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Abstract

In this paper, we study the asymptotic behavior of nonlinear Klein-Gordon equations in the
non-relativistic limit regime. By employing the techniques in geometric optics, we show that the
Klein-Gordon equation can be approximated by nonlinear Schrödinger equations. In particular,
we show error estimates which are of the same order as the initial error. Our result gives a
mathematical verification for some numerical results obtained in [1, 2], and offers a rigorous
justification for a technical assumption in the numerical studies [1].
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1 Introduction

1.1 Setting

The Klein-Gordon equation is a relativistic version of the Schrödinger equation and is used to
describe the motion of a spinless particle. The non-dimensional Klein-Gordon equation reads as
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follows

(1.1) ε2∂ttu−∆u+
1

ε2
u+ f(u) = 0, t ≥ 0, x ∈ Rd.

Here u = u(t, x) is a real-valued (or complex-valued) field, and f(u) is a real-valued function (or
f(u) = g(|u|2)u if u is complex-valued). The non-dimensional parameter ε is proportional to the
inverse of the speed of light.

For fixed ε, the well-posedness of the Klein-Gordon equation is well studied [5, 6]. In this paper,
our concern is the asymptotic behavior of the solution in the non-relativistic limit (ε → 0) with
real initial data of the form

(1.2) u(0) = u0,ε, (∂tu)(0) =
1

ε2
u1,ε.

1.2 Background and motivation

The non-relativistic limit of (1.1)-(1.2) has gained a lot interest both in analysis and in numerical
computations, see [17, 21, 18, 12, 13, 15, 19, 1, 2] and references therein. In particular, for the
complex valued unknown u and the typical polynomial nonlinearity f(u) = λ|u|qu with 0 ≤ q < 4

d−2 ,
Masmoudi and Nakanishi [15] showed that a wide class of solutions u to (1.1)-(1.2) can be described
by using a system of coupled nonlinear Schrödinger equations. More precisely, for H1 initial data
of the form

(1.3) u0,ε = ϕ0 + εϕε, u1,ε = ψ0 + εψε,

it was shown in [15] that

u(t, x) = eit/ε
2
v+ + e−it/ε

2
v− +R(t, x),

where v = (v+, v−) satisfies

(1.4) 2ivt −∆v + f̃(v) = 0, v(0) := (ϕ0 − iψ0, ϕ̄0 + iψ̄0),

with f̃(v) =
(
f̃+(v), f̃−(v)

)
defined by

f̃±(v) :=
1

2π

∫ 2π

0
f(v± + eiθv̄∓)dθ.

The error term R(t, x) satisfies the following estimate

(1.5) ‖R‖L∞(0,T ;L2) = o(ε1/2), for any T < T ∗,

where T ∗ is the maximal existence time of the coupled nonlinear Schrödinger equations (1.4).
Furthermore, if f ∈ C2, for H3 initial data of the form

(1.6) u0,ε = ϕ0 + εϕ1 + ε2ϕ2,ε, u1,ε = ψ0 + εψ1 + ε2ψ2,ε,

it was shown in [15] the following second order approximation result

(1.7)
∥∥∥u− (eit/ε2(v+ + εw+) + e−it/ε

2
(v− + εw−

)∥∥∥
L∞(0,T ;H1(Rd))

= o(ε),

where w = (w+, w−) is the solution to the following Cauchy problem of a linear Schröginder equation

2iwt −∆w +Df̃(v).w = 0, w(0) := (ϕ1 − iψ1, ϕ̄1 + iψ̄1),
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where we use the notation in [15]:

Df̃(v).w := ∂z1 f̃(v)w+ + ∂z2 f̃(v)w− + ∂z̄1 f̃(v)w̄+ + ∂z̄2 f̃(v)w̄−.

In the previous studies in non-relativistic limit problems, the error estimates obtained are not
optimal, in the sense that the error estimates over O(1) time intervals are much amplified compared
to the initial error estimates. For example, in [15], the o(ε1/2) error estimate in (1.5) is obtained
under O(ε) initial error, and the o(ε) error estimate (1.7) is obtained under O(ε2) initial error (see
Theorem 1.3 and Theorem 1.4 in [15]).

The main goal of this paper is to obtain optimal error estimates: over O(1) time interval,
the error estimate is of the same order as the initial error estimate. As a result, we give better
convergence rates for the error estimates compared to the result in [15]: O(ε) in (1.5) and O(ε2)
in (1.7), while the price to pay is to assume higher regularity for initial data. This is in particular
highly important for numerical calculations. Our results also give uniform estimates for ‖ε2∂tu‖Hµ

for any µ > d/2, which justifies the technical Assumption (A) and Theorem 4.1 in [1], which is the
key to design a uniformly convergent numerical scheme (see Remark 2.6).

In [15], the authors study the problem mainly in energy spaces and the convergence results
are obtained by using typical techniques in the study of dispersive equations, such as Strichartz
estimates and Bourgain spaces. In this paper, we adopt a different point of view by treating the
non-relativistic limit problem as the stability problem in the framework of geometric optics which
stands for the study of highly oscillating solutions to hyperbolic systems. The main concern in
mathematical geometric optics is the stability analysis of a family of approximate solutions named
WKB solutions. We refer to [7] as well as [8, 10, 20, 9] for more details of basic concepts in geometric
optics.

