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Abstract

We consider the homogenization problem of the compressible Navier–Stokes equations in a
bounded three dimensional domain perforated with very tiny holes. As the number of holes
increases to infinity, we show that, if the size of the holes is small enough, the homogenized
equations are the same as the compressible Navier–Stokes equations in the homogeneous
domain—domain without holes. This coincides with the previous studies for the Stokes equations
and the stationary Navier–Stokes equations. It is the first result of this kind in the instationary
barotropic compressible setting. The main technical novelty is the study of the Bogovskĭı
operator in non-Lipschitz domains.

Keywords: Homogenization; Navier–Stokes equations; perforated domains; Bogovskĭı opera-
tor.

1 Introduction

In practice, there comes up the study of fluid flows in domains distributed with a large number of
holes that represent solid obstacles. It is suitable, for instance, to model polluted underground water
or oil development. The fluid flows passes between the small obstacles or in the holes in between.
Such domains are usually called perforated domains and a typical example is the so-called porous
media. The perforation parameters, which are mainly the size of holes and the mutual distance of
the holes in the perforated domain under consideration, play a determinant role in these problems.
We refer to [22] for a number of real world applications.

Homogenization problems in fluid mechanics represent the study of the asymptotic behavior
of fluid flows in perforated domains as the number of holes (obstacles) goes to infinity and the
size of holes (obstacles) goes to zero simultaneously. The mathematical concern is the asymptotic
behavior of the solutions to equations describing fluid flows with respect to perforation parameters.
With an increasing number of holes within the domain of the fluid, the fluid flow approaches an
effective state governed by certain homogenized equations in the full domain.

With different physical backgrounds, the mathematical equations governing the fluid flows are
different. There are typically Stokes equations, Navier–Stokes equations or Euler equations. There
also include equations describing non–Newtonian fluid flows, such as p–Stokes equations, Oldroyd–
B models, and many others. Accordingly, the mathematical study of homogenization problems in
fluid mechanics includes the homogenization for various fluid models. We refer to [24, 2, 3] for
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Stokes equations, [20] for incompressible Navier–Stokes equations, [19] for compressible Navier–
Stokes equations and [13] for the complete compressible Navier–Stokes–Fourier equations. We also
refer to the book [15] for other models, such as two phase models and non–Newtonian fluid models.

In this paper, we study the homogenization problem for the compressible Navier–Stokes
equations. We consider a bounded three dimensional domain perforated with tiny holes, where
the diameters of the holes are taken to be of size O(εα) with α ≥ 1, and the minimal mutual
distances between the holes are of size O(ε). In this work we will provide a size parameter α0 ≥ 1
to be specified later on in Theorem 1.6, such that for α ≥ α0 a homogenization sequence of solutions
converges to the solution of the compressible Navier–Stokes system in the non-perforated domain.
This means that if the size of the holes is small enough, then in the homogenization limit they shall
not be seen anymore. This is a known phenomenon: analogous results for stationary incompressible
or compressible fluids have been shown and will be discussed below in more detail. However, we
would like to emphasize that up to our knowledge, this result is the first one in this direction for
unsteady compressible fluids.

Let us introduce the setting in more detail. Let Ω ⊂ R3 be a C2 bounded domain and
{Tε,k}k∈Kε ⊂ Ω be a family of closed sets (named holes or solid obstacles) satisfying

Tε,k = xε,k + εαTk ⊂ B(xε,k, δ0ε
α) ⊂ B(xε,k, δ1ε

α) ⊂ B(xε,k, δ2ε) ⊂ B(xε,k, δ3ε) ⊂ Ω, (1.1)

where for each k, Tk ⊂ R3 is a simply connected bounded domain of class C2, where the C2 constant
is assumed to be uniformly bounded in k. With B(x, r) we denote the open ball centered at x with
radius r in R3. Here we assume that δ0, δ1, δ2, δ3 are positive fixed constants independent of ε, such
that δ0 < δ1 and δ2 < δ3. Moreover, we suppose that the balls (control volumes) {B(xε,k, δ3ε)}k∈Kε
are pairwise disjoint. The corresponding ε-dependent perforated domain is then defined as

Ωε := Ω \
⋃
k∈Kε

Tε,k. (1.2)

By the distribution of holes assumed above, the number of holes in Ωε satisfy

|Kε| ≤ C
|Ω|
ε3
, for some C independent of ε. (1.3)

We consider the following Navier–Stokes equations in the space-time cylinder (0, T )× Ωε:

∂t%+ divx(%u) = 0, (1.4)

∂t(%u) + divx(%u⊗ u) +∇xp(%) = divxS(∇xu) + %f , (1.5)

S(∇xu) = µ

(
∇xu +∇txu−

2

3
divxuI

)
+ ηdivxuI, µ > 0, η ≥ 0. (1.6)

Here, % is the fluid density, u is the velocity field, p = p(%) denotes the pressure, S = S(∇xu)
stands for the Newtonian viscous stress tensor with µ, η the viscosity coefficients, f is the external
force function satisfying ‖f‖L∞((0,T )×Ω;R3) < ∞. We remark that this condition on the external
force f is not optimal and can be improved. However, this improvement does not influence our
argument in an essential manner, so we keep this restriction.

We impose the no-slip boundary condition

u = 0 on (0, T )× ∂Ωε (1.7)
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and impose the standard technical hypothesis imposed on the pressure in order to ensure the
existence of global-in-time weak solutions to the primitive Navier–Stokes system:

p ∈ C[0,∞) ∩ C1(0,∞), p(0) = 0, p′(%) > 0 for % > 0, lim
%→∞

p′(%)

%γ−1
= p∞ > 0 (1.8)

with γ ≥ 1 for which the value range that we can handle is given precisely later in Theorem 1.6.

In the sequel, for a function f defined in Ωε, the notation f̃ or E(f) stands for the zero-extension
of f in R3:

f̃ = f in Ωε, f̃ = 0 in R3 \ Ωε.

1.1 Known results

We introduce some known results concerning the homogenization problems in the framework of
fluid mechanics.

For the case α = 1, meaning that the size of holes is proportional to their mutual distance,
Tartar [24] recovered the Darcy law from the homogenization of the Stokes equations.

In [2, 3], Allaire gave a systematic study for the homogenization problems of the Stokes equations
and stationary incompressible Navier–Stokes equations. He showed that the homogenization process
crucially depends on the perforation parameters of the domain. Specifically, in three dimensions,
Allaire showed that when α < 3 corresponding to large holes, the behavior of the limit fluid is
governed by the classical Darcy’s law, as shown by Tartar in [24] for the case α = 1; when α > 3
corresponding to small holes, the equations do not change in the homogenization process and the
limit homogenized system is the same system as the orginal Stokes or Navier–Stokes equations
in homogeneous domain—domain without holes; when α = 3 corresponding to the critical size of
holes, in the limit it yields Brinkman’s law which is a combination of Darcy’s law and the original
equations.

Later on, in the case α = 1, the results have been extended to the incompressible instationary
Navier–Stokes equations by Mikelić [20], to the compressible Navier–Stokes system by Masmoudi
[19], and to the complete Navier–Stokes–Fourier system in [13]. In all the aforementioned cases,
the homogenization limit gives rise to Darcy’s law.

Recently, the case α > 3 was considered in [10, 7] for the stationary compressible Navier–Stokes

equation. If in addition γ > 2 satisfies α(γ−2)
2γ−3 > 1, it was shown that the limit homogenized

equations remain unchanged. This coincides with the results obtained by Allaire [2, 3] for Stokes
equations.

Up to our knowledge, the result in this paper is the first analytical result in the study of
homogenization for the instationary compressible Navier–Stokes equations when the perforation
parameter α 6= 1.

1.2 Difficulties

In this section, we illustrate some difficulties in the study of homogenization problems for
compressible Navier–Stokes equations. In particular, we point out the main new difficulties
compared to the previous study [10, 7] concerning stationary compressible Navier–Stokes equations.

1.2.1 A review of difficulties in the compressible fluid setting

In our setting with very small holes, the result is formally similar as for incompressible equations
obtained by Allaire [2, 3], where the limit equations remain unchanged. However, the techniques for
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compressible system are rather different. The main difference lies within the pressure term, where
in compressible setting, the pressure is generally a nonlinear function of the density. To obtain the
same pressure form in the limit, one needs to show strong convergence of the density. While in the
incompressible case, the equations are usually treated in divergence free spaces (testing by functions
that are divergence free or applying the Helmholtz decomposition operator), and the pressure is
reconstructed through the equation by using Nec̆as’ theorem on negative Sobolev norms.

For compressible Navier–Stokes equations, a priori we only have L∞(0, T ;L1(Ωε)) uniform
estimate for the pressure p(%), that is only L1 bound with respect to the spatial variables. However,
a uniform bounded family in L1 is not weakly pre-compact in L1. It was observed in the study
of compressible Navier–Stokes equations in [16, 9, 12] that one can improve the integrability by
employing some kind of divergence inverse operator. For equations in bounded domains, the so-
called Bogovskĭı operator, which is the famous inverse operator of divx to trace free functions [4, 5],
was applied in [12] to obtain the higher integrability of p(%). However, the operator norm of the
classical Bogovskĭı operator depends on the Lipschitz character of the domain which is perforated
in our case. We refer to [14, Chapter 3] for a construction, as well as a norm estimate, of the
Bogovskĭı operator in Lipschitz domains and star-shaped domains.

It can be shown that the Lipschitz norm of the perforated domain Ωε is at least of order 1/ε
which is unbounded as ε→ 0. Thus by employing the classical Bogovskĭı operator one cannot get
uniform higher integrability of p(%).

However, for any fixed ε > 0, the existence theory of finite energy weak solutions to the
compressible Navier–Stokes equations is well developed for the case γ > 3/2. To be able to pass to
the limit ε→ 0, we have to establish uniform pressure estimates despite the fact that the domains
we consider are not uniform Lipschitz.

Since the higher integrability of the pressure is a key step to prove the convergence with ε→ 0,
we introduce the respective stationary technique of [10] in more detail as an introduction to the
problems that we have to handle in the instationary case. The method is based on finding a
convenient inverse of the divx operator for non Lipschitz domains. In [10] it was considered the
case γ ≥ 3 which guarantees the L2 integrability of the pressure. Indeed, there holds

% ∈ L3(γ−1)(Ωε), if 3/2 < γ ≤ 3; % ∈ L2γ(Ωε), if γ ≥ 3. (1.9)

The construction of an inverse of divx is done by employing an Restriction operator Rε :
W 1,2

0 (Ω;R3) → W 1,2
0 (Ωε;R3), that was introduced by Allaire [2]. For any f ∈ L2

0(Ωε) which is
the set of L2(Ωε) functions with zero mean value, the authors first considered its zero-extension
E(f) := f̃ in Ω and then employ the classical Bogovskĭı operator B : L2

0(Ω) → W 1,2
0 (Ω) on the

unperforated domain Ω and find that the operator defined as

Bε := Rε ◦ B ◦ E : L2
0(Ωε)→W 1,2

0 (Ωε;R3) (1.10)

satisfies
Bε(f) ∈W 1,2

0 (Ωε), divxBε(f) = f in Ωε. (1.11)

Observe that the operator norm of Bε relies on ε only through the operator norm of Rε from
W 1,2

0 (Ω;R3) to W 1,2
0 (Ωε;R3). By Allaire’s construction, the operator norm of Rε (partially) depends

on the uniform estimates of a Stokes system in a ball with a shrinking hole. Let B1 = B(0, 1) be the
unit ball and T ⊂ B1 be a model obstacle in the fluid which is assumed to be a simply connected C2

domain. In accordance to the construction in [2], the operator norm of Rε depends on ε partially
through the W 1,2

0 estimate

‖∇v‖L2(B1\εα−1T ) + ‖q‖L2
0(B1\εα−1T ) ≤ Cε ‖g‖L2(B1\εα−1T ) (1.12)
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of the following Dirichlet problem of the Stokes equations

−∆v +∇q = divxg, divxv = 0 in = B1 \ εα−1T ; v = 0 on ∂B1 ∪ εα−1∂T. (1.13)

Due to the L2 framework, which represents the natural existence framework for the Stokes operator,
the constant Cε in (1.12) is 1 and hence independent of ε. Furthermore, under the condition α ≥ 3,
it can be shown that the operator norm of Bε defined in (1.10) is independent of ε. This implies
the uniform L2 estimate of the pressure.

