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Abstract

We consider the Navier–Stokes equations with a pressure function satisfying a hard-sphere
law. That means the pressure, as a function of the density, becomes infinite when the density
approaches a finite critical value. Under some structural constraints imposed on the pressure
law, we show a weak-strong uniqueness principle in periodic spatial domains. The method is
based on a modified relative entropy inequality for the system. The main difficulty is that the
pressure potential associated with the internal energy of the system is largely dominated by the
pressure itself in the area close to the critical density. As a result, several terms appearing in
the relative energy inequality cannot be controlled by the total energy.

Keywords: Navier–Stokes equations; hard-sphere pressure; weak-strong uniqueness.

1 Introduction

Let T > 0 and Ω ⊂ Rd, d ∈ {2, 3} be a bounded domain. We consider the compressible Navier–
Stokes equations in the time-space cylinder (0, T )× Ω:

∂t%+ divx(%u) = 0,(1.1)

∂t(%u) + divx(%u⊗ u) +∇xp(%)− divxS(∇xu) = % f .(1.2)

Here S(∇xu) is the Newtonian stress tensor defined by

(1.3) S(∇xu) = µS
(
∇xu +∇T

xu

2
− 1

d
(divxu)I

)
+ µB(divxu)I,

where µS > 0 and µB ≥ 0 are the shear and bulk viscosity coefficients, respectively. Here, the
velocity gradient matrix and the divergence on a matrix-valued function are defined as

(∇xu)1≤i,j≤d = (∂xjui)1≤i,j≤d, (divxS)i =

d∑
j=1

∂xjSi,j .
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The external force f belongs to the class L∞((0, T )× Ω;Rd).
Unlike the commonly used isentropic setting, the pressure p and the density % of the fluid are

interrelated by a hard-sphere equation of state in the interval [0, %̄) (see also [6] and [12]):

(1.4) p ∈ C1[0, %̄), p(0) = 0, p′ > 0 on (0, %̄), lim
%→%̄−

p(%) = +∞.

Similar types of singular pressure law are considered recently in many physical models and
mathematical studies. We refer to the study by Degond et al. in [8, 7] for collective motion, the
study by Berthelin et al. in [2, 3] for the traffic flow. We also refer to the review paper by Maury
[15] concerning crowd motion models. In particular, many mathematical studies of fluid models
taking into account similar types of singular pressure law are done by Bresh, Desjardins, Perrin,
Zatorska in for instance [5, 4, 16].

2 Main results

In this section, we state our main results. Due to technical difficulties that will become clear in
the course of the proofs, we consider solutions that are periodic in the spatial variable; that is
we restrict ourselves to the periodic spatial domain (flat torus) Ω = Td := Rd/Zd. The basic
hypotheses imposed on the initial data are:

(2.1)

%(0, ·) = %0(·) with 0 ≤ %0 < %̄ a.e. in Ω,

∫
Ω
P (%0) dx <∞,

u(0, ·) = u0(·),
∫

Ω
%0|u0|2dx <∞, (%u)(0, ·) = (%0u0)(·),

where P ∈ C1[0, %̄) is the pressure potential defined as

(2.2) P (s) = s

∫ s

%̄
2

p(z)

z2
dz.

Note that

(2.3) P ′(s)s− P (s) = p(s), P ′′(s) =
p′(s)

s
, for any s ∈ [0, %̄).

Weak solutions are defined as follows:

Definition 2.1. We say that (%,u) is a dissipative (finite-energy) weak solution in (0, T ) × Ω to
the system of equations (1.1)–(1.3), supplemented with initial data (2.1), if:

• 0 ≤ % < %̄ a.e. in (0, T ) × Ω, % ∈ Cw([0, T ];Lγ(Ω)) for any γ > 1, p(%) ∈ L1((0, T ) × Ω),
u ∈ L2(0, T ;W 1,2(Ω;Rd)), %u ∈ Cw([0, T ];L2(Ω;Rd)), %|u|2 ∈ L∞(0, T ;L1(Ω)).

• For any τ ∈ (0, T ) and any test function φ ∈ C∞([0, T ]× Ω), one has

(2.4)

∫ τ

0

∫
Ω

[
%∂tφ+ %u · ∇xφ

]
dx dt =

∫
Ω
%(τ, ·)φ(τ, ·) dx−

∫
Ω
%0φ(0, ·) dx.

• For any τ ∈ (0, T ) and any test function ϕ ∈ C∞([0, T ]× Ω;Rd), one has

(2.5)

∫ τ

0

∫
Ω

[
%u · ∂tϕ + (%u⊗ u) : ∇xϕ + p(%) divxϕ− S(∇xu) : ∇xϕ

]
dx dt

= −
∫ τ

0

∫
Ω
% f ·ϕ dx dt+

∫
Ω
%u(τ, ·) ·ϕ(τ, ·) dx−

∫
Ω
%0u0 ·ϕ(0, ·) dx.
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• The continuity equation holds in the sense of renormalized solutions:

(2.6) ∂tb(%) + divx(b(%)u) + (b′(%)%− b(%)) divxu = 0 in D′((0, T )× Ω),

for any b ∈ C1[0, %̄) satisfying

(2.7) |b′(s)|2 + |b(s)|2 ≤ C (1 + p(s)) for come constant C and any s ∈ [0, %̄).

• For a.e. τ ∈ (0, T ), the energy inequality holds:

(2.8)

∫
Ω

[
1

2
%|u|2 + P (%)

]
(τ, ·)dx+

∫ τ

0

∫
Ω
S(∇xu) : ∇xu dx dt

≤
∫

Ω

[
1

2
%0|u0|2 + P (%0)

]
dx+

∫ τ

0

∫
Ω
% f · u dx dt.

