allu,v € X, o, B € F.

We introduce the range space Range(A) := A(X) and the kernel of A (or the null space of A):
N(A) =ker A :={u € X : Au = 0}. A linear operator is injective iff its kernel is {0}.
The following proposition says that the continuity and boundedness of a linear operator are

equivalent:

Proposition 1.42. Let X and Y be normed spaces over F, and let A : X — Y be a linear operator,

then the following statements are equivalent:
o A: X =Y is continuous.
e A: X —Y is continuous at some point ug € X.
e A: X =Y is continuous at {0}.
e A: X =Y is bounded: there exists C > 0 such that ||Aul|| < Cllu|| for allu € X.

JERH. 25>, O
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Proposition 1.43. Let L(X,Y') denote the space of linear continuous operators A : X — Y where
X is a normed space and Y is a Banach space over F. Then L(X,Y) is a Banach space over F

with respect to the operator norm:

A
P L R—T Y (1.49)
w0 Ul =1

Remark that we do not require X to be complete.
JEBA. It is straightforward to show that L(X,Y) is a linear space and (1.49) defines a norm on it.

Now we show that L(X,Y) is complete. Let {A,} be a Cauchy sequence in L(X,Y). This

means, for each € > 0, there exists n. € Z such that
|An — Al <e, forall n,m > n.. (1.50)
Then for each v € X, there holds
|Anu — Apul| < ellul|, for all n,m > n.. (1.51)

This implies that {A,u} is Cauchy in Y. Since Y is a Banach space, the sequence { A, u} converges,

and we denote its limit as Au:

Au = lim Apu, forall ue X.

n—oo

It is direct to show that A : X — Y is a linear and bounded operator. Moreover, passing m — oo
in (1.51) implies that
|Apu — Au|| < eljul|, for all n > n,, (1.52)

for all w € X. Thus |4, — A| < e foralln > n,, ie A, - Ain L(X,Y).
This proves each Cauchy sequence in L(X,Y) is convergent, i.e. L(X,Y’) is a Banach space.
]

1.19 The dual space

Definition 1.44. Let X be a normed space over F. By a linear continuous functional on X we
understand a linear continuous operator f : X — F. The collection of all continuous functionals

on X is called the dual space of X, and is denoted by X*.

Clearly X* = L(X,F). Since F is a Banach, we have X* armed with the operator norm

[f1l:="sup [f(v)]

[[o]=1

is a Banach space. We often use the following notation:

(fiu) = f(u), forallue X, feX*
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Example 1.45. Let (Q, 1) be a measure space. If 1 < p < co Then LP(Q,p)* = LV (Q, 1) with
1/p+1/p =1.

If moreover (0, 1) is a o-finite measure space, then L' (2, pu)* = L>(Q, p)

What about L>°(Q,u)*? Let (2, 1) be a complete o-finite space. Then (L*°(2, u))* is the
collection of all finitely additive finite signed (complex) measures which are absolutely continuous
with respect to p, equipped with the total variation norm. See Theorem IV.8.16 in [6], page 296.
See Chapter 6 in [7] for some related definitions.

1.20 The Hahn-Banach Theorem

The Hahn-Banach Theorem is the most important result about the structure of linear
continuous functionals on normed spaces. In terms of geometry, the Hahn-Banach theorem

guarantees the separation of convex sets in normed spaces by hyperplanes.

Theorem 1.46 (The Hahn-Banach Theorem for the linear spaces). We assume that
(i) L is a linear subspace of the real linear space X .
(i) p: X — R is a sublinear functional, that is for all u,v € X and all o > 0, there holds
p(u+v) <p(u) +p(v), plaw) = ap(u).
(iii) f: L — R is a linear functional such that

fw) <p(u) forallue L.

Then f can be extended to a linear functional F : X — R such that
F(u) = f(u) forallueL; F(u)<p(u) foraluelX.

Note that the substance of the theorem is not that the extension exists but that an extension

can be found that remains dominated by the same sublinear functional p.

Theorem 1.47 (The Hahn-Banach Theorem for the normed spaces). We assume that

(i) L is a linear subspace of the normed space X over F.
(ii) f: L — F is a linear functional such that

|f(u)| < allul| for all we L and some fixred o > 0.

Then f can be extended to a linear functional F : X — F such that

F(u)= f(u) forallueL; |F(u)|<alul foralueX.
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The proof of the Hahn-Banach theorems can be found in each textbook on functional analysis.

Corollary 1.48. Let X be a normed space over F. Then for each nonzero ug € X, there exists a
functional F' € X™* such that
F(ug) = [luol|, [IF[|=1.

JEBA. Indeed, we set L := span {ug} and
f(u) := Mug||, for all u= Aug € L.

Obviously, |f(u)| = ||u|| for all uw € L. By the Hahn-Banach theorem, there exists a linear continuous

functional F' € X* such that
F(u)=f(u) forallue L; |F(u)|<|u| forallue X.

Clearly | F|| = 1.

O
Two direct consequences of the above example are the following:
Corollary 1.49. Let X be a normed space over F. Then for each u € X,
ul| = ma F(u)|.
full =, o 1F(w)
Corollary 1.50. Let X be a normed space over F and uw € X. Then u =0 iff
F(u)=0 forall Fe X*.
1.21 The dual space of CJa, ]
We first recall some concepts about BV functions.
Definition 1.51 (Functions of bounded variation). e Let —0o < a < b < co. The function
g : [a,b] — R is called to be of bounded variation, a BV function for short, iff
np—1
VP(g) == sup Y |g(zit1) — g(xi)| < +o0, (1.53)
peP =3
where the supremum is taken over the set
P :={P ={xo, - ,xnp}: P is a partition of [a,b] satisfyinga =x¢9 <x1 -+ < Tpp =0 }.

e The functional V2(g) is called the total variation of g on interval [a,b].

e A function g : [a,b] — C is called BV, iff its real part and imaginary part are both BV.



1 BANACH SPACES AND FIXED-POINT THEOREMS 29

We introduce some properties of BV functions, and the proofs are left to the students.

Theorem 1.52 (Jordan decomposition of a BV function). Let —oco < a < b < co. The function
g : [a,b] — R is of bounded variation iff it can be written as the difference g = g1 — g2 of two

non-decreasing functions on [a,b).

This result is known as the Jordan decomposition of a function and it is related to the Jordan

decomposition of a measure.

Proposition 1.53. o If g is differentiable and its derivative ¢’ is Riemann-integrable on [a, b],

then g € BV[a,b] and its total variation is V(g) = fab |’ ()] da.
e A BV function is differentiable almost everywhere.

Proposition 1.54 (The Stieltjes integral). Let —oo < a < b < oo. Let f : [a,b] — C be continuous,
and let Let g : [a,b] — C be of BV. We assume that g is normalized such that it is right-continuous.

Then the approximating sum

n—1

S(P, f,9) = fi)(g(zis1) — glxs))

=0

converges as the norm of the partition (i.e. the length of the longest subinterval)
P={a=xy<x1 < <xp =0}

of the interval |a,b] tends to zero. This limit is called the Stieltjes integral (or the Riemann-Stieltjes
integral) and is denoted by

/a " f) dgl).

Moreover, there holds the estimate

/a ’ fla) dot)

b
< r[rﬁ?!f(:v)lVa (9)-

The Stieltjes integral is a generalization of the classical Riemann integral. Indeed, by taking
g(z) = x, the Stieltjes integral becomes the Riemann integral.

If f: R — C is continuous, and let Let g : R — C is BV on each compact interval, we then set

[ s@age = im / ’ fla) dgt)

— 0 b—~00,a——00
provided the limit exists.

Now we are ready to state the result about the dual space of Cla, b].
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Proposition 1.55. Let —o00 < a < b < oco. Then f € Cla,b]* iff there exists a BV function
p:a,b] = R such that

b
flu) = / u(z)dp(z), for allu € Cla,b], (1.54)
where the integral represents a Stieltjes integral. Moreover,

11l =V (o).

iEH. We know that Cla, b] is a Banach space with norm [Jul| = supy, ) [u(z)|. Let f be defined as
(1.54). By Proposition 1.54, one has

()] < [ullVy(p), for all u € Cla,b].

Hence f € Cla, b]*.

Given f € Cla,b]*, now we prove that f has a representation of the form (1.54).
Let Y denote the space of all bounded functions u : [a,b] — R. Then Y is a normed space with
the same norm || - ||. Since Cf[a,b] is a subspace of Y, it follows from the Hahn-Banach theorem

that f can be extended to a linear continuous functional
F:Y — R with ||F| = |f].

Set p(t) := F(v) for all t € [a,b] where
ve(x) == (1.55)

We claim that p is a BV function on [a,b] and V’(p) < ||f||. Let a =29 < 21 < --- < 2, = b be a
partition of [a,b]. Define s; := sgn (p(zi+1) — p(x;)). Then

n—1
Ay = lp(@ier) = plai)| = Y si(p(@ivr) — plai))
1=0 )

|
—

n

= si (F(vg,y,) — F(vg,)) :F<A

Si(inJrl - v%)) (1'56)
7
n—1
Z Si(v$i+1 - UIi)
=0

Il
o

< || F|

By the definition in (1.55),

1, T, < T < Titl,
(Vzipy — V) (T) = foralli=0,1,--- ,n—1. (1.57)
0, otherwise,
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Thus, for each zg € [a, b], there exists a unique i such that z;, < x < x;,41. Thus

n—1

S si(0arss — v)(0)
=0

Si(vxi0+1 - Uxio)(xo) =1

This implies that

= 1.

n—1
Z Si(vxi+1 - vl‘i)
=0

Hence,
Ap < [[FI =11l

By taking the supreme of the partitions to A, we obtain V2(p) < ||f]|.
In the last step, we show that p is the BV function such that the representation formula (1.54)
holds. Again let a = zg < 21 < -+ < z, = b be the uniform partition of [a,b]: z; := a + (b — a).

Given u € C|a, b, we consider a sequence of step functions in Y defined as

n—1
Up = z U(l'i)(vmlurl - sz)($)

1=0

Since wu is continuous on closed interval [a, b], it is uniform continuous. Then it is straightforward

to show that

u, —uiny, asmn— oo. (1.58)
Since
n—1 n—1
F(un) = Zu(xl)(F(U$z+1) - F(U:ch)) = u(xi)(p$i+1 - pxi)?
i=0 i=0

and p € BV]a,b], by Proposition 1.54, we have
n—1 b
lim F(u,)= lim (i) (Paisy — P2i) = / u(z) dp(z).
a

n—00 n—00 4
=0

On the other hand, by the continuity of F' and (1.58), we have

n—oo

b
Fu) = F(u) = lim F(up) = / w(z) dp(z).

We thus complete the proof.

1.22 Banach algebras and operator functions

Definition 1.56. By a Banach algebra B over F we understand a Banach space over F where an

additional multiplication AB is defined such that
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AB e B, forall A,Be€B. (1.59)
e Forall A,B,C € B and a €T,

(AB)C = A(BC), A(B+C) = AB+ AC, (B+C)A=BA+ CA, a(AB) = (aA)B = A(aB)

(1.60)
e Forall A,B € B,
IAB] < [|A[l[|BI]- (1.61)
e ¢ is called an identity of Banach algebra B provided
eA=Ae=A forallAcB, |e||=1. (1.62)

We remark that the condition (1.61) is not essential. If B is an algebra and has a norm || - ||
relative to which B is a Banach space and is such that the map of Bx B — B: (A,B) - AB is
bounded, then there is an equivalent norm on B that satisfies (1.61). (why?)

If B has an identity e, then the map a — ae is an isomorphism of F into B and ||ae|| = |af.
So it will be assumed that F C B via this identification. Thus the identity will be denoted by 1.

The content of the next proposition is that if B does not have an identity, it is possible to find

a Banach algebra B; that contains B, that has an identity, and is such that dim B;/B = 1.

Proposition 1.57. If Banach algebra B over F does not have an identity, let By := B x F. Define

algebraic operations on By by
(i) (A,a) +(B,B) = (A+ B,a+5),
(ii) B(A, a) = (BA, Bav),

(iii) (A,a)(B,B) = (AB + aB + A, af),

forall A,B € B, all o, 5 € F.
Define ||(A,a)|| = ||Al| + |o|. Then By with this norm and the algebraic operations defined
in (i), (i), and (iii) is a Banach algebra with identity (0,1) and A — (A,0) is an isometric

isomorphism of B into Bi.

#EBH. Exercise. O

Now we come back the statement:

If B is an algebra and has a norm || - || relative to which B is a Banach space and is such that
the map of Bx B — B : (A,B) — AB is bounded, then there is an equivalent norm on B that
satisfies (1.61).
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To prove this statement, we consider the Banach algebra B; defined as in Proposition 1.57.

For each A € B, we consider the linear operator
La:By — By; La(B,B)=(AB+ BA,0) for each (B, 3) € B;.

We claim that [|A]|" := ||La]| is a equivalent to the norm of B, and B is a Banach algebra with
respect to the norm || - ||". Indeed, on one hand, since the map of B x B — B : (A,B) — AB is

continuous, there holds
ILA(B, B)ll5, = [I(AB 4 54,05, < CIIA[IIBI[ + 8]l All < ClIA (B + [8]) = CIANI(B, B)l|5,-

This implies that
IA" = ||ILall < ClIA].

On the other hand, direct calculation gives
12400, D)5, = [[(A,0)[|5, = [IA]l = [[A[[1I(0, 1)[|5,
This implies that the operator norm of L4 satisfies
A" = [|Lall > [IA]l.

We thus have that the new norm ||Al|" = ||Lal| is a equivalent to the norm of B. Since Lap =

Ly o Lp, we thus have
IAB|" = [|Lagll = |La o Lgll < | LallllLsl = [|AI|B]

and we finally show that B is a Banach algebra with respect to the norm || - ||'.

Example 1.58. e Let X be a compact space, then C(X) is a Banach algebra with the pointwise
multiplication: (fg)(xz) = f(x)g(x). Note that C(X) is albelian and has an identity: the

constant 1.

e If Xis a locally compact space, Co(X) is a Banach algebra with the multiplication defined
pointwisely as in the preceding example. Co(X) is abelian, but if X is not compact, Co(X)
does not have an identity: 1 ¢ Co(X).

o If (Q,p) is a o-finite measure space, then L™ (82, p) is an abelian Banach algebra with identity.

e Let X be a Banach space. Then L(X,X) with multiplication defined by composition is a
Banach algebra with identity: the identity mapping. If dim X > 2, L(X, X) is not abelian.

