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Abstract

We consider the Navier—Stokes equations with a pressure function satisfying a hard-sphere
law. That means the pressure, as a function of the density, becomes infinite when the density
approaches a finite critical value. Under some structural constraints imposed on the pressure
law, we show a weak-strong uniqueness principle in periodic spatial domains. The method is
based on a modified relative entropy inequality for the system. The main difficulty is that the
pressure potential associated with the internal energy of the system is largely dominated by the
pressure itself in the area close to the critical density. As a result, several terms appearing in
the relative energy inequality cannot be controlled by the total energy.

Keywords: Navier—Stokes equations; hard-sphere pressure; weak-strong uniqueness.

1 Introduction

Let T>0and Q C R% d € {2,3} be a bounded domain. We consider the compressible Navier—
Stokes equations in the time-space cylinder (0,7) x €2

(1.1) Oro + divz(ou) =0,

(1.2) O(ou) + divy(pu ® u) + Vyp(p) — div,S(Vyu) = of.

Here S(Vzu) is the Newtonian stress tensor defined by

Veau+Via 1

(1.3) S(Veu) = p? < 5 - d(divxu)ﬂ> + 1B (div,u)l,

where ¢® > 0 and u® > 0 are the shear and bulk viscosity coefficients, respectively. Here, the
velocity gradient matrix and the divergence on a matrix-valued function are defined as

(Vau)i<ijca = (Op;Wi)1<ij<d,  (diveS); = Z 0z,;Si ;.
=1



The external force f belongs to the class L>((0,7) x £; R%).
Unlike the commonly used isentropic setting, the pressure p and the density ¢ of the fluid are
interrelated by a hard-sphere equation of state in the interval [0, g) (see also [6] and [12]):

(1.9) p€C0,0), p(0) =0, p' > 0on (0,0), lim p(o) = +oo.

Similar types of singular pressure law are considered recently in many physical models and
mathematical studies. We refer to the study by Degond et al. in [8, 7] for collective motion, the
study by Berthelin et al. in [2, 3] for the traffic flow. We also refer to the review paper by Maury
[15] concerning crowd motion models. In particular, many mathematical studies of fluid models
taking into account similar types of singular pressure law are done by Bresh, Desjardins, Perrin,
Zatorska in for instance [5, 4, 16].

2 Main results

In this section, we state our main results. Due to technical difficulties that will become clear in
the course of the proofs, we consider solutions that are periodic in the spatial variable; that is
we restrict ourselves to the periodic spatial domain (flat torus) Q = T¢ := R?/Z?. The basic
hypotheses imposed on the initial data are:

0(0,-) = 0o(+) with 0 < g9 < g a.e. in 2, / P(pp) dz < o0,
(2.1) @

a(0.) = (). | ool <o, (ew(0.) = (@)
where P € C'[0, p) is the pressure potential defined as

(2.2) P(s) = s/; ]Qi? dz.

Note that

(2.3) P'(s)s — P(s) =p(s), P"(s)= L is), for any s € [0, 0).
Weak solutions are defined as follows:

Definition 2.1. We say that (p,u) is a dissipative (finite-energy) weak solution in (0,T) x § to
the system of equations (1.1)—(1.3), supplemented with initial data (2.1), if:

¢ 0<o<gae in(0,T)xQ o€ Cu([0,T];L7(Q)) for any v > 1, p(e) € L'((0,T) x ),
u € L0, T; WE2(Q;RY)), ou € Cyu([0,T]; L2(;RY)), olul? € L>(0,T; LY()).

e For any 7 € (0,T) and any test function ¢ € C*°(]0,T] x ), one has
(2.4) / / [g@t¢+gu~vzq§] dxdt = / Q(T,-)qb(T,-)dx—/ 000(0, -) dz.
0 Q Q Q
o For any 7 € (0,T) and any test function ¢ € C=([0,T] x Q;RY), one has

/ / [ou- 0o + (ou®u) : Voo + p(o) diva — S(Vu) @ Ve dodt
0o Ja

(25) :_/(]T/ng.godxdtnL/QQu(T,')'SO(T,-)dx—/QQOUO‘SO(OV)dx'



o The continuity equation holds in the sense of renormalized solutions:
(2.6) 0ib(e) + diva(b(e)u) + (V'(e)e — b(e)) diveu =0 in D'((0,T) x Q),
for any b € C[0, p) satisfying
(2.7) 1'(5)]? + |b(s)[* < C (1+ p(s)) for come constant C' and any s € [0, 9).