In the sequel, we focus only on the 3D periodic domain: d = 3 and Ω = T3. The two dimensional
case can be done similarly. Concerning the existence of finite-energy weak solutions, we have the
following remark:

Remark 2.2. • By employing the argument in [12] with the refined argument from [10], it can
be shown that, under the following technical assumption on the pressure functional near the
singular point %̄:

(2.9) lim
%→%̄−

p(%)(%̄− %)β > 0, for some β > 5/2,

there exists a global-in-time weak solution in the sense of Definition 2.1.

• The constraint (2.7) on b guarantees that b(%), b′(%) ∈ L2((0, T )× Ω).

• It can be proven directly by using (1.4) that, for some C > 0, there holds P (s) + C ≥ 0 for
all s ∈ [0, %̄). Hence, we may replace P (%) and P (%0) by P (%) +C and P (%0) +C respectively
in (2.8) to obtain a nonnegative energy functional.

Following [9, 11, 14], we define the relative entropy functional:

(2.10) E(t) = E
(
%,u

∣∣r,U) (t) :=

∫
Ω

1

2
%|u−U|2 +

(
P (%)− P (r)− P ′(r)(%− r)

)
(t, ·) dx.

We will show that any finite-energy weak solution satisfies a relative entropy inequality, a
consequence of which is the weak-strong uniqueness.

Before stating our main results, we recall some notations. For a periodic function f defined in
Ω = Td, one can write:

f(x) =
∑
k∈Zd

fke
2πik·x,

where fk are the Fourier coefficients. The mean value of f , denoted by 〈f〉 := 1
|Ω|
∫

Ω f dx, is the
zero mode Fourier coefficient f0. The inverse of the Laplacian coincides with the Fourier multiplier
∆−1
x defined as

∆−1
x f(x) =

∑
k∈Zd

1

4π2|k|2
fke

2πik·x.

Let 1 < q <∞ and set
Lq0(Ω) := {f ∈ Lq(Ω) : 〈f〉 = 0}.

Then by the classical elliptic theory, ∆−1
x is a bounded linear mapping from Lq0(Ω) to W 2,q(Ω) ∩

Lq0(Ω) for any 1 < q <∞.
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Theorem 2.3. Suppose the pressure constraint (2.9) is satisfied. Let (%,u) be a finite-energy weak
solution in (0, T )×Ω in the sense of Definition 2.1. Let (r,U) ∈ C1([0, T ]×Ω)×C1([0, T ];C2(Ω;R3))
such that

0 < inf
[0,T ]×Ω

r ≤ sup
[0,T ]×Ω

r < %̄.

Let b(s) ∈ C1[0, %̄) satisfy the condition

(2.11) |b′(s)|
5
2 + |b(s)|

5
2 ≤ C (1 + p(s)) for come constant C and any s ∈ [0, %̄).

Then the following relative entropy inequality holds for a.e. τ ∈ (0, T ),

(2.12)

E
(
%,u

∣∣r,U) (τ) +

∫ τ

0

∫
Ω
S(∇x(u−U)) : ∇x(u−U) dx dt+

∫ τ

0

∫
Ω
p(%)b(%) dx dt

≤ E
(
%0,u0

∣∣r(0, ·),U(0, ·)
)

+

∫ τ

0
R1(t) dt+

∫ τ

0
R2(t) dt+R3(τ),

where the remainder terms Rj , j = 1, 2, 3, are defined as

(2.13)

R1(t) :=

∫
Ω
%(∂tU + u · ∇xU) · (U− u) dx

+

∫
Ω
S(∇xU) : ∇x(U− u) dx+

∫
Ω
%f · (u−U) dx

+

∫
Ω

(r − %)∂tP
′(r) + (rU− %u) · ∇xP ′(r) dx+

∫
Ω

divxU(p(r)− p(%)) dx,

R2(t) :=

∫
Ω
p(%)〈b(%)〉dx−

∫
Ω
%u⊗ u : ∇x∇x∆−1

x (b(%)− 〈b(%)〉) dx

+

∫
Ω
S(∇xu) : ∇x∇x∆−1

x (b(%)− 〈b(%)〉) dx−
∫

Ω
%f · ∇x∆−1

x (b(%)− 〈b(%)〉) dx

+

∫
Ω
%u · ∇x∆−1

x

(
divx(b(%)u) + (b′(%)%− b(%)) divxu− 〈(b′(%)%− b(%)) divxu〉

)
dx,

R3(τ) :=

∫
Ω
%u · ∇x∆−1

x (b(%)− 〈b(%)〉) (τ, ·) dx−
∫

Ω
%0u0 · ∇x∆−1

x (b(%0)− 〈b(%0)〉) dx.

Remark 2.4. • In view of the conditions (2.9) and (2.11), we will see later in the proof of
Theorem 2.3 that all integrals appearing in (2.12) and (2.13) converge.

• The smoothness assumption on r, U can be relaxed accordingly, as long as all integrals
appearing in (2.12) remain finite.