We refer to Chapter 5 of Conway [4] for more details about examples.
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Proposition 1.59. Let B be a Banach algebra with identity e, and let A, B, A, B, € B for all n.
Then

o ||AF|| < |A|F for all k =0,1,--- , where we set A° = e.

e IfA, — A and B, — B in B, then A,B,, — AB in B

1ERH. Exercise. O

1.23 Infinite series in normed spaces

Definition 1.60. Let X be a normed space over F. Let {“j};')io be a sequence in X. We set

(o] n

u; = lim U
> uji= lim B
Jj=0

=0

provided the limit exists in X. This infinite series is called absolutely convergent iff

o
D gl < oo
=0

Proposition 1.61. Each absolutely convergent infinite series in a Banach space is convergent.

1ERH. Exercise. O

1.24 Operator functions in Banach algebra

Proposition 1.62. Let z € F where F =R or F = C. Define

F(z):= Z a;z
j=0

where
o0

Z laj||z)) < oo for all |z| < r with a fized v > 0.
=0

Let B is a Banach algebra and let A € B such that ||A|| < r. Then the following infinite series
F(A):= Z a; A
§=0

converges in B.

iERA. Let A € B with ||A|| < r. Then the positive series

OO . OO .
> a4 <D s AP
j=0 j=0
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converges. This means the series
o0
AJ
g a; A
J=0
is absolutely convergent. Hence,

F(A) =) a;A
j=0

converges in B.

35

O]

In particular, the result in Proposition 1.62 holds for linear operators in B = L(X, X) where

X is a Banach space. In the following, we give more properties of the infinite series on Banach

algebras. The results are given for the special case B = L(X, X) where X is a Banach space, while

they hold for all Banach algebras.

Proposition 1.63 (The exponential function). Let X be a Banach space over F.

(i) The infinite series

converges absolutely for all A € L(X, X).

(i) For each A € L(X,X) and all t,s € F,

GMASA _ (t+s)A

(iii) Let A, B € L(X,X) satisfying AB = BA, then

iERA. (i). This follows from the fact that

converges absolutely for all z € C.
(ii). This is a direct consequence of (iii).

(iii) Let A, B € L(X, X) satisfying AB = BA. We denote the partial sum

n 5 n

SOTED SE RO SEACAEOESS ples

1
i=0 I i=0 I =0 7

(1.63)

(1.64)

(1.65)

(1.66)

(1.67)
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Since AB = BA, direct calculation implies

n n A]Bk 2n 1 1 I
= Z - Al Bl-i
11 ZZ 1 51 |
pr i L g U A G
n n A]Bk 2n 1 N
- Z 1! _Z Z j!k|AJB
=0 k=0 1=0 j+k=1

M L

11 i
j=0 k=0 jlk! 0<]+k<2n‘7 'k
n ]Bk AJB 2n  2n—j AJBk 2n  2n—k A]Bk
-y T Yy A IOk D DD Dl Ty
j=0 k=0 7=0 k=0 j=n+1 k=0 k=n+1 j=0
B 2n  2n— ]A]B 2n  2n— k‘A]Bk
- kD X:EZjW'
j=n+1 k=0 k=n+1 j=0
(1.68)
This implies that
: 2n—j k 2n k 2n—k
A B B A J
j=n+1 ! k=n+1 =0 (1 69)
2n k ’
Al MW Al I1B1*
Z EREGID Dl
j=n+1 k=n+1

Passing n — oo in (1.68) and using Proposition 1.59 implies (1.65).
O

Proposition 1.64 (The geometric series). Let X be a Banach space over F with X # {0}. For
each operator A € L(X, X)) with ||A|| < 1, the infinite series

B := i AJ
§=0

converges absolutely to an operator B € L(X, X). In addition,
B=(I-A)"
where I is the identity operator.

iE8]. The classical geomotric series

00
27
Jj=0
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converges absolutely for all z € C with |z| < 1. Thus the series
o0
> 4
j=0

converges absolutely provided || Al < 1.
Clearly,

(I-AB=B-AB=> A -y At =A"=T
j=0 j=0

and

o) (o)
B(I-A)=B-BA=) A - A=A =1
7=0 7=0

Hence B = (I — A)~ .
O

Let X and Y be Banach spaces over F with X # {0} and Y # {0}. Denote L;,,(X,Y") the set
of all operators A € L(X,Y) such that the inverse operator A~! exists and A~! € L(Y, X).
Proposition 1.65. If A € L, (X,Y) and B € L(Y, X) with
1Bl < lA7HI~,
then A — B € Lin,(X,Y).

JERA. Let A € Ly (X,Y). Tt follows from AA~! = I that A=! # 0. Hence ||[A7}|| # 0 and |47}~
is well defined.

Since
JA7'B|| < |[A7Y|IB]| < 1,

we have that (I — A~!B) € L(X, X) is invertible with

(I-A'B)™l = i(A‘lB)j.
=0

J

Hence,
AI-A"'By=4-B

is invertible.

Corollary 1.66. The subset Lin,(X,Y) is open in L(X,Y).
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1.25 Applications to linear differential equations in Banach spaces

38

Definition 1.67. Let X be a normed space over F, let U(tyg) C R be a open neighborhood of the

point tg € R, and let
u: U(to) CR—> X

be a function with values in X. We define the derivative

rio e u(to+h) —ul(to)
wlto) := lim h

provided the limit exists in X.

Proposition 1.68. If the derivative u'(ty) exists, then the function u is continuous at the point t.

£ 8. The identity
u(to + h) — u(to)
h

u(to + h) —u(ty) =h-

yields
u(to +h) —u(tp) - 0in X, as h — 0.

O

Proposition 1.69. Let X be a Banach space over F, let u: R — X, and let A € L(X, X). Given

initial datum ug € X, the following initial-valued problem:

u'(t) = Au(t), —oo <t < +o0,

admits a unique solution given by

u(t) = eug, for allt € R.

Example 1.70. X = R% A = (aji)1<jr<a is a real d x d matriz, z(t) = (21,

Then the equation
o' (t) = Ax(t), 2(0) = z¢ € RY

has a unique solution x(t) = e'xy.

#E8f. Existence. Let h € R. It follows from

> h?
hA:Z (hA)J:I+hA+ A2
e
10‘7
that
|—2

_ |7
Ih= (" — 1) AH—HZ _A]H<|hlz

< ||A|]26|h”|‘4”\h| —0, ash—0.

1AIP

(1.70)

(1.71)

,zq)(t) € RY.

(1.72)
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Since
eHMA — gtAhA — hAGtA for all £, h € R,
we get for u(t) = ettug that

1" (u(t + B) = u(t)) = Au(t)]| = [~ (e g — e'ug) — Ae g
= | (h_l(ehA —1I)— A)etAu()H (1.73)

<t =) = Al -l - [luoll = 0, as h— 0.
This implies that u/(t) = Au(t) for all t € R. In addition u(0) = e%ug = uo.

Uniqueness. Let u(t) and v(t) be two solution to (1.70). Let w(t) = u(t) — v(¢t). Then
w'(t) = Aw(t), teR; w(0)=0. (1.74)
We shall show that w(t) = 0 for all t € R. Given f € X*. By (1.74), we have
(f,w'(t)) = (f,Aw(t)) forallt €R.

Since f: X — R is linear and continuous, we thus have

d o (fw(t+h) — (fw(?))
& (f () = im :
— lim w(t+h) —w(t)
_}lﬁo<f’ ( l; ()> (1.75)
ow(t+h) —w(t
~(rtm )

h
= (f,w'(t)) = (f, Aw(t)) forall t € R.

Since w(t) is differentiable at each t € R, so w(t) : R — X is continuous at each ¢ € R. Thus
the function

t— (f, Aw(t))

is continuous at all ¢ € R, due to the continuity of f and A. Integrating (1.75) in ¢ and observing
(f, Aw(0)) = 0, we obtain

(fyw(t)) = /Ot (f,Aw(t'))dt' forallt € R. (1.76)

Thus, for all ¢t with |¢| < h where h > 0, there holds

(@) < [ (A
(1.77)

t
sﬁwwmmmw.

By Corollary 1.49, we have for all ¢ € [—h, h] that
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t
Jw@®)| = sup |<f,w(t)>!</ [A] lw(@)[|dt" < h]|A]l max [[w(t)]]. (1.78)
fex=|fl<t 0 [t'|<h

This implies that

ﬁg%l\w(t)ll < hlA] ﬁgl!w(t)ll' (1.79)

If A=0, clearly w(t) =0 for all t € R.

If A0, we choose h := m. It follows from (1.79) that

1
max ||lw(t)]] < h||A|| ma t)|| = = ma |,
m;}jH (®)[| < hl|All Itl;;!lw()ll x [lw(t)]]

and a consequence is that max), <y, ||w(t)|| = 0. We proved that w(t) = 0 for all t € [~h, h].

Now we apply the same result to the initial-value problems
w'(t) = Aw(t), te€R; w(£h)=0, (1.80)

to deduce that w(t) = 0 for all ¢t € [-2h,2h]. Continuing this, we obtain w(t) = 0 for all ¢ € R.
O

1.26 Applying to the spectrum

Definition 1.71. Let A € L(X, X) with X a nontrivial Banach space over C.

o A complex number X is called an eigenvalue of the operator A provided there exists a nonzero

vector u € X such that
Au = Au. (1.81)

e The resolvent set p(A) of A is defined to be the collection of all complex numbers A\ such that
(A= X1 X — X ewists and (A—X)71 € L(X, X). If X € p(A), the operator (A — \I)~1

1s called a resolvent of A.
e The spectrum o(A) is defined as o(A) = p(A)°.
Proposition 1.72. Let A € L(X, X) with X a nontrivial Banach space over C. Then
(i) The resolvent set p(A) is open in C.

(ii) The spectrum o(A) is compact in C and

IA| < ||All, for all A € o(A).

(iii) Each eigenvalue of A belongs to the spectrum of A.
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JERA. (i). Let A € p(A), then A — A € L;jn, (X, X). Let p € C, we have

(A = AT) = (A= pD)|| = [[( = M| = [A = pl.
By (1.66), we know that L;,, (X, X) is an open set in L(X, X). Thus for all g with |\ — u| sufficient
small, we have (A — ul) € Liny (X, X), i.e. u € p(A). This means p(A) is open.

(ii). If A > ||A[), then
AT = AT Al <

It follows from (1.65) that
AM1A T € Lin(X, X).

This implies that
A= X =X\T1A—-1T) € Lin, (X, X).

This means A € p(A4), i.e. A € o(A). Thus, for any A € o(A), there holds |A\| < ||A]|. Consequently,
the spectrum o(A) = p(A)€ is closed and bounded in C, i.e. o(A) is compact in C.

(iii). If A € o(A), i.e. XA € p(A), by definition we know that (A — AI) € Ljn, (X, X). If there
exists u € X such that Au = Au, there must hold

w=(A—-X)"Y(A—M)u=(A-A)"10) = 0.

This means ) is not an eigenvalue of A.

O
2 Hilbert spaces, orthogonality, and variational problems
2.1 Hilbert spaces
Definition 2.1. o Let X be a linear space over K. An semi-inner product on X is a function,

denoted by (-,-) or (-]-) : X x X = K, such that for all u,v,w € X and all o, € K:

(i) (u,u) > 0.
(it) (au+ v, w) = a(u,w) + B(v,w).

(7ii) (u,v) = (v,u), where @ denotes the complex conjugate of a for each o € K.
e The property (ii) implies that for all u,v € X :
(u,0) = (u,0-0) =0(u,0) =0, (0,v)=(0-0,v)=0(0,v)=0.

In particular (0,0) = 0.
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e An inner product is a semi-inner product that also satisfies the following property: (u,u) =0
iffu=0.
e Letu,v € X. We say u is orthogonal to v iff (u,v) = 0.

We recall some basic properties about inner product. The proofs can be found in many

textbooks on functional analysis, see for example [4].

Proposition 2.2. Let X be a linear space with semi-inner product (-,-). Then

(NI

|(u,v)| < (u,u) (v,v)%, for all u,v € X.

Moreover, equality occurs iff there are a, B € F both not 0, such that
(au + Bv,au + pv) = 0.

Proposition 2.3. Let X be a linear space with inner product (-,-). Then X is a normed space
with respect to the norm

|ul :== (u,u)%, for allu € X.

Let X be a linear space with inner product (-,-). We know from Proposition 2.3 that X is
a normed space. In the sequel, we will give the natural topology to each linear space with inner

product (-,-) where the norm is defined as in Proposition 2.3.
Proposition 2.4. Let X be a linear space with inner product (-,-). Then

e The inner product is continuous in the sense that if
Up = U, Uy =V, 4SSN — 0O,

then

(Un,vn) = (u,v), asn — oo.
o Let M be a dense subset of X. If
(u,v) =0 forallve M,
then u = 0.

Definition 2.5 (Hilbert space). Let X be a linear space with inner product (-,-). If X is a Banach

space with respect to the natural norm given in Proposition 2.3, we say X is a Hilbert space.

Example 2.6. R?, L2(Q), WH2(Q), H*(R?), and so on.
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2.2 Friedrichs’ mollifier and density of smooth functions in L” spaces

The standard Friedrichs’ mollifier is base on the C2° function
~ =
¢(x) = o(|z]) = cer=l, o] <15 d(2) =0, || 2 1, (2.1)

where ¢ is the renormalized constant defined as
-1
-1
c= / e—1-1= dg .
|z|<1

« $>0, ¢ CXRY), suppp C B(0,1).

It can be shown that

o Jpad(x)da =1.

We remark that any Cg° function satisfying the above two properties can be used to define the
standard Friedrichs’ mollifier, not necessarily the precise form in (2.1).

For any 0 < € < 1, the standard Friedrichs’ mollifier is defined as

$e(-) = (). (2:2)
Then
« ¢:20, ¢€CX(RY), suppe. C B(0,¢).
o Jpae(z)dz = 1.