1.3 Statement of the results

We consider general nonlinearities f(u) including nonlinearities of the form

(1.8) f(u) = λuq+1, q ≥ 0, q ∈ Z; f(u) = λ|u|qu, q ≥ 0.

We point out that compared to [15], here we are working in more regular Sobolev spaces. Thus
we need more regularity for f . But we do not need to control the growth of f(u) with respect
to u, thanks to the L∞ norm of u by Sobolev embedding. This implies that we can handle the
nonlinearities in (1.8) with q arbitrarily large, while in [15] it has to be assumed that q < 4/(d−2).

We also point out that we obtain better convergence rates for the error estimates than the ones
in [15]. For initial data in Hs, s > d/2 + 4 and nonlinearities f ∈ Cm, m > s, we improve the
error in (1.5) from o(ε1/2) to O(ε). If f enjoys more regularity in Cm, m > s+ 1, we can improve
the error in (1.7) from o(ε) to O(ε2). The error estimates are obtained in the Sobolev space Hs−4.
To prove such results, we employ the techniques in geometric optics.

The first result concerns the first order approximation. Our basic Schrödinger equation is

(1.9) 2ivt −∆v + f̃(v) = 0, v(0) =
ϕ0 − iψ0

2
,

where

(1.10) f̃(v) :=
1

2π

∫ 2π

0
e−iθf(e−iθv̄ + eiθv)dθ.
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By the classical theory for the local well-posedness of nonlinear Schrödinger equations (see for
instance Chapter 8 of [16]), if f ∈ Cm, m > s > d/2+4, the Cauchy problem (1.9) admits a unique
solution v ∈ C ([0, T ∗0 );Hs) with T ∗0 > 0 the maximal existence time.

Our first theorem states:

Theorem 1.1. Suppose the real initial datum (1.3) satisfies the regularity assumption:

(1.11)
(ϕ0, ψ0) ∈ (Hs)2 independent of ε,{

(ϕε, ψε, ε∇ϕε)
}

0<ε<0
uniformly bounded in (Hs−4)d+2

with s > d/2 + 4 and the nonlinearity f(·) ∈ Cm, m > s, f(0) = 0. Then the Cauchy problem
(1.1)-(1.2) admits a unique solution u ∈ C

(
[0, T ∗ε );Hs−4

)
, where the maximal existence time T ∗ε > 0

satisfies

(1.12) lim inf
ε→0

T ∗ε ≥ T ∗0 ,

and for any T < min{T ∗ε , T ∗0 }, there exists a constant C(T ) independent of ε such that

(1.13)
∥∥∥u− (eit/ε2v + e−it/ε

2
v̄
)∥∥∥

L∞(0,T ;Hs−4)
≤ C(T ) ε,

where v is the solution to (1.9).

Compared to the result in [15, Theorem 1.3], here we obtain an better error estimate of order
O(ε) instead of o(ε1/2).

The second result concerns the second order approximation which is an extension of the
convergence result (1.7) obtained in [15, Theorem 1.4].

Theorem 1.2. Under the assumptions in Theorem 1.1, if in addition f ∈ Cm, m > s+ 1, and the
initial datum is of the form (1.6) satisfying

(1.14)
(ϕ1, ψ1) ∈ (Hs)2 independent of ε,{

(ϕ2,ε, ψ2,ε, ε∇ϕ2,ε)
}

0<ε<1
uniformly bounded in (Hs−4)d+2,

then for any T < min{T ∗ε , T ∗0 }, there exists a constant C(T ) independent of ε such that

(1.15)
∥∥∥u− (eit/ε2(v + εw) + e−it/ε

2
(v̄ + εw̄)

)∥∥∥
L∞(0,T ;Hs−4)

≤ C(T ) ε2,

where v is the solution to (1.9) and w is the solution to the Cauchy problem

(1.16) 2iwt −∆w =
˜̃
f(w), w(0) =

ϕ1 − iψ1

2

with

(1.17)
˜̃
f(w) :=

1

2π

∫ 2π

0
e−iθf ′(e−iθv̄ + eiθv)(e−iθw̄ + eiθw)dθ.

We give several remarks on our results stated in the above two theorems.

Remarks 1.3. • The error estimates in (1.13) and (1.15) are optimal in the sense that they
are of the same order as the initial error estimates. This means the initial error is not much
amplified by the dynamics of the system over time interval [0, T ]. This is called sometimes
the linear stability phenomena of the approximate solution.
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• Under the assumptions in Theorem 1.2, the Cauchy problem (1.16) admits a unique solution
w ∈ C([0, T ∗0 );Hs). The maximal existence time is the same as that of v ∈ C([0, T ∗0 );Hs)

because
˜̃
f(w) in (1.17) is linear in w.

• For f(u) = λuq+1, q ≥ 0, q ∈ Z, we have f ∈ C∞. Thus our results apply to such
nonlinearities. For general f(u) = λ|u|qu, to make sure f ∈ Cm for some m > s > d/2 + 4,
we need to assume q > d/2 + 4.

• For the typical cubic nonlinearity f(u) = λu3, direct calculation implies that the nonlinearity
(1.10) of the approximate Schrödinger equation is also cubic f̃(v) = 3λv3.

• By (1.12), there exists ε0 > 0 such that for any 0 < ε < ε0 there holds T ∗ε ≥ T ∗0 . Then for
ε < ε0, the error estimates (1.13) and (1.15) hold for any T < T ∗0 .