• Compared to the standard relative entropy inequality [9, 11, 14], the present form is augmented
by the extra term

∫ τ
0

∫
Ω p(%)b(%) dx dt on the left-hand side. To include this additional term,

we have used the pressure identity∫ τ

0

∫
Ω
p(%)b(%) dx dt =

∫ τ

0
R2(t) dt+R3(τ)

that can be deduced by using the quantity ∇x∆−1
x (b(%)− 〈b(%)〉) as a test function in the

momentum balance (2.5).
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• In the case of more conventional no-slip boundary conditions, the pressure term∫ τ

0

∫
Ω
p(%)b(%) dx dt

is computed by means of
B (b(%)− 〈b(%)〉)

as a test function, where B = (Bj)
d
j=1 is the so–called Bogovskii operator (see[1] or Chapter

III of Galdi’s book [13]). While, the adjoint B∗j of the Bogovskii operator Bj is considerably
different compared to the Bogovskii operator. To handle the new terms in R2 and R3 in
(2.13), we would need employ the adjoint of B. Unfortunately, the behavior of the adjoints
of the operators ∇x∆−1

x and B is rather different and the use of B is connected with other
technical difficulties. This is the main reason why we restrict ourselves to the purely periodic
setting.

Our next result is the weak-strong uniqueness principle:

Theorem 2.5. Suppose the pressure constrain (2.9) is satisfied with β ≥ 3. Let (%,u) be a finite-
energy weak solution in (0, T ) × Ω in the sense of Definition 2.1. Let (r,U) ∈ C1([0, T ] × Ω) ×
C1([0, T ];C2(Ω;R3)) be a strong solution to (1.1)–(1.3) having the same initial data as (%,u) and
such that

0 < inf
[0,T ]×Ω

r ≤ sup
[0,T ]×Ω

r < %̄.

Then there holds
(%,u) = (r,U) in (0, T )× Ω.

Remark 2.6. The additional assumption β ≥ 3 is needed only for estimating the term I19 in
Section 4.8. For all other terms, β > 5/2 is sufficient.

The rest of the paper is devoted to the proof of Theorems 2.3 and 2.5. Throughout the paper,
C denotes some uniform constant of which the value may differ from line to line. In the sequel, to
avoid notation complicity, we sometimes simply use Lr(0, T ;X(Ω)) to denote the scalar function
space Lr(0, T ;X(Ω)), the vector valued function space Lr(0, T ;X(Ω;Rn)) or the matrix valued
function space Lr(0, T ;X(Ω;Rn×n)) if there is no confusion.

3 Relative entropy inequality

This section is devoted to the proof of Theorem 2.3. By employing the argument in [9], one can
derive

(3.1)

E
(
%,u

∣∣r,U) (τ) +

∫ τ

0

∫
Ω
S(∇x(u−U)) : ∇x(u−U) dx dt

≤ E
(
%0,u0

∣∣r(0, ·),U(0, ·)
)

+

∫ τ

0
R1(t) dt.

Now we include the terms related to b(%). By (2.2) and (2.9), we have

(3.2) P (s) ≤ C + p(s)(%̄− s) ≤ 2C + P (s), for all s ∈ [0, %̄).
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Then, by (2.9) and (2.11), we have for any s ∈ [0, %̄) that

(3.3) |b′(s)|+ |b(s)| ≤ C(1 + p(s))
2
5 ≤ C(1 + P (s)P (s)

2
3 )

2
5 ≤ C(1 + P (s))

2
3 .

Hence, by the fact p(%) ∈ L1((0, T ) × Ω) in Definition 2.1, by the energy inequality (2.8) and
Gronwall’s inequality, we have P (%) ∈ L∞(0, T ;L1(Ω)) and furthermore,

(3.4) b′(%), b(%) ∈ L
5
2 ((0, T )× Ω) ∩ L∞(0, T ;L

3
2 (Ω)).

Since the condition (2.11) is stronger than (2.7), the function b(%) satisfies the renormalized
continuity equation (2.6). This gives us some information on the time derivative of b(%): by using
(3.4), there holds

(3.5) ∂tb(%) ∈
(
L2(0, T ;W−1, 6

5 (Ω)) ∩ L
10
9 (0, T ;W−1, 30

17 (Ω))
)

+ L
10
9 ((0, T )× Ω).

By tedious, however direct, calculations, we can choose ∇x∆−1
x (b(%)−〈b(%)〉) as a test function

in the weak formulation (2.5) to deduce for any τ ∈ (0, T ):

(3.6)

∫ τ

0

∫
Ω
p(%)b(%) dx dt =

∫ τ

0
R2(t) dt+R3(τ),

where R2(t) and R3(τ) are exactly as in (2.13). We briefly show that all the integrals appeared on
the right-hand side of (3.6) are meaningful and uniformly bounded in τ ∈ (0, T ).

By Definition 2.1 and (3.4), we have

(3.7)

∫ τ

0

∫
Ω
p(%)〈b(%)〉 dx dt ≤ C ‖p(%)‖L1((0,T )×Ω)‖b(%)‖L∞(0,T ;L1(Ω)) ≤ C.

By Definition 2.1 and Sobolev embedding W 1,2(Ω) ⊂ L6(Ω), we have

%u⊗ u ∈ L∞(0, T ;L1(Ω)) ∩ L1(0, T ;L3(Ω)) ⊂ L
5
3 ((0, T )× Ω).

Together with (3.4) and the fact that ∆−1
x is a linear continuous mapping from Lq0(Ω) to W 2,q(Ω)

for any 1 < q <∞, we deduce

(3.8)
−
∫ τ

0

∫
Ω
%u⊗ u : ∇x∇x∆−1

x (b(%)− 〈b(%)〉) dx dt

≤ C ‖%u⊗ u‖
L

5
3 ((0,T )×Ω)

‖ (b(%)− 〈b(%)〉) ‖
L

5
2 ((0,T )×Ω)

≤ C.