1

L (R%), one can define its mollification

For any u € L

Sdul(e) = [ 6. = y)uty)dy, (23)
and we have
Proposition 2.7. Let u € L}, (RY). Then S.[u] € C®(R?).
1ERH. Exercise. O
Moreover:
Proposition 2.8. Let Q be an open set in R?.
(i) If u € C.(2), then

1Seulll Lo may < llullpee (@), Selul = w in L=(€).
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(ii) If ue LP(Q), 1 <p < oo, then

[Sefulll Loy < lullpe),  Selu] — w in LP(S).

JERA. We first prove (i). For any z € €, direct calculation gives

Si@)| < [ oelo =) dy < ullme [ oo =) dy = fulimiey. (24)
and
Silla) —u(@) = [ oule = pu)dy—u@) = [ 6.(ule =)y~ ulz)
= [ l/eute ~ )y - (o) = | ow)ule - ey)dy -~ ulz) (2.5)
R4 Rd
— [ o) ute —=y) ~u@) dy < [ () dy sup [(u(z — ey) — (o).
R4 ly|<1

ly|<1

Since u € C.(f) is continuous and of compact support, u is then uniform continuous on R%. Thus,

sup sup |(u(x —y) —u(x)| =0, ase—0.
z€Q |y|<e

Hence,

sup [|Se[u](z) — u(x)|| < sup sup |(u(z —ey) — u(x)| = 0. (2.6)
zeQ z€Q |y|<1

We then prove (ii). Let 1 < p < co. By Minkowski’s integral inequality, we have

1= ()] oy = H / RGECERIL / ocw)lut@ = )l dy = lull o). (27)

Again by Minkowski’s integral inequality, direct calculation gives

[Se[u] = ull o) = o(y) (u(x — ey) — u(x)) dy
i<t 17(Q) (2.8)

< sup [[u(z — ey) — u(@)l| o)
ly|<1

Since C(2) is dense in LP(2) for each 1 < p < oo (see Theorem 3.14 in [7]), for any ¢ > 0,
there exists u(®) € C.(Q) such that
[0 — | o) < 6.

Thus,

100 = oy < [[Selu®] =¥, o+ 50 ]

+ Hu(‘s) —u
()

L Lr(Q)

< H S.[u®] — (@

) (2.9)

< sup [0 (@ - ey) — ul® (z)
ly|<1

+ 26.
LP(Q)
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Passing € — 0 in above equation implies
;1_13(1) [Se[u] — “HLP(Q) < 29, (2.10)
where the limit

=0
LP(Q)

lim sup Hu(‘s) (z —ey) — ul® (x)‘
=0 yI<1

can be shown by the uniform continuity of u° on its compact support. Finally passing § — 0 implies

our desired convergence result.
O

Let © be an open set in R Let Cp(2) be the set of all continuous functions that vanish at
infinity, i.e. a continuous function u € Cy(R2) iff for any £ > 0, there exists a compact set K. C
such that |u| <ein Q\ K.. Armed with the natural L> norm for continuous functions, Cy(f2) is

a Banach space. We then have

Proposition 2.9. The set C2°(Q2) is dense in Cp(2) and C°(QY) is dense in LP(Q2) for all1 < p <

0.

JER]. We prove the first part. Given u € Cy(£2). We would like to show that for any given 6 > 0,
there exists v € C2°(Q2) such that

21618 lu(z) —v(x)] < 6. (2.11)

Firstly, by the definition of C(€2), there exists a compact set K5 C € such that

sup |u(z)| < 4/3. (2.12)
xGQ\K(;

Since K is compact and € is open, and Ky C 2, there exists g > 0 such that
K(;’Q(;O = {.%' € R?: dist (a:, K(;) < 2(50} c Q. (2-13)

Clearly Ks a5, is compact and K C Ksa5,-

We then introduce
u®(z) = u(z) if v € Ks5,, u®(x)=0ifz€Q\ Ksg,, (2.14)

where

Kssy = {1‘ e R? : dist (x, Ks) < (50}

Let 0 < € < &y and consider S:[u(®)]. We introduce the following lemma, and the proof is left

as an exercise:

Lemma 2.10. For any u € L}, (),

supp S:[u] C B(0,e) +suppu={x+y:|z| <e, y €suppu}. (2.15)
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By the above lemma,
supp S:[ul”] € B(0, ) + Kss, C K526, C .
This means S.[u(?)] € C2°(Q). Moreover, by the proof of Proposition 2.8, we have for all 2 € Kj:

[Se[u®)(2) = u(x)] = Se[u®)(z) —u® () =

o(y) (u(x — ey) — u(z)) dy
]Rd

< sup |(u®(z — ey) — u® () (2.16)
lyl<1

< sup |(u(x — ey) — u(@)|
lyl<1

where we used the fact that x — ey € Ks;, for all |y| <1, z € K;. Since u is uniform continuous

on compact set K5 s,, we thus have for ¢ small that

sup |Sc[u®)(x) — u(x)] < 5/3. (2.17)

Thus for each z € Q\ K,
[S:[u](2) = u(@)] < |S:[u®](@)] + Ju(z)|
< [ o) (x —ey)ldy + /3 (2.18)
R

< sup [u® (z — )| +3/3.
ly|<e

Since x € Q\ K5 and Q\ Kj is an open set, for ¢ sufficient small, we have x —y € Q \ Ks provided
ly| <e. Thus,

1S [u@](2) — u(z)| < sup |[ul(2)|+6/3<8/3+0/3 <8, foreachze Q\ K;. (2.19)
ZEQ\K5

Then by (2.17) and (2.19), we obtain that

sup [S:[u®) () — u(z)] <6, (2.20)

where S.[ul®)] € C(Q).
We now prove the second part. Given u € LP(€2). We may employ the argument in the proof

of the first part by observing the fact that for any § > 0 there exists a compact subset Kj of €2
such that (why?)

llull o\ i) <6

We may also direct use the fact that C.(f2) is dense in LP(Q2) to prove our result. Given
u € LP(Q) with 1 < p < co. For any 6 > 0, there exists u(®) e C,(Q) such that

llu — u(5)||LP(Q) <0/2.
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By Proposition 2.9 and Lemma 2.10, we have for sufficient small ¢ that
Seu] € (@), S[u®) = a1y < /2.

Finally
S [u®] — ull zp() < 0.

A direct corollary is the following:

47

Corollary 2.11. Let Q be a nonempty open set in R and let w € LP(Q), 1 <p < oo. If

/ uvdr =0, forallve CX(Q),
Q

then u(z) = 0 for almost all x € Q.

Problem: What the case p =1, p = +oo?

1ERH. Exercise.

2.3 The space C2° and integration by parts

The classical integration by parts formula reads as follows:

b b
/ u’vdx:uv|g—/ uv' dzx
a a

uv|? = u(b) v(b) — u(a)v(a).

with the boundary integral

In particular, if v(a) = v(b) = 0, there holds
b b
/ Wode = —/ uv dx
a a
In higher dimensions, similar integration by parts formula holds:

Proposition 2.12. e Let Q C R? be a bounded open set with C* boundary.
u,v € CY(Q), there holds

/(@u)vdx—/ uvnde—/u(f)jv)dx,
Q o0 Q

where T = (ny,--- ,nq) s the outer unit normal vector to the boundary OS).

e For allu € CY(Q), v e CHQ) with Q C R an open set, there holds

[@uwvar=- [ woa.

#EBH. Exercise.

(2.21)

(2.22)

(2.23)

Then for all

(2.24)

(2.25)
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2.4 Bilinear forms

Definition 2.13. (i) Let X be a normed space over F. By a bounded blinear form on X we
mean a function

a: XxX—=F

that has the following two properties:
— Bilinearity. For all u,v,w € X and o, € F,
alau + v, w) = aa(u,w) + fa(v,w), a(w,au+ Pv) = aa(w,u) + Ba(w,v).
— Boundedness. There is a constant C > 0 such that
la(u,v)| < C|ull||v|l, for all u,v € X.
(ii) In addition, a bilinear form a(-,-) is called symmetric provided

a(u,v) = a(v,u), forallu,ve X.

(ii) Moreover, a(-,-) is called positive provided
a(u,u) >0, forallue X.
And a(-,-) is called strictly positive provided there is a constant ¢ > 0 such that
a(u,u) > cllul|®,  for allu € X.

A bounded bilinear form is continuous:
Proposition 2.14. Leta : X X X be a bounded bilinear form on normed space X . Ifu, = u, v, — v
in X asn — oo, then a(uy,vy) — a(u,v).
2.5 Quadratic variational problems

In general, variational problems represent the problems of finding minimum or maximum values

of functionals.

Theorem 2.15. Let X be a real Hilbert space. Leta : X x X — R is a symmetric, bounded, strictly
positive, blinear form, and let b : X — R is a linear continuous functional. Define the functional
F: X —>Ras

F(u) = %a(u,u) —b(u), forallue X.

Then the variational problem:

find u € X such that F(u) = in}f( F(v) (2.26)
ve
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admits a unique solution u € X; moreover, u is the unique solution to the so-called variational
equation:

a(u,v) =b(v), forallveX. (2.27)
JE#]. Step 1. Existence. Let o := inf,ex F(v) and let {u,} be a sequence in X such that
F(u,) = «, asn— oo.

Since a is strictly positive and b is continuous, there holds

cllvl®

1
F(v) = 5a(v,v) = bv) 2 — lIBllllv]l = +oo, as [[v]| = oc.

This implies that the sequence {u,} is bounded.

By the bilinearity and symmetry of a, one has
2a(Up, Un) + 20 (U, Upm) = a(Up — Uy Uy, — Upy) + A(Up + Uy Uy, + Uy

Hence

4[F(up) + F(um)] = 2a(tn, up) + 2a(Up, Up) — 40(uy) — 4b(wp,)

= a(Up — Uy, Uy, — Upy) + a(Up + Uy Uy, + Upy) — 40(Up + Uy

Up + Uy Up + Uy, (2.28)
2 ’ 2

= a(Up — U, Up, — Up,) + 8F (
> CHun - um||2 + 8a,

where ¢ > 0 is the positive constant related to the strict positivity of a. This implies
clltn, — uml|? < 4[F(upn) + F(um)] — 8a — 0, (2.29)

as m — 0o,n — oo. This means that {u,} is a Cauchy sequence. Since X is complete, we thus
have

U, — uin X, asn — oo.

By the continuity of F', we thus have

Lo = g Fl) = o= ol B =g F ),

This means u is a solution to the variational problem (2.26).

Step 2. Solution of the variational equation. Let u be a solution to the variational
problem (2.26). Fix v € X and define

2
o(t) = Flu-+ tv) = Sa(v,v) + tla(u,v) — bo)] + %a(u,u) _b(w), VEER.



2 HILBERT SPACES, ORTHOGONALITY, AND VARIATIONAL PROBLEMS 50

Since w is the point such that F(v) achieve its minimum, the smooth function ¢(t) achieve its

minimum at ¢ = 0. Then necessarily ¢'(0) = 0, which is exactly the variational equation

a(u,v) —b(v) = 0.

Step 3. Uniqueness. Let u; and uo be two solutions to the variational problem. Then
a(uy,v) =b(v), a(ug,v)=">0(v), VvelX.
Thus
a(u; —ug,v) =0 Yve X.

Taking v = u; = uo and using the strict positivity of bilinear form a implies that u; = us.

2.6 A variational problem: Dirichlet problem of Laplacian operator

Let © be a bounded open set in R?. Let f € L?(Q) and let X be a suitable Banach space to

be determined and we define the functional on X:
1
F(v) := / Vo] dz — / fodz, YvelX. (2.30)
2 Ja Q
Let g be a suitable function. We then consider the following variational problem:
find u € Xy :={v € X : v =g on 90} such that F(u) = inf,ex, F(v). (2.31)

Here X is called the set of admissible functions for the variational problem (2.31).

In the following subsections, we will study this variational problem step by step.

2.6.1 The Euler-Lagrange equation

Along with (2.30) and (2.31), we consider the following boundary-value problem of the

Laplacian operator:

—Au=f in Q,
(2.32)
U=y on 0f).

The boundary condition in (2.32) is about the value of the unknown on the boundary. Such a
boundary condition is called the Dirichlet boundary condition, and the related boundary-value
problem is called a Dirichlet problem. The connection between the variational problem (2.31) and

the Dirichlet problem (2.32) is given in the following:

Proposition 2.16. Let Q be a bounded open set in R? and let f : Q@ — R and g : 090 — R be
continuous functions. If u € C%(Q) is a solution to the variational problem (2.31) in X = C%*(Q),
then u is a solution to the Dirichlet problem (2.32).
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The equation (2.32) is called the Euler-Lagrange equation to the (2.31).

. Step 1. Admissible functions. Let u be a solution to the variational problem (2.31).
Then, for each v € C2°(Q2) and each ¢t € R, the function

w = u+tv
is admissible for the variational problem (2.31) in X = C?(Q), i.e.

weC*Q), w=g ondN.

Step 2. Reduction to a minimum problem for real functions. For each fixed v €
C(Q), we set

o(t) = F(u+tv):;/Q]Vx(u+tv)\2da:—/Qf(u—i—tv)dx, ViR,

Then ¢ is a differentiable function on R. Moreover, since u is a solution to the variational problem,

the function ¢ : R — R admits a minimum at ¢ = 0. Hence
#'(0) = / Vau-Vyvdr — / fvdx =0. (2.33)
Q Q
This holds true for each v € C2°().
Step 2. The Euler-Lagrange equation. Applying integration by parts to (2.33) implies
- / (Azu+ flvde =0, VYVoveCX(Q). (2.34)
Q

This implies Azu+ f =01in G. (why?)
O

Remark 2.17 (Lack of classical solutions). By Proposition 2.16, each sufficient smooth solution
to the variational problem (2.31) is also a solution to the Dirichlet problem (2.32). However, the

are reasonable situations where the variational problem (2.31) lacks smooth solutions.