However, the condition γ ≥ 3 is crucially needed in [10] in order to obtain L2 integrability of
the pressure. If 3/2 < γ < 3, the so far known results give only L3(γ−1) integrability for the density

% which means L
3(γ−1)
γ integrability for the pressure p(%), even in the standard case of unperforated

domains. Clearly 3(γ−1)
γ = 3− 3

γ ∈ (1, 2) if γ ∈ (3/2, 3).
Hence, to consider value range γ < 3, inspired by the construction (1.10) in [10], a natural

thinking is to employ this construction of Bogovskĭı operator and generalize it to the Lr0(Ωε) and
W 1,r

0 (Ωε;R3) framework for general r. It means a generalization of the restriction operator Rε to

an operator from W 1,r
0 (Ω;R3) → W 1,r

0 (Ωε;R3). It was shown in [18]) that this generalization can

be done in a rather direct way by observing the well-posedness in W 1,r
0 (Ωε;R3), 1 < r < ∞ of

(1.13). The issue is that the operator norm of Rε : W 1,r
0 (Ω;R3) → W 1,r

0 (Ωε;R3) depends on the

W 1,r
0 estimate:

‖∇v‖Lr(B1\εα−1T ) + ‖q‖Lr0(B1\εα−1T ) ≤ Cε ‖g‖Lr(B1\εα−1T ), (1.14)

for v a solution to (1.13). However, for r 6= 2 the constant Cε depends on the Lipschitz character
of the domain B1 \ εα−1T s and is not uniform in ε when α > 1. For the well-posedness result and
estimates, we refer to [6] for details and the proof. It was the main motivation of the study in
[18] (see also [17] for the respective result for the Laplace operator), where it was shown that the
estimate constant Cε in (1.14) is uniformly bounded in ε for the range 3/2 < r < 3. This allows us
to construct a Bogovskĭı operator that is uniformly bounded from Lr0(Ωε)→ W 1,r

0 (Ωε;R3) for any
r ∈ (3/2, 3) by using the same construction as (1.10) in [10].

Observe that the restriction r ∈ (3/2, 3) corresponds to
(

3− 3
γ

)′
∈ (3/2, 3). This indicates that

the existence frame for the stationary compressible setting can be extended to γ > 2 such that(
3− 3

γ

)′
> 3/2.

A new line of approach was developed to study the case γ < 3. Indeed, exactly for γ > 2 it was
shown in [7] that an explicit construction of Bogovskĭı type operator can be achieved. Compared to
[18], the construction in [7] is more straightforward and works for a larger range of r. This builds
the fundament of the Bogovskĭı operator constructed in this article. For that reason the growth
restriction on the pressure in this work is analogous to the restriction γ > 2 in the stationary case.
See Remark 1.7 for more details.

1.2.2 New difficulties and a technical theorem

In this paper, we turn to consider instationary compressible Navier–Stokes equations. We will see
that our main result obtained in this paper is formally the same as for the stationary case; the
techniques are rather different and there arise new difficulties.

The first difficulty comes from the even lower integrability of the pressure. When γ > 3/2, the

so far best integrability of the pressure one can obtain is p(%) ∈ L
5
3
− 1
γ (see [12, 9]), where the range

of the integrability component is 5
3 −

1
γ ∈ (1, 5

3). This is much worse than in the stationary setting,
and this is the deep reason that we have to impose the severe restriction γ > 6 in Theorem 1.6: to
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make sure that 5/3− 1/γ > 3/2. More explanations on the restriction on γ related to the hole-size
α are given in Remark 1.7.

Technically, the main new difficulty is the absence of uniform estimates for the restricted
Bogovskĭı operator Bε in negative Sobolev spaces. Indeed, due to the instationary setting, to obtain
higher integrability of the pressure by using the Bogovskĭı operator, one needs to handle terms of
the form Bε(divx(%θu)) which comes from the term Bε(∂t(%θ)) via the renormalized continuity
equation. Here θ is an exponent in the range (0, 2γ

3 − 1]. This enforces us to find uniform estimates
of the following type

‖Bε(divxg)‖Lr(Ωε;R3) ≤ C‖g‖Lr(Ωε;R3), for any g ∈ Lr(Ωε;R3), g · n = 0 on ∂Ωε, (1.15)

with a constant C independent of ε.
If we would like to employ the construction of Bε in [18] and to obtain such an estimate (1.15),

one would need to obtain uniform estimates for very weak solutions to (1.13):

‖v‖Lr(B1\εα−1T ) + ‖q‖W−1,r(B1\εα−1T ) ≤ C‖g‖W−1,r(B1\εα−1T ), (1.16)

with constant independent of ε. This is unknown according to the authors’ knowledge and we think
that the estimate is not valid for any r > 3/2.

Our approach is different to the approach in [10] and more general, following the idea of [7]. It
is possible due to a further and new refinement to the plethora of results related to the Bogovkĭı
operator. Namely uniform estimates in negative spaces for so called John domains. John domain is
a typical known generalization of Lipschitz domain on which the Bogovskĭı type operator can also
be constructed. We refer to [1, 8] for the definition of John domains and the construction of such
Bogovskĭı operators. As pointed out in [8], a bounded domain is a John domain if and only if it
satisfies the emanating chain condition (see [8, Definition 3.5, Remark 3.7]). Since this emanating
chain condition will be involved in the proof of Theorem 1.1, for the sake of readers, we represent
it below:

Definition (emanating chain condition) Let Ω ⊂ Rd be a bounded domain and let σ1, σ2 ≥ 1.
Then we say that Ω satisfies the emanating chain condition with constants σ1, σ2 if there exists a
covering W = {Wi}∞i=0 of Ω consisting of open cubes (or balls) such that:

• We have σ1Wi ⊂ Ω for all i and
∑∞

i=0 χσ1Wi ≤ σ2χΩ on Rd.

• For every Wi ∈ W, there exists a chain of (pairwise different) Wi,0,Wi,1, · · · ,Wi,mi from W
such that Wi,0 = Wi, ,Wi,mi = W0, and Wi,k1 ⊂ σ2Wi,k2 for every 0 ≤ k1 ≤ k2 ≤ mi.

Moreover, Wi,k ∩Wi,k+1, 0 ≤ k < mi, contains a ball Bi,k such that Wi,k ∩Wi,k+1 ⊂ σ2Bi,k.
The chain Wi,0,Wi,1, · · · ,Wi,mi is called chain emanating from Wi. The number mi is called
the length of this chain.

• The set {i : Wi ∩K 6= ∅} is finite for every compact subset K ⊂ Ω.

The family W is called the chain-covering of Ω. The cube W0 is called the central cube (or
ball), since every chain ends in W0.

We are able to prove that the very same Bogovskĭı operator constructed in [8] actually is
bounded in negative Sobolev spaces as well. Since we believe this result is of independent interest
we state the theorem here as a technical tool for further use.
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Theorem 1.1. Let Ω be a bounded John-domain. In particular let it satisfy the emanating chain
condition. Let C∞c,0(Ω) be the space of smooth and compactly supported functions with zero mean

values in Ω. Then for any 1 < q <∞ there exists a linear operator B : C∞c,0(Ω)→ C∞c (Ω;R3) such
that:

If f ∈ Lq(Ω) with
∫

Ω f dx = 0, there holds

divx(B(f)) = f in Ω, ‖B(f)‖
W 1,q

0 (Ω;R3)
≤ C‖f‖Lq(Ω) (1.17)

for some constant C dependent only on the emanating chain constants.
If f ∈ (W 1,r′(Ω)) ∩ Lr′0 (Ω))∗ = {g ∈ (W 1,r′(Ω))∗ : 〈g, 1〉 = 0}, then

〈B(f),∇φ〉 = 〈f, φ〉 for φ ∈W 1,r′(Ω), ‖B(f)‖Lr(Ω;R3) ≤ C‖f‖(W 1,r′ (Ω))∗ . (1.18)

Observe, that (1.17) was shown in [8]. The second bound (1.17) is shown in section 2 below.

Remark 1.2. Let Ω be a John-domain, then we find for f ∈ Lq(Ω;R3) with f ·n = 0 on ∂Ω in the
weak sense, that divx(B(divxf)) = divxf . More explicit

〈B(divxf),∇φ〉 = 〈f,∇φ〉 for φ ∈W 1,q′(Ω), ‖B(divxf)‖Lq(Ω;R3) ≤ C‖f‖Lq(Ω;R3). (1.19)

This is due to the fact that f ∈ Lq(Ω;R3) and f · n = 0 in the weak sense implies divxf ∈ {g ∈
(W 1,r′(Ω))∗ : 〈g, 1〉 = 0}.

Below we will use the theorem to construct a restriction operator which is able to control the
weak time derivative of the density. As a consequence, a higher integrability of the density can be
deduced.

1.3 Weak solutions

Definition 1.3 (Finite energy weak solution). We say that (%,u) is a finite energy weak solution
of the Navier–Stokes equations (1.4)-(1.6) supplemented with the boundary condition (1.7), the
assumption on pressure (1.8), and the following initial conditions

%(0, ·) = %0 ∈ Lγ(Ωε), u(0, ·) = u0 ∈ L
2γ
γ−1 (Ωε;R3), (1.20)

in the space-time cylinder (0, T )× Ωε if:

• There holds:
% ≥ 0 a.e. in (0, T )× Ωε, % ∈ Cweak(0, T ;Lγ(Ωε)),

%u ∈ Cweak(0, T ;L
2γ
γ+1 (Ωε;R3)), u ∈ L2(0, T ;W 1,2

0 (Ωε;R3)).