Similarly, we have

(3.9)

∫ τ

0

∫
Ω
S(∇xu) : ∇x∇x∆−1

x (b(%)− 〈b(%)〉) dx dt

≤ C ‖∇xu‖L2((0,T )×Ω)‖ (b(%)− 〈b(%)〉) ‖L2((0,T )×Ω) ≤ C,

and

−
∫ τ

0

∫
Ω
%f · ∇x∆−1

x (b(%)− 〈b(%)〉) dx dt ≤ C ‖%f‖L∞((0,T )×Ω)‖ (b(%)− 〈b(%)〉) ‖L2((0,T )×Ω) ≤ C.

By Definition 2.1, (3.4) and Sobolev embedding, we have:

(3.10)

∫ τ

0

∫
Ω
%u · ∇x∆−1

x divx(b(%)u) dx dt ≤ C ‖%u‖L2(0,T ;L6(Ω))‖b(%)u‖
L2(0,T ;L

6
5 (Ω))

≤ C.
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Similarly,

(3.11)

−
∫ τ

0

∫
Ω
%u · ∇x∆−1

x

(
(b′(%)%− b(%)) divxu− 〈(b′(%)%− b(%)) divxu〉

)
dx dt

≤ C ‖%u‖
L10(0,T ;L

30
13 (Ω))

‖(b′(%)%− b(%)) divxu‖
L

10
9 ((0,T )×Ω)

≤ C ‖%u‖L2(0,T ;L6(Ω))∩L∞(0,T ;L2(Ω))‖(b′(%)%− b(%))‖
L

5
2 ((0,T )×Ω)

‖divxu‖L2((0,T )×Ω)

≤ C.

For R3(τ), again by Definition 2.1, (3.4) and Sobolev embedding, we have

(3.12)

∫
Ω
%u · ∇x∆−1

x (b(%)− 〈b(%)〉) (τ, ·) dx ≤ C ‖%u‖L∞(0,T ;L2(Ω))‖b(%)‖
L∞(0,T ;L

6
5 (Ω))

≤ C,

and

(3.13) −
∫

Ω
%0u0 · ∇x∆−1

x (b(%0)− 〈b(%0)〉) dx ≤ C ‖%0u0‖L2(Ω)‖b(%0)‖
L

6
5 (Ω)
≤ C.

Summarizing the estimates in (3.7)–(3.13) implies the right-hand side of (3.6) are uniformly
bounded in τ ∈ (0, T ). This shows the integral

∫ τ
0

∫
Ω p(%)b(%) dx dt is meaningful and is uniformly

bounded in τ ∈ (0, T ).

Thus, summing up (3.1) and (3.6) implies our desired relative entropy inequality (2.12). We
complete the proof of Theorem 2.3.

4 Weak-strong uniqueness

In this section, we prove Theorem 2.5 by using the relative entropy inequality. Let (%,u) and (r,U)
be the weak solution and the strong solution given in Theorem 2.5 issued from the same regular
initial data. We choose (r,U) as the test function in the relative entropy inequality (2.12) for the
weak solution (%,u). The idea of proving Theorem 2.5 is the following: we analyze the corresponding
right-hand side of (2.12) until some level that allows us to use Gronwall type inequalities to show
the relative entropy is identically zero, which implies the weak solution and the strong one are
equal. In this section, we let η(t) be a universal L1(0, T ) function.

4.1 New expression for remainder term R1

Since r is strictly positive and strictly smaller than %̄, there exits α0 > 0 such that

(4.1) 0 < α0 ≤ r ≤ %̄− α0 < %̄.

Thus, there holds

(4.2) ∂tU + U · ∇xU + r−1∇xp(r)− r−1divxS(∇xU) = f .

By (2.3), we have

(4.3) ∇xP ′(r) = P ′′(r)∇xr = r−1p′(r)∇xr = r−1∇xp(r).
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Plugging (4.2) into the expression of R1 in (2.13) and using (4.3) implies

(4.4)

R1 =

∫
Ω
%(u−U) · ∇xU · (U− u) dx+

∫
Ω

divxS(∇xU)(r−1%− 1) · (U− u) dx

−
∫

Ω
%∇xP ′(r) · (U− u) dx+

∫
Ω

(r − %)∂tP
′(r) + (rU− %u) · ∇xP ′(r) dx

+

∫
Ω

divxU(p(r)− p(%)) dx.

By the continuity equation (1.1), and by (2.3), we have

(4.5)

− %∇xP ′(r) · (U− u) + (r − %)∂tP
′(r) + (rU− %u) · ∇xP ′(r)

= (r − %)
(
∂tP

′(r) + U · ∇xP ′(r)
)

= (r − %)
[
∂tP

′(r) + divx(UP ′(r)) + (P ′′(r)r − P ′(r))divxU
]
− (r − %)P ′′(r)rdivxU

= −(r − %)p′(r)divxU.

Plugging (4.5) into (4.4) implies

(4.6)

R1 =

∫
Ω
%(u−U) · ∇xU · (U− u) dx+

∫
Ω

divxS(∇xU)r−1(%− r) · (U− u) dx

+

∫
Ω

divxU
(
p(r)− p(%)− p′(r)(r − %)

)
dx.

4.2 Property on the pressure potential

We give some properties concerning the quantity appearing in the relative entropy and related to
the pressure potential:

Lemma 4.1. Let % ≥ 0 and 0 < α0 ≤ r ≤ %̄ − α0 < %̄. There exits α1 ∈ (0, α0) and a constant
c > 0, such that

P (%)− P (r)− P ′(r)(%− r) ≥


c (%− r)2, if α1 ≤ % ≤ %̄− α1,

p(r)

2
, if 0 ≤ % ≤ α1,

P (%)

2
, if %̄− α1 ≤ % ≤ %̄.