e For a.e. 7 €(0,T), the energy inequality holds:

/ﬂ[;@!uPJrP(@)] (T,-)dCC—F/OT/QS(qu);vxudl,dt

1 T
S/ |:2,Qo‘uO’2+P(Q0):|d$+/ /Qf-ud:rdt.
Q 0 JQ

In the sequel, we focus only on the 3D periodic domain: d = 3 and Q = T3. The two dimensional
case can be done similarly. Concerning the existence of finite-energy weak solutions, we have the

(2.8)

following remark:

Remark 2.2. e By employing the argument in [12] with the refined argument from [10], it can
be shown that, under the following technical assumption on the pressure functional near the
stngular point o:

(2.9) Jim p(e)(@— 0)? >0, for some B >5/2,

there exists a global-in-time weak solution in the sense of Definition 2.1.
e The constraint (2.7) on b guarantees that b(o), b'(0) € L*((0,T) x Q).

e [t can be proven directly by using (1.4) that, for some C > 0, there holds P(s) + C > 0 for
all s € [0, 0). Hence, we may replace P(p) and P(go) by P(0)+ C and P(go)+ C respectively
in (2.8) to obtain a nonnegative energy functional.

Following [9, 11, 14], we define the relative entropy functional:

(2.10) Et)y=¢& (g, u|r, U) (t) := /Q %g[u — U\2 + (P(g) — P(r)—P'(r)(o— 7‘)) (t,-)dz.

We will show that any finite-energy weak solution satisfies a relative entropy inequality, a
consequence of which is the weak-strong uniqueness.

Before stating our main results, we recall some notations. For a periodic function f defined in
Q = T% one can write:

fla) =" fre®™F,
kezd

where fj, are the Fourier coefficients. The mean value of f, denoted by (f) := ﬁ Jqo fdx, is the
zero mode Fourier coefficient fy. The inverse of the Laplacian coincides with the Fourier multiplier
A1 defined as

1 Tik-x
AT f(z) =Y 47r2|kysze2 k.
kezd
Let 1 < g < 0o and set
Lj(Q) := {f € LY(Q) : {f) = 0}
Then by the classical elliptic theory, A;! is a bounded linear mapping from LE(Q) to W24(Q) N
LE(Q) for any 1 < ¢ < oo.



Theorem 2.3. Suppose the pressure constraint (2.9) is satisfied. Let (p,u) be a finite-energy weak
solution in (0, T)x ) in the sense of Definition 2.1. Let (r,U) € C([0, T]xQ)xC([0, T]; C%(Q; R?))
such that
0< inf < sup r<op.
[0,7]xQ [0,T]x

Let b(s) € C0, p) satisfy the condition
(2.11) |b/(5)|g + |b(s)]g < C(1+p(s)) for come constant C and any s € [0, p).

Then the following relative entropy inequality holds for a.e. T € (0,T),

& (o,ulr,U) (1 //S (u—TU)):Vy(u—U dxdt+// o) dz dt

(2.12)
Sg(go,uolr(O,-),U(O,-) —|—/0 Rl(t)dt+/0 Ra(t)dt + Rs(T),

where the remainder terms R;, j =1,2,3, are defined as

Ri(t) = /(@U—i—u V,U) - (U - u)dz

—i—/QS(VmU): U-u d:v+/QQf u—U)dz
+ / (r—0)0P'(r)+ (rU — pu) - V. P'(r)dz + [ div,U(p(r) — p(p)) dz,
Q Q
(2.13) Ra(t):= [ po)M(o))do— [ oueu: V.T.AL (o) — (o)) do
+/ S(Veu) : Vo Ve AL (b(o) — (b)) da —/ of - VAL (b(0) — (b(e))) da
Q Q

+ /Q ou- VA" (divx(b(g)u) + (b'(0)o — b(0)) diveu — ((b'(0)o — b(0)) divxu>) dz,
Rs(7) := /Q ou- VAL (b(o) = (be))) (r,7) da — /Q 000 - Vo AL (b(e0) — (b(c0))) da.
Remark 2.4. o In view of the conditions (2.9) and (2.11), we will see later in the proof of