• Theorem 1.1 and Theorem 1.2 hold true if initial data u0,ε and u1,ε in (1.1) are independent
of ε, i.e. ϕε = ψε = 0 in (1.3).

• The results in Theorem 1.1 and Theorem 1.2 can be generalized to the Klein-Gordon equation
with complex-valued unknown u ∈ C. The proof is rather similar.

In the sequel, if there is no specification, C denotes a constant independent of ε. Precisely,
associate with the proof of Theorem 1.1, we have C = C(s, d,D0) with

D0 := ‖(ϕ0, ψ0)‖Hs + sup
0<ε<1

‖(ϕε, ψε, ε∇ϕε)‖Hs−4 .

Associate with the proof of Theorem 1.2, we have C = (s, d,D1) with

D1 := ‖(ϕ0, ψ0)‖Hs + ‖(ϕ1, ψ1)‖Hs + sup
0<ε<1

‖(ϕ2,ε, ψ2,ε, ε∇ϕ2,ε)‖Hs−4 .

However, the value of C may be different from line to line.

This paper is organized as follows: In Section 2, we rewrite the Klein-Gordon equation (1.1) as
a symmetric hyperbolic system and reformulate this non-relativistic limit problem as the stability
problem of WKB approximate solutions in geometric optics. In Section 3, we employ the standard
WKB expansion to construct an approximate solution for which the leading terms solve nonlinear
Schrödinger equations. Section 4 and Section 5 are devoted to the proof of Theorem 2.3 and
Theorem 2.4, respectively. Theorem 1.1 and Theorem 1.2 are direct corollaries of 2.3 and Theorem
2.4, respectively.

2 Reformulation

In this section, we reformulate this non-relativistic limit problem as the stability problem of WKB
approximate solutions in geometric optics.

2.1 The equivalent symmetric hyperbolic system

We rewrite the Klein-Gordon equation into a symmetric hyperbolic system by introducing

U := (w, v, u) :=
(
ε∇Tu, ε2∂tu, u

)T
:=
(
ε(∂x1u, · · · , ∂xdu), ε2∂tu, u

)T
.
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Then the equation (1.1) is equivalent to

(2.1) ∂tU −
1

ε
A(∂x)U +

1

ε2
A0U = F (U),

where

(2.2) A(∂x) :=

0d×d ∇ 0
∇T 0 0
0 0 0

 , A0 :=

0d×d 0 0
0 0 1
0 −1 0

 , F (U) = −

 0
f(u)

0

 .

Here the notation ∇ := (∂x1 , · · · , ∂xd)T , and 0d×d denotes zero matrix of order d× d. In what
follows, we will use 0d to denote the zero column vector of dimension d.

Under the assumptions on the initial data in (1.2), (1.3) and (1.11), we have

(2.3) U(0) =
(
ε∇T (ϕ0 + εϕε), ψ0 + εψε, ϕ0 + εϕε

)T
which is uniformly bounded in Sobolev space Hs−4 with respect to ε.

The differential operator on the left-hand side of (2.1) is symmetric hyperbolic with constant
coefficients. In spite of the large prefactors 1/ε and 1/ε2 in front of A(∂x) and A0, the Hs−4

estimate is uniform and independent of ε because A(∂x) and A0 are both anti-adjoint operators.
The well-posedness of Cauchy problem (2.1)-(2.3) in C

(
[0, T ∗ε );Hs−4

)
is classical (see for instance

Chapter 2 of Majda [14] or Chapter 7 of Métivier [16]).
Since the nonlinearity F (U) only depends on f(u), the classical existence time satisfies

T ∗ε ∝
1

C(f, ‖u‖L∞)
,

and there is a criterion for the lifespan

(2.4) T ∗ε <∞ =⇒ lim
t→T ∗ε

‖u‖L∞ =∞.

2.2 WKB expansion and approximate solution

We look for an approximate solution to (2.1) by using WKB expansion which is a typical technique
in geometric optics. The main idea is as follows.

We make a formal power series expansion in ε for the solution and each term in the series is a
trigonometric polynomial in θ := t/ε2:

(2.5) Ua =

Ka+1∑
n=0

εnUn, Un =
∑
p∈Hn

eipθUn,p, Ka ∈ Z+, Hn ⊂ Z.

The amplitudes Un,p(t, x) are not highly-oscillating (independent of θ) and satisfies Un,−p = Un,p
due to the reality of Ua. Here Hn is the n-th order harmonics set and will be determined in the
construction of Ua. The zero-order or fundamental harmonics set H0 is defined as H0 := {p ∈
Z : det (ip + A0) = 0}. For the nonhomogeneous case with A0 6= 0, the set H0 is always finite.
Indeed, with A0 given in (2.2), we have

H0 = {−1, 0, 1}.