Proof. 1. We start by considering % near 0: 0 ≤ % ≤ α1. By (1.4), for α1 < α0 < %̄, we have

|p(%)| ≤ sup
0≤s≤α1

p′(s)% ≤ C%, for any 0 ≤ % ≤ α1.

Then, for % ∈ [0, α1], there holds

(4.7) |P (%)| =

∣∣∣∣∣%
∫ %

%̄
2

p(z)

z2
dz

∣∣∣∣∣ ≤ C% ∣∣∣log
%̄

2
− log %

∣∣∣→ 0, as %→ 0.

Since r ∈ [α0, %̄− α0], by (1.4), (2.2) and (2.3), we have

|P ′(r)| =
∣∣∣∣P (r) + p(r)

r

∣∣∣∣ ≤ C,
8



and

(4.8) P ′(r)r − P (r) = p(r) ≥ C−1.

for some constant C > 0.
Thus, by (4.7)–(4.8), by choosing α1 > 0 small, we have for 0 ≤ % ≤ α1, α0 ≤ r ≤ %̄− α0 that

P (%)− P (r)− P ′(r)(%− r) =
[
P (%)− P ′(r)%

]
+
[
P ′(r)r − P (r)

]
≥ p(r)

2
.

2. We then consider % near %̄: %̄− α1 ≤ % ≤ %̄. Since r ∈ [α0, %̄− α0], by (1.4), (2.2) and (2.3),
we have

|P (r) + P ′(r)(%− r)| ≤ C.

By (2.2) and (2.9), we have
lim
%→%̄

P (%)→ +∞.

Thus, by choosing α1 > 0 small, there holds

P (%)− P (r)− P ′(r)(%− r) ≥ P (%)

2
.

3. For α1 ≤ % ≤ %̄− α1, Taylor’s formula gives

P (%)− P (r)− P ′(r)(%− r) ≥ min
α1≤s≤%̄−α1

P ′′(s)(%− r)2 = min
α1≤s≤%̄−α1

p′(s)

s
(%− r)2 ≥ c(%− r)2,

for some constant c > 0.

4.3 Estimate for the remainders: part 1

For the first term in the expression of R1 in (4.6), we have

(4.9)

∫
Ω
%(u−U) · ∇xU · (U− u) dx ≤ ‖∇xU(t)‖L∞(Ω)

∫
Ω
%|u−U|2 dx ≤ η(t)E(t).

Here in (4.9), we only need the assumption ∇xU ∈ L1(0, T ;L∞(Ω)). In the following, we will
present, but will not emphasize, the lowest regularity assumption on (r,U).

The estimate for the second term of (4.6) is more delicate. Let α1 ∈ (0, α0) be as in Lemma
4.1, we write ∫

Ω
divxS(∇xU)r−1(%− r) · (U− u) dx = I1 + I2 + I3,

with

I1 :=

∫
α1≤%≤%̄−α1

divxS(∇xU)r−1(%− r) · (U− u) dx,

I2 :=

∫
%≤α1

divxS(∇xU)r−1(%− r) · (U− u) dx,

I3 :=

∫
%≥%̄−α1

divxS(∇xU)r−1(%− r) · (U− u) dx.

9



For I1, by Schwartz inequality, Poincaré inequality, we have for any σ > 0 that

(4.10) |I1| ≤ σ−1‖divxS(∇xU)r−1(t)‖2L∞(Ω)

∫
α1≤%≤%̄−α1

(%− r)2 dx+ σ

∫
Ω
|∇x(U− u)|2 dx.

By Korn’s inequality, there holds∫
Ω
|∇x(U− u)|2 dx ≤ C

∫
Ω
S(∇x(u−U)) : ∇x(u−U) dx.

By Lemma 4.1 and by choosing σ > 0 small, we deduce from (4.10) that

(4.11)

|I1| ≤ C‖divxS(∇xU)(t)‖2L∞(Ω)

∫
α1≤%≤%̄−α1

P (%)− P (r)− P ′(r)(%− r) dx

+
1

16

∫
Ω
S(∇x(u−U)) : ∇x(u−U) dx

≤ η(t)E(t) +
1

16

∫
Ω
S(∇x(u−U)) : ∇x(u−U) dx.

For I2, by Schwartz inequality, Poincaré inequality, Korn’s inequality and Lemma 4.1, we can
deduce

(4.12)

|I2| ≤ σ−1‖divxS(∇xU)(t)‖2L∞(Ω)

∫
%≤α1

1 dx+ σ

∫
Ω
|U− u|2 dx

≤ C‖divxS(∇xU)(t)‖2L∞(Ω)

∫
%≤α1

p(r) dx+
1

16

∫
Ω
S(∇x(u−U)) : ∇x(u−U) dx

≤ η(t)E(t) +
1

16

∫
Ω
S(∇x(u−U)) : ∇x(u−U) dx.

Similarly, we have for I3 that

(4.13)

|I3| ≤ Cσ−1‖divxS(∇xU)(t)‖2L∞(Ω)

∫
%≥%̄−α1

1 dx+ σ

∫
Ω
|U− u|2 dx

≤ C‖divxS(∇xU)(t)‖2L∞(Ω)

∫
%≥%̄−α1

P (%) dx+
1

16

∫
Ω
S(∇x(u−U)) : ∇x(u−U) dx

≤ η(t)E(t) +
1

16

∫
Ω
S(∇x(u−U)) : ∇x(u−U) dx.