Theorem 2.3 that all integrals appearing in (2.12) and (2.13) converge.

e The smoothness assumption on v, U can be relaxed accordingly, as long as all integrals
appearing in (2.12) remain finite.

e Compared to the standard relative entropy inequality [9, 11, 14], the present form is augmented
by the extra term [ [op(0)b(0) dz dt on the left-hand side. To include this additional term,
we have used the pressure identity

// o) du dt — /732 ) dt + Ra(7)

that can be deduced by using the quantity V,.AL! (b(0) — (b(0))) as a test function in the
momentum balance (2.5).



e In the case of more conventional no-slip boundary conditions, the pressure term

/OT /Qp(g)b(e) dadt

B (b(e) — (b(0)))

as a test function, where B = (Bj)?zl is the so—called Bogovskii operator (see[1] or Chapter
I of Galdi’s book [13]). While, the adjoint B} of the Bogouskii operator Bj is considerably
different compared to the Bogouskii operator. To handle the new terms in Ro and Rs in
(2.13), we would need employ the adjoint of B. Unfortunately, the behavior of the adjoints
of the operators V,A;' and B is rather different and the use of B is connected with other
technical difficulties. This is the main reason why we restrict ourselves to the purely periodic
setting.

is computed by means of

Our next result is the weak-strong uniqueness principle:

Theorem 2.5. Suppose the pressure constrain (2.9) is satisfied with 8 > 3. Let (p,u) be a finite-
energy weak solution in (0,T) x Q in the sense of Definition 2.1. Let (r,U) € C1([0,T] x Q) x
CH([0,T]; C%(;R3)) be a strong solution to (1.1)~(1.3) having the same initial data as (o,u) and
such that

0< inf < sup r<op.

[0,T]xQ [0,T]x
Then there holds
(o,u) = (r,U) in (0,T) x Q.

Remark 2.6. The additional assumption 8 > 3 is needed only for estimating the term Iig in
Section 4.8. For all other terms, B > 5/2 is sufficient.

The rest of the paper is devoted to the proof of Theorems 2.3 and 2.5. Throughout the paper,
C' denotes some uniform constant of which the value may differ from line to line. In the sequel, to
avoid notation complicity, we sometimes simply use L"(0,7; X (£2)) to denote the scalar function
space L"(0,T; X(£2)), the vector valued function space L"(0,7; X (Q;R™)) or the matrix valued
function space L"(0,T; X (€; R™*™)) if there is no confusion.

3 Relative entropy inequality

This section is devoted to the proof of Theorem 2.3. By employing the argument in [9], one can
derive

€ (0vulr, U) (1) + / / S(Va(u—U)) : Va(u — U) dedt
(3.1) 0 .
<& (o0, wfr(0,).U(0.) + [ Ra(t)et

0
Now we include the terms related to b(p). By (2.2) and (2.9), we have

(3.2) P(s) <C+p(s)(o—s) <2C+ P(s), forallsel0,p).



Then, by (2.9) and (2.11), we have for any s € [0, g) that
(3.3) 1¥/(5)] + b(s)] < C(1+p(s))5 < C(1L+ P(s)P(s)3)5 < C(1+ P(s))5.

Hence, by the fact p(¢) € L*((0,T) x €) in Definition 2.1, by the energy inequality (2.8) and
Gronwall’s inequality, we have P(p) € L>°(0,T; L'(2)) and furthermore,

(3.4) ¥ (0), blo) € L2((0,T) x Q) N L=(0,T; L2 ().

Since the condition (2.11) is stronger than (2.7), the function b(p) satisfies the renormalized
continuity equation (2.6). This gives us some information on the time derivative of b(p): by using
(3.4), there holds

(3.5) dib(o) € (LQ(O, T W-b5(Q) N LS (0, T, W1 (Q))) +L5((0,T) x Q).