Higher order harmonics are generated by the fundamental harmonics and the nonlinearity of the
system. In general there holds the inclusion Hn ⊂ Hn+1.
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We plug (2.5) into (2.1) and deduce the system of order O(εn):

(2.6) Φn,p := ∂tUn,p −A(∂x)Un+1,p +
(
ip+A0

)
Un+2,p − F (Ua)n,p = 0,

for any n ∈ Z, n ≥ −2 and p ∈ Z. In (2.6), we imposed Un = 0 for any n ≤ −1. Then to
solve (2.1), it is sufficient to solve Φn,p = 0 for all (n, p) ∈ Z2. This is in general not possible
because there are infinity of n. However, we can solve (2.1) approximately by solving Φn,p = 0 up
to some nonnegative order −2 ≤ n ≤ Ka − 1 with Ka ≥ 1, then Ua solves (2.1) with a remainder
of order O(εKa) which is small and goes to zero in the limit ε→ 0. More precisely, we look for an
approximate solution Ua of the form (2.5) satisfying ∂tUa −

1

ε
A(∂x)Ua +

1

ε2
A0Ua = F (Ua)− εKaRε,

Ua(0, x) = U(0, x)− εKΨε(x),

where |Rε|L∞ + |Ψε|L∞ is bounded uniformly in ε. Parameters Ka and K describe the level of
precision of the approximate solution Ua.

We state the results in constructing the approximate solution. The first one concerns a first
order approximation:

Proposition 2.1. Under the assumptions in Theorem 1.1, there exits an approximate solution

U
(1)
a ∈ C([0, T ∗0 );Hs−2) for some T ∗0 > 0 solving

(2.7)

 ∂tU
(1)
a −

1

ε
A(∂x)U (1)

a +
1

ε2
A0U

(1)
a = F (U (1)

a )− εR(1)
ε ,

U (1)
a (0) = U(0)− εΨ(1)

ε ,

where for any T < T ∗0 , there holds the estimate

(2.8) sup
0<ε<1

(
‖R(1)

ε ‖L∞(0,T ;Hs−4) + ‖Ψ(1)
ε ‖Hs−4

)
< +∞.

Moreover, U
(1)
a is of the form (2.5) with Un ∈ C([0, T ∗0 );Hs−2), 0 ≤ n ≤ Ka + 1 = 2; in particular,

the leading term U0 is of the form

U0 := eit/ε
2
ve+ + e−it/ε

2
v̄e−

with v the solution to (1.9) and

(2.9) e± := (0Td ,±i, 1)T .

The second one concerns a second order approximation:

Proposition 2.2. Under the assumptions in Theorem 1.2, there exits U
(2)
a ∈ C([0, T ∗0 );Hs−3)

solving  ∂tU
(2)
a −

1

ε
A(∂x)U (2)

a +
1

ε2
A0U

(2)
a = F (U (2)

a )− ε2R(2)
ε ,

U (2)
a (0) = U(0)− ε2Ψ(2)

ε ,

where for any T < T ∗0 , there holds the estimates

(2.10) sup
0<ε<1

(
‖R(2)

ε ‖L∞(0,T ;Hs−4) + ‖Ψ(2)
ε ‖Hs−4

)
< +∞.

Moreover, U
(2)
a is of the form (2.5) with Un ∈ C([0, T ∗0 );Hs−3), 0 ≤ n ≤ Ka + 1 = 3; in particular,

the leading term U0 is the same as in Proposition 2.1 and the leading error term U1 is

U1 := eit/ε
2 (
we+ + (∇T v, 0, 0)T

)
+ e−it/ε

2 (
w̄e− + (∇T v̄, 0, 0)T

)
with v the solution to (1.9) and w the solution to (1.16).
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2.3 Stability of approximate solutions

To prove Theorem 1.1 and Theorem 1.2, we turn to prove the following two theorems which state
the stability of the approximate solutions in Proposition 2.1 and Proposition 2.2.

Theorem 2.3. Under the assumptions in Theorem 1.1, the Cauchy problem (2.1)-(2.3) admits a
unique solution U ∈ C

(
[0, T ∗ε );Hs−4

)
where the maximal existence time satisfies

(2.11) lim inf
ε→0

T ∗ε ≥ T ∗0 ,

where T ∗0 is the maximal existence time of the solution to (1.9). Moreover, for any T < min{T ∗ε , T ∗0 },
there exists a constant C(T ) independent of ε such that

(2.12)
∥∥∥U − U (1)

a

∥∥∥
L∞(0,T ;Hs−4)

≤ C(T ) ε,

where U
(1)
a is given in Proposition 2.1.

Theorem 2.4. Under the assumption in Theorem 1.2, for any T < min{T ∗ε , T ∗0 }, there exists a
constant C(T ) independent of ε such that the solution U ∈ C

(
[0, T ∗ε );Hs−4

)
to (2.1)-(2.3) satisfies

(2.13)
∥∥∥U − U (2)

a

∥∥∥
L∞(0,T ;Hs−4)

≤ C(T ) ε2,

where U
(2)
a is given in Proposition 2.2.

We gives several remarks on our results, concerning the applications and possible further results.

Remark 2.5. It is direct to observe that Theorem 1.1 is a corollary of Theorem 2.3 and Proposition
2.1, and Theorem 1.2 is a corollary of Theorem 2.4 and Proposition 2.2. Hence, it suffices to prove
Proposition 2.1, Proposition 2.2, Theorem 2.3 and Theorem 2.4.

Remark 2.6. We obtain uniform estimates for the solution U in L∞([0, T ];Hs−4) for any T < T ∗ε
in Theorem 2.3 and Theorem 2.4. As a result, we obtain the corresponding uniform estimates for
ε2∂tu where u is the unique solution to (1.1)-(1.2), since ε2∂tu is a component of U which is defined
in (2.1). This gives a rigorous verification for the technical Assumption (A) in [1].