• For any 0 ≤ τ ≤ T and any test function ϕ ∈ C∞c ([0, T ]× Ωε):∫ τ

0

∫
Ωε

[%∂tϕ+ %u · ∇xϕ] dx dt =

∫
Ωε

%(τ, ·)ϕ(τ, ·) dx−
∫

Ωε

%0ϕ(0, ·) dx. (1.21)

• For any 0 ≤ τ ≤ T and any test function ϕ ∈ C∞c ([0, T ]× Ωε;R3):∫ τ

0

∫
Ωε

[%u · ∂tϕ+ %u⊗ u : ∇xϕ+ p(%)divxϕ] dx dt (1.22)

=

∫ τ

0

∫
Ωε

S(∇xu) : ∇xϕ− %fϕ dx dt+

∫
Ωε

%u(τ, ·) · ϕ(τ, ·) dx−
∫

Ωε

%0u0 · ϕ(0, ·) dx.
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• The energy inequality∫
Ωε

[1
2
%|u|2+P (%)

]
(τ, ·) dx+

∫ τ

0

∫
Ωε

S(∇xu) : ∇xu dx dt ≤
∫

Ωε

[1
2
%0|u0|2+P (%0)

]
dx (1.23)

holds for a.a. τ ∈ (0, T ), where we have set P (%) := %
∫ %

1
p(z)
z2

dz.

• Moreover, a finite energy weak solution (%,u) is said to be a renormalized weak solution if

∂tb(%) + divx
(
b(%)u

)
+
(
b′(%)%− b(%)

)
divxu = 0 in D′

(
(0, T )× R3

)
, (1.24)

for any b ∈ C1([0,∞)). In (1.24) (%,u) are extended to be zero outside Ωε.

We give some remark concerning the definition and the existence of finite energy weak solutions.

Remark 1.4. The integrability for the initial data in (1.20) is imposed such that the initial energy
on the right-hand side of (1.23) is bounded.

Remark 1.5. For any fiexed ε > 0, it can be shown by the theory developed by Lions [16] and
Feireisl-Novontný-Petzeltová [9] that the Navier–Stokes equations (1.4)-(1.6) admit a global-in-time
finite energy weak solution (%,u) for any finite energy initial data and pressure satisfying (1.8) with
γ > 3/2. Moreover, such solutions are also renormalized in the sense of (1.24).

1.4 Main results

Our main result is the following:

Theorem 1.6. Let (%ε,uε)0<ε<1 be a family of finite energy weak solutions for the no-slip
compressible Navier–Stokes equations (1.4)-(1.7) in (0, T )× Ωε under the pressure condition (1.8)
with γ > 6 in the sense of Definition 1.3 with initial data satisfying

%ε(0, ·) = %0,ε, u(0, ·) = u0,ε, sup
0<ε<1

(
‖%0,ε‖Lγ(Ωε) + ‖u0,ε‖

L
2γ
γ−1 (Ωε;R3)

)
= D <∞, (1.25)

and the strong convergence for the zero extensions as ε→ 0:

%̃0,ε → %0 strongly in Lγ(Ω), ũ0,ε → u0 strongly in L
2γ
γ−1 (Ω;R3).

Then there holds the uniform estimates for the solution family:

sup
0<ε<1

(
‖%ε‖L∞(0,T ;Lγ(Ωε)) + ‖%ε‖

L
5γ
3 −1((0,T )×Ωε)

+ ‖uε‖L2(0,T ;W 1,2
0 (Ωε;R3))

)
≤ C(D) <∞, (1.26)

where C(D) depends only on D. This implies, up to a substraction of a subsequence, that

%̃ε → % weakly-* in L∞(0, T ;Lγ(Ω)), ũε → u weakly in L2(0, T ;W 1,2
0 (Ω);R3). (1.27)

If the growth parameter γ in (1.8) and size parameter α of the holes in (1.1) satisfy

γ − 6

2γ − 3
· α > 3, (1.28)

then the couple (%,u) is the finite energy weak solution to (1.4)-(1.7) in Ω with initial data

%(0, ·) = %0, u(0, ·) = u0.
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We give some remarks on the technical condition (1.28).

Remark 1.7. This condition is needed due to the capacity estimate of the holes and the low
integrability of the pressure p(%ε). By (1.8) and (1.26), we have the uniform bound for the pressure:

‖p(%ε)‖
L

5
3−

1
γ ((0,T )×Ωε)

≤ C. (1.29)

To extend the Navier–Stokes equations (in particular the momentum equation) from spatial
domain Ωε to Ω, an idea is to find a family of functions {gε}ε>0 vanishing on the holes and
converges to 1 in some Sobolev space W 1,q(Ω) with q determined by the integrability of the pressure,
and then to decompose any test function ϕ ∈ C∞c ((0, T )× Ω;R3) as

ϕ = gεϕ+ (1− gε)ϕ. (1.30)

Then gεϕ can be treated as a test function for the momentum equation (1.5) in Ωε provided all the
terms in (1.22) make sense, where some condition on the largeness of q shall be needed. For the
terms related to the part (1− gε)ϕ, we show that they are small and converge to zero.

Firstly, such a function family {gε}ε>0 exists provided the following condition satisfied (see
Lemma 2.1):

(3− q)α− 3 > 0. (1.31)

The quantity on the left-hand side of (1.31) is determined by the uniform q-capacity assumptions
of the union of all the holes:

Capq
( ⋃
k∈Kε

Tε,k
)
≤
∑
k∈Kε

Capq (Tε,k) ≤ Cε−3εα(3−q). (1.32)

We recall that the q-capacity of a set D ⊂ Rd is defined as

Capq(D) := inf

{∫
Rd
|∇f |q dx : f ∈W 1,q(Rd), D ⊂ {f ≥ 1}

}
.

In (1.32), the following property is used: let B(0, r) ⊂ Rd be a ball with radius r ∈ (0, 1), then

Capq(B(0, r)) ≤ Crd−q, for some C indepedent of r.

In the weak formulation of the momentum equations, by testing gεϕ, there arises the term∫ τ

0

∫
Ω
p(%̃ε)ϕ · ∇gε dx dt.

To make sure the above term makes sense, due to (1.29), it is necessary to impose the condition(
5

3
− 1

γ

)−1

+
1

q
≤ 1. (1.33)

The condition (1.28) is sufficient and also necessary to make sure that there exists a positive q such
that conditions (1.31) and (1.33) are satisfied. We also remark that condition (1.33) implies

1

γ
+

1

3
+

1

q
≤ 1 (1.34)

for any γ > 3/2 because
(

5
3 −

1
γ

)−1
≥ 1

γ + 1
3 ⇐⇒ (2γ−3)2 ≥ 0 which is always true. This is needed

later in the proof of Proposition 3.4.
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2 Model test functions and the Bogovskĭı operator

In this section, we introduce two basic tools that will be needed in our proof of the main theorem.

2.1 Test functions vanishing on the holes

We introduce the following Lemma:

Lemma 2.1. For any 1 < r < 3 such that (3 − r)α − 3 > 0, there exists a family of functions
{gε}ε>0 ⊂W 1,r(Ω) such that

gε = 0 on
⋃
k∈Kε

Tε,k, gε → 1 in W 1,r(Ω). (2.1)

Moreover, there holds the estimate for some C independent of ε:

‖gε − 1‖W 1,r(Ω) ≤ Cεσ, σ := ((3− r)α− 3)/r. (2.2)

Proof of Lemma 2.1. By (1.1), there exists gε ∈ C∞(R3) such that

gε = 0 on
⋃
k∈Kε

Tε,k, gε = 1 on
( ⋃
k∈Kε

B(xε,k, δ0ε
α)
)c
, ‖∇gε‖L∞(R3) ≤ Cε−α.

Recall that the counting measure of Kε satisfies (1.3). Then direct calculation gives

‖gε − 1‖Lr(Ω) ≤ Cε(3α−3)/r, ‖∇gε‖Lr(Ω) ≤ Cε(3α−3)/r−α = Cεσ.

Such gε fulfill the request in Lemma 2.1.

2.2 The Bogovskĭı operator

The aim of this section is to prove the following proposition:

Proposition 2.2. Let Ωε defined as in (1.1)-(1.2) with α ≥ 1, then for any 1 < q <∞, there exists
a linear operator Bε : Lq(Ωε) → W 1,q

0 (Ωε;R3) such that for any f ∈ Lq(Ωε) with
∫

Ωε
f dx = 0,

there holds

divxBε(f) = f in Ωε, ‖Bε(f)‖
W 1,q

0 (Ωε;R3)
≤ C(1 + ε((3−q)α−3)/q)‖f‖Lq(Ωε) (2.3)

for some constant C independent of ε.
For any r > 3/2, the linear operator Bε can be extended as a linear operator from {divxg : g ∈

Lr(Ωε;R3),g · n = 0 on ∂Ωε} to Lr(Ωε;R3) satisfying

‖Bε(divxg)‖Lr(Ωε;R3) ≤ C‖g‖Lr(Ωε;R3), (2.4)

for all some constant C independent of ε.

The existence of an operator such that the first equation in (2.3) is satisfied is classical, known
as Bogovskĭı operator. The key point of this lemma is to give an estimate for the operator norm,
in particular, to show the dependency on ε.

The analytical tool to be able to get estimates uniformly in ε is Theorem 1.1. So we prove
Theorem 1.1 first and then prove Proposition 2.2.

Actually, Theorem 1.1 is an extension of [8, Theorem 5.2]. The strategy is biased on the
following technical theorem [8, Theorem 4.2]. For the sake of clarity, we summarize the parts of
the theorem that we will use in our argument in the following lemma
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Lemma 2.3 (Decomposition Theorem). Let Ω ⊂ Rn be a bounded domain satisfying the emanating
chain condition, i.e. Definition 1.2.2. Then there exists an at most countable family of linear
operators Ti : C∞c,0(Ω)→ C∞c,0(Wi) such that for all q ∈ (1,∞) the following properties are satisfied:

(i) The operators have a bounded extension Ti : Lq0(Ω)→ Lq0(Wi).

(ii) For all f ∈ Lq0(Ω) we have f =
∑

i∈N Tif .

(iii) For all f ∈ Lq0(Ω) we have ‖f‖Lq(Ω) ≤ c1
∑

i ‖Tif‖Lq(Wi) ≤ c2‖f‖Lq(Ω), with constant c1, c2

just depending on the constants of Definition 1.2.2.

(iv) For f ∈ C∞c,0(Ω) the set {i ∈ N : Tif 6= 0} is finite.

Proof of Theorem 1.1. The first statement (1.17) has been shown in [8, Theorem 5.2]. For us it is
left to show that the same operator also satisfies (1.18).

We start by using the fact that compactly supported functions are dense in

{f ∈ (W 1,r′(Ω))∗ : 〈f, 1〉 = 0}.

Indeed, as can be seen in [11, Lemma 10.4] there exists w ∈ Lr(Ω), such that

〈f, φ〉 :=

∫
Ω
w · ∇φ dx, and ‖w‖Lr(Ω) = ‖f‖(W 1,r′ (Ω))∗ .