We offer another way to deal with I3:

(4.14)

|I3| ≤ C‖divxS(∇xU)(t)‖2L∞(Ω)

∫
%≥%̄−α1

1 dx+

∫
%≥%̄−α1

%|U− u|2 dx

≤ C‖divxS(∇xU)(t)‖2L∞(Ω)

∫
%≥%̄−α1

P (%) dx+

∫
Ω
%|U− u|2 dx

≤ η(t)E(t).

The way to estimate the third term of R1 in (4.6) is more delicate. The main difficulty is that,
as mentioned in the introduction, due to the hard-sphere pressure setting, we do not have a control
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of p(%)−p(r)−p′(r)(%− r) by P (%)−P (r)−P ′(r)(%− r) which is the one appearing in the relative
entropy. Indeed, by employing the proof of Lemma 4.1, we have for α1 small:

(4.15) p(%)− p(r)− p′(r)(%− r) ≤


C (%− r)2, if α1 ≤ % ≤ %̄− α1,

1 + p′(r)r − p(r), if 0 ≤ % ≤ α1,

2p(%), if %̄− α1 ≤ % ≤ %̄.

We see from (4.15) that we do have

p(%)− p(r)− p′(r)(%− r) ≤ C
[
P (%)− P (r)− P ′(r)(%− r)

]
, for % ≤ %̄− α1.

Thus, if we write ∫
Ω

divxU
(
p(r)− p(%)− p′(r)(r − %)

)
dx = I4 + I5,

with

I4 :=

∫
%≤%̄−α1

divxU
(
p(r)− p(%)− p′(r)(r − %)

)
dx,

I5 :=

∫
%≥%̄−α1

divxU
(
p(r)− p(%)− p′(r)(r − %)

)
dx,

we have

(4.16) |I4| ≤ C‖divxU(t)‖L∞(Ω)

∫
%≥%̄−α1

P (%)− P (r)− P ′(r)(%− r) dx ≤ η(t)E(t).

Due to the fact p(%)/P (%) → +∞ as % → %̄, we can also see from (4.15) and Lemma 4.1 that
we need to estimate I5 differently. This the reason that we include the terms related to b(%).

4.4 Estimates for the remainder: part 2

In the sequel, we choose b(s) ∈ C∞[0, %̄), b′(s) ≥ 0 as follows:

b(s) =

{
0 if s ≤ %̄− α1,

− log(%̄− s), if %̄− α2 ≤ s < %̄,
b′(s) > 0 if %̄− α1 < s < %̄− α2.

Here α0 and α1 are as in (4.1) and Lemma 4.1, respectively, and 0 < α2 < α1. In the sequel, α1

and α2 will be chosen to be sufficiently small, while still be fixed. Such a choice of b is admissible
for Theorem 2.3. Indeed, by (2.9), the condition (2.11) is satisfied. Moreover, there holds for any
γ > 0:

(4.17) lim
s→%̄−

p(s)

(b(s))γ
= lim

s→%̄−

P (s)

(b(s))γ
= lim

s→%̄−

p(s)

(b′(s))β
= lim

s→%̄−

P (s)

(b′(s))β−1
= +∞.

Thus, for any γ ≥ 1 and any 2 ≤ β0 ≤ β, by Lemma 4.1 and (4.17), we have

(4.18)

∫
Ω
|b(%)|γ dx =

∫
%≥%̄−α1

|b(%)|γ dx

≤ C
∫
%≥%̄−α1

P (%) dx ≤ C
∫
%≥%̄−α1

P (%)− P (r)− P ′(r)(%− r) dx,∫
Ω
|b′(%)|β0−1 dx ≤ C

∫
%≥%̄−α1

P (%) dx ≤ C
∫
%≥%̄−α1

P (%)− P (r)− P ′(r)(%− r) dx,∫
Ω
|b′(%)|β0 dx ≤ C

∫
Ω
p(%) dx.
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By choosing α2 small such that

− log(%̄− s) ≥ 16 ‖divxU‖L∞((0,T )×Ω), if %̄− α2 ≤ s < %̄,

we deduce from (4.15) and Lemma 4.1 that

(4.19)

|I5| ≤
∫
%̄−α1≤%≤%̄−α2

∣∣divxU
(
p(r)− p(%)− p′(r)(r − %)

)∣∣ dx

+

∫
%≥%̄−α2

∣∣divxU
(
p(r)− p(%)− p′(r)(r − %)

)∣∣ dx

≤
∫
%̄−α1≤%≤%̄−α2

|divxU| max
%̄−α1≤s≤%̄−α2

p′′(s)(r − %)2 dx+
1

8

∫
Ω
p(%)b(%) dx

≤ C‖divxU‖L∞(Ω)

∫
%̄−α1≤%≤%̄−α2

(r − %)2 dx+
1

8

∫
Ω
p(%)b(%) dx

≤ C‖divxU‖L∞(Ω)

∫
%̄−α1≤%≤%̄−α2

P (%)− P (r)− P ′(r)(%− r) dx+
1

8

∫
Ω
p(%)b(%) dx

≤ η(t)E(t) +
1

8

∫
Ω
p(%)b(%) dx.

Summarizing the estimates in (4.11), (4.12), (4.13), (4.16) and (4.19), we deduce

R1 ≤ η(t)E(t) +
3

16

∫
Ω
S(∇x(u−U)) : ∇x(u−U) dx+

1

8

∫
Ω
p(%)b(%) dx.

4.5 Estimates for the remainder: part 3

We start estimating the remainder term R2. By (4.18), we have

〈b(%)〉 =
1

|Ω|

∫
Ω
b(%) dx ≤ CE(t).

Then ∫
Ω
p(%)〈b(%)〉dx ≤ C

∫
Ω
p(%) dx E(t) ≤ η(t)E(t).