Remark 2.7. If the approximate solutions is well-posed up to longer time, such as O(| log ε|) or
even O(1/ε), by employing the techniques in [4], one may be able to obtain convergence results up
to logarithm time as O(| log ε|). However, to achieve such logarithm time, by using the method in
[4], there is a price on the convergence rates: one may only derive O(

√
ε) error estimate in (2.12)

and O(ε) error estimate in (2.13). Such long time behavior is systematically considered in another
paper [11] for quadratic nonlinearities and long time of order O(1/ε) stability is obtained.

Remark 2.8. As suggested by the referee, we find out that reformulated problem (2.1)–(2.3) falls
into the general framework studied by Lannes in [3] after a rescaling in time; in particular, the
problem in this paper corresponds to the particular case with zero initial wave number (without
initial oscillation) and the zero group velocity. This setting allows us to consider the following
particular ansatz:

uε(t, x) = εpu(εt, x, θ), t ∈ R, x ∈ Rd, θ := −t/ε,

where p is taken in the same manner as in [3], such that one can gain ε from the nonlinearity,
while an often used ansatz in general setting is: (see equation (2) in [3]):

uε(t, x) = εpu(εt, t, x, θ), t ∈ R, x ∈ Rd, θ := (k · x− ωt)/ε,
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where k is the initial wave number and ω is the temporal frequency associated with the initial wave
number.

The results obtained in [3] show the convergence of the approximate solutions to the exact
solutions; however, no further convergence rate is provided. The main issue is the possible
secular growth caused by the general structure of the systems (the differential operators and the
nonlinearities). Here in this paper, we do not include initial oscillation (zero initial wave number).
Together with the special structure of the Klein–Gordon equations, we do not see any secular growth
in the stability analysis and we obtain optimal convergence rates.

3 Construction of WKB solutions

We now carry out the idea in Section 2.2 to construct approximate solutions satisfying the properties
stated in Proposition 2.1 and Proposition 2.2.

3.1 WKB cascade

We start from considering Φ−2,p = 0 corresponding to the equations in the terms of order O(ε−2).
We reproduce such equations as follows

(3.1) (ip+A0)U0,p = 0, for all p.

It is easy to find that (ip + A0) are invertible except p ∈ H0 = {−1, 0, 1}. We then deduce from
(3.1) that

(3.2) U0,p = 0, for all p such that |p| ≥ 2.

This is in fact how we determine H0: for any p 6∈ H0, necessarily U0,p = 0.
As in [15], we do not need to include the mean mode U0,0 in the approximation. Hence, for

simplicity, we take

(3.3) U0,0 = 0.

For p = 1, (3.1) is equivalent to the so called polarization condition U0,p ∈ ker(ip + A0). This
implies

(3.4) U0,1 = g0e+,

for some scalar function g0.
For p = −1, reality implies

U0,−1 = U0,1 = ḡ0e−.

Here e± are defined as in (2.9) satisfying

ker(i+A0) = span {e+}, ker(−i+A0) = span {e−}.

We continue to consider the equations in the terms of order O(ε−1) which are Φ−1,p = 0:

(3.5) −A(∂x)U0,p + (ip+A0)U1,p = 0, for all p.

When p = 0, by the choice of the leading mean mode in (3.3), equation (3.5) becomes

A0U1,0 = 0
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which is equivalent to

(3.6) U1,0 = (hT1 , 0, 0)T for some vector valued function h1 ∈ Rd.

When p = 1, by (3.4), equation (3.5) is equivalent to

U1,1 = g1e+ + (∇T g0, 0, 0)T for some scalar function g1.

When |p| ≥ 2, the invertibility of (ip+A0) and (3.2) imply

U1,p = 0, for all p such that |p| ≥ 2.

The equations which comprise all terms of order O(ε0) are

(3.7) ∂tU0,p −A(∂x)U1,p + (ip+A0)U2,p = F (U0)p, for all p.

Here F (U0)p is the p-th coefficient of the Fourier series of F (U0) in θ. Precisely,

(3.8) F (U0)p = (0Td ,−f̃p, 0)T , f̃p := f(u0)p =
1

2π

∫ 2π

0
e−ipθf̌(θ)dθ,

where

(3.9) f̌(θ) := f(u0)(θ) := f(e−iθḡ0 + eiθg0).

Here we used the notation for the corresponding components:

(3.10) Un =:

wnvn
un

 , for any n ∈ Z, n ≥ 0.

Lemma 3.1. For f̃p defined by (3.8) and (3.9), we have the estimates for any p ∈ Z:

(3.11)

‖f̃p(t)‖Hσ ≤ C(f, ‖g0(t)‖L∞)‖g0(t)‖Hσ , for any 0 ≤ σ < m,

‖f̃p(t)‖Hσ ≤ C(f, ‖g0(t)‖L∞)

1 + |p|
‖g0(t)‖Hσ , for any 0 ≤ σ < m− 1,

where the dependency of the constant C is as follows

C(f, ‖g0(t)‖L∞) = C

 ∑
|α|≤m

‖f (α)(g0(t))‖L∞ , ‖g0(t)‖L∞

 .

Proof of Lemma 3.1. Since f ∈ Cm, m > s > d/2 + 4, then we have

(3.12) ‖f(u)‖Hσ ≤ C

 ∑
|α|≤m

‖f (α)(u)‖L∞ , ‖u‖L∞

 ‖u‖Hσ , for any 0 ≤ σ < m.