We approximate (using the density of test functions in Lebesgue spaces) with functions wδ ∈
C∞c (Ω;R3), such that wδ → w in Lr(Ω) and ‖wδ‖Lr(Ω) ≤ 2‖f‖(W 1,r′ (Ω))∗ . By partial integration we

find divxwδ ∈ C∞c,0(Ω).
This allows us to apply the decomposition theorem [8, Theorem 4.2]. That is for the chain

covering W introduced in Definition 1.2.2, we have the family of linear operators Ti : C∞c,0(Ω) →
C∞c,0(Wi), for all Wi ∈ W. By the definition of the reference paper we find that B(divxwδ) :=∑

Wi∈W BiTidivxwδ, which is well defined due to the calculations above. Observe, that Bi is the
standard Bogovskij operator on the cube Wi. Since, Tidivxwδ ∈ C∞c,0(Wi) we find by [11, Theorem
10.11], Lemma 2.3 and by the finite intersection property of the Wi, that

‖Bdivxwδ‖rLr(Ω) ≤ C
∑
Wi∈W

‖BidivxTiwδ‖rLr(Ω) ≤ C
∑
Wi∈W

‖Tiwδ‖rLr(Ω;R3)

≤ C‖wδ‖rLr(Ω;R3)) ≤ C‖f‖
r
(W 1,r′ (Ω))∗)

.

Moreover, again by Lemma 2.3 as well as the properties of Bi, we find

divxBwδ =
∑
Wi∈W

divxBiTiwδ =
∑
Wi∈W

Tiwδ = wδ. (2.5)

This implies the desired properties for smooth functions. Since the related bounds are uniform
in δ, the operator B can be extended accordingly to {f ∈ (W 1,r′(Ω))∗ : 〈, f, 1〉 = 0} by letting
δ → 0.

Proof of Proposition 2.2. Let f ∈ Lq(Ωε) with
∫

Ωε
f dx = 0, we consider the extension function

f̃ = E(f) defined as

f̃ = f in Ωε, f̃ = 0 on Ω \ Ωε =
⋃
k∈Kε

Tε,k. (2.6)

11



Then by employing the classical Bogovsii’s operator, there exists u = B(f̃) ∈W 1,q
0 (Ω;R3) such that

divxu = f̃ in Ω and ‖u‖
W 1,q

0 (Ω;R3)
≤ C‖f̃‖Lq(Ω) = C‖f‖Lq(Ωε) (2.7)

for some constant c depends only on Ω and q.
In each ball B(xε,k, δ3ε), we introduce two cut-off functions χk and φk such that:

χk ∈ C∞c (B(xε,k, δ3ε)), χk = 1 on B(xε,k, δ2ε), |∇xχk| ≤ Cε−1;

φk ∈ C∞c (B(xε,k, δ1ε
α)), φk = 1 on B(xε,k, δ0εα), |∇xφk| ≤ Cε−α.

(2.8)

We denote
Dε,k := B(xε,k, δ3ε) \B(xε,k, δ2ε), Eε,k := B(xε,k, δ3ε) \ Tε,k. (2.9)

We then define two localizations of u near the holes:

bk(u) := χk
(
u− 〈u〉Dε,k

)
∈W 1,q

0 (B(xε,k, δ3ε)), βk(u) := φk〈u〉Dε,k ∈W
1,q
0 (B(xε,k, δ1ε

α)), (2.10)

where

〈u〉Dε,k :=
1

|Dε,k|

∫
Dε,k

u dx.

Since the Eε,k are uniform John domains, the following corollary follows immediately by
Theorem 1.1 and (1.19).

Corollary 2.4. For any 1 < q <∞, there exists a linear operator BEε,k : Lq0(Eε,k)→W 1,q
0 (Eε,k;R3)

such that for any f ∈ Lq0(Eε,k)

divxBEε,k(f) = f, ‖BEε,k(f)‖
W 1,q

0 (Eε,k;R3)
≤ C‖f‖Lq(Eε,k), (2.11)

for some constant C independent of ε.
For any g ∈ Lq(Eε,k;R3) with g · n = 0 on ∂Eε,k, we find

〈BEε,k(divxg),∇φ〉 = 〈g,∇φ〉 for all φ ∈ C∞(Eε,k).

Moreover,
‖BEε,k(divxg)‖Lq(Eε,k;R3) ≤ C‖g‖Lq(Eε,k;R3), (2.12)

for some constant C independent of ε.

We now define the restriction operator in the following way:

Rε(u) := u−
∑
k∈Kε

(
bk(u) + βk(u)− BEε,k(divx(bk(u) + βk(u))

)
. (2.13)

We first check that Rε(u) is well defined. Since bk, βk ∈ W 1,q(Eε,k) to this end, it is sufficient to
show that ∫

Eε,k

divx(bk + βk) dx = 0. (2.14)

Indeed, on one hand, by the zero trace (2.10), we have∫
B(xε,k,δ3ε)

divx(bk + βk) dx = 0. (2.15)
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On the other hand, by (2.6)-(2.10), we have

divx(bk + βk) = χkdivxu+∇xχk · (u− 〈u〉Dε,k) +∇xφk · 〈u〉Dε,k = 0, on Tε,k. (2.16)

Equations (2.15) and (2.16) imply (2.14). Hence, we can apply Corollary 2.4 on each member and
(2.13) is well defined. Moreover, applying Poincaré inequality gives∫

Ω
|∇Rε(u)|q dx ≤ C

∫
Ω
|∇u|q dx+ C

∑
k∈Kε

∫
B(xε,k,δ3ε)

χk|∇u|q + |u− 〈u〉Dε,k |
q|∇χ|q dx

+ C
∑
k∈Kε

∫
B(xε,k,δ1εα)

|∇xφk|q|〈u〉Dε,k |
q dx

≤ C
∫

Ω
|∇u|q dx+ C

∑
k∈Kε

∫
Dε,k

∣∣u− 〈u〉Dε,k
ε

∣∣q dx+ C
∑
k∈Kε

|〈u〉Dε,k |
q|B(xε,k, δ1ε

α)|

≤ C
∫

Ω
|∇u|q dx+ C

∑
k∈Kε

∫
Dε,k

|∇u|q dx+ C
∑
k∈Kε

|〈u〉Dε,k |
qε(3−q)α dx

≤ C
∫

Ω
|∇u|q dx+ C

∑
k∈Kε

∫
Dε,k

|u|q dx ε(3−q)α−3

≤ C(1 + ε(3−q)α−3)‖u‖q
W 1,q(Ω)

.

We claim that the operator Bε defined in the following way fulfills the desired properties in
Proposition 2.2:

Bε(f) := Rε(u) = Rε(B(f̃)) = Rε ◦ B ◦ E(f).

By the definition of Rε(u) in (2.13) and the property of u in (2.7), we have

Rε(u) ∈W 1,q
0 (Ω;R3), divxRε(u) = divxu = f̃ in Ω.

Moreover, for any x ∈ Tε,k for some k ∈ Kε, we have by using (2.8) and (2.9) that

Rε(u)(x) = u(x)− χk(x)
(
u(x)− 〈u〉Dε,k

)
− φk(x)〈u〉Dε,k = 0.

Thus,
Rε(u) ∈W 1,q

0 (Ωε;R3), divxRε(u) = f in Ωε.

Now we prove the second part of Proposition 2.2. Let r > 3/2 and g ∈ Lr(Ωε;R3) with g ·n = 0
on ∂Ωε. Let u := B(divxg̃) ∈ Lr(Ω;R3) with B be the standard Bogovskĭı operator in Ω. Moreover,
there holds

‖u‖Lr(Ω;R3) ≤ C‖g‖Lr(Ωε;R3), (2.17)

where the constant C only depends on r and the Lipschitz character of the domain Ω.
We assume divxg ∈ Lq(Ωε) for some q > 1. This ensures, together with the assumption g ·n = 0

on ∂Ω, that u ∈W 1,q
0 (Ω;R3), then Rε(u) ∈W 1,q

0 (Ωε;R3) is well defined where Rε is the restriction
operator constructed by (2.13). Our goal is to show the following uniform estimates

‖Rε(u)‖Lr(Ωε;R3) ≤ C‖g‖Lr(Ωε;R3), (2.18)

for some constant C independent of ε and ‖divxg‖Lq(Ωε).
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By (2.10) and (2.8), we have∫
Ω
|bk(u)|r dx ≤

∫
B(xε,k,δ3ε)

|u− 〈u〉Dε,k |
r dx ≤ C

∫
B(xε,k,δ3ε)

|u|r dx,∫
Ω
|βk(u)|r dx ≤

∫
B(xε,k,δ1εα)

|〈u〉Dε,k |
r dx ≤ Cε3(α−1)

∫
B(xε,k,δ3ε)

|u|r dx,

(2.19)

where we used the fact |〈u〉Dε,k |r ≤ 〈|u|r〉Dε,k .
Direct calculation gives, using the fact that divxg = divxu, that

divx(bk(u) + βk(u)) = χkdivxu+∇xχk · (u− 〈u〉Dε,k) +∇xφk · 〈u〉Dε,k
= χkdivxg +∇xχk · (u− 〈u〉Dε,k) +∇xφk · 〈u〉Dε,k
= divx(χkg)−∇xχk · g +∇xχk · (u− 〈u〉Dε,k) +∇xφk · 〈u〉Dε,k
= divx(χkg) + divx(χk(u− g)) + divx((φk − χk)〈u〉Dε,k).

(2.20)

We will estimate the operator BEε,k on each three divergences separately. Observing

χkg̃ = 0 on ∂B(xε,k, δ3ε), χkg̃ · n = 0 on ∂Tε,k,

and applying Corollary 2.4 implies

‖BEε,k(divx(χkg))‖Lr(Eε,k;R3) ≤ C‖χkg‖Lr(Eε,k;R3) ≤ C‖g‖Lr(Eε,k;R3). (2.21)

For the other two terms we will use the W 1,q-bounds of the operator BEε,k . We find by the
support properties of χ, φ and the fact divxu = divxg that∫

Eε,k

divx(χk(u− g)) dx =

∫
B(xε,k,δ3ε)

divx(χk(u− g)) dx = 0,

∫
Eε,k

divx((φk − χk)〈u〉Dε,k) dx =

∫
B(xε,k,δ3ε)

divx((φk − χk)〈u〉Dε,k) dx = 0.

Since r > 3/2, we let r̃ > 1 such that 1/r̃ = 1/r+ 1/3. Then applying Corollary 2.4, together with
the Sobolev embedding inequality, implies

‖BEε,k(∇xχk · (g − u))‖Lr(Eε,k;R3) ≤ C‖BEε,k(∇xχk · (g − u))‖
W 1,r̃

0 (Eε,k;R3)

≤ C‖∇xχk · (g − u)‖Lr̃(Eε,k) ≤ C‖∇xχk‖L3(Eε,k;R3)(‖g‖Lr(Eε,k;R3) + ‖u‖Lr(Eε,k;R3)),

‖BEε,k(∇x(φk − χk) · 〈u〉Dε,k)‖Lr(Eε,k;R3)

≤ C(‖∇xχk‖L3(Eε,k;R3) + ‖∇xφk‖L3(Eε,k;R3))‖u‖Lr(Eε,k;R3) ≤ C‖u‖Lr(Dε,k;R3).