By tedious, however direct, calculations, we can choose VAL (b(0) — (b(0))) as a test function
in the weak formulation (2.5) to deduce for any 7 € (0,7"):

(3.6) // o) dz dt = /R2 ) dt + Ry(r),

where Ra(t) and R3(7) are exactly as in (2.13). We briefly show that all the integrals appeared on
the right-hand side of (3.6) are meaningful and uniformly bounded in 7 € (0, 7).
By Definition 2.1 and (3.4), we have

(3.1 | peien dzde < € ol ooy Mo l=ioizrian < C:
By Definition 2.1 and Sobolev embedding W12(Q) C L5(£2), we have
ou®u e L®(0,T; LY(Q)) N L0, T; L3(Q)) ¢ Li((0,T) x Q).

Together with (3.4) and the fact that A is a linear continuous mapping from L¢(Q) to W24(Q)
for any 1 < g < oo, we deduce

- // ou@u: Vo VoA (b(o) — (b(0))) dadt

<Cllou®u| s

(3.8)
Loyl C@ = @D 5 o 7yay €

Similarly, we have

" . -1 . .
(3.9) /O/QS(V@’“WWWAI (b(e) — (b(0))) dz dt

_ /OT /Q of - VoA (b(0) — (b(0))) dzdt < C 10f]| L= 0.7y x| (0(0) — (B(@))) || 2 (0.1 %0y < C-

By Definition 2.1, (3.4) and Sobolev embedding, we have:

(3.10) /0 /qu.VzAxldivx(b(g)u) dedt < Clleul 2 oras(@ b(@)ull g 18 ) < C

6



Similarly,

—// ou- VA ((b’(g)g—b(g))divgcu— (H(0)o — b(e)) diveu)) dedr

/
< C”QU-”L2(O,T;LG(Q))OLOO(O,T;L2(Q))”(b’( )o—b(e ))H L3 (0 XQ)||div$uHL2((07T)XQ)
<C.

For R3(7), again by Definition 2.1, (3.4) and Sobolev embedding, we have

1
(3.12) /QQU Valz " (b(e) = (b)) (7, ) de < Clloull e (o,riz2@p 100 e g 7,8 o) < ©
and
(3.13) - /Q eouo - VAL (b(eo) — (b(eo))) dz < C lleouol| 2(eyllb(eo)ll ¢ ) < C-

Summarizing the estimates in (3.7)-(3.13) implies the right-hand side of (3.6) are uniformly
bounded in 7 € (0, 7). This shows the integral [ [, p(0)b(0) dx dt is meaningful and is uniformly
bounded in 7 € (0,7)).

Thus, summing up (3.1) and (3.6) implies our desired relative entropy inequality (2.12). We
complete the proof of Theorem 2.3.
4 Weak-strong uniqueness

In this section, we prove Theorem 2.5 by using the relative entropy inequality. Let (o, u) and (r, U)
be the weak solution and the strong solution given in Theorem 2.5 issued from the same regular
initial data. We choose (r, U) as the test function in the relative entropy inequality (2.12) for the
weak solution (o, u). The idea of proving Theorem 2.5 is the following: we analyze the corresponding
right-hand side of (2.12) until some level that allows us to use Gronwall type inequalities to show
the relative entropy is identically zero, which implies the weak solution and the strong one are
equal. In this section, we let 7(¢) be a universal L!(0,T) function.

4.1 New expression for remainder term R,
Since r is strictly positive and strictly smaller than g, there exits ag > 0 such that
(4.1) O<ag<r<po—ay<o.
Thus, there holds
(4.2) U +U-V,U+7r'V,p(r) —r 1div,S(V,U) = f.
y (2.3), we have

(4.3) VP (r) = P'(r)V,r = T_lp/(r)vxr = T_lvxp(r).



Plugging (4.2) into the expression of R in (2.13) and using (4.3) implies
Ry = / o(u—TU)-V,U- (U —u)dz + / div,S(V,U)(rLo—1) - (U — ) dz
Q Q

(4.4) - /Q oV P'(r)- (U —u)dz + /Q (r—0)8P'(r) + (rU — gu) - V. P'(r)dz

+ /Q div,U(p(r) — p(e)) dz.
By the continuity equation (1.1), and by (2.3), we have

*QV P'(T) (U—u)+(r—00P'(r) + (rU — ou) - Vo P'(r)
(8tP’ U VLP(r)
(r — o) [0:P'(r) + divy(UP'(r)) + (P"(r)r — P'(r))div,U] — (r — ¢) P"(r)rdiv,U
—(r—o)p (T)lew