One may ask, why not to use general Theorem thm-variational-1 to solve the variational

problem (2.31) in some reasonable space X? Then the functional F'(v) can be written as
1
F(v) = ia(v,v) —b(v)

where

a(u,v) ::/vau-vxvdx, b(v) ::/vad$.
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To apply Theorem 2.15, we need a to be a symmetric, bounded, and strictly positive blinear form
in Hilbert space X, and we need b to be bounded in X. Thus, the reasonable choice the norm for
X is )

ullx == (/Q(|qu]2+ \u|2)dx>2. (2.35)

However, to define this norm we need u € C1(£2). However, this norm | - || x in (2.35) does not
coincide with the norm of C1(£2). We need more general definition for derivatives. This is going to

be done in the next subsection.

2.7 Generalized derivatives

The point of departure for the definition of generalized derivatives is the classical integration-

by-parts formula: let u € C'(Q) with Q ¢ R? an open set, then

/ w(0jv)de = — / (Oju)vdz, for all v e C(Q). (2.36)
Q Q

Setting w = d;u gives the formula

/ u(0jv) de = —/ wvdz, forall ve CXZ(N). (2.37)
Q Q

The point is that this formula remains valid for certain nonsmooth functions v and w.

Definition 2.18. Let Q be a nonempty open set in R%. Let u € Li (). If there exists w € L} ()

loc

such that (2.37) holds, we call w a generalized derivative of the function u in Q. As in the classical

case, we write w = O;u.
Proposition 2.19. The generalized derivative is uniquely determined up to a set of measure zero.

To prove this result, we need the show that Corollary 2.11 still holds for the case p = 1 and
p = oo. That is:

Corollary 2.20. Let Q2 be a nonempty open set in R? and let u € LP(Q), 1 <p < oco. If
/ uwvde =0, forallve CX(Q), (2.38)
Q

then u(x) = 0 for almost all x € Q.

Proof of Corollary 2.20. The cases 1 < p < oo is already proved. We still need to handle the case
p=1and p = 0.
Case p = oo. This case is easier to prove. Given u € L*>(Q) satisfying (2.11). Define

Q,:=QNnB0,n), nezy, (2.39)
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be a sequence of bounded open subsets of €2 such that
Q=] (2.40)
n=1
Thus, for any n € Z,, one has u € LP(,) for all 1 < p < co. Moreover,
/ uvdx:/uvdx:O, for all v € C°(Qy,). (2.41)
n Q

Applying the result of the case 1 < p < oo, we have u(x) = 0 for almost all z € Q,. Since
a countable union of measure zero sets are still measure zero, we have u(x) = 0 for almost all

reQ=Ur", Q.
Case p = 1. Let u € L'(Q) satisfy (2.38). For any compact set K C 2, we define v as

sgnu, on K,
v= (2.42)
0, on R\ K.

Then, for ¢ sufficient small, we have S:[v] € C(Q) where S; is the standard Friedrichs’
mollification.

By Minkowski’s inequality, there holds
1S:[v]llzoe < flvllpe < 1.
Moreover, since v € LP(Q2) for any p € [1, o], there holds
Se[v] = v in LP(R2).
This implies, up to a subsequence, that
Se[v] = v a.e. in Q.

By Lebesgue’s dominated convergence theorem,

/uvdm:/uvdx:hm u Se[v]dz = 0.
K 0 e—0 0

/ lu| dx = 0,
K

u=0a.e. in K.

By the definition of v, we finally obtain

which implies

Since K is arbitrarily chosen in €2, we derive that
u =0 a.e. in Q.

In this case, we may also employ Lusin’s theorem which is recalled below:
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Lemma 2.21. Let f : R? — C be a measurable function. Given € > 0, for every measurable set A
of finite measure there is a compact set E with |A\ E| < e such that f restricted to E is continuous.
Moreover, we can find a continuous function f. : R* — C with compact support that coincides with

f on E and such that sup |f-(z)] < sup |f(x)|.
R4 zeR4

Again let Q,, be defined as in (2.39). Clearly £2,, is a bounded subset of © and is certainly of
finite measure. Then, by Lusin’s theorem, for each € > 0, there exists a compact set F, C €2, and

a continuous function u, : 2, — C with compact support such that

us(z) = u(z), Vo € E, ., sup |us(z)| < sup |u(z)].
IGQn ﬁeﬂn

Since E, ¢ C Qy, then for each v € CX(E, ) C CX () C C(£), there holds
fevdw—/ fvdx—/fvdx—(). (2.43)
En.e Ene Q
This implies
f(z) = f(x) =0, Vo € E, ..
(why?). Since this holds for all € > 0, we obtain
f(z)=0,Vx € E:= U Epe,
k=1
for each sequence ¢, satisfying e, — 0 as k — oo. Moreover
2N\ El =) 0\ Enepl =0
k=1
due to the fact

1, \ Ene| <erp—0.

Hence,
f(z) =0, aaz ey

and furthermore

f(z) =0, a.a xz € Q.

O]

Proof of Proposition 2.19. Let Q be a nonempty open set in R? and define €, as in (2.39). Let
u € L} (Q). Suppose wy,ws € L} () both satisfies (2.37). Then

loc loc

/(w1 —wg)vde =0, forall ve C(N).
Q
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This implies
/ (w1 —wz)vdr =0, forallve C(Q,).

n

Since w1 — wq € L'(£2,), applying Corollary 2.20 implies
wy(z) = we(x) a.a. z €y,

and furthermore

wy(x) = we(x) a.a. z € Q.

Example 2.22. u(z) = |z|, x € (—1,1). The generalized derivative v’ = w with

1, O<z<l,
—1, —1l<x<O,

Ezercise: Prove that w does not admit a generalized derivative in the sense of Definition 2.18.

More generally, any continuous and piecewise C function admits a generalized derivative that

. e
18 leOC.

Remark 2.23. For every u € Li (Q), the theory of distribution gives a meaning to Oz;u as

loc

an element of the much larger space of distributions D'(Y), which is the space of bounded linear
functionals on D(Q) := C*(Q). We will not go into the details of the theory of distribution. The

students can learn from the book [3].

2.8 Sobolev spaces
Now we give the definition of Sobolev spaces

Definition 2.24. Let Q C R¢ be a nonempty open set. For each 1 < p < oo, the Sobolev space
WP(Q) consists precisely of all the functions

u € LP(Q)
that have generalized derivatives
Ogu € LP(Q), j=1,--- ,d.
We also use the classical notation for the generalized gradient Vu = (Oyu, - -+ , Oqu).

Remark 2.25. There are other ways to define the Sobolev spaces. These definitions are equivalent.

One can also use the language of distributions. By the theory of distributions by L. Schwartz,

1

each function u € Lj,,

(Q) admits a derivative in the sense of distributions:

(Oju,v) = — (u,0jv) = —/ u(0jv)dz, for allv e C(Q).
Q
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This derivative is an element of the much larger space of distributions D'(Q2) which is the collection
of all linear bounded functionals of the space D(Q) = C(Q). We say that u € WHP(Q) ifu € LP(Q)
and its distributional derivative happens to lie in LP(Q), which is a subspace of D'().
When Q = R? and p = 2, Sobolev spaces can also be defined by using the Fourier transform:
W12(R2) consists of all functions
u € L*(R?)
for which the Fourier transform o satisfy

(1+ [€*)a(¢) € LARY).

To define the Fourier transform of some u € L?>(R%), one needs to use the Plancherel theorem

and a density argument of Schwartz functions. (How?)

Proposition 2.26. Let Q be an open set of R and let 1 < p < co. Equipped with the norm

hSA

lullwroy = (lullpo + IVullpe)) s 1< p < o, -
[ullwree ) = llullLe() + [[Vull o), p=0o0
for all w € WYP(Q), the Sobolev space WP(Q) is a Banach space.
In particular if p = 2, the Sobolev space W2(Q) is a Hilbert space equipped with the inner

product:

(’LL, ’U)WLQ = (U, U)LQ + (VU, V'U)LQ = /

uvdx —|—/ Vu-Vodz for all u,v € WH2(Q). (2.45)
Q Q

Moreover, WP (Q) is reflexive provided 1 < p < oo and is separable provided 1 < p < oc.
iEB]. Step 1. Norm.

Step 2. Completeness.

Step 3. Hilbert space

Step4. Reflexive and separable. We consider the linear mapping
F WY (Q) — (LP(RN) F(u) = (u, Vu). (2.46)
Clearly F is an isometry from WP() into (LP(R%))4*!. Indeed:

| E ()l (Lrwayyarr = llullze) + VUl o) = [lullwirq)- (2.47)
Since WP(Q) is a Banach space, F(W1P(Q)) is a closed subspace of (LP(R%))4FL If 1 < p <

00, (LP(R4))¥+1 is reflexive. Thus, by the fact that any closed subspace of a reflexive Banach space
is reflexive, we know that F(W1P(Q)) is reflexive. Thus W1P(Q) is also reflexive.
If 1 < p < oo, (LP(RY))¥+! is reflexive. By the fact that any subset of a separable metric space
is also separable, we know that F'(W!1P(Q)) is separable. Thus W1P(Q) is also separable.
O
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We now give some properties of Sobolev spaces.

Proposition 2.27. (i) Let Q2 be an open set of R%. Let {u,} be a sequence in WP () such that

Uy, — u in LP(Q) and Vu, converges to some limit in LP(Q)%. Then

weWP(Q), w, —u in WHP(Q).

(ii) Let 1 < p < oo, let up, — u in LP(Q) and {Vu,} be bounded in LP(Q)?. Then u € WP(S).

JERA. (i). Suppose that Vu, — v in LP(Q)%. Thus, for any test function ¢ € C°(Q)9, there holds

/Q(Vun)-¢dx—>/ﬂv-q§dx,

(2.48)
/Q(Vun)-cbda::—/g)undiv¢dx—>—/52udiv¢dx.

This implies that
/ udivpdx = —/ v-¢pdx. (2.49)
Q Q

This means Vu = v in the generalized sense. Hence

ue WhH(Q), wu, —u in WHP(Q).

(ii). When 1 < p < oo, we know that each bounded sequence in LP(2) admits a weakly-star

convergent subsequence. So there exists v € LP(Q2)¢ such that
/ Vuy, - ¢dr = / v-¢dx, forall ¢ € CX(Q)™
Q Q
Similarly as above, we then have that Vu = v in the generalized sense. Hence Vu € LP(Q)) and

u e Whe(q).
L]

We remark that in case (ii), we know that u € WP(Q), but we do not know whether u,, — u
inue Wwhr(Q).

We introduce the zero extension of a function in Q. Given a function f defined in 2, we

denote by f its zero extension in R? | that is,

f(z) = f(z) forall z € Q, f(z) =0 for all z € R*\ Q.

Proposition 2.28. Let Q be an open set of R, let u € W'P(Q) and let v € C°(Q). Then

—_—~

ww e WYP(RY), 8, (W) = vdy, u + udy,v.
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JEBA. It suffices to prove that

Oz, (uv) = v0qz;u + udy,;v

in the generalized sense in R?. Given a test function ¢ € C2°(R?), there holds v¢ € C°(Q). Thus,

/Rd uv(0;¢) dx—/qu(ﬁj¢)dx—/Qu(aj(’v@)dx—/ﬂu(@jv)cbdx
—— [@ues) s - [ u@)sar

(2.50)
= / ((0ju)v + u(0jv)) ¢ da
Q
= _/Rd (00, u + udy,v)) ¢ da.
This means
Oz, (u0) = v0y;u + u0y;v
in the generalized sense in R%. Since u € W1P(Q), we have
av € LP(RY), V() = oVu+uVv € LP(RY).
This means uv € W1P(R?).
O

Remark 2.29. Given u € WYP(Q), in general & ¢ WHP(R?). (why?)
We know investigate the density of smooth functions in Sobolev spaces.

Theorem 2.30 (Friedrichs). Let u € W1P(Q) with 1 < p < co. Then there exists a sequence {uy}
in C°(R?) such that
up, = u in LP(Q)

and

Vu, = Vu in LP(w) for allw CC Q.

For the case Q = RY, there exists a sequence {uy} in C(R?) such that
Uy —u  in WIP(RY).
To prove this theorem, we need the following lemmas:

Lemma 2.31. Let u € W'P(R?) with 1 < p < oo and v € L'(RY). Then the convolution
vxu € WHP(RY) and
Op; (v u) = vk (Og;u), j=1,--,d.
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Proof of Lemma 2.31. By Young’s inequality, we have that v * v € LP(R?%) and
v ull Lo ray < [0l 1 wayllull Lo ray-
Thus, given each test function ¢ € C’go(]Rd), by Hoélder’s inequality and Young’s inequality,
[ e —plutls@ldedy = [ 6@ [ o= y)llu(w)]dyda
R x R4 Rd Rd

< llo(@)l o lv] * Jul e (2.51)
< Clloll prweyllull o may

< Q.

This implies that
F(z,y) = v(z - y)u(y)é(x) € L'(R? x RY), Vo € C.
Then, by Fubini’s theorem, by setting o(-) = v(-), we have
L vsu@@a@ar= [ [ o= uu) a0 da

u(y)dy 9 v(z —y)(9;¢)(x) dz
u(y) (v * (0;9)) (y) dy
)95 (0 6) (y) dy (2.52)

(D)) (0 %0) () dy

@u)(w) [ oty ~ 2)o(w)dndy

Rd

Il
5

Rd

d

——

Il
|
—— 5—

d

(v * Oju)(z)p(z) dz,

d

where we used the fact that (why?)

* (0j¢) = (U*¢)

We thus derive that
Op.

J

(v*u) = v (,u) € LP(RY), j =1, ,d.

Hence, the convolution v * u € W'P(R?) and we complete the proof.
O

Proof of Theorem 2.30. Given u € W'P(Q2) with 1 < p < oco. We consider the zero extension
defined as
w(z) = u(z) forall z € Q, d(z) =0 for all z € R%\ Q.
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Let ¢, be the standard Friedrichs’ mollifier with € = 1/n, n € Z,, and consider the mollification

sequence
Up, := Spla] == ¢n x u € C°(N).

By Proposition 2.8, we know that
| pogay < N0l ogay = lull o), wn — @ in LP(RY).

In particular,

Up = U =wu in LP(Q).

We next show that
Vu, — Vu in LP(w) for all w CC .