For a proof of this fact (3.12), we refer to Theorem 5.2.6 in [16]. Then it is direct to deduce (3.11)1.
We can obtain (3.11)2 by observing for any p 6= 0:

f̃p :=
1

2π

∫ 2π

0
(ip)−1e−ipθf ′(e−iθḡ0 + eiθg0)(−ie−iθḡ0 + ieiθg0)dθ.
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When p = 0, equation (3.7) is equivalent to

(3.13) U2,0 = (hT2 , 0,divh1 − f̃0)T for some vector valued function h2 ∈ Rd.

When p = 1, equation (3.7) is equivalent to

(3.14)

{
2i∂tg0 −∆g0 + f̃1 = 0,

U2,1 = g2e+ + (∇T g1, ∂tg0, 0)T , for some scalar function g2.

Here the equation (3.14)1 is exactly the nonlinear Schrödinger equation (1.9). The initial datum of
g0 is determined in such a way that U0(0) = (0Td , ψ0, ϕ0)T which is the leading term of initial data
U(0) (see (2.3)). This imposes

(3.15) g0(0) =
ϕ0 − iψ0

2
.

By the regularity assumption (1.11), initial data g0(0) ∈ Hs, s > d/2 + 4, then by Lemma 3.1
and the classical theory for the local well-posedness of Schröginder equations (see for instance
Chapter 8 of [16]), the Cauchy problem (3.14)1-(3.15) admits a unique solution g0 ∈ C([0, T ∗0 );Hs)∩
C1([0, T ∗0 );Hs−2) where T ∗0 is the maximal existence time. Moreover, there holds the estimate for
any T < T ∗0 :

(3.16) ‖∂tg0‖L∞(0,T ;Hs−2) ≤ C‖g0‖L∞(0,T ;Hs) ≤ C‖(φ0, ψ0)‖Hs .

When |p| ≥ 2, equation (3.7) is equivalent to

(3.17) (ip+A0)U2,p = f̃p ⇐⇒ U2,p = (ip+A0)−1f̃p.

3.2 First order approximation - Proof of Proposition 2.1

In this subsection, we are working under the assumptions in Theorem 1.1 and we will finish the
proof of Proposition 2.1.

We stop the WKB expansion by taking

g1 = g2 = h1 = h2 = 0

in (3.6), (3.13) and (3.14)2, we construct an approximate solution

U (1)
a := U0 + εU1 + ε2U2,

where

(3.18)

U0 := eit/ε
2
g0e+ + c.c., U1 := eit/ε

2

∇g0

0
0

+ c.c.,

U2 :=

 0d
0

−f̃0

+

eit/ε2
 0d
∂tg0

0

+ c.c.

+
∑
|p|≥2

eipt/ε
2
U2,p.

Here c.c. means complex conjugate and z + c.c. = 2<z is two times of the real part of z.

Now we verify such U
(1)
a fulfills the properties stated in Proposition 2.1.
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By (3.11)2 in Lemma 3.1 and (3.17), we have

‖U2,p(t)‖Hs−1 ≤
C(f, ‖g0(t)‖L∞)

(1 + |p|)2
‖g0(t)‖Hs−1 , |p| ≥ 2.

By (3.16) and (3.18), we obtain for any t < T ∗0 :

(3.19) ‖U2(t)‖Hs−2 ≤
∑
p∈Z
‖U2,p(t)‖Hs−2 ≤ C‖g0(t)‖Hs .

Together with (3.16) and (3.18), we conclude U
(1)
a ∈ C([0, T ∗0 );Hs−2) solving (2.7) with the

remainders

R(1)
ε :=

F (U
(1)
a )− F (U0)

ε
+

eit/ε2
∇∂tg0

0
0

+ c.c.

+A(∂x)U2 − ε
∑
p∈Z

eipt/ε
2
∂tU2,p,

Ψ(1)
ε :=

(
ε∇Tϕε, ψε, ϕε

)T − εU2(0).

By (1.3), (1.11), (2.3) and (3.19), we have the uniform estimate (2.8) for Ψ
(1)
ε .

It is left to show the uniform estimate (2.8) for R
(1)
ε . Direct calculation gives

F (U
(1)
a )− F (U0)

ε
=

∫ 1

0
F ′(U0 + ετ(U1 + εU2)) · (U1 + εU2)dτ.

Since f ∈ Cm, m > s, so des F . Then

1

ε
‖F (U (1)

a )− F (U0)(t)‖Hσ ≤ C

f,∑
j

‖Uj‖L∞

∑
j

‖Uj‖Hσ

for any 0 ≤ σ < m− 1.
Again by (3.18) and (3.16), we have for any t < T ∗0 :

1

ε
‖F (U (1)

a )− F (U0)(t)‖Hs−4 ≤ C.

The proof of the uniform estimates for other terms in R
(1)
ε is similar and rather direct by using the

estimate (3.12). We omit the details.

This approximate solution U
(1)
a will be used to prove Theorem 2.3 in Section 4.

3.3 Second order approximation - Proof of Proposition 2.2

First of all, we point out that in this subsection, we are working under the assumptions in Theorem
1.2 and we will finish the proof of Proposition 2.1.