(4.5)

Plugging (4.5) into (4.4) implies

R1 = / o(u—U) -V, U (U—-u)dz+ / div,S(V,U)r Yo —7r) - (U —u)dz
(4.6) @ Q

4 / div, U (p(r) — plo) — P/ (r)(r — @) da.
Q

4.2 Property on the pressure potential

We give some properties concerning the quantity appearing in the relative entropy and related to
the pressure potential:

Lemma 4.1. Let 0 > 0 and 0 < a9 <7 < o0 — ag < 0. There exits a; € (0,0) and a constant
c > 0, such that

clo—7)? ifar<o<o-—a,
p(r) ,

P(g) = P(r) = P'(r)(e—7)>< ~9 > if 0 <0< o,
Pég)7 ifo—a1<o<p

Proof. 1. We start by considering g near 0: 0 < o < «3. By (1.4), for oy < ag < 9, we have

Ip(o)] < sup p'(s)o < Co, for any 0 < o < o.
0<s<a1

Then, for ¢ € [0, 1], there holds

Q

(4.7) ‘ dz

<CQ’10g logg‘ — 0, as p — 0.

Since r € [ag, 0 — ap), by (1.4), (2.2) and (2.3), we have

P(r) +p(r)

r

<C,

Pol=|




and
(4.8) P'(r)yr — P(r) =p(r) > C~L.

for some constant C' > 0.
Thus, by (4.7)—(4.8), by choosing «; > 0 small, we have for 0 < p < ay, ap <r < g — agp that

P(o) = P(r) = P'(r)(e = 7) = [P(e) = P'(r)o] + [P'(r)r — P(r)] > p<2)
2. We then consider p near g: 9 — a1 < ¢ < g. Since r € [ag, 0 — o], by (1.4), (2.2) and (2.3),

we have

|P(r) + P'(r)(e—r)| < C.

By (2.2) and (2.9), we have

lim P(p) — +o0.
00

Thus, by choosing a1 > 0 small, there holds

P(o) — P(r) = P'(r)(0 — 1) > ;@)'

3. For a1 < ¢ < 0 — ay, Taylor’s formula gives

P(o)— P(r)—P'(r)(o—r)> min P"(s)(o—7r)>= min ()

2 2
_ > _
a1<s<g—aq a1<s<g-a1 § (e=r)" = cle—=r),

for some constant ¢ > 0.

4.3 Estimate for the remainders: part 1

For the first term in the expression of R; in (4.6), we have
(19) [ su=1)- VU (U wdr < VU0 (o) | olu—UPde < )2 (0.

Here in (4.9), we only need the assumption V,U € L*(0,T;L>(Q2)). In the following, we will
present, but will not emphasize, the lowest regularity assumption on (r, U).

The estimate for the second term of (4.6) is more delicate. Let a; € (0,ap) be as in Lemma
4.1, we write

/ div,S(V.U)r Yo—7r) - (U—u)dz =1 + I + I3,
Q

with
L = / diVxS(sz)T_l(Q - T) ’ (U - u) dz,
a1<p<o—au
Iy = / divyS(V,U)r~ (o —7) - (U — u) da,
o<ai
I3 := / div,S(V,U)r (¢ —7)- (U —u)dz.
0>0—a1



For I, by Schwartz inequality, Poincaré inequality, we have for any o > 0 that
(4.10) L] <o M diveS(VLU)r ()| Foo o / (o —r)*dx + a/ |Vo(U —u))?dz.
a1 <p<p—a; Q
By Korn’s inequality, there holds

/]VI(U—u)|2d:c < c/ S(Vg(u—TU)) : Vy(u—U)da.
Q Q

By Lemma 4.1 and by choosing o > 0 small, we deduce from (4.10) that

1] < ClAw SV OO [ Plo)= Pl - Pr)(e—r)da
a1<p<p—a1
1
(4.11) +16/QS(Vx(u—U)) . Vo(u—U)dz

<00 + 15 [ S(Vau=T1)): Valu—V)do.