(2.22)

Summarizing (2.19)–(2.22), using (2.17) and the fact ‖∇xχk‖L3(Eε,k;R3)+‖∇xφk‖L3(Eε,k;R3) ≤ C,
we obtain

‖Rε(u)‖rLr(Ωε;R3) ≤ C(‖g‖rLr(Ωε;R3) + ‖u‖rLr(Ω;R3)) ≤ C‖g‖
r
Lr(Ωε;R3).

for some constant C independent of ε and ‖divxg‖Lq(Ωε). This implies our desired estimate (2.18).
Since this estimate constant C is independent of ‖divxg‖Lq(Ω), by a density argument we can
eliminate the assumption divxg ∈ Lq(Ω). The proof is completed.
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3 Proof of Theorem 1.6

3.1 Uniform bounds

By the uniform bounds of the initial data in (1.25) and the energy inequality (1.23), together with
the pressure property (1.8), Korn’s inequality and Poincaré inequality, we have

{%̃ε}ε>0 uniformly bounded in L∞(0, T ;Lγ(Ω)), (3.1)

{%̃ε|ũε|2}ε>0 uniformly bounded in L∞(0, T ;L1(Ω)), (3.2)

{ũε}ε>0 uniformly bounded in L2(0, T ;W 1,2
0 (Ω;R3)). (3.3)

Then up to a substraction of subsequence, we derive the weak limit

%̃ε → % weakly-* in L∞(0, T ;Lγ(Ω)), ũε → u weakly in L2(0, T ;W 1,2
0 (Ω);R3).

3.2 Improved integrability on the density

In this subsection, we will show the following improved uniform integrability of the density:

{%̃ε}ε>0 uniformly bounded in L
5γ
3
−1((0, T )× Ω). (3.4)

This is equivalent to following integrability on the pressure:

{p(%̃ε)}ε>0 uniformly bounded in L
5
3
− 1
γ ((0, T )× Ω). (3.5)

We recall that, for any fixed ε > 0, the result %ε ∈ L
5γ
3
−1((0, T )×Ω) is known, see for instance

Theorem 7.7 in [21]. However, the estimate for ‖%ε‖
L

5γ
3 −1((0,T )×Ω)

shown in [21] is not uniform in

ε. Indeed, it depends on the Lipschitz norm of the spatial domain, which is the perforated domain
Ωε in our setting. Our task in this section is to show such an estimate is uniform in ε.

The idea (as in [12, 21]) is to test the the momentum equation by functions of the form

ϕ(t, x) := ψ(t)Bε
(
%θε − 〈%θε〉

)
, ψ ∈ C∞c ((0, T )), 〈%θε〉 :=

1

|Ωε|

∫
Ωε

%θε dx, θ > 0, (3.6)

where Bε is the Bogovskĭı operator given in Proposition 2.2. To prove (3.4), a nature choice is
θ = 2γ/3 − 1 in (3.6), but due to the restriction (3/2 < q ≤ 2) on the uniform bound of Bε,
there arise terms that cannot be controlled by the known uniform estimates in (3.1)–(3.3). We will
improve the integrability of %ε step by step by taking θ from smaller number γ/2 to our desired
number 2γ/3− 1.

The following two lemmas are needed:

Lemma 3.1. Under the assumption in Theorem 1.1, the extension functions %̃ε, ũε satisfy

∂t%̃ε + divx(%̃εũε) = 0, in D′((0, T )× R3). (3.7)

Lemma 3.2. Let 2 ≤ β < ∞ and % ∈ Lβ(0, T ;Lβloc(R
3)), % ≥ 0 a.e. in (0, T ) × R3, u ∈

L2(0, T ;W 1,2
loc (R3;R3)). Suppose that

∂t%+ divx(%u) = 0, in D′((0, T )× R3).
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Then for any b ∈ C0([0,∞)) ∩ C1((0,∞)) such that

b′(s) ≤ Cs−λ0 for s ∈ (0, 1], b′(s) ≤ Csλ1 for s ∈ [1,∞),

with c > 0, λ0 < 1, λ1 ≤ β
2 − 1, there holds the following renormalized equation

∂tb(%) + divx
(
b(%)u

)
+
(
b′(%)%− b(%)

)
divxu = 0 in D′

(
(0, T )× R3

)
.

The proof of Lemma 3.1 is the same as Proposition 3.3 and the proof is postponed. For the
proof of Lemma 3.2, we refer to Lemma 6.9 in [21]

By the estimate (3.1) with γ > 6 and the estimate (3.3), we apply the above two lemmas to
obtain

∂tb(%̃ε) + divx
(
b(%̃ε)ũε

)
+
(
b′(%̃ε)%̃ε − b(%̃ε)

)
divxũε = 0 in D′

(
(0, T )× R3

)
, (3.8)

for any b as in Lemma 3.2; in particular, we can take b(s) = sθ with 0 < θ ≤ γ
2 .

We first use the function (3.6) with θ := γ/2 as a test function in (1.22). Thus, by uniform
estimate (3.1) and Proposition 2.2, we have for any r ∈ (1, 2] that

‖Bε(%θ − 〈%θ〉)‖L∞(0,T ;W 1,r
0 (Ωε;R3))

≤ C‖(%θ − 〈%θ〉)‖L∞(0,T ;Lr(Ωε)) ≤ C‖%‖
γ
2

L∞(0,T ;Lγ(Ωε))
≤ C. (3.9)

Then direct calculation gives∫ T

0

∫
Ωε

ψ(t)p(%ε)%
θ
ε dx dt =

6∑
j=1

Ij ,

where

I1 :=

∫ T

0

∫
Ωε

ψp(%ε)〈%θε〉 dx dt, I2 := −
∫ T

0

∫
Ωε

∂tψ(t)%εuε · Bε
(
%θε − 〈%θε〉

)
dx dt,

I3 := −
∫ T

0

∫
Ωε

ψ%εuε ⊗ uε : ∇xBε
(
%θε − 〈%θε〉

)
dx dt, I4 :=

∫ T

0

∫
Ωε

ψS(∇xuε) : ∇xBε
(
%θε − 〈%θε〉

)
dx dt,

I5 := −
∫ T

0

∫
Ωε

ψ%εuε · Bε
(
∂t%

θ
ε − ∂t〈%θε〉

)
dx dt, I6 :=

∫ T

0

∫
Ωε

ψ%εf · Bε
(
%θε − 〈%θε〉

)
dx dt.

We estimate using the choice θ = γ/2 and Hölder’s inequality

|I1| ≤ C sup
t∈[0,T ]

|〈%θε(t)〉|
∫

Ωε

|p(%ε)(t)| dx ≤ C‖%ε‖3γ/2L∞(0,T ;Lγ(Ωε))
≤ C.

By the fact 1
γ + 1

6 + 1
6 ≤ 1, by using estimate (3.9) and Hölder’s inequality, we can obtain

|I2| ≤ C‖%ε‖L∞(0,T ;Lγ(Ωε))‖uε‖L2(0,T ;L6(Ωε))

∥∥∥Bε (%θε − 〈%θε〉)∥∥∥
L∞(0,T ;L6(Ωε))

≤ C.

Again by the fact γ > 6 and 1
γ + 1

3 + 1
2 ≤ 1, together with estimate (3.9) and Hölder’s inequality,

we obtain

|I3| ≤ C‖%ε‖L∞(0,T ;Lγ(Ωε))‖uε‖
2
L2(0,T ;L6(Ωε))

∥∥∥∇xBε (%θε − 〈%θε〉)∥∥∥
L∞(0,T ;L2(Ωε))

≤ C.
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Similarly, for I4, we have

|I4| ≤ C‖∇xuε‖L2(0,T ;L2(Ωε))

∥∥∥∇xBε (%θε − 〈%θε〉)∥∥∥
L∞(0,T ;L2(Ωε))

≤ C‖%θε‖L∞(0,T ;L2(Ωε)) ≤ C‖%ε‖
θ
L∞(0,T ;Lγ(Ωε))

≤ C.

The most challenging term is the term which involves the weak time derivative. To estimate this
term we had to introduce the theory for Bogovskĭı type operator on negative spaces for perforated
domains, namely the second part of Proposition 2.2, for which the proof needs the theory for
Bogovskĭı type operator on negative spaces for John domains, namely Theorem 1.1. First we may
use Lemma 3.2 with β = γ to obtain

∂t(%
θ) + divx

(
%θu

)
+
(
(θ − 1)%θ

)
divxu = 0 in D′

(
(0, T )× R3

)
, θ :=

γ

2
.

Then, direct calculation gives

I5 =

∫ T

0

∫
Ωε

ψ%εuε · Bε
(

divx
(
%θεuε

))
dx dt

+ (θ − 1)

∫ T

0

∫
Ωε

ψ%εuε · Bε
(
%θεdivxuε − 〈%θεdivxuε〉

)
dx dt

=: I7 + I8.

(3.10)

By estimates (3.1)–(3.3) and the fact γ > 6, we have

‖%εuε‖L2(0,T ;L3(Ωε)) ≤ ‖%ε‖L∞(0,T ;L6(Ωε))‖uε‖L2(0,T ;L6(Ωε)) ≤ C,
‖%εuε‖

L∞(0,T ;L
12
7 (Ωε))

≤ ‖√%ε‖L∞(0,T ;L12(Ωε))‖
√
%εuε‖L∞(0,T ;L2(Ωε)) ≤ C.

(3.11)

This implies, by interpolation, that

‖%εuε‖L6(0,T ;L2(Ωε)) ≤ ‖%εuε‖
1
3

L2(0,T ;L3(Ωε))
‖%εuε‖

2
3

L∞(0,T ;L
12
7 (Ωε))

≤ C. (3.12)

We apply Proposition 2.2 to get

|I7| ≤ C‖%εuε‖L6(0,T ;L2(Ωε))

∥∥∥Bε (divx
(
%θεuε

))∥∥∥
L

6
5 (0,T ;L2(Ωε))

≤ C‖%θεuε‖L 6
5 (0,T ;L2(Ωε))

≤ C‖uε‖L2(0,T ;L6(Ωε))‖%
θ
ε‖L3(0,T ;L3(Ωε)) ≤ C‖∇xuε‖L2(0,T ;L2(Ωε))‖%

θ
ε‖L3(0,T ;L3(Ωε)).

(3.13)

For I8, by Proposition 2.2 and Sobolev embedding, together with (3.11) and (3.12), we have

|I8| ≤ C‖%εuε‖L6(0,T ;L2(Ωε))

∥∥∥Bε (%θεdivxuε − 〈%θεdivxuε〉
)∥∥∥

L
6
5 (0,T ;L2(Ωε))

≤ C
∥∥∥Bε (%θεdivxuε − 〈%θεdivxuε〉

)∥∥∥
L

6
5 (0,T ;W

1, 65
0 (Ωε))

≤ C‖%θεdivxuε‖
L

6
5 (0,T ;L

6
5 (Ωε))

≤ C‖divxuε‖L2(0,T ;L2(Ωε))‖%
θ
ε‖L3(0,T ;L3(Ωε)).

(3.14)

Thus, by (3.13) and (3.14), we obtain

|I5| ≤ |I7|+ |I8| ≤ C‖%θε‖L3(0,T ;L3(Ωε)) = C‖%ε‖
γ
2

L
3γ
2 (0,T ;L

3γ
2 (Ωε))

.
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Finally, for I6, it is direct to obtain

|I6| ≤ ‖%ε‖L∞(0,T ;L2(Ωε))‖%
θ
ε‖L∞(0,T ;L2(Ωε)) ≤ C.