We write

−
∫

Ω
%u⊗ u : ∇x∇x∆−1

x (b(%)− 〈b(%)〉) dx =
10∑
j=6

Ij ,

with

I6 := −
∫

Ω
%(u−U)⊗ (u−U) : ∇x∇x∆−1

x (b(%)− 〈b(%)〉) dx,

I7 := −
∫

Ω
%U⊗ (u−U) : ∇x∇x∆−1

x (b(%)− 〈b(%)〉) dx,

I8 := −
∫

Ω
%(u−U)⊗U : ∇x∇x∆−1

x (b(%)− 〈b(%)〉) dx,

I9 := −
∫

Ω
(%− r)U⊗U : ∇x∇x∆−1

x (b(%)− 〈b(%)〉) dx,

I10 := −
∫

Ω
rU⊗U : ∇x∇x∆−1

x (b(%)− 〈b(%)〉) dx.
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For I6, by Hölder’s inequality, Young’s inequality, Sobolev embedding and Korn’s inequality,
we have

(4.20)

|I6| ≤ ‖%(u−U)‖L2(Ω)‖u−U‖L6(Ω)‖∇x∇x∆−1
x (b(%)− 〈b(%)〉) ‖L3(Ω)

≤ C‖√%(u−U)‖2L2(Ω)‖b(%)‖2L3(Ω) +
1

16

∫
Ω
S(∇x(u−U)) : ∇x(u−U) dx.

By (2.8) and (4.18), we have P (%) ∈ L∞(0, T ;L1(Ω)) and b(%) ∈ L∞(0, T ;Lγ(Ω)) for any γ > 1.
Thus, we deduce from (4.20) that

|I6| ≤ CE(t) +
1

16

∫
Ω
S(∇x(u−U)) : ∇x(u−U) dx.

For I7 and I8, by (4.18), there holds

(4.21)

|I7|+ |I8| ≤ %̄‖U‖L∞(Ω)

∫
Ω
%|(u−U)|2 dx+ ‖U‖L∞(Ω)

∫
Ω
|∇x∇x∆−1

x (b(%)− 〈b(%)〉) |2 dx

≤ η(t)E(t) + η(t)

∫
Ω
|b(%)|2 dx

≤ η(t)E(t) + η(t)

∫
%≥%̄−α1

P (%)− P (r)− P ′(r)(%− r) dx

≤ η(t)E(t).

For I9, by Lemma 4.1 and (4.18), we have

|I9| ≤ ‖U‖2L∞(Ω)

∫
Ω

(%− r)2 dx+ ‖U‖2L∞(Ω)

∫
Ω
|∇x∇x∆−1

x (b(%)− 〈b(%)〉) |2 dx

≤ η(t)

∫
Ω
P (%)− P (r)− P ′(r)(%− r) dx+ η(t)

∫
Ω
|b(%)|2 dx

≤ η(t)E(t).

For I10, by (4.18), by Sobolev embedding and the smoothness of r, U, we have

(4.22)

|I10| =
∣∣∣∣∫

Ω

(
∆−1
x divxdivx(rU⊗U)

)
(b(%)− 〈b(%)〉) dx

∣∣∣∣
≤ C‖(r,U)‖W 1,γ(Ω)

∫
Ω
b(%) dx (with γ > 3)

≤ η(t)E(t),

4.6 Estimate for the remainder: part 4

We write ∫
Ω
S(∇xu) : ∇x∇x∆−1

x (b(%)− 〈b(%)〉) dx = I11 + I12

with

I11 :=

∫
Ω
S(∇xu−∇xU) : ∇x∇x∆−1

x (b(%)− 〈b(%)〉) dx,

I12 :=

∫
Ω
S(∇xU) : ∇x∇x∆−1

x (b(%)− 〈b(%)〉) dx.
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For I11, by similar arguments as (4.21), we have

|I11| ≤ C
∫

Ω
|b(%)|2 dx+

1

16

∫
Ω
S(∇x(u−U)) : ∇x(u−U) dx

≤ CE(t) +
1

16

∫
Ω
S(∇x(u−U)) : ∇x(u−U) dx.

For I12, by similar arguments as (4.22), we have

|I12| ≤ C‖U‖W 2,γ(Ω)

∫
Ω
b(%) dx ≤ η(t)E(t), with γ > 3.

It is rather direct to deduce

−
∫

Ω
%f · ∇x∆−1

x (b(%)− 〈b(%)〉) dx =

∫
Ω

(
divx∆−1

x (%f − 〈%f〉)
)
b(%) dx

≤ C‖%f‖L∞(Ω)

∫
Ω
b(%) dx ≤ CE(t).

4.7 Estimate for the remainder: part 5

We write ∫
Ω
%u · ∇x∆−1

x divx(b(%)u) dx =

16∑
j=13

Ij ,

where

I13 :=

∫
Ω
%u · ∇x∆−1

x divx(b(%)(u−U)) dx,

I14 :=

∫
Ω
%(u−U) · ∇x∆−1

x divx(b(%)U) dx,

I15 :=

∫
Ω

(%− r)U · ∇x∆−1
x divx(b(%)U) dx,

I16 :=

∫
Ω
rU · ∇x∆−1

x divx(b(%)U) dx.