We continue the WKB expansion process from the end of Section 3.1 where we achieved the
equations of order O(ε0):

The equations in the terms of order O(ε) are

(3.20) ∂tU1,p −A(∂x)U2,p + (ip+A0)U3,p = −(0Td ,
˜̃
fp, 0)T , for all p,

12



where

(3.21)
˜̃
fp := (f ′(u0)u1)p =

1

2π

∫ 2π

0
e−ipθf ′(e−iθḡ0 + eiθg0)(e−iθḡ1 + eiθg1)dθ.

Here we used the notations in (3.10).
A similar proof as that of Lemma 3.1, we can obtain:

Lemma 3.2. There holds the estimates for any p ∈ Z:

‖ ˜̃
fp(t)‖Hσ ≤ C(f, ‖(g0, g1)(t)‖L∞)‖(g0, g1)(t)‖Hσ , for any 0 ≤ σ < m− 1,

‖ ˜̃
fp(t)‖Hσ ≤ C(f, ‖(g0, g1)(t)‖L∞

1 + |p|
‖(g0, g1)(t)‖Hσ , for any 0 ≤ σ < m− 2,

where the dependency of the constant C is as follows

C (f, ‖(g0, g1)(t)‖L∞) = C

 ∑
|α|≤m

‖f (α)(g0(t))‖L∞ , ‖(g0, g1)(t)‖L∞

 .

When p = 0, equation (3.20) becomes

∂tU1,0 −A(∂x)U2,0 +A0U3,0 = −(0Td ,
˜̃
f0, 0)T

which is equivalent to

(3.22) ∂th1 = 0, U3,0 = (hT3 , 0,divh2 − ˜̃
f0)T

for some vector valued function h3 ∈ Rd.
When p = 1, equation (3.20) becomes

∂tU1,1 −A(∂x)U2,1 + (i+A0)U3,1 = −(0Td ,
˜̃
f1, 0)T ,

which is equivalent to

(3.23)

{
2i∂tg1 −∆g1 +

˜̃
f1 = 0,

U3,1 = g3e+ + (∇T g2, ∂tg1, 0)T , for some scalar function g3.

We find that g1 satisfies a Schrödinger equation where the source term
˜̃
f1 is actually linear in

g1 (see (3.21)). The initial data g1(0) is determined such that U1(0) = (∇Tϕ0, ψ1, ϕ1)T which is
the first order (O(ε)) perturbation of U(0) (see (2.3) and (1.6)). This imposes

g1(0) + ḡ1(0) = ϕ1, ig1(0)− iḡ1(0) = ψ1,

which is equivalent to

(3.24) g1 =
ϕ1 − iψ1

2
∈ Hs.

This is exactly the initial condition in (1.16), and we used the regularity assumption in (1.14).
Since m > s + 1, s > d/2 + 4, by Lemma 3.2 and the classical theory, the Cauchy problem

(3.23)1-(3.24) admits a unique solution in Sobolev space C ([0, T ∗1 ), Hs). Here we have the maximal

13



existence time T ∗1 = T ∗0 where T ∗0 is the maximal existence time for the solution g0 ∈ C([0, T ∗0 ), Hs)

to (3.14)1, because
˜̃
f1 is linear in g1. Moreover, there holds for any T < T ∗0 :

‖∂tg1‖L∞(0,T ;Hs−2) ≤ C‖g1‖L∞(0,T ;Hs) ≤ C‖(φ1, ψ1)‖Hs .

When |p| ≥ 2, equation (3.20) becomes

−A(∂x)U2,p + (ip+A0)U3,p = −(0Td ,
˜̃
fp, 0)T ,

which is equivalent to

U3,p = (ip+A0)−1
(
A(∂x)U2,p − (0Td ,

˜̃
fp, 0)T

)
.

We stop the WKB expansion and take

g2 = g3 = h1 = h2 = h3 = 0

in (3.6), (3.13), (3.22) and (3.23)2. Then we construct another approximate solution

U (2)
a := U0 + εU1 + ε2U2 + ε3U3,

where

U0 := eit/ε
2
g0e+ + c.c., U1 := eit/ε

2

∇g0

ig1

g1

+ c.c.,

U2 :=

 0d
0

−f̃0

+

eit/ε2
∇g1

∂tg0

0

+ c.c.

+
∑
|p|≥2

eipt/ε
2
U2,p,

U3 :=

 0d
0

− ˜̃
f0

+

eit/ε2
 0d
∂tg1

0

+ c.c.

+
∑
|p|≥2

eipt/ε
2
U3,p.

Similar as the verification of U
(1)
a at the end of Section 3.2 for the proof of Proposition 2.1, we

can show that U
(2)
a constructed above fulfills the properties given in Proposition 2.2. We omit the

details here.

The approximate solution U
(2)
a will be used to prove Theorem 2.4 in Section 5.

4 Proof of Theorem 2.3

Associate with the approximate solution U
(1)
a in Proposition 2.1, we define the error

(4.1) U̇ :=
U − U (1)

a

ε
,

where U ∈ C([0, T ∗ε );Hs−4) is the exact solution to (2.1)-(2.3). Then at least over the time interval
[0,min{T ∗ε , T ∗0 }) , U̇ solves

(4.2)

 ∂tU̇ −
1

ε
A(∂x)U̇ +

1

ε2
A0U̇ =

1

ε

(
F (U (1)

a + εU̇)− F (U (1)
a )
)

+R(1)
ε ,

U̇(0) = Ψ(1)
ε ,

where R
(1)
ε and Ψ

(1)
ε satisfy the uniform estimate in (2.8).