Hence, summing up above estimates for Ij , 1 ≤ j ≤ 8, by passing ψ → 1 in L∞((0, T )), we have∫ T

0

∫
Ωε

p(%ε)%
γ
2
ε dx dt ≤ C + C‖%ε‖

γ
2

L
3γ
2 (0,T ;L

3γ
2 (Ωε))

.

Thus, by assumption on pressure in (1.8), we obtain

‖%ε‖
3γ
2

L
3γ
2 (0,T ;L

3γ
2 (Ωε))

≤ C + C

∫ T

0

∫
Ωε

p(%ε)%
γ
2
ε dx dt ≤ C + C‖%ε‖

γ
2

L
3γ
2 (0,T ;L

3γ
2 (Ωε))

.

This implies

{%̃ε}ε>0 uniformly bounded in L
3γ
2 ((0, T )× Ω). (3.15)

Next, based on estimates obtained above in (3.15), we choose a bigger value θ = 2γ
3 − 1 in (3.6)

to obtained our desired estimates (3.4)–(3.5). To this end, we estimate all Ij with θ := 2γ
3 − 1.

For I1, estimate (3.1) and Hölder’s inequality implies

|I1| ≤ C sup
t∈[0,T ]

|〈%θε(t)〉|
∫

Ωε

|p(%ε(t) dx| ≤ C‖%ε‖
5γ
3
−1

L∞(0,T ;Lγ(Ωε))
≤ C.

For I2, by Proposition 2.2, estimates (3.1), (3.3), (3.15) and Sobolev embedding, we have

|I2| ≤C‖%ε‖L∞(0,T ;Lγ(Ωε))‖uε‖L2(0,T ;L6(Ωε))

∥∥∥Bε (%θε − 〈%θε〉)∥∥∥
L∞(0,T ;L3(Ωε))

≤C
∥∥∥Bε (%θε − 〈%θε〉)∥∥∥

L∞(0,T ;W
1, 32
0 (Ωε))

≤ C‖%θε‖L∞(0,T ;L
3
2 (Ωε))

≤ C‖%ε‖
2γ
3
−1

L∞(0,T ;Lγ(Ωε))
.

For I3, by the fact γ > 6, θ = 2γ
3 − 1 and 1

γ + 1
3 + θ

γ = 1, we obtain by using Proposition 2.2
and Hölder’s inequality

|I3| ≤ C‖%ε‖L∞(0,T ;Lγ(Ωε))‖uε‖
2
L2(0,T ;L6(Ωε))

∥∥∥∇xBε (%θε − 〈%θε〉)∥∥∥
L∞(0,T ;L

γ
θ (Ωε))

≤ C‖%θε‖L∞(0,T ;L
γ
θ (Ωε))

≤ C‖%ε‖θL∞(0,T ;Lγ(Ωε))
.

For I4, by (3.3) and (3.15), and the fact 2θ < 3γ
2 for θ = 2γ

3 − 1, we obtain

|I4| ≤ C‖∇xuε‖L2(0,T ;L2(Ωε))

∥∥∥∇xBε (%θε − 〈%θε〉)∥∥∥
L2(0,T ;L2(Ωε))

≤ C‖%θε‖L2(0,T ;L2(Ωε)) ≤ C‖%ε‖
θ
L2θ(0,T ;L2θ(Ωε))

≤ C.

For I6, it is direct to obtain

|I6| ≤ ‖%ε‖L∞(0,T ;L2(Ωε))‖%
θ
ε‖L2(0,T ;L2(Ωε)) ≤ C.

Now we estimate I5 which is the most difficult one. By estimates in (3.15), we use Lemma 3.2
with β = 3γ/2 to obtain

∂t(%
θ) + divx

(
%θu

)
+
(
(θ − 1)%θ

)
divxu = 0 in D′

(
(0, T )× R3

)
, θ :=

2γ

3
− 1.
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We then split I5 = I7 + I8 the same way as (3.10):

I7 :=

∫ T

0

∫
Ωε

ψ%εuε · Bε
(

divx
(
%θεuε

))
dx dt,

I8 := (θ − 1)

∫ T

0

∫
Ωε

ψ%εuε · Bε
(
%θεdivxuε − 〈%θεdivxuε〉

)
dx dt.

We first estimate %εuε. By the fact(
2

(
5γ

3
− 1

))−1

+
1

2
=

(
10γ − 6

3

)−1

+
1

2
=

5γ

10γ − 6
,

and Hölder’s inequality, we have

‖%εuε‖
L

10γ−6
3

(
0,T ;L

10γ−6
5γ (Ωε)

) =
∥∥√%ε√%εuε∥∥

L
10γ−6

3

(
0,T ;L

10γ−6
5γ (Ωε)

)
≤
∥∥√%ε∥∥

L
10γ−6

3

(
0,T ;L

10γ−6
3 (Ωε)

) ∥∥√%εuε∥∥L∞(0,T ;L2(Ωε))
≤ C ‖%ε‖

1
2

L
5γ−3

3

(
0,T ;L

5γ−3
3 (Ωε)

) . (3.16)

Similarly, by the fact(
5γ

3
− 1

)−1

+
1

2
=

5γ + 3

10γ − 6
,

(
5γ

3
− 1

)−1

+
1

6
=

5γ + 15

6(5γ − 3)
,

and Hölder’s inequality, we have

‖%εuε‖
L

10γ−6
5γ+3

(
0,T ;L

6(5γ−3)
5γ+15 (Ωε)

) ≤ ‖%ε‖
L

5γ−3
3

(
0,T ;L

5γ−3
3 (Ωε)

) ‖uε‖L2(0,T ;L6(Ωε))

≤ C ‖%ε‖
L

5γ−3
3

(
0,T ;L

5γ−3
3 (Ωε)

) . (3.17)

By (3.16), (3.17), and interpolations between Lebesgue spaces, we have, for any α ∈ [0, 1] and r1, r2

such that

1

r1
= (1− α)

3

10γ − 6
+ α

5γ + 3

10γ − 6
,

1

r2
= (1− α)

5γ

10γ − 6
+ α

5γ + 15

6(5γ − 3)
, (3.18)

there holds

‖%εuε‖Lr1 (0,T ;Lr2 (Ωε))
≤ C ‖%ε‖

(1+α)
2

L
5γ−3

3

(
0,T ;L

5γ−3
3 (Ωε)

) .
By choosing α = 1

5 in (3.18), we have

1

r1
=

γ + 3

10γ − 6
,

1

r2
=

13γ + 3

6(5γ − 3)
.

This implies

‖%εuε‖
L

10γ−6
γ+3

(
0,T ;L

6(5γ−3)
13γ+3 (Ωε)

) ≤ C ‖%ε‖ 3
5

L
5γ−3

3

(
0,T ;L

5γ−3
3 (Ωε)

) .
(3.19)

For I7, by (3.19) and the fact

1

2
+

2γ − 3

5γ − 3
=

9γ − 9

10γ − 6
,

1

6
+

2γ − 3

5γ − 3
=

17γ − 21

6(5γ − 3)
<

2

3
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and
γ + 3

10γ − 6
+

9γ − 9

10γ − 6
= 1,

13γ + 3

6(5γ − 3)
+

17γ − 21

6(5γ − 3)
= 1,

we can apply Proposition 2.2 to obtain

|I7| ≤ C ‖%εuε‖
L

10γ−6
γ+3

(
0,T ;L

6(5γ−3)
13γ+3 (Ωε)

) ∥∥∥Bε (divx
(
%θεuε

))∥∥∥
L

10γ−6
9γ−9

(
0,T ;L

6(5γ−3)
17γ−21 (Ωε)

)

≤ C ‖%εuε‖
L

10γ−6
γ+3

(
0,T ;L

6(5γ−3)
13γ+3 (Ωε)

) ∥∥∥%θεuε∥∥∥
L

10γ−6
9γ−9

(
0,T ;L

6(5γ−3)
17γ−21 (Ωε)

)

≤ C ‖%ε‖
3
5

L
5γ−3

3

(
0,T ;L

5γ−3
3 (Ωε)

) ∥∥∥%θε∥∥∥
L

5γ−3
2γ−3

(
0,T ;L

5γ−3
2γ−3 (Ωε)

) ‖uε‖L2(0,T ;L6(Ωε))

≤ C ‖%ε‖
3
5

+θ

L
5γ−3

3

(
0,T ;L

5γ−3
3 (Ωε)

) ≤ C‖%ε‖ 2γ
3
− 2

5

L
5γ−3

3 ((0,T )×Ωε)
.

It is left to estimate I8. Since θ = 2γ
3 − 1 and

1

2
+

2γ − 3

5γ − 3
=

9γ − 9

10γ − 6
,

Hölder’s inequality implies∥∥∥%θεdivxuε

∥∥∥
L

10γ−6
9γ−9 ((0,T )×Ωε)

≤ ‖divxuε‖L2((0,T )×Ωε)
‖%θε‖

L
5γ−3
2γ−3 ((0,T )×Ωε)

≤ C‖%ε‖θ
L

5γ−3
3 ((0,T )×Ωε)

.

Thus, by Proposition 2.2 and Sobolev embedding, we have∥∥∥Bε (%θεdivxuε − 〈%θεdivxuε〉
)∥∥∥

L
10γ−6
9γ−9

(
0,T ;L

6(5γ−3)
17γ−21 (Ωε)

)

≤ C
∥∥∥Bε (%θεdivxuε − 〈%θεdivxuε〉

)∥∥∥
L

10γ−6
9γ−9

(
0,T ;W

1,
10γ−6
9γ−9

0 (Ωε)

)

≤ C
∥∥∥%θεdivxuε

∥∥∥
L

10γ−6
9γ−9 ((0,T )×Ωε)

≤ C‖%ε‖θ
L

5γ−3
3 ((0,T )×Ωε)

.

(3.20)

By estimates (3.20) and (3.19), we obtain

|I8| ≤ C
∥∥∥Bε (%θεdivxuε − 〈%θεdivxuε〉

)∥∥∥
L

10γ−6
9γ−9

(
0,T ;L

6(5γ−3)
17γ−21 (Ωε)

) ‖%εuε‖
L

10γ−6
γ+3

(
0,T ;L

6(5γ−3)
13γ+3 (Ωε)

)

≤ C‖%ε‖θ
L

5γ−3
3 ((0,T )×Ωε)

‖%ε‖
3
5

L
5γ−3

3 ((0,T )×Ωε)
≤ C‖%ε‖

2γ
3
− 2

5

L
5γ−3

3 ((0,T )×Ωε)
.

Hence, summing up above estimates for Ij , 1 ≤ j ≤ 8, by passing ψ → 1 in L∞((0, T )), we have∫ T

0

∫
Ωε

p(%ε)%
2γ
3
−1

ε dx dt ≤ C + C‖%ε‖
2γ
3
− 2

5

L
5γ−3

3 ((0,T )×Ωε)
.

Thus, by assumption on pressure in (1.8), we have

‖%ε‖
5γ−3

3

L
5γ−3

3 ((0,T )×Ωε)
≤ C + C

∫ T

0

∫
Ωε

p(%ε)%
2γ
3
−1

ε dx dt ≤ C + C‖%ε‖
2γ
3
− 2

5

L
5γ−3

3 ((0,T )×Ωε)
.

This implies our desired uniform estimates in (3.4) and (3.5).
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3.3 Equations in homogeneous domains

In this section, we derive the equations in %̃ε, ũε in ((0, T )× Ω).