Given w CC Q, we fix a function y € C2°(Q) such that
0<x <1, x=1on aneighborhood of w.
By the property on the support of the convolution, we have for n large enough that

supp (¢, * (Xu) — én * @) = supp (¢, * (& — 1)a)
C supp ¢p + supp (& — 1)@)

(2.53)
C B(0,1/n) + supp (& — 1)
C w".
Thus, if n is large enough, there holds
b (X0) = G % o w. (2.54)
By Proposition 2.28 and Lemma 2.31, we know that
Or, (6 % () = b * D, (X01) = 6+ (XOryu + Oy xu) (2.55)
in R? in the generalized sense. Since
(X@;ju + 8mjxu> € LP(RY),
then
O, (n * (V10)) — (Xazju + 0, Xu) in LP(RY). (2.56)
In particualar,
O, (Pn * (X)) — <X6zju + szxu> = Oy, u in LP(w). (2.57)

Together with (2.54), we obtain

Oz; (Pn * (©)) = Og;u in LP(w). (2.58)
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We see that u, satisfies our desired convergence properties, except that u, € C*°(R?) is not
necessarily compactly supported. While, this can be remided be introducing a classical cut off

functions in the following way. Let xo € C°(B(0,1)) be a cut-off function satisfying
0<x0<1, xo=1onB(0,1/2) (2.59)
and set
Xn(+) = xo0(-/n) satisfying x, € C2°(B(0,n)), 0 < x, <1, xn =1 on B(0,n/2). (2.60)
Then, it can be shown that the sequence x,u, € C° fulfills our desired request (why?).
In the case Q = R?, it can be shown that the sequence
Un = Xn(n * u)

has the desired properties.
O

Remark 2.32. e It can be shown (Meyers-Serrin’s theorem) that if u € WHP(Q ) with 1 < p <
oo and @ C R? an open set, then there exists a sequence {u,} in C®(Q) N WIP(Q) such
that w, — u in WYP(Q ). The proof of this result is fairly delicate (see, e.g., R. Adams [1]).

e In general, if Q is an arbitrary open set and if u € WIP(Q ), there need not exist a sequence
{un} in CR(RE)NWIP(Q) such that u, — w in WHP(Q2), even when p < co. However, this

is true if Q is regular, of class C'.
Here is a simple characterization of W1 functions:
Proposition 2.33. Let u € LP(Q) with 1 < p < oco. The following properties are equivalent:
(i) ue WhHP(Q).

(7i) There exists a constant C' such that

’/ u0y; ¢ dz
Q

(iii) There exists a constant C' such that for all w CC Q and all h € R? with |h| < dist (w, Q)
there holds

SCH¢HLP’(Q)7 V¢EC§O(Q), VJ:1727 7d'

|Thu — ul|Lp ) < CIh],

where Thu(-) = u(- + h). (Note that Thu(z) = u(x + h) makes sense for x € w and |h| <
dist (w, 09 ).)
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Moreover, in (ii) and (iii) one can take C' = ||Vul|p(q)-

If Q = RY, there holds

I7hu — ull o ey < [RIIVUl Lo Ry
JEBA. (i) = (ii). This is rather obvious.

(ii) = (i). Since 1 < p < oo, we have that 1 < p’ < oo. Thus C°(R) is dense in L”' (). By

density argument and property (ii),
B(v) = — / udy, v dx, Yo € LV () (2.61)
Q

defines a linear bounded functional in L¥' (Q) for each j = 1,2, - - - ,d. Since the dual space of L? (2)
is LP(Q2) when 1 < p' < oo, there exists w € LP(Q) such that

o(v) = / wodz, Yo € L (). (2.62)
Q
By (2.61) and (2.62), we know that
Oz;u = w € LP(Q). (2.63)

This is true for each j =1,2,--- ,d. Hence u € Wl’p(Q).

(i) = (iii). Let w cC Q and h € R? with |h| < dist (w,d9Q). Assume first that u € C°(R?).
Then
1 d 1
u(x + h) —u(z) = / a(u(:v +th))dt = / h-Vu(z +th)dt, Vzecw. (2.64)
0 0

This implies for 1 < p < oo that
1
lu(x 4+ h) —u(z)P < |h|p/ |Vu(z +th)[Pdt, Vzew, (2.65)
0
where we used Hélder’s inequality. Then
7w = ull ey = [ fuer+ 1)~ ula)P da
1
< h\p/ / V(e + th)P dt da
w JO

1
< B / / Vuly) P dy dt
0 w!
<inp [ Vuty)Pdy,

(2.66)

where o' := {y : dist (y,w) < |h|} CC Q. This gives that

I7n = oy < RlIVUllor),  Yu € CZ(RY). (2.67)
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Assume now that u WHP(Q ) with 1 < p < oo. By Theorem 2.30, there exists a sequence {u,, }
in C°(R%) such that
Up, = u in LP(Q)

and

Vu, - Vu in LP(w) for all w CC Q.

Applying (2.67) to {u,} and passing n — oo, we obtain (iii) for every u € W'P(Q2), 1< p < cc.
Applying the above result for p < co and passing p — oo in (2.67) gives our desired result for

P = 0.

(iii) = (ii). Given ¢ € C°(92). Let w be a neighborhood of supp ¢ such that supp ¢ C w CC Q.
By (iii), for all » € R? with |h| < dist (w, 9S2) there holds

|Thu — ul[Lr ) < CIhl,

Thus

< CIh][¢]l oy (2.68)

/Q (rhu — w)é da

On the other hand, since

/w (rhtt — w)dz

/ (rht — w)dz = / (u( + h) — u(2))é(x) dz = / )@y — ) — ) dy,  (2.60)
Q w w

it follows that

Py —h) — oy
[t == 4y < il o (2.70)
Choosing h = te;, t € R, and passing ¢ — 0 implies (ii).

Now we prove that for each 1 < p < oo, there holds
Imhs = ull oy < IRVl oay, Y € WHP(RY,

When 1 < p < oo, we can apply Theorem 2.30 and using density argument to prove it, as in
the case for general domain ).

For p = oo and u € WH(R%), let h € RY. We consider B(0,n), n € Zy. Applying the result
for Q:= B(0,n + |h| + 1) gives

[7hu — ul| Lo (Bomy) < IPIIVUll Lo (BOntm1+1)) < IRV Lo (Ra)-
Passing n — oo gives our desired result. O

Remark 2.34. From the proof of Proposition 2.33, we see that the constrain p > 1 is used only

when proving (i) by using (ii). When p =1, the following implications remain true:

(i) = (id) < (iii).
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The functions that satisfy (ii) (or (iii)) with p = 1 are called functions of bounded variation.
In the language of distributions, a function of bounded variation is an L' function such that all its
first derivatives, in the sense of distributions, are bounded measures. This space plays an important

role in many applications.

Remark 2.35. From Proposition 2.33, we see that each function u € W1 (Q) has a continuous
representative on ), that is there exists a continuous function @ € C(Q) such that w = 4 a.e. in

Q , and we will no longer distinguish them two. Moreover, if Q is connected then
[u(z)—u(y)| < [[Vul g @ydista (v, y), Y,y € Q. (2.71)

where disto(x,y) denotes the geodesic distance from x to y in § ; in particular, if Q is convex then
disto(z,y) = |z—y|.
From here one can also deduce that if u WHP(Q) for some 1 < p < oo and some open set (,

and if Vu =0 a.e. in Q) , then u is constant on each connected component of Q.

Proposition 2.36 (differentiation of a product). Let Q be an open set in R? and let u,v €
WIP(Q) N L>®(Q) with 1 < p < oo. Then the product uv € WP(Q) N L>®(Q) and

0j(uv) = (Oju)v +u(Ov), j=1,---.,d (2.72)
in the generalized sense in €.

JERA. It is sufficient to prove (2.72) (why?). That is for each ¢ € C2°(2), there holds

/qu(ajgi)) de = — /Q Oj(w)pdr = — /Q[(aju)v + u(0jv)]¢p da. (2.73)

We start with the case 1 < p < oco. By Theorem 2.30, there exists two sequences {u,} and
{v,} in C°(R?) such that
Up —> U, Uy — v, in LP(Q)

and

Vu, = Vu, Vv, = Vo in LP(w) for all w CC Q.

Moreover, from the proof of Theorem 2.30, we know that
unllpooray < llullpes()y,  Nvnllpeomay < l[vllzoe (-
For each ¢ € C°(Q), integration by parts gives

/Qunvn(ajqﬁ) de = — /Q 0j(upvp)pde = — /Q[(ajun)vn + u, (Ojvp)] P d. (2.74)

Passing n — oo in (2.74) implies (2.73). (why?)
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We then consider the case p = co. Given ¢ € C2°(£2), there exists a bounded open set w CC
such that supp ¢ C w. To prove (2.73), we can work in w instead of 2. Since u,v € W (w)NL®(w)
then u,v € WhP(w) N L (w) for all 1 < p < oo. Then employing the proof of the case 1 < p < oo
gives us (2.73).

O

Proposition 2.37 (differentiation of a composition). Let  be an open set in R? and let u €
WHP(Q)N L2(Q) with 1 < p < co. Let G € CH(R) be such that G(0) =0 and |G'(s)| < M, Vs € R

for some constant M. Then the composition

GoueW'(Q), 9;(Gou)= (G ou)du), j=1,-d. (2.75)
JER]. We have that |G(s)| < M]|s| for all s € R. Thus |Gou| < M|u| and Gou € LP(f2). Similarly,
(G ou)(0ju)| < M|0ju| € LP(Q). Tt is left to verify for each ¢ € C°(Q) there holds

/(G ou)(0j¢)dr = — / (G ou)(Qju)pdz, j=1,---,d. (2.76)
Q

Q

When 1 < p < oo, by Theorem 2.30, there exists a sequence {u,} in C°(R?) such that
Uy — u, in LP(Q)

and

Vu, = Vu, in LP(w) for all w CC Q.

Moreover, from the proof of Theorem 2.30, we know that

unll oo (ray < [Jull Lo (@)

On the other hand, integration by parts implies
/ (G ouy)(0j¢)dz = — / (G'oup)(Oju)pde, j=1,---,d. (2.77)
Q Q

Then passing n — oo in (2.77) implies (2.76). (why?)

When p = oo, we consider a bounded open set w CC € such that supp ¢ C w. Then u € W1P(w)
for all 1 < p < oco. Then applying the argument for the case p < oo implies (2.76).
O

Proposition 2.38 (change of variables formula). Let Q and € be two open sets in R and let
H : Q' — Q be a bijective map such that H € CY(Y), H~! € CY(Q), and the Jacobian matrices
JocH = (0;H;)1<ij<a € LX), JocH ! = (8;H; Y1<ij<a € L®(Q). Let u € WHP(Q) with
1<p<oo. ThenuoH € WHP(Y) and

d

=1
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iE8]. Clearly, by the property of H, we have
woH € LP(Y),  (9a,u)(H(y))0y, Hi(y) € LP(€Y)
for all 1 <i,j < d. It remains to show (2.78). That is for all vy € C°(Y) and all j=1,---,d,

there holds 4

[ ut@a, vy = [ Y 0.0 w0, ) . (279)
i=1
When 1 < p < oo, by Theorem 2.30, there exists a sequence {u,} in C°(R?) such that

Up — u, in LP(Q)

and

Vu, = Vu, in LP(w) for all w CC Q.
Thus, by the property of H, we have (why?)

upo H —»uoH, in LP(Q)

and
(O un)(H (y))0y, Hi(y) = (Or,u)(H(y))0y, Hi(y), in LP(w') for all ' CC &'

On the other hand, integration by parts implies

d
| )0, 6w dy =~ [ (Gun) (H0))04, Hiy) dy (2:80)
=1

for all v € C°(Y) and all j =1,---,d. Then passing n — oo in (2.80) implies (2.79).

When p = oo, we consider a bounded open set w CC 2 such that supp ¢ C w. Then u € W1P(w)
for all 1 < p < oo. Then applying the argument for the case p < oo implies (2.79).

O
2.9 The spaces W™P(Q)
Let © c R be an open set, let m > 2 be an integer and let 1 < p < co. We define
W™P(Q) :={u e LP(Q) : dSu € LP(Q) for all multi-index « such that |a| < m} (2.81)
where the derivative 9y = 071072 - -- 074 is defined in the generalized sense in (2.
The space W™P(Q) equipped with the norm
lulwmrey = 3 105ulle (2.8

0<|a|<m
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is a Banach space.

The space H™(Q) := W™2(Q) equipped with the inner product
(U, U)HTVL(Q) = Z (3au, aa’U)LZ(Q) (283)
0<al<m

is a Hilbert space.

Remark 2.39. One can show that if Q is ’smooth enough’ with 0S) bounded, then the norm on
W™P(Q) is equivalent to the norm
lullzo@) + Y 10%ullzo(q)- (2.84)
|a|=m
More precisely, it can be proved that for every multi-index B with 0 < |B| < m and for every
€ > 0, there exists a constant C depending on €}, €, «, such that

10%ul| o) < & Z |0z ull L) + Cllull ey, Yu € W™P(Q). (2.85)

|a)|=m

We refer to Adams [1] for the details and the proofs.

2.10 Extension operators

It is often convenient to establish properties of functions in W1?( Q) by beginning with the
case ) = RY, for example the Sobolev Inequalities. It is therefore useful to be able to extend
a function u € WP( Q) to a function v € WHP( RY). This is not always possible for a general
domain . However, if € is ’smooth’, such an extension can be constructed. Let us begin by

making precise the notion of a smooth open set.

We first introduce some notations. Given z € R?, we write

x = (2!, xq) with 2’ € R, 2/ = (z1, 20, ,2q_1),
and set .
d—1 2
o= (24)
i=1
We define
RY = {2z = (z,24) € R?: 24 > 0},
R? = {z = (z,24) € R?: 24 < 0},
Q:={z=(z,zq) eRY: |2/| < 1, |uq| <1},
{ : ) | |zal <1} (2.86)
Q+ = QHR-H
Q- =QnNR%,

Qo ={x=(2",0): |z | <1}.
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Definition 2.40. Let Q € R? be an open set with boundary T' := 0. We say Q is of class C* if:
(i) There exists an open cover {§;}i>0 of Q such that
Qo C Q, diSt(Qo,aQ) > 0,

and
for each i > 1, Q; is bounded and Q; N OQ # 0, 0N C U Q;,
i>1

and either the family {Q;}i>o is finite or

there exists ko € Zy such that |i — j| > ko = Q; N Q; = 0.