For Iy, by Schwartz inequality, Poincaré inequality, Korn’s inequality and Lemma 4.1, we can
deduce

| I ga1||divxS(VIU)(t)]%oo(Q)/ 1dx—i—0/ U —u*dz
Q

(4.12) < CJldiv,S(V,U)(8) 2o 0 / r)dz + % S(Va(u—TU)): Va(u—U)de
< MED) + 1 / S(V,(u—-U)): Vo(u—U)dz.

Similarly, we have for I3 that
I3] < Co Y div, SV, U) (8) 2 g /gzé Ldz + 0’/ U= ul?da
(4.13) < OJjdiv,S(,U) (1) 2o 0 /QZHI ) da + / S(Vp(u—U)): Vo(u - U)dz
<UDEW + 15 [ S(Vau=1)): Valu— V) do.
We offer another way to deal with Is:

I3] < Clldiv,S(VU) (1) 2o / | dz + / o[U — uf? dz
0=0—a1 0=0—a1

4.14 )
(414) < ClJdiv,S(VoU) (1) ey P(o)dz + /Q olU —uf?dz

< n(BE(). i

The way to estimate the third term of R; in (4.6) is more delicate. The main difficulty is that,
as mentioned in the introduction, due to the hard-sphere pressure setting, we do not have a control

10



of p(o) —p(r)—p'(r)(o—r) by P(o) — P(r) — P'(r)(0—r) which is the one appearing in the relative
entropy. Indeed, by employing the proof of Lemma 4.1, we have for oy small:

C(Q_T)Qa ifaléggé_ala
(4.15) p(o) —p(r) —p'(r)(oe—7) < 1+p'(r)r—p(r), if0<p<ay,
2p(0), ifo—ap<p<op

We see from (4.15) that we do have
ple) = p(r) = p'(r)(e —7) < C [P(e) — P(r) = P'(r)(e — )], for ¢ <o —on.

Thus, if we write

/Q div,U(p(r) — plo) — p'(r)(r — ) dz = Iy + Is,

with
Iy = /< div, U(p(r) — p(o) — p'(r)(r — 0)) dz,
Is = /> diva(p(?") —plo) —p'(r)(r — 9)) dz,
we have .
(4.16) uﬂsmmemem/;; P(e) = P(r) = P'(r)(e —r)dz < n()E(®).

Due to the fact p(p)/P(9) — 400 as 0 — 0, we can also see from (4.15) and Lemma 4.1 that
we need to estimate I5 differently. This the reason that we include the terms related to b(p).

4.4 Estimates for the remainder: part 2

In the sequel, we choose b(s) € C*°[0, p), V'(s) > 0 as follows:

0 if s<p—ay,

b(s) = i PISCTO ) > 0ifa—ar <5< 6 as.
—log(og—3s), ifo—as<s<yp,

Here ap and «; are as in (4.1) and Lemma 4.1, respectively, and 0 < ay < «aj. In the sequel, oy

and «ao will be chosen to be sufficiently small, while still be fixed. Such a choice of b is admissible

for Theorem 2.3. Indeed, by (2.9), the condition (2.11) is satisfied. Moreover, there holds for any

v > 0O:

i = lim Pls) _ im p(s) _ im _P(s)
(4.17) sl—>§— (b(s))Y sl—>§— (b(s))7 51_>§_ V()P ~ sop- ¥/(s))F1

Thus, for any v > 1 and any 2 < 3y < 3, by Lemma 4.1 and (4.17), we have

Jorar=[ s
<c  Powsc[  P@-PEO)-POe-rdn

= 4-00.

(4.18)
/Q b (g)*de < C P(o)da < C P(o) - P(r) — P'(r)(o—r)dz,

0>0—a1 0>0—a1

[W@rar<c [ peoa

11



By choosing ais small such that
—log(0 —s) 2 16 ||diva Ul| e ((0,1)x0), if 0 — a2 < s <o,

we deduce from (4.15) and Lemma 4.1 that
5l | [div, U(p(r) = p(e) = p'(r)(r — )| da
o—a1<p<p—a2
b U - ple) - F )0 - 0)] de
0>0—a2

1
< / diveUl max p"(s)(r — 0)?de + - / p(0)blo) dx
o0—a1<p< 0~ Q

—a1<s<p—« 8
(4.19) 0—a1<s<p—o2 )
< CldivUll o) [ (=P de+ 5 [ plob(e)do
0—0a1<e<p—2 Q
. 1
< Cldiv,Ullgo) [ P(e) = Pr) — Pr)(e =) do+ ¢ [ plo)b(e)ds
0—a1<e<p—a2 Q

<n)E(t) + % /Qp(@)b(g) dz.