3.3.1 Continuity equation

For the continuity equation, we have the following Proposition:

Proposition 3.3. Under the assumption in Theorem 1.1, the extension functions %̃ε, ũε satisfy

∂t%̃ε + divx(%̃εũε) = 0, in D′((0, T )× R3). (3.21)

Proof of Proposition 3.3. It is sufficient to prove∫ T

0

∫
Ω
%̃ε∂tψ + %̃εũε · ∇xψ dxdt = 0, for any ψ ∈ C∞c ((0, T )× R3).

Let {φn}n≥1 ⊂ C∞c (Ωε) such that 0 ≤ φn ≤ 1, |∇xφn| ≤ 4n and

φn = 1 on {x | dist(x, ∂Ωε) ≥ n−1}, φn = 0 on
{
x | dist(x, ∂Ωε) ≤ (2n)−1

}
.

Then ∫ T

0

∫
R3

%̃ε∂tψ + %̃εũε · ∇xψ dxdt =

∫ T

0

∫
Ωε

%ε∂t(ψφn) + %εuε · ∇x(ψφn) dxdt

+

∫ T

0

∫
Ωε

%ε∂tψ(1− φn) + %εuε · ∇xψ(1− φn)− %εuε · ψ∇xφn dxdt.

(3.22)

By the estimates obtained in (3.1)-(3.3) and Sobolev embedding, we have

lim
n→∞

∫ T

0

∫
Ωε

%ε∂tψ(1− φn) + %εuε · ∇xψ(1− φn) dxdt = 0,

where we used the fact

1− φn → 0 in Lq(Ωε), for any 1 < q <∞, as n→∞.

By virtue of (3.3), we have
dist(x, ∂Ωε)

−1uε ∈ L2((0, T )× Ωε).

Then by (3.1) and the fact

dist(x, ∂Ωε)∇xφn → 0 in Lq(Ωε), for any 1 < q <∞, as n→∞

we have

lim
n→∞

∫ T

0

∫
Ωε

%εuε · ψ∇xφn dxdt = 0.

We complete the proof by passing n→∞ in (3.22)
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3.3.2 Momentum equation

By Remark 1.7, the condition (1.28) implies that there exists 5/2 < q < 3 such that (1.31), (1.33)
and (1.34) are all satisfied. We now prove the following proposition

Proposition 3.4. Under the assumption in Theorem 1.1, there holds the equation

∂t(%̃εũε) + divx(%̃εũε ⊗ ũε) +∇xp(%̃ε) = divxS(∇xũε) + %̃εf + Fε, in D′((0, T )× Ω;R3), (3.23)

where Fε ∈ D′((0, T )× Ω;R3) satisfies

|〈Fε, ϕ〉| ≤ Cεσ
(
|∂tϕ|L2(0,T ;L2(Ω;R3)) + |∇xϕ|Lr(0,T ;L3(Ω;R9)) + |ϕ|Lr0,T ;Lr(Ω;R3))

)
, (3.24)

for any ϕ ∈ C∞c ((0, T )×Ω;R3) and some constant C, some 1 < r <∞, with σ := (3− q)α−3 > 0.
Here q ∈ (5/2, 3) satisfying (1.31), (1.33) and (1.34), C and r are independent of ε.

Proof of Proposition 3.4. Let ϕ ∈ C∞c ((0, T )×Ω;R3) be any test function. It is sufficient to show:

Iε : =

∫ T

0

∫
Ω
%̃εũε∂tϕ+ %̃εũε ⊗ ũε : ∇xϕ+ p(%̃ε)divxϕ− S(∇xũε) : ∇xϕ+ %̃f · ϕ dxdt

≤ C εσ
(
|∂tϕ|L2(0,T ;L2(Ω;R3)) + |∇xϕ|Lr(0,T ;L3(Ω;R9)) + |ϕ|Lr(0,T ;Lr(Ω;R3))

)
, for some r <∞.

The condition (1.31) makes sure that we can apply Lemma 2.1 to find {gε}ε>0 ⊂W 1,q
0 (Ω) such

that (2.1) and (2.2) are satisfied; the conditions (1.33) as well as (1.34) make sure all the terms
appeared in the following equation make sense:

Iε =

∫ T

0

∫
Ωε

%εuε∂t(gεϕ) + %εuε ⊗ uε : ∇x(gεϕ) + p(%ε)divx(gεϕ)

− S(∇xuε) : ∇x(gεϕ) + %εf · (gεϕ) dxdt+

5∑
j=1

Ij =

5∑
j=1

Ij ,

where

I1 :=

∫ T

0

∫
Ω
%̃εũε(1− gε)∂tϕ dxdt,

I2 :=

∫ T

0

∫
Ω
%̃εũε ⊗ ũε : (1− gε)∇xϕ− %̃εũε ⊗ ũε : (∇xgε ⊗ ϕ) dxdt

I3 :=

∫ T

0

∫
Ω
p(%̃ε)(1− gε)divxϕ− p(%̃ε)∇xgε · ϕ dxdt,

I4 :=

∫ T

0

∫
Ω
S(∇xũε) : (1− gε)∇xϕ+ S(∇xũε) : (∇xgε ⊗ ϕ) dxdt,

I5 :=

∫ T

0

∫
Ω
%̃εf̃(1− gε)ϕ dxdt.

We now estimate Ij one by one. By (2.2) in Lemma 2.1 and Sobolev embedding, we have

‖gε − 1‖Lq∗ ≤ C εσ,
1

q∗
=

1

q
− 1

3
. (3.25)

We further observe that the condition (1.28) is sufficient to make the inequality (1.33) and
(1.34) be strict. Precisely, under condition (1.28), there exists 5/2 < q < 3 such that (1.31) and
the following two inequalities are satisfied:(

5

3
− 1

γ

)−1

+
1

q
< 1,

1

γ
+

1

3
+

1

q
< 1. (3.26)
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In the rest of this proof, we use a simpler notation LqLr to denote spaces Lq(0, T ;Lr(Ω)) or
Lq(0, T ;Lr(Ω;R3)) or Lq(0, T ;Lr(Ω;R9)).

We now consider I1. By (3.25) and (3.26), there holds

1

γ
+

1

6
+

1

q∗
<

1

2
. (3.27)

By the uniform estimates in (3.1)-(3.4) and Hölder’s inequality, we obtain

I1 ≤ ‖%̃ε‖L∞Lγ‖ũε‖L2L6‖1− gε‖Lq∗‖∂tϕ‖L2L2 ≤ C εσ‖∂tϕ‖L2L2 .

For I2, by (3.25) and (3.26), using Sobolev embedding and Hölder inequality, we have

{%̃ε|ũε|2}ε>0 uniformly bounded in L∞L1 ∩ L1L
3γ
3+γ .

By interpolation and the inequalities in (3.26) and (3.27), we have

{%̃ε|ũε|2}ε>0 uniformly bounded in Lq1Lq2

for some 1 < q1 <∞ and 1 < q2 < 3γ/(3 + γ) satisfying

1

q2
+

1

q
< 1,

1

q2
+

1

q∗
<

2

3
.

Then Hölder’s inequality implies

I2 ≤ C‖%̃ε|ũε|2‖Lq1Lq2‖1− gε‖Lq∗‖∇xϕ‖Lr1L3 + C‖%̃ε|ũε|2‖Lq1Lq2‖1− gε‖W 1,q‖ϕ‖Lr1Lr2

≤ Cεσ(‖∇xϕ‖Lr1L3 + ‖ϕ‖Lr1Lr2 ),

where
1

r1
:= 1− 1

q1
> 0,

1

r2
:= 1− 1

q2
− 1

q
> 0.

For I3, by (3.4), similar argument as the estimate for I2 gives

I3 ≤ C‖p(%̃ε)‖
L

5
3−

1
γ L

5
3−

1
γ
‖1− gε‖Lq∗‖∇xϕ‖Lr3Lr4 + C‖p(%̃ε)‖

L
5
3−

1
γ L

5
3−

1
γ
‖1− gε‖W 1,q‖ϕ‖Lr5Lr̃6

≤ Cεσ(‖∇xϕ‖Lr3Lr4 + ‖ϕ‖Lr5Lr6 ),

where
1

r3
:= 1−

(
5

3
− 1

γ

)−1

>
1

3
,

1

r4
:= 1−

(
5

3
− 1

γ

)−1

− 1

q∗
>

1

3
,

1

r5
:= 1−

(
5

3
− 1

γ

)−1

>
1

3
,

1

r6
:= 1−

(
5

3
− 1

γ

)−1

− 1

q
> 0.

Similarly, we have for I4, we have

I4 ≤ Cεσ(‖∇xϕ‖L2Lr7 + ‖ϕ‖L2Lr8 ),
1

r7
:= 1− 1

2
− 1

q∗
>

1

3
+

1

10
,

1

r8
:= 1− 1

2
− 1

q
>

1

10
.

Finally for I5 :

I5 ≤ Cεσ‖ϕ‖L2Lr9 ,
1

r9
:= 1− 1

q∗
− 1

γ
> 1− 2

5
− 1

6
>

2

5
.

We thus complete the proof by taking

r := max{rj | 1 ≤ j ≤ 9} ∈ (1,∞).

23



3.4 Passing to the limit

We need to show the weak convergence of the nonlinear terms in the sense of contribution:

%̃εũε → %u, %̃εũε ⊗ ũε → %u⊗ u, p(%̃ε)→ p(%).

3.4.1 Time derivative estimates and weak limits

We would like to prove
%̃εũε → %u, %̃εũε ⊗ ũε → %u⊗ u

in the sense of distribution. A key point is that we can obtain some uniform estimate for ∂t%̃ and
∂t(%̃ũ) by Proposition 3.3 and Proposition 3.4 we just proved. This allows us to use the Aubin-Lions
type argument to prove the weak limit of the product is the product of the weak limits.

By Proposition 3.3 and the uniform estimates (3.1)-(3.3), we have

{∂t%̃ε}ε>0 uniformly bounded in L2(0, T ;W
−1, 6γ

6+γ
(Ω)

). (3.28)

By Aubin-Lions type argument (see for example [23]), or directly using Lemma 5.1 in [16], we have

%̃εũε → %u in D′((0, T )× Ω). (3.29)

By (3.1) and (3.2), there holds

{(%̃εũε)}ε>0 uniformly bounded in L∞(0, T ;L
2γ
1+γ (Ω;R3)),

together with (3.28), we have

%̃ε → % in Cw([0, T ];Lγ(Ω;R3)), %̃εũε → %u in Cw([0, T ];L
2γ
1+γ (Ω;R3)).

By Proposition 3.4 and the uniform estimates (3.1)-(3.3), have

%̃εũε = (%̃εũε)
(1) + εσ(%̃εũε)

(2), (3.30)

where
{∂t(%̃εũε)(1)}ε>0 uniformly bounded in L1(0, T ;W−1,1(Ω;R3)), (3.31)

{(%̃εũε)(2)}ε>0 uniformly bounded in L2((0, T )× Ω;R3). (3.32)

By observing

{(%̃εũε)}ε>0 uniformly bounded in L2(0, T ;L
6γ
6+γ (Ω;R3)) ⊂ L2((0, T )× Ω;R3),

we have
{(%̃εũε)(1)}ε>0 uniformly bounded in L2((0, T )× Ω;R3). (3.33)

By (3.31) and (3.33), together with Aubin–Lions type argument (or using directly Lemma 5.1 in
[16]), we have

(%̃εũε)
(1) ⊗ ũε → (%̃εũε)(1) ⊗ u in D′((0, T )× Ω).