(i) For each i > 1, there exists a bijective map H; : Q — §; such that
H; € CHQ), Hi' € CHY), Hi(Q4) =2iNQ, H;(Qo) =N (09). (2.87)
The map H; is called a local chart (or local coordinates) of the boundary 0S2.

(iii) There exist a C* partition of unity {¢}i>o subordinate to the cover {§;}i>0 and constants
C1 and Cy such that

Sup [[illw.00 may < Ch, sup I(Hi, Hi ) lwrioe (@) xwios () < Ca. (2.88)
The Ct character (or C' norm) of Q) is defined by Cy + Cs.

o We say ) is of class Lipschitz if in the above definition, the local coordinates H;, 1 > 1 are

merely uniform Lipschitz functions. The rest of the definition remains unchanged.

o Similarly, one can define a C™, m > 2 domain or a C"™%, m >0 domain.

In the above definition, we used a C'°° partition of unity. Here we recall its definition:

Definition 2.41. A C partition of unity subordinate to an open cover {Q;}ien of the open set §)

is a sequence of smooth functions {p;}ien with the following properties:

(i) For every i, ¢; € C°(Q;), 0 < ¢; < 1.

(ii) For each compact subset K C Q, only a finite number of the functions @; are not zero on K.
(iii) For allx € Q, 3 5o pi(z) = 1.

A classical result on the C* partition of unity is the following:
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Lemma 2.42. Let Q C R? be an open set with bounded boundary T' := 0. Then there exists a
finite open cover {4 }N ) of Q such that

Qo C €, diSt(Qo,@Q) > 0,

and

for each i > 1, Q; is bounded and Q; N O # 0, ON C U Q;.
i>1

Moreover, there exists a C™ partition of unity {p}i>0 subordinate to the cover {€;}i>o.

#EBH. Exercise.

The main result is the following:

Theorem 2.43. Suppose that Q is of class C' in the sense of Definition 2.40 (or ) = Ri). Then

there exists a linear extension operator
E:Wh(Q) = WH(RY), 1 <p < oo,
such that for all u € WHP(Q ), there holds
Bulg =u, ||Bullpemaey < CllEullre@):  lullwirsme < Cllullwieq), (2.89)
where C' depends only on € through C1, Cy in Definition 2.40.

Remark 2.44. We remark that the same result holds if Q is of class Lipschitz, slightly weaker
than C*. This can be seen from the proof that the estimate constant C' in (2.89) depends only on
the Lipschitz norm, that is W norm, of the local chart and the C™ partition of unity. The proof
is left to the students.

We shall begin by proving a simple but fundamental lemma concerning the extension by

reflection.

Lemma 2.45. Given u € WHP(Q,) with 1 < p < oo, one defines the function u* on Q to be the

extension by reflection, that is,

u*(x' " ) U($,7$d)7 Zf xq > 0, (2 90)
ybd) = .
u(z’, —xq), if zq < 0.

Then u* € WYP(Q) and

1wl zr (@) < 2llulleeyy W llwirg) < 2llullwirgu)- (2.91)
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iEB. First of all, it is clear that ||u*||z»(q) < 2|ullzr(q,)- We shall furthermore prove that

ou* ou\™ ou* ou\"
— for1<i<d-—1 — =|—=-— 2.92
ox; <8$Z> orlsisd ’ o0xy <8$d> ’ ( ) )

#
where (%) denotes the extension by reflection of “Z as in (2.90), and <(%fj) denotes the

extension by minus-reflection in () defined as

f(2', zq), if zg > 0,
(@ wq) = (v a) ! (2.93)
— f(@', —xq), ifzg <0

for a function f defined in Q4.
Choose n € C*(R) satisfying
nt)=0,t<1/2; nt)=1,t>1.

Then define

Given ¢ € C°(Q). For 1 <i <d—1, we have

*8790 _ / Oy / / Oy
/Qu axidx—/@ru(x,a:d)axi(x)dx—i— _u(m, )8%( x)dx

Oy Oy
= w(x', zq) —— (a: Zq) d$+/ w(@' xg)—— ( ' —1q) dz.
/Q+ BZL‘l Q+ 8561/

We would like to switch the partial derivative in (2.94) to w by the definition of generalized

(2.94)

derivatives, but this cannot be done directly because a C$°(Q) function is not in general a proper test
function for v in Q4. While, by using the property of 7, we know that supp (nx(zq)p(z', £24)) C Q4+
for all k € Z4. So n(zq)p(2, £x4) is a good test function in Q4 and there holds

/ u(m’,xd)a(nk(xd)(p(x ,24)) de — _/ M(nk(xd)w(x’,wd))dw,
Q+ Q+

Oz Oz (2.95)
O(ni(xg)o(x', —x ou(x', x .
/ u(x’,a:d) (Uk( d)g( d)) dz = / (ad)(nlc(xd)SO(v’U/a *l‘d)) dz.
Q+ Li Q@+ i
Since for 1 <i<d—1,
Op(a, +
o, (M (za)o (e’ £xa)) = "k(xd)W’
we then have
Op(x, x ou(x',x
/ u(w’,xd)nk(:vd)w do = - M(77k:(~”ffd)80(96'a~”L’d)) dz,
Qs Ti oy O (2.96)

Op(z’, — ou(z,
/ u(a:/, xd)nk(xd)(’o(xa Ta) dx = —/ u(;" Z) (nk(xd)go(x/, —a:d)) dz.
Q+ Li Q+ Li
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By Lebesgue’s dominated convergence theorem, passing k — oo in (2.96) implies

/ /
/ U(.’I,'/,{Iid) 8(,0(:1: a$d) dr — _/ 8’&(3}‘ ,l’d) SO(«T/,md) d.’L’,
Q+ Q+

aii 8$i 907
, . \Ople! ) et ra) (290
u(x' xg) ————=dr = — ———p(2, —xy) dx.
Q+ Ox; Qs ox;
Combining (2.94) and (2.97) , we are led to
/ /
/u* 0p 4 _/ Mgp(x’,xd) dm—/ Msp(m/’ —xg)da
@ O Q. Oz 0. Oz
/ o
=— /Q+ W@(m’,wd) dz — /_ W@(w’,xd) dz (2.98)
——/ Ou *(ac) (x)dz, 1<i<d-—1
N Q ox; u S .
This means 5 5
u* AN
= <:1<d-1.
oz, <69:Z> for1<i<d-1

Now we turn to consider the derivative on z4. Given ¢ € C2°(Q), direct calculation gives

/u*asoda::/ U(:c',a:d)&a(w)deF/ U(x/a_xd)ai(x)dx
Q Q+ 0 -

T4 Tq Oxy

:/ u(:c',a:d)azi(x',xd)da:—k/ u(:v',xd);z(x',—xd)dx

3}
o) [ dple ) 9
= / u(x',:rd)u dr — / u(x',wd)udx
QJr axd Q+ 8xd
= / ua—w dz,
Qr O%a
where
¢($/7 ZUd) = So(wla ZL‘d) - Sp(xlv —l‘d)-
Note that 1(2’,0) = 0, then there exists a constant M such that |¢(z,24)| < M|z4| on Q.
Since 1y, (z4) (2", za) € C°(Q+), then
O (i (za)y (', 24)) u(x', )
u(z', x doe = — —— (= x, xq)) dz. 2.100
| w0 [ (e 2) (2:100)
Here ,
0 : !
GV 7)) 2D i 2.101)
8$d 8xd
We claim that
w(x',xg)kn (kzg)y(2,24) dz — 0, as k — oo. (2.102)

Q+
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Indeed, we have

< k||| M lu(a’, zq)||zq] daz

1
2EQ 4,55 <zy<%

'/Q+ w(@', zg)kn (kzg) (2, 2q) da

(2.103)
< l7'l| oo M (2, zq)| dz

which goes to zero as k — oo because u is integrable in Q4.
By (2.100), (2.101) and (2.102) and passing k — oo, we have
0 ou
/ w2 dr=— [ Pyda, (2.104)
Qs Ozd Q4+ O2a
Together with (2.99), we finally obtain

#
/u*f)godx_/ uwdm——/ 8uwdau——/ <8u) pdz. (2.105)
Q a$d Q. 8$d Quy 8xd Q axd
ow _ (ou)*
Org  \Ozyg )

Remark 2.46. The conclusion of Lemma 2.45 remains valid if Q4 is replaced by R‘i (the proof is
unchanged). This establishes Theorem 2.43 for Q = Ri.

This means

O]

Now we are ready to prove Theorem 2.43:

Proof of Theorem 2.43. The case 2 = R, can be proved by using the extension by reflection, as
in Lemma 2.45. Suppose that §2 is of class Lipschitz with 02 bounded. By Definition 2.40, there
exists an open cover {Q2};>¢ and a local chart {H;};>o satisfy the stated property in Definition
2.40. Let {H;}i>0 be the related local chart. By Lemma 2.42, there exists a C'° partition of unity
{¢}i>0 related to the open cover {€2;};>0.

Let u € WHP(Q). By the definition of a C* partition of unity, we have the decomposion

u = ngiu = ZUZ in Q, ;= pu. (2.106)

i>0 i>0
Now we extend each of the functions u; to R?, distinguishing ug and w;, i > 1.

Extension of ug. Since gy € C°(Qy) with Qy C Q, by Proposition 2.28, the zero extension
of ug = pou, denoted by g, is in WHP(R?), and there holds

afﬂj (:L_L\a) = axj (1’/@6) = (POa:chu + ua:BjSOO'

Thus

ol Lrray < Cllullzee)s  ltollwrrmaey < Cllullwrrq)-
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Extension of u;, i > 1.
Consider the restriction of u to ; N and "transfer” this function to Q4 with the help of
H; . More precisely, set

vi(y) = w(Hi(y)), Y€ Q4.

We know from Proposition 2.38 that v; € W'P(Q,). Then define the extension of v; on Q by
reflection of v; as in Lemma 2.45, and we denote this extension by v}. We know that v € WHP(Q).

Then we "retransfer” v} to €; using H i_lz

Then w; € WHP(Q;), w; = u in Q; N Q, and

[will e < Cllullr@ing),  lwillwie, < Cllullwirino)- (2.107)

Finally define 4; a function on R? as

pi(r)wi(r),  x €,
0, z e RY \ Q;.

Then 4; € W'P(R?), 4; = u; in Q, and
a5l wip@ay < Cllwillwieq,) < Cllullwir@na)- (2.108)

Extension opeartor. Our desired extension operator E : W1P(Q) — W1P(R?) as
Puim 4 Y= o+ 3 o) 100
i>1 i>1

where naturally we omit the zero extension notation ~ outside of the support of suppy;. Clearly
supp g C Qo, suppi; C Q;, 7> 1. (2.110)

Now we show that Eu € W1P(R?). By the property (i) in Definition 2.40, for each z € R?, the

definition of Eu(z) in (2.109) is a finite sum; moreover, for each z € RY, wewrite

ko ko
Bu(z) =tig(x) + > > fimkgs () = dio(x) + Y vj(2), (2.111)
j=1

j=1m>0
with

vj 1= Z Umko+j> 1 < J < ko.
m>0

Then there holds for each 1 < j < kg that

supp ﬁ’mko-{-j C ka0+j7 Qm1k0+j N Qm2k0+j = Qa v miy 7é ma. (2112)
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When 1 < p < o0, for for each 1 < j < ko,

/Rd |vj(2)[P dz = /U | Z Qg+ (2) [P da

mZOka0+j m>0

= /U 1) kg ()P da

mEOka0+j mZO

=X [ I @l de

m>0" > *mko+i m>0

=5 [ Jm ()P e
Q

m>0 " 2 mko+j
Together with (2.119) and (2.108), we deduce

/]Rd [vj (@) do = Z /Q |Gkt ()P dx

m>0 " >*mko+j

<oy [ @l

m>0 mko+j

< CP / u(z)|P dx
DY ]

m>0
= Cp/ |u(z)|P dz
UmZOQHQnLkO+j

gCP/ |u(z)|P dz.
Q

That is

[vill Lo ey < Cllullpr(q)-
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(2.113)

(2.114)

(2.115)

Now we consider ||[Vv;|ppgay. For each ¢ € C2° (R9), there are only finite number of ; that

are nonzero on supp . Thus

/Rd vj0pdr = /]Rd ( Z ﬁmk0+j)8g0 dz

m>0

- /Rd ( Z Spmko-i-jwmk:o-}-j)ago dx

m>0

- Z /Rd (‘Pmko+jwmko+j)8god:c

m>0

= - Z /Rd (aSDmkoJrjwmkoﬂ + SpmkoJrjawmkoJrj)SDdx
m>0

= — /d Z (a¢mk0+jwmk0+j + @mk0+j8wmko+j)g0dx.
RE m>0
This implies that

Vo; = Z (v‘»omkoﬂ'wmko-i-j + Somko+jvwmko+j)-
m>0

(2.116)

(2.117)
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Again by the property (2.112), similarly as the derivation of (2.114) and (2.115), we can deduce

190 Logge) < Cllullwroge, (2.118)

Hence Eu € W1P(RY) and

1Eull o ey < lollo@ay + D Iosllogey < Cliull oy,

1<j<ko
(2.119)
IV Bl ogray < [Viiollpoway + > IIV05llzoay < Cllullproq)-
1<j<ko
We complete the proof.
O

Remark 2.47. If 09) is bounded and then is compact, there exists a finite subcover {Qi}ﬁ\io of the
cover {Q};>1. By Lemma 2.42, there exists a C™ partition of unity {¢}X, related to the finite
subcover {4} . Let u € WIP(Q). By the definition of a C™ partition of unity, we have the

decomposition of finite sum
N N
w=Y =Y uinQ, =g (2.120)
=0 =0

Corollary 2.48. . Assume that Q0 is of class C', and let w € WHP(Q ) with 1 < p < co. Then
there exists a sequence {u,} in C°(R?) such that u, — u in WP(Q). In other words, C2°(R?)

functions form a dense subspace of WP(Q ).