Summarizing the estimates in (4.11), (4.12), (4.13), (4.16) and (4.19), we deduce

Ry < ()E(H) + /Q S(Ve(u—0): Valu—U)dr + ¢ /Q p(o)b(0) de.

4.5 Estimates for the remainder: part 3

We start estimating the remainder term Ro. By (4.18), we have

1
(b(0)) = ‘Q’/Qb(g) dz < CE(1).

Then
/ p(o)(b(0)) dz < C / plo) dz &(t) < n(t)E ().
Q Q
We write 0
- /Q ou g V,V,A7 (bo) — (o)) do = 3 1,
j=6
with

== [ ou=U)@ (0=1): V.V,47" (0e) ~ (o)) de,
From = [ 0V (=1): V9,47 (0(0) - (o)) de,
fom = [ ou=0)0 UL V.9.051 (0) = (b(o)) da,
hi== [ (0= U U V.07 (e) - (o) do.

L = —/QTU ®U: V,V.A (b(0) — (b(0))) d.

12



For I, by Holder’s inequality, Young’s inequality, Sobolev embedding and Korn’s inequality,
we have

6| < [lo(u—U)l| 2 llu = Ull (o) | Vo VA7 (b(0) — (b(0))) Il 30

(4.20) < C|va(u - U)Hiz(Q)Hb(Q)”%S(Q) + % /Q S(Vz(u—1U)): Vi(u—-U)dx.

By (2.8) and (4.18), we have P(p) € L>(0,T; L}(Q2)) and b(g) € L>(0,T; L7(Q2)) for any v > 1.
Thus, we deduce from (4.20) that

Is| < CE(t) + %6 / S(Va(u—U)) : Va(u — U)da.
Q
For I; and Ig, by (4.18), there holds
T2 + |Ts] < 20l g (e /Q ol(u— U)2 dz + [U]| (e /Q Vo VoA (o) — (b(0) P da

< n)E(t) + n(t / b(o)|? dz

(4.21) n(t)E(t) +n(t) Q|(Q)|

< (e +n(t) / P(o) - P(r) - P'(r)(g —r) da
0>0—a1

<n(t)E().

For Iy, by Lemma 4.1 and (4.18), we have

[To| < HU!%oom)/Q(@—?’)zder\UH%oo(n)/Q\VNxA;l(b(Q)—<b(@)>)de

< () /Q P(g) — P(r) — P/(r)(0 — ) dz + 5(t) /Q b(o)|? da
< n(t)E(t).

For I g, by (4.18), by Sobolev embedding and the smoothness of r, U, we have

10| = \ [ (85 v, (U £ 0) b(0) — (001 do
(4.22) < C||(r,U) Iy /Q b(p)dx (with v > 3)
<n(t)E(t),

4.6 Estimate for the remainder: part 4

We write

/QS(qu) Vo VoA (b(0) — (b(0)) doz = Iy + I1o

with
Iy = /Q S(Vau — VoU) : Vo Vo AZ (b(o) — (b(o))) da,

Iy = /Q S(VLU) : Voo A (b(o) — (b(0)) da.
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For I11, by similar arguments as (4.21), we have
1
Il <C [ o) do+ 15 [ S(Vala=1)): Valu - U)ds
Q 16 Jo
1
< CE() + 1 / S(Va(u—U)) : Vo(u - U)da.
Q
For I19, by similar arguments as (4.22), we have
Fa] < CUlwaqey [ blo)do < n(DECE), with 7> 3.
Q
It is rather direct to deduce

= [ e Tan blo) — b)) do = [ (div A ot — (o) be) o
Q Q

< Ollof |l ey /Q b(o) dz < CE(t).