Similarly as the derivation of the estimates for Ij in Section 4.6, we can derive for some σ > 0
small that

|I13| ≤ C‖u‖L3(Ω)‖b(%)(u−U)‖
L

3
2
≤ Cσ−1‖u‖2L6(Ω)‖b(%)‖2L2(Ω) + σ‖(u−U)‖2L6(Ω)

≤ η(t)E(t) +
1

16

∫
Ω
S(∇x(u−U)) : ∇x(u−U) dx,

|I14| ≤ %̄
∫

Ω
%|u−U|2 dx+

∫
Ω
|b(%)U|2 dx ≤ η(t)E(t) + ‖U‖2L∞(Ω)

∫
Ω
|b(%)|2 dx ≤ η(t)E(t),

|I15| ≤ ‖U‖2L∞(Ω)

∫
Ω

(%− r)2 dx+

∫
Ω
|b(%)U|2 dx ≤ η(t)E(t),

and for γ > 3 :

|I16| =
∫

Ω
∇x∆−1

x divx(rU) · (b(%)U) dx ≤ ‖(r,U)‖W 1,γ(Ω)

∫
Ω
b(%dx ≤ η(t)E(t).
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4.8 Estimate for the remainder: part 6

We write ∫
Ω
%u · ∇x∆−1

x

(
(b′(%)%− b(%)) divxu− 〈(b′(%)%− b(%)) divxu〉

)
dx

= −
∫

Ω

(
divx∆−1

x (%u− 〈%u〉)
) (

(b′(%)%− b(%)) divxu
)

dx =
19∑
j=17

Ij ,

where

I17 := −
∫

Ω

(
divx∆−1

x (%u− 〈%u〉)
) (

(b′(%)%− b(%)) divxU
)

dx,

I18 := −
∫

Ω

(
divx∆−1

x (%U− 〈%U〉)
) (

(b′(%)%− b(%)) divx(u−U)
)

dx,

I19 := −
∫

Ω

(
divx∆−1

x (%(u−U)− 〈%(u−U)〉)
) (

(b′(%)%− b(%)) divx(u−U)
)

dx.

For I17, by (4.18), we have

|I17| ≤ C‖divx∆−1
x (%u− 〈%u〉)‖L∞(Ω)‖divxU‖L∞(Ω)

∫
Ω
|(b′(%)%− b(%)| dx

≤ C‖divx∆−1
x (%u− 〈%u〉)‖W 1,6(Ω)‖divxU‖L∞(Ω)

∫
%≥%̄−α1

P (%) dx

≤ C‖%u‖L6(Ω)‖divxU‖L∞(Ω)E(t) ≤ C‖∇xu‖L2(Ω)‖divxU‖L∞(Ω)E(t) ≤ η(t)E(t).

For I18, by Korn’s inequality, we have for γ > 3:

(4.23) |I18| ≤ C‖U‖2Lγ(Ω)

∫
Ω
|(b′(%)%− b(%)|2 dx+

1

16

∫
Ω
S(∇x(u−U)) : ∇x(u−U) dx.

By the fact U ∈ L∞(0, T ;Lγ(Ω)) and (4.17), by choosing α1 be sufficiently small, we have

|I18| ≤
1

8

∫
Ω
p(%)b(%) dx+

1

16

∫
Ω
S(∇x(u−U)) : ∇x(u−U) dx.

By Sobolev embedding, by (4.18) and β ≥ 3, we have

|I19| ≤ C‖%(u−U)‖L2(Ω)‖(b′(%)%− b(%)‖L3(Ω)‖divx(u−U)‖L2(Ω)

≤ C‖(b′(%)%− b(%)‖2L3(Ω)

∫
Ω
%|u−U|2 dx+

1

16

∫
Ω
S(∇x(u−U)) : ∇x(u−U) dx

≤ η(t)E(t) +
1

16

∫
Ω
S(∇x(u−U)) : ∇x(u−U) dx.

4.9 Estimate for the remainder: part 7

Since the initial data %0 = r0 ∈ [α0, %̄− α0], we have b(%0) ≡ 0. We can write

R3 = I20 + I21

with

I20 : =

∫
Ω
%U · ∇x∆−1

x (b(%)− 〈b(%)〉) (τ, ·) dx,

I21 : =

∫
Ω
%(u−U) · ∇x∆−1

x (b(%)− 〈b(%)〉) (τ, ·) dx.
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For I20, by (4.17) and choosing α1 be sufficiently small, we have

I20 = −
∫

Ω
divx∆−1

x (%U− 〈%U〉)b(%)(τ, ·) dx ≤ C
∫
%≥%̄−α1

b(%)(τ, ·) dx

≤ 1

4

∫
%≥%̄−α1

P (%)− P (r)− P ′(r)(%− r) dx,

which can be absorbed by the relative entropy on the left-hand side of the relative entropy inequality.
Similarly, for I21 there holds by choosing α1 be sufficiently small:

I21 ≤
1

4

∫
Ω
%|u−U|2(τ, ·) dx+ C

∫
Ω
|b(%)|2(τ, ·) dx

≤ 1

4

∫
Ω
%|u−U|2(τ, ·) dx+

1

4

∫
%≥%̄−α1

P (%)− P (r)− P ′(r)(%− r) dx,

which can also be absorbed by the relative entropy on the left-hand side of the relative entropy
inequality.

4.10 End of the proof

Summarizing the estimates we obtained in Sections 4.3–(4.9) above, we derive

E(τ) +

∫ τ

0

∫
Ω
S(∇x(u−U)) : ∇x(u−U) dx dt+

∫ τ

0

∫
Ω
p(%)b(%) dx dt ≤

∫ τ

0
η(t)E(t) dt,

for some η(t) ∈ L1((0, T )). Then Grownwall’s inequality implies E(t) ≡ 0 in (0, T ). This implies
our desired weak-strong uniqueness and the proof of Theorem 2.5 is completed.
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