JEBA. By Theorem 2.43, there exists an extension Eu € WHP(RY) such that Eu = u in Q. From
the proof of Theorem 2.30, we know the sequence x,,S1/,[Eu] converges to Eu in WHr(R?) and

thus it answers the problem.

O
2.11 Sobolev inequalities
2.11.1 The case Q = R?
Theorem 2.49. Letp > 2 and 1 < p <d. Then
WiP(RY) ¢ LP"(RY),  with i 1 1, (2.121)
pr p d

and there exists a constant C' = C(p,d) such that

[ull Lo () < ClIVullLo),  Yu € WHP(R?). (2.122)
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Remark 2.50. The constant C = C(p,d) can be chosen as

p(d—1)

But this constant is not optimal. For the optimal constants, we refer to the paper Best constant in

Sobolev in equality by Giorgio Talenti.

Remark 2.51. The value p* can be obtained by a simple scaling argument (scaling arguments, dear
to the physicists, sometimes give useful information with a minimum of effort). Indeed, assume

that there exist constants C' and q with 1 < g < co such that
d
ull Laray < ClIVullLogay, Vu € CF(RY),

then necessarily q = p*. To see this, fir any function u € C°(RY), and plug into the above equality
with uy(x) = u(Ax). We obtain

1_1
[ull a(ray < C')\Hd(q ”) IVull pegay, VA > 0.

This implies 1 + d (% - %) =0, i.e, g=p"

To prove Theorem 2.49, we need the following lemmas:

Lemma 2.52. Letd > 2 and let f1, fo, -+, f4 € LY (RY™Y). For x = (x1,29, - ,24) € Rq we set

Ty = (T1,@9,+ ,Ti1, Tit1, " ,Tq) € R 1<i<d,
i.e., x; is omitted from v = (x1,x1,--- ,xq). Then the function
f(@) = f1(@1) f2(Z2) - - - fa(Za), = € Ry,
belongs to L'(R?) and
d
1Al i ey < [Tl a1 a1y
i=1

iEB]. When d = 2, we have
f(z1,22) = fi(z2) fo(z1)

with fi, f» € L*(R!). Direct calculation gives

Il = [ 1 raldodny = [ [ 1)l oG] desdes = il |l
(2.123)
We then complete the proof for the case d = 2.

By induction, we assume the result holds true for d and we want to prove the result for d + 1.

We first fix z4.1. By Holder’s inequality, there holds

1

, &

/d |f(.56)| dzidxs -+ - dag < ||fd+1HLd(]Rd) |:/d |f1 . fd|d dxidxs - - - dzyg (2124)
R R
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with d’ = d/(d—1). Applying the induction assumption to the functions | f1|%, - ,|f4|*, we deduce
/ A [l dayday - dag < H\Hfz\d/HLd L(Rd) = HHszLd Ri-1) (2.125)
=1

By (2.124) and (2.125), we obtain

d
/Rd |f(z)| dz1dze - - - dzg < || fas1ll pagray H I fill La(ma-1y, (2.126)
—1

where the integral is taken without x4y variable (fixing z441).

Now we vary xq.q. Since f;(Z;) € LYR?), 1 < i < d, then the function 24,1 — | fill Lo (ra—1)

belongs to L4(R), 1 <1i < d. As a consequence, their product function

d
zayr — [ [ I£ill pagra-r)
i=1
belongs to L'(R) and (why?)
d+1
/ |f(z)|dzrdas - - - dzgdzgir < (| fatillpame H I fill paeay = T 1fill oy (2.127)
=1 =1
O
Now we are ready to prove Theorem 2.49.
Proof of Theorem 2.49. We begin with the case p = 1 and u € C}(R%). We have
1
"Uz(.’Bl,-' ‘ - ’/ au t y L2y 7$d) dt'
(2.128)
< / 7(901,362, -, xq)| dz,
e | 071
and similarly,
oo Gu
lu(z, -+ ,xq)| < / ’am(:pl,:@, < xg)|de; =: fi(%;), foreach 1 <i<d. (2.129)
Thus,
d
P <] £i@), (2.130)
i=1
and
d
Ju(a)[ @ < T 1 fa(@) M. (2.131)
i=1
We deduce from Lemma 2.52 that
1/(d—1) /(d=1)
/ () @D) dg < H 1Fill /4 1 H‘ 5 (2.132)
Ly || 1 Rd)
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As a consequence, we have

1/d

(2.133)

a-rz I Rd)

This completes the proof of the SGN inequality (2.122) with p = 1 and u € CH(R?).

We now turn to the case 1 < p < d, still with u € C}(R%). Let m > 1. Applying (2.133) to

|u|™ L implies
d 1/d 1/d
ou ou
ul|nasary <m um —— < mllu — (2.134)
el <] Tl | | <l I ]
Then choose m such that
md/(d—1)=(m—1)p/, ie. m=(d—1)p*/d.
Clearly m > 1 when 1 < p < d. Hence
[ull e (2.135)

We thus complete the proof for 1 < p < d with u € C}(R%).

Finally, we use density argument to finish the proof for general u € W1P(R%). By Theorem
2.30, there exists a sequence {u,} in C%° such that u, — u in WHP(R%). Moreover, one can also

suppose, by extracting a subsequence if necessary, that u, — v a.e. in R%. We have shown
[tnll o < C[ V|| Lo
It follows from Fatou’s lemma that

we P, |ul o < C|Vulze.

O
Corollary 2.53. Let 1 < p <d. Then
WP (R?) C LYRY), Vg € [p,p]
with continuous injection.
JEBf. By interpolation. Exercise. O
Theorem 2.54. Let d > 2. We have
Wh4RY) ¢ LYRY), Vg € [d, +00). (2.136)

If d =1, we have
WHL(R) C L=(R). (2.137)
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JE8A. First consider the case d = 1. Assume u € C1(R?). Taking p = d in (2.134) implies

d ou |14
ullPoagany <m [ ] ||lul™ 5
fullfara-y < m I ] flad™ 50 ey
PR (2.138)
< mflul 7ot vy Ozl
(219

=1

< ul L(m 1 d/(dq)HVUHLdy Vm > 1.
By Young’s inequality, we have
[ull pmasa-1) < C ([ull pom-vasa-1 + [[Vul[ga), ¥Ym > 1. (2.139)
Taking m = d in (2.139) gives
ull pa2/a-1y < Cllullpa + Vullpa) = Cllullpr.a. (2.140)
Then by interpolation, we have
lullza < Cllullyra, Vd < g <d*(d—1). (2.141)
Then we can reiterating this argument with m =d+ 1, m = d + 2, etc., we arrive at
|ullze < Cllullyra, Vg€ [N, +o0), (2.142)

with a constant C depending on ¢ and d. The proof will then be completed by density argument.
(why?)

For d = 1. We consider u € C{°(R). Then

ol<|[ vl < [ ol i

Now we can apply density argument to finish the proof. (How?)
[

Remark 2.55. From the proof, we see that the constant C' in Theorem 2.54 will go to infinity if q
goes to infinity.

Theorem 2.56 (Morrey). Let d > 1 and p > d. We have
WhP(RY) ¢ L=(RY) (2.143)
with continuous injection. Furthermore, for all u € WIP(R?), we have
lu(z) —u(y)| < Clo — y|*|Vul e, ae. z,y€R? (2.144)

where « = 1 — g and C' is constant depending only on p and d.
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Remark 2.57. Inequality (2.144) implies the existence of a Holder continuous function i € C®(RY)
such that u = @ a.e. on R%. Indeed,let A C R? be a set of measure zero such that (2.144) holds
for x,y € RT\ A; since R\ A is dense in RY, the function ulpa\ 4 admits a (unique) continuous
extension to R%. In other words, every function v € WIP(R?) with p > d admits a continuous
representative. When it is useful, we replace u by its continuous representative, and we also denote

by u this continuous representative.

1ERH. Exercise. O

Remark 2.58. From Theorem 2.56, we can deduce that W P(R?) C Co(R?) for all d < p < oco.
Indeed, for each v € WHP(RY) with d < p < oo, there erists a sequence {u,} in C(RY) that
converges to u in WIP(RY). Applying Theorem 2.56, we have that u, — u in L=(R?), which
means that u € Co(RY).

Corollary 2.59. Let m > 1 be an integer and p € [1,+00]. We have

1 1 m 1 m
WwmP(RY) ¢ LIRY), with === — =, if=—— >0,
(RY) (R%) < p d >4
1
wmP(RY) C LIRY), Vg € [1,+00), i - = =0, (2.145)
1
WmP(RY) ¢ L°(RY), i - % <0,

where all these injections are continuous.

Moreover, if m — (d/p) > 0 is not an integer, we have for all u € W™P(R?) that

[0%u| oo (ray < Cllullwmp@ay, Va€ N with |o| < k, (2.146)
and for all x,y € R?,
0%u(z) — 0%u(y)| < Cllullyms@aylz —yl’, ¥ a €N with o = k, (2.147)
where
k=[m—(d/p)l, 6=m—(d/p)—[m—(d/p)] € (0,1).
1ERH. Exercise. O

Remark 2.60. The case p =1 and m = d is special. We have W (R?) ¢ L>®(RY). (But it is not
true, in general, that W™P C (R?) C L>®(R?) for p > 1 and m = d/p.) Indeed, for u € C(RY),

we have

0%
U(.%'l,xg,"' y L 8 9 -0 (tlat%"' 7td)dt1dt2"'dtd7
1Yo T4

and thus
Jullee < [[0%l|p1,  Vu € CZ(RY).

The case of a general function uw € W% follows by density.
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2.11.2 The case Q C R?

We first have the following Sobolev embedding theorem:

Theorem 2.61. Let Q be a domain of class Lipschitz and let 1 < p < oo. Then we have
1 1 1

WhP(Q) c L (Q), S ifp<d,

() @, S=--3
WPQ) CLUQ). Vg€ lptoo).  ifp=d. (2.148)
WhP(Q) C L™(9), ifp>d,

and all these injections are continuous. Furthermore, for all u € W1P(Q), we have
(@) = uly)| < Cla =yl Vulln, a2,y €O, (2.149)

where a := 1 — % and C is constant depending only on p and d and the Lipschitz character of €.

This means, up to a choice of the continuous representative, WHP(Q) C C%(Q).
JEBf. Using the extension operator in Theorem 2.43. Exercise. O

Remark 2.62. An analogy as Corollary 2.59 for W™P(Q) can be obtained simply by replacing R?
by Q. We remark that one can prove such a result by using induction argument if Q) is Lipschitz.
One can also prove such a result by employing an extension operator E : W™P(Q) — W™P(R?), but
this would require an extra hypothesis: ) would have to be of class C™ to construct this extension

operator.
If moreover €2 is bounded, we then have the following compact embedding theorem:

Theorem 2.63 (Rellich-Kondrachov). Let Q be a bounded domain of class Lipschitz and let 1 <

p < o0o. Then we have the following compact injections:

1 1 1
WLP(Q) Ce LQ(Q)’ Vq € []_,p*) with E = 2; — g’ pr < d,
WhP(Q) c. LUQ), Vg€ [p,+o0), iFp—d (2.150)
WhP(Q) c. C>(9), fp>d

To prove this compact embedding theorem, we shall need the following two results. The first

one is the following classical Ascoli-Arzeld theorem:

Theorem 2.64 (Ascoli-Arzeld). Let K be a compact metric space and let H be a bounded subset
of C(K). Assume that H is uniformly equicontinuous, that is, for all € > 0, there exists § > 0 such
that

dist (z1,22) <0 = |f(z1)—f(z2)| < e, Vf € H. (2.151)

Then the closure of H in C(K) is compact.
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The proof of the Ascoli-Arzeld theorem can be found in many analysis books, see for example
(7).

The second one is the following theorem which is an “LP-versions”of the Ascoli-Arzel4 theorem.

Theorem 2.65 (Kolmogorov—M. Riesz—Fréchet). Let A be a bounded set in LP(R?) with 1 < p < oo
Assume that

lim [|74 f—f | p(ray = 0 uniformly in f € A, (2.152)
h—0

i.e., for all € > 0, there exists § > 0 such that
I f—Flloe) < & Vf € A, Vh e RY, [B] < 6. (2.153)

Then for any measurable set Q C R® with finite measure, the closure of

Ao :={fla: f € A}
in LP(Q2) is compact.

Proof of Theorem 2.65. Step 1. Given € > 0. Let d(¢) > 0 be such that (2.153) holds. We claim
that
195 [f] = fllzo(ray <& Vf € A, V0 < 8" < (), (2.154)

where S5 is the standard Fredrichs’ mollifier with kernel ¢5 = 5%@(3).

Indeed, we have

1S5 1f(@) - f()] < / @ —y) — [(@)]de(y) dy

< [[ =0 = s@P6rato)] " e
Thus for all 0 < § < 4, by using (2.153), we deduce
[185181@) = f@pPds < [ [1#—9) - @)Posty) dyds
= [ @ [ 15—y~ sy @150

< eP.

Step 2. We then claim that, for each § > 0, there exists a constant C(§) depending only on
¢ such that

1Ss[flllLe < Csl| fllr, V£ €A,

(2.157)
S51f1(x1) — Ss[f](w2)| < Cs|fllLelwr — xa|, Vf € A, Vay, 22 € RY
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Indeed, by Holder’s inequality, we have

[Ss(1@) < Nf el dsl o < 5PNl ol 1],

o (2.158)
IVSs[f1(@)] < 1 FllzelIV sl o < 5PV o |1 £ -

Step 3. Given € > 0 and Q C R? of finite measure, there is a bounded measurable subset w

of such that
1fllrnw) <& YfeA (2.159)

Indeed, we write

[ fllr@\w) < ILF = Sslflllze@vw) + 1Ss[f1ll e w) < If = S5l Loway + 1S5l L 12\ w].

Then by the claims in Step 1 and Step 2, we have for 0 < ¢’ < §(¢/2) that

1 o) < €/2+ ()P0 o 1 f 20192\ w0].
The claim can be proved by taking w such that |Q \ w| sufficient small.