4.7 Estimate for the remainder: part 5

We write 6
/ ou - VoA dive (b(o)u)de = > I,
Q j=13
where

I3 = / ou - VA, div, (b(o)(u — U)) dz,
Q

Iy = / ot — U) - VoA div, (b(o)U) da,
Q

Ii5 = / (0 —7)U -V, A, div,(b(0)U) du,
Q

Iig == / rU - VA div,(b(0)U) da.
Q

Similarly as the derivation of the estimates for I; in Section 4.6, we can derive for some o > 0
small that

13| < Clull ooy () — Uy < Co 26 0 () By + ol — U)oy
1
<00 + 55 [ S(Vau =) Vau-U)da,
Q

14| < @/Q olu— Ul dz + /Q [b(0)U? da < n(t)E(t) + U7 (q) /Q ()| da: < n(t)E (1),

18l < Ul [ (0~ 17de+ [ 1@UP ar < o)z

and for v > 3:

|16 = /QVIA;ldin(T‘U) - (b(0)U) da < ||(r, U)me(m/gb(@dx < n(H)E(t).
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4.8 Estimate for the remainder: part 6

We write
/qu VAL (6 (0)0 — b(0)) diveu — (V' (0)o — b(o)) divyu)) dz
19
— —/Q (dlva (Qu — (o u))) ((b'(g)g — b(g))divxu) dz = Z I,
j=17
where

L= — /Q (diveAs (ou — (ou))) ((H(e)e — b(e)) div,U) da,
hs = = [ (div,A57 (20 = (60))) (¥ (e)e — W(e)) divis(u = T) do.

Iy := —/Q (diva;1 (o(u—TU) = (o(u—"T1)))) ((t(0)o — b(0)) divy(u — U)) dx.

For I7, by (4.18), we have
|117] < Clldive A7 (ou — (ow))|| 1 (q HdIVzUHLoo(Q)/ |(t'(0)o — blo)| d

< Cldiv, A (ou (o) s |dveUlwo) [ Plo)da
0Z20—Q]

< Clleull s diveUll Lo ()€ (t) < Cl[Vaull 2 ()| divaUl| oo () €(2) < n(t)E(?).

For I1g, by Korn’s inequality, we have for v > 3:
(4.23) |I1g] < CHUHLW(Q)/ |(b(0)o — b(o)|* da + — / S(Vz(u—1U)): Vy(u— U)da.
By the fact U € L*°(0,7; L7(2)) and (4.17), by choosing a; be sufficiently small, we have
Ulsfﬁé/gp( dll?-i'/S (u—-U)): Vy(u-U)dz.
By Sobolev embedding, by (4.18) and 3 > 3, we have
|T1] < Cllo(u —U)l[L2 () (V' (2)0 — b(0)l| 3@ diva(u — Ul 12(q)

< Ol ¥ (0o — (o)s / ol — UPda + / S(Va(u—U)): Va(u— U)da

<00 + 15 [ S(Va(u=T1)): Vulu = V) do.

4.9 Estimate for the remainder: part 7

Since the initial data gg = 19 € [, @ — ap], we have b(gg) = 0. We can write
R3 = Iz + In

with

B = [ 20907 (00) = (o) () e,
b= [ ol =0)- VoA (0) = (b)) () da
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For Iy, by (4.17) and choosing a; be sufficiently small, we have

Iy = —/Qdivaxl(@U —{eUb()(r,)de < C f  blo)(, ) dx
= % /g>ga1 P(o) = P(r) — P'(r)(¢ —r)dx,

which can be absorbed by the relative entropy on the left-hand side of the relative entropy inequality.
Similarly, for I; there holds by choosing «; be sufficiently small:

In < i/gg|u—U|2(7',-)d:B+C/Q|b(Q)|2(7',-)d:U
< el UPE s g [P0~ PO) P dn

which can also be absorbed by the relative entropy on the left-hand side of the relative entropy
inequality.

4.10 End of the proof

Summarizing the estimates we obtained in Sections 4.3—(4.9) above, we derive

S(T)-‘y-/o /QS(V:U(u—U)):Vw(u—U)dxdt—i—/O /Qp(g)b(g)dxdtg/o n(t)E(t) dt,

for some 7(t) € L*((0,T)). Then Grownwall’s inequality implies £(¢t) = 0 in (0, 7). This implies
our desired weak-strong uniqueness and the proof of Theorem 2.5 is completed.
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