By (3.29), (3.30), (3.32), the weak limit satisfies

(%̃εũε)(1) = (%̃εũε) = %u.

24



Finally, by observing

εσ‖(%̃εũε)(2) ⊗ uε‖L1((0,T )×Ω;R3×R3) ≤ Cεσ → 0, as ε → 0,

we obtain
%̃εũε ⊗ ũε → %u⊗ u in D′((0, T )× Ω). (3.34)

Thus, by passing ε→ 0 in (3.21) and (3.23), we obtain the equations in (%,u):

∂t%+ divx(%u) = 0, in D′((0, T )× R3), (3.35)

∂t(%u) + divx(%u⊗ u) +∇xp(%) = divxS(∇xu) + %f , in D′((0, T )× Ω;R3). (3.36)

Here in (3.36), p(%) denotes the weak convergence of p(%̃ε). Moreover, by Lemma 3.2, there holds

∂tb(%) + divx
(
b(%)u

)
+
(
b′(%)%− b(%)

)
divxu = 0 in D′

(
(0, T )× R3

)
, (3.37)

for any b fulfilling properties stated in Lemma 3.2.

3.4.2 Strong convergence of the density

The next step is to show
p(%) = p(%), (3.38)

which is a consequence of the strong convergence %̃ε → % a.e. in (0, T )× Ω.
As in the existence theory of weak solutions for compressible Navier–Stokes equations, the strong

convergence for the density approximate solution family is a tricky part. P.-L. Lions [16] introduced
the so-called effective viscous flux which enjoys an additional compactness, and this property plays
a crucial role in the existence theory of weak solutions for the compressible Navier–Stokes equations.
This is the following lemma:

Lemma 3.5. Up to a substraction of subsequence, there holds for any ψ ∈ C∞c (Ω) and any φ ∈
C∞c ((0, T )):

lim
ε→0

∫ T

0

∫
Ω
φ(t)ψ(x)

(
p(%̃ε)− (

4µ

3
+ η)divxũε

)
%̃ε dx dt

=

∫ T

0

∫
Ω
φ(t)ψ(x)

(
p(%)− (

4µ

3
+ η)divxu

)
% dx dt.

Proof of Lemma 3.5. The proof of Lemma 3.5 is quite tedious but nowadays well understood. In
this proof, the notations ∇ and ∆ are all associated with spatial variable x.

The main idea is to employ the following test functions in the weak formulations of momentum
equations:

φψ∇∆−1%̃ε, φψ∇∆−1%, (3.39)

where ∆−1 is the Fourier multiplier on R3 with symbol − 1
|ξ|2 . In (3.39), %̃ε and % are treated as

functions in R3 with respect to spatial variable, where there holds %̃ε = % = 0 on Ωc.
Notice that

∇∇∆−1 = (Ri,j)1≤i,j≤3

are the classical Riesz operators. We refer to Section 1.3.7.2 in [21] for the concepts of Fourier
multiplier and Riesz operators. We recall the classical property for Riesz operators: for any f ∈
Lq(R3), 1 < r <∞:

‖∇∇∆−1f‖Lr(R3;R9) ≤ C‖f‖Lr(R3). (3.40)
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By embedding theorems in homogeneous Sobolev spaces (see Theorem 1.55 and Theorem 1.57 in
[21] or Theorem 10.25 and Theorem 10.26 in [11]), we have for any f ∈ Lr(R3) with supp f ⊂ Ω:

‖∇∆−1f‖Lr∗ (R3;R3) ≤ C‖f‖Lr(R3),
1

r∗
=

1

r
− 1

3
, if 1 < r < 3,

‖∇∆−1f‖Lr∗ (R3;R3) ≤ C‖f‖Lr(R3), for any r∗ <∞, if r ≥ 3.
(3.41)

Then by the uniform estimate for %̃ε and its weak limit % in (3.1) and (1.27), we have

‖∇∇∆−1%̃ε‖L∞(0,T ;Lγ(Ω;R9)) + ‖∇∇∆−1%‖L∞(0,T ;Lγ(Ω;R9)) ≤ C. (3.42)

Moreover, under the restriction γ > 6, we have for any r ∈ (1,∞):

‖∇∆−1%̃ε‖L∞(0,T ;Lr(Ω;R3)) + ‖∇∆−1%‖L∞(0,T ;Lr(Ω;R3)) ≤ C. (3.43)

By equations (3.21) and (3.35), there holds in D′((0, T )× R3):

∂t
(
∇∆−1%̃ε

)
= ∇∆−1(∂t%̃ε) = −∇∆−1(divx(%̃εũε)),

∂t
(
∇∆−1%

)
= ∇∆−1(∂t%) = −∇∆−1(divx(%u)).

(3.44)

Then, by uniform estimates in (3.3) and the results in (3.40)–(3.41), we have from (3.44) that∥∥∂t (∇∆−1%̃ε
)∥∥
L2(0,T ;L

6γ
6+γ (Ω;R3))

≤ C ‖%̃ε‖L∞(0,T ;Lγ(Ω)) ‖ũε‖L2(0,T ;W 1,2
0 (Ω;R3))

≤ C,∥∥∂t (∇∆−1%
)∥∥
L2(0,T ;L

6γ
6+γ (Ω;R3))

≤ C ‖%‖L∞(0,T ;Lγ(Ω)) ‖u‖L2(0,T ;W 1,2
0 (Ω;R3))

≤ C.
(3.45)

By (3.42)–(3.45) and Aubin-Lions-Simon Theorem (see [23]), we have that the family
{∇∆−1%̃ε}ε>0 is strongly precompact in L∞(0, T ;Lr(Ω;R3)) for any r ∈ (1,∞). Thus, up to a
substraction of a subsequence,

∇∆−1%̃ε → ∇∆−1% strongly in Cw([0, T ];Lr(Ω;R3)) for any r ∈ (1,∞). (3.46)

For the residual term Fε in (3.23), by (3.24), (3.42), (3.43) and (3.45), we have

|〈Fε, φψ∇∆−1%̃ε〉| ≤ Cεσ (3.47)

which goes to zero as ε→ 0. Here we used the fact 6γ/(6 + γ) > 3 > 2 under restriction γ > 6.

Now we take φψ∇∆−1(1Ω%̃ε) as a test functions in the weak formulation of (3.23) and pass
ε → 0. Then we take φψ∇∆−1(1Ω%) as a test functions in the weak formulation of (3.36). By
comparing the results of theses two operations, through long but straightforward calculations,
using the convergence results in (3.46) and (3.47), we finally obtain

I : = lim
ε→0

∫ T

0

∫
Ω
φψ

(
p(%̃ε)− (

4µ

3
+ η)divxũε

)
%̃ε dx dt

−
∫ T

0

∫
Ω
φψ

(
p(%)− (

4µ

3
+ η)divxu

)
% dx dt

= lim
ε→0

∫ T

0
φ

∫
Ω
ψ%̃εũ

i
εũ

j
εRi,j(%̃ε) dx dt−

∫ T

0
φ

∫
Ω
ψ%uiujRi,j(%) dx dt.

(3.48)

The last quantity in (3.48) is indeed zero. This follows by a div-curl type lemma, see [12, Section
3.4].
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Now we are ready to show the strong convergence of {%̃ε}ε>0. First of all, we have
(5γ

3 − 1
)
−

(γ + 1) = 2γ
3 − 2 > 0. Then by (3.4) and (3.5), we have

p(%̃ε)%̃ε → p(%)% weakly in L( 5γ
3
−1)/(γ+1)((0, T )× Ω)).

Taking b(s) = s log s in the renormalized equations (3.8) and (3.37) implies

∂t(%̃ε log %̃ε) + divx
(
(%̃ε log %̃ε)ũε

)
+ %̃εdivxũε = 0, in D′((0, T )× R3)).

∂t(% log %) + divx
(
(% log %)u

)
+ %divxu = 0, in D′((0, T )× R3)).

(3.49)

Passing ε→ 0 in the first equation of (3.49) gives

∂t(% log %) + divx
(
(% log %)u

)
+ %divxu = 0, in D′((0, T )× R3)). (3.50)

Then, by using a test function sequence {φn(t)}n ⊂ C∞c (0, T ) which convergence to 1 strongly in
L2(0, T ) in the weak formulation of (3.49)2 and (3.50), we can obtain for a.e. τ ∈ (0, T ]:∫

Ω

(
% log %− % log %

)
(τ, ·) dx+

∫ τ

0

∫
Ω

(
%divxu− %divxu

)
dx dt = 0. (3.51)

For any ψ(x) ∈ C∞c (Ω) and any φ(t) ∈ C∞c (0, τ) with τ ∈ (0, T ], there holds

lim
ε→0

∫ τ

0

∫
Ω
φψ

(
p(%̃ε)− (

4µ

3
+ η)divxũε

)
%̃ε dx dt

=

∫ τ

0

∫
Ω
φψ

(
p(%)%− (

4µ

3
+ η)%divxu

)
dx dt.

This gives, by using Lemma 3.5,∫ τ

0

∫
Ω
φψ
(
%divxu− %divxu

)
dx dt = (

4µ

3
+ η)−1

∫ τ

0

∫
Ω
φψ
(
p(%)%− p(%)%

)
dx dt.

This implies, by choosing test function sequences that converges to 1 strongly in some proper spaces,∫ τ

0

∫
Ω

(
%divxu− %divxu

)
dx dt = (

4µ

3
+ η)−1

∫ τ

0

∫
Ω

(
p(%)%− p(%)%

)
dx dt.

Together with (3.51), we obtain∫
Ω

(
% log %− % log %

)
(τ, ·) dx+ (

4µ

3
+ η)−1

∫ τ

0

∫
Ω

(
p(%)%− p(%)%

)
dx dt = 0. (3.52)

Since the function s→ s log s is convex in [0,∞), there holds,

% log % ≥ % log %, a.e. in (0, T )× Ω.

Since p(s) is strictly increasing in [0,∞), there holds (see Theorem 10.19 in [11]):

p(%)% ≥ p(%)%, a.e. in (0, T )× Ω.

Thus, by (3.52), necessarily, there holds

% log % = % log %, p(%)% = p(%)%, a.e. in (0, T )× Ω,

which implies the strong convergence

%̃ε → % a.e. in (0, T )× Ω.

This implies the convergence of the pressure term as in (3.38).
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3.5 End of the proof

By the convergence results we obtained in Section 3.4, we have shown that the limit (%,u) is a weak
solution to the compressible Navier–Stokes equations in the sense of Definition 1.3 in homogeneous
domain Ω, if the energy inequality is satisfied. Indeed, by the strong convergence of the density
shown in (3.53), together with (3.29) and (3.34), the energy inequality can be obtained directly by
passing ε→ 0 in the energy equality for (%ε,uε). This completes the proof of Theorem 1.6.
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