Step 4. Since LP(Q2) is a Banach space, by Proposition 1.18, it suffices to show that A|q is
totally bounded, i.e., given each £ > 0, there is a finite covering of Alg by balls of radius . Given
e > 0, we fix a bounded measurable set w such that (2.159) holds. Also we fix § > 0 such that
(2.153) and (2.154) hold. The family

A= {Slf)ls : ] € A}

satisfies all the assumptions of the Ascoli-Arzeld theorem by using Step 2. Therefore A’ has compact
closure in C'(@); consequently A’ also has compact closure in LP(w) due to the boundedness of w.

Hence we may cover A’ by a finite number of balls of radius € in LP(w), that is

J
A c U B(gj,¢), for some g; € LP(w).
j=1

We now consider the zero extensions g; : {2 — R defined by
gi=gjon w, gi=0on Q\w.

Clearly g; € LP(£2). We claim that the balls B(g;,3¢), 1 < j < J covers Alq. Indeed, given f € A,

there is some g; such that
155f] = gjllze(w) < e

Since

I =alp= [ 17 —graes [ e
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we have by using Step 1 and Step 3 that

1 = gillp < [If = SslflllLrw) + 1961f] = gjll Lr(w) + e dx < 3e.

We have shown that A|q has a finite 3e-net in LP(Q2) for each ¢ > 0. This means A|q is totally
bounded and then relatively compact in LP().
O

Remark 2.66. When trying to establish that a family A in LP(Q2) has compact closure in LP(S2),
with Q bounded, it is usually convenient to extend the functions to R? | then apply Theorem 2.65

and consider the restrictions to ) .

Remark 2.67. Under the assumptions of Theorem 2.65, we cannot conclude in general that A
itself has compact closure in LP(R?) (why?). An additional assumption is required; we describe it

next:
Corollary 2.68. Let A be a bounded set in LP(R?) with 1 < p < co. Assume (2.152) and also that

for all e > 0, there exists a bounded measurable set Q@ C R% such that

(2.160)
[ fllLrepa) <& Vf €A

Then A has compact closure in LP(R?).

JER. Given ¢ > 0, we fix Q C R? bounded measurable such that (2.160) holds. By Theorem 2.65,
we know that A|n has compact closure in LP(£2). Hence A|q is totally bounded, that is F'|o admits

a cover of a finite number of balls of radius ¢ in Lp(f2 ):

J
Alg C U B(gj,e), for some g; € LP(Q).
j=1

By similar argument as Step 4 in the proof of Theorem 2.65, we can deduce that the balls
B(gj,2¢), 1 < j < J covers A in LP(R%). This implies that A is totally bounded and then is
relatively compact.

O]

Remark 2.69. The converse of Corollary 2.68 is also true (why?). Therefore we have a complete

characterization of compact sets in LP(R?).
Proof of Theorem 2.63. The case p > d follows from Theorem 2.61 and the Ascoli-Arzeld theorem.

The case p = d reduces to the case p < d. Therefore, we are left with the case p < d.

Let B be the unit ball in W'P(Q) with 1 < p < d. Let E : W'?(Q) — WHP(R?) be the
extension operator of Theorem 2.43. Set A = E(B), so that B = A|g . We will invoke Theorem
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2.65 to show that B = A|q is relatively compact in LP(Q). Clearly A is a bounded set in WP(R?)
by the boundedness of the extension operator. Moreover, Sobolev inequality implies that A is a

bounded set in LP N LP" (R?). By Proposition 2.33, we know that
IThu — ull poray < [0Vl ppray, Vu € A. (2.161)

This implies that the assumptions in Theorem 2.65 are fulfilled. Since 2 is bounded, thus, by
Theorem 2.65, B = Alq is relatively compact in LP(2). By interpolation, we know that B is
relatively compact in L(2) for any ¢ € [1, p*).

[

Remark 2.70. Theorem 2.63 is “almost optimal’in the following sense:
(i) If Q2 is not bounded, the injection WP(Q ) C LP(Q) is, in general, not compact.
(i) The injection WHP(Q) C LP" () is never compact even if Q is bounded and smooth.

Remark 2.71. Let Q C R? be a bounded open set of class Lipschitz. Then the norm

Hulll == [IVull o) + lull o)
is equivalent to the WP () norm so long as
l<g<p® ifl<p<d,
1<g¢g< oo ifp=d,

1<g<oo ifp>d.

(why?)

2.12 The space W,"(Q)

Definition 2.72. Let Q be an open set in R? and let 1 < p < oo; Wol’p(Q) denotes the closure of
C(Q) in WHP(Q). The space Wol’p, equipped with the WP norm, is a separable Banach space,
and is reflexive if 1 < p < oo. The space W01’2, equipped with the WY2(Q) inner product, is a
Hilbert space.

Remark 2.73. e Since CX(R?) is dense in WIP(RY), then Wol’p(]Rd) = WIP(RY), for all
1<p<oo.

e If Q # R, in general Wol’p(Q) £ WHP(Q). However, it is possible that if RY\ Q is “small
enough”, one could have Wol’p(Q) =WUHP(Q). For example, if @ =R\ {0} with d > 2, then
W, 2(Q) = Wh2(9Q).
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The functions in Wy *(Q) are “roughly”those of W12(Q2) that “vanish on the boundary 9€.”It is
delicate to make this precise, since a function v € W2(Q) is defined only a.e. in 2 and the measure
of 002 is zero, and u need not have a continuous representative. The following characterizations

suggest that we “really”have Sobolev functions that are “zero on 9Q.”We begin with a simple fact:

Lemma 2.74. Let u € W'P(Q) with Q an open set in R? and 1 < p < co. Assume that suppu is
a compact subset of Q. Then u € Wol’p(Q).

JEBA. Since suppu is a compact subset of the open set 2, there exists a bounded open set Q' such
that suppu C Q' CC Q. Let x € C°(Q) such that x = 1 on suppu. Then u = yu. We know that
there exists a sequence {u,} C C>°(R%) such that

up — win LP(Q), Vu, — Vu in LP(Q).

It follows that xu, — xu = u in WHP(Q). Thus u € W()LP(Q)-

O]
Theorem 2.75. Suppose that Q is an open set of class C*. Let 1 < p < 0o and
u € WH(Q)nC(Q).
The the following two properties are equivalent:
(1) w=0 on 09Q.
(ii) u e WyP(5).
8. (i) = (ii). Suppose first that suppu is bounded. Fix a function G € C''(R) such that
G| <|t], 0<G'(t) <4, VieR, G(t)= 0. Hl<l, (2.162)
tif |t > 2.

We consider the sequence

1
up = —G(nu), n€Zy
n

satisfying
0, if Ju| <
un| < ful,  up =
u if |u] >

Sl
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By Proposition 2.37 on the composition of Sobolev functions, we know that wu,, belongs to WP ().

We claim that u, — « in W1P(Q). Indeed, by Lebesgue’s dominated convergence theorem, we have

/ [uy — ulP do = / ]un—u|pd:1:—|—/ |tun, — ul|P dz
Q |ul>2 lul<2
= /|| ) ”U/n —u|pdx
u<;
S/ ]un]pdm+/ |ul? dz (2.163)
lul<2 Jul<3

< 2/ |ulP dz
lul<2

§2/ Ly <2lufPdz —0, asn — oo
Q n
and
/ |Vu, — VulP dz = / |G’ (nu)Vu — VulP dz
Q Q

= / , |G’ (nu)Vu — VulP dz + / |G’ (nu)Vu — Vul? dx
[ul>=

ul<2
= / . |G’ (nu)Vu — Vul? do (2.164)
|“|§g
< / 12 |G (n) — 1P|V up do
Q -_-n
< 37’/ Ly<2|VulP dz — 3p/ ly=o|VulPdz, asn — oo.
o = Q

Now we show that a.e. on {u =0} := {z € Q: u(x) = 0}, there holds Vu = 0. By the definition

of generalized derivatives, there holds

/ Ojupdr = —/ udjpdr =0, forall ¢ € C°({u = 0}).
Q Q
This implies that 0ju = 0 a.e. on {u = 0}. Hence,

lim / |[Vu, — Vu|P dz < 37’/ |VulP dz = 0. (2.165)
Q u=0

n—oo

On the other hand, since © = 0 on 02, we have
suppu, C {z € Q: |u(z)| > 1/n} C Q.

Thus suppu, is a compact set contained in open set 2. By Lemma 2.74, u, € VVO1 P(Q) and it
follows u € W, P(€).

In the general case in which supp u is not bounded, consider the sequence chi,u with x,(-) =
X(5) where x € C°(B(0,1)) satisfying 0 < x < 1, x = 1 on B(0,1/2). From the above, x,u €
Wol’p(Q) and since y,u — w in Wol’p(Q), we conclude that u € Wol’p(Q).
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(il) = (i). Using local charts it is reduced to the following problem (why?): let u €
W()l’p(Q+) NC(Q..), prove that u = 0 on Q.
Let u, be a sequence in C2°(Q) that converges to u in W1P(2). We have for (2/,14) € Q-

CL’d a
(@, @q)| < / uin
0

(2, t)‘ dt.

Thus, for 0 < e < 1,
Oouy,

1 € 1 &€ Tq
/ / \un(m',xdﬂd:v’dxdg/ // —(
€ Jla'|<1Jo € Jlwi<1Jo Jo |Oxg
15}
Un x, xq

€
|z'|<1J0
Passing n — oo implies

/ /|ux xd|dxdxd</ /
lz’[<1 |/ |<1

Since u € C(Q,) and 9,,u € L*(Q), passing € — 0 gives

/ lu(z’,0)|dz’ = 0.
lx'|<1

), t)‘ dt da’ dxy

)| dz’ dzg.

)| da’ dzg.

(2, 2q)
Oz4

Thus v = 0 on Q.
O

Remark 2.76. In the proof of (i) = (ii), we have not used the smoothness of Q0 . However, the
converse (ii) = (i) requires a smoothness hypothesis on Q. (consider for evample Q = R4\ {0}

. .. 1
Here is another characterization of W P

Proposition 2.77. Suppose 2 is of class C'. Let u € LP(Q) with 1 < p < co. The following are

equivalent:
(i) u e WyP(Q).

(ii) There exists a constant C' such that

o

<Clell Y eCTRY, Vi=1,2,-,d

(i) The function
u(z), x €,
0, zeR\Q,
belongs to WIP(RY), and in this case

ou  ou
= i =1,2,--- ,d.
axl a:L‘/L’ \V/Z = Y
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iEBA. (i) = (ii). Let {u,} be a sequence in C°(Q) such that u, — u in WP, For each
¢ € C®(RY), we have

[onglanl=| [ Szoas] < |52 ol (2.166)
Q na.%'z Q a-’El - a.’Ez Lr(Q) Lry .
Passing n — oo in (2.166) implies (ii) with C' = [|Vu| 1»(q)-

O
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Exercise 1. [15 points| Let a < b be two real numbers. Let C[a,b] be the Banach space of
all continuous functions on [a,b] with norm |lu|| := max,<z<p |u(x)|. Let f € Cla,b] be a given

function. Show that the nonlinear integral equation

b
u(x) :/ sinu(x)dz + f(x)

has a solution u € Cla, b]

Exercise 2. [15 points]
Let a < b be two real numbers. Let K : [a,b] X [a,b] — R be continuous with 0 < K(z,y) <k
for all z,y € [a,b]. Suppose 2(b— 1)k < 1/2. Let ug = 0, vg = 2. Prove that both of the iteration

sequences

b
1 () 1= / K (a2 y)un(y) dy + 1,

b
tnia(o) = [ Ko p)en(u)dy +1

converge uniformly on [a, b] to the unique solution u € C|[a, b] of the integral equation
b
u(w) = [ Klog)uty)dy+1.
a

Exercise 3.[15 points] Let B be a Banach algebra. A family {e;} in B is called an approximate
identity for B if sup, ||e;|| < oo and for each x € B, there holds e;x — x and ze; — x. Show that
B has an approximate identity if and only if there is a bounded subset £ of B such that for every
e > 0 and for every x € B there is an e € F such that |ze — x| + |lex — z|| < .

Exercise 4. [15 points] Let © be a bounded measurable set in R%. Let 1 < p < oo. Let
K : Q) x Q2 — C be a measurable function such that

Sup/ |K (2, y)|"" dy < 0.
zeQ JQ

Prove that
Tu(z) == /Q Kz, y)u(y) dy

defines a compact operator on LP(2)

Exercise 5.[20 points]
Let ¢ € C°(R) be a nonzero function. Define the sequence {uy,}2° by u,(z) = ¢(z + n) for
all r € R. Let 1 <p < .
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o Show that {u,}>; is bounded in W1P(R).

 Prove that there exists no subsequence {uy, } converging strongly in L(R), for any 1 < ¢ < oo.

(This means the compact Sobolev embedding could be wrong for unbounded domains.)

o Show that u, — 0 weakly in W1P(R), for each p € (1, 00).

Exercise 6. [15 points]
Let Q be a smooth bounded domain in R? and let 1 < p < co. Prove that for each e > 0, there
exists C' = C(g,Q) such that

> 0%l <€ Y 10%ullre) + Cle, Dl o)y,  Vu € WMP(Q).

la|<m |a]=m

Exercise 7. [20 points] (Stability of weak solutions)
Let Q be a bounded C! domain in R%. We consider the stationary incompressible Navier-Stokes

equations in €2
u-Vu—Au+Vp=f£f divu=0, (3.1)

subjected to the boundary condition
u=0 on 0. (3.2)

Here u = (u1, ug, us) is the vector valued unknown, the convective term u - Vu is defined as

3
u-Vu:= Z u;0;u.

i=1
The source term f is supposed to be in L?(Q;R3).

We say u € W(} 2(€; R3) satisfying divu = 0 is a turbulent weak solution of (3.1)-(3.2) provided

/(u-Vu)-gpdx—i—/Vu:Vgpdw:/f-apdx, Yo e CX(;R3), dive =0, (3.3)
Q Q Q

and

/|Vu]2d:r§/f-udx. (3.4)
Q Q

Let {u,} C VVO1 2(€; R3) satisfying divu, = 0 be a sequence of turbulent weak solutions to
(3.1)-(3.2). Prove the following two statements.

e The solution sequence is bounded:

sup ||un||W01,2(Q) < 00.

o Thus, up to a subsequence, the sequence {u,} admits a weak limit u in WO1 2((2) Moreover,

the weak limit u is also a turbulent weak solution to (3.1)-(3.2).