Concerning the well-posedness of Cauchy problem (4.2), we have the following proposition.
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Proposition 4.1. Under the assumptions in Theorem 1.1, the Cauchy problem (4.2) admits a
unique solution U̇ ∈ C([0, T̃ ∗ε );Hs−4) where T̃ ∗ε is the maximal existence time. Moreover, there
holds

(4.3) lim inf
ε→0

T̃ ∗ε ≥ T ∗0 ,

and for any T < min{T ∗0 , T̃ ∗ε }:

(4.4) sup
0<ε<1

‖U̇‖L∞(0,T ;Hs−2) ≤ C(T ).

Proof of Proposition 4.1. We calculate

1

ε

(
F (U (1)

a + εU̇)− F (U (1)
a )
)

= F ′(Ua)U̇ + ε

∫ 1

0
F ′′(Ua + ετU̇)U̇2 (1− τ)2

2
dτ.

Since U
(1)
a ∈ C([0, T ∗0 );Hs−2) and F ∈ Cm, m > s with s > d/2 + 4, then for any t < T ∗0 , there

holds

(4.5)

∥∥∥∥1

ε

(
F (U (1)

a + εU̇)− F (U (1)
a )
)

(t)

∥∥∥∥
Hs−4

≤(
C(F, ‖U̇a(t)‖Hs−4) + εC(F, ‖U̇a(t)‖Hs−4 , ‖U̇(t)‖Hs−4)

)
‖U̇(t)‖Hs−4 .

The system in U̇ is semi-linear symmetric hyperbolic and the initial datum is uniformly bounded
in Hs−4. By (4.5), the local-in-time well-posedness of Cauchy problem (4.2) in Sobolev space Hs−4

is classical (see for instance Chapter 7 of [16]). Moreover, if we denote T̃ ∗ε to be the maximal
existence time, the classical solution is in C([0, T̃ ∗ε );Hs−4) and there holds the estimate

sup
0<ε<1

‖U̇‖L∞(0,T ;Hs−2) ≤ C(T ), for any T < min{T̃ ∗ε , T ∗0 }

and the criterion of the life-span

(4.6) T̃ ∗ε <∞ =⇒ lim
t→T̃ ∗ε

‖U̇‖L∞ =∞.

It is left to prove (4.3) to finish the proof. Let T < T ∗0 be a arbitrary number. It is sufficient

to show there exists ε0 > 0 such that T̃ ∗ε > T for any 0 < ε < ε0. By classical energy estimates in
Sobolev spaces for semi-linear symmetric hyperbolic system, we have for any t < min{T, T̃ ∗ε }:

d

dt
‖U̇(t)‖Hs−4 ≤ C(T )

(
1 + εC(‖U̇(t)‖Hs−4)

)
‖U̇(t)‖Hs−4 + ‖R(1)

ε ‖L∞(0,T ;Hs).

Here C(‖U̇(t)‖Hs−4) is continuous and increasing in ‖U̇(t)‖Hs−4 . Then Gronwall’s inequality implies

(4.7)
‖U̇(t)‖Hs−4 ≤ exp

(∫ t

0

(
C(T )(1 + εC(‖U̇(τ)‖Hs−4))

)
dτ

)
‖U̇(0)‖Hs−4

+ T‖R(1)
ε ‖L∞(0,T ;Hs−4).

Let
M(T ) := exp (2C(T )T ) ‖U̇(0)‖Hs−4 + T‖R(1)

ε ‖L∞(0,T ;Hs−4).
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We then define
T := sup

{
t : ‖U̇‖L∞(0,t;Hs−4) ≤M(T )

}
.

If T ≤ min{T, T̃ ∗ε }, then for any t < T, the inequality (4.7) implies

‖U̇(t)‖Hs−4 ≤ exp {TC(T )[1 + εC(M(T ))]} ‖U̇(0)‖Hs−4 + T‖R(1)
ε ‖L∞(0,T ;Hs−4).

Let
ε0 := {2C(M(T ))}−1 .

Then for any 0 < ε < ε0, there holds

‖U̇(t)‖Hs−4 ≤ exp

(
3

2
C(T )T

)
‖U̇(0)‖Hs−4 + T‖R(1)

ε ‖L∞(0,T ;Hs−4).

The classical continuation argument implies that

(4.8) T > min{T, T̃ ∗ε }, for any 0 < ε < ε0.

By (4.6), we have T̃ ∗ε ≥ T. Together with (4.8), we deduce T̃ ∗ε > T . Since T < T ∗0 is a arbitrary
number, we obtain (4.3) and complete the proof.

Now we are ready to prove Theorem 2.3. Given U
(1)
a as in Proposition 2.1 and U̇ the solution

of (4.2), we can reconstruct U through (4.1):

U = U (1)
a + εU̇

which solves (2.1)-(2.3). This implies that the maximal existence time T ∗ε of the solution U ∈
C([0, T ∗ε );Hs−4) satisfies

T ∗ε ≥ min{T ∗0 , T̃ ∗ε }.

By (4.3) in Proposition 4.1, we obtain (2.11) in Theorem 2.3.
Finally, by (3.16), (3.18) and (4.4), we deduce (2.12) and we complete the proof of Theorem

2.3.

5 Proof of Theorem 2.4

Associate with the approximate solution U
(2)
a in Proposition 2.2, we define the error

(5.1) V̇ :=
U − U (2)

a

ε2
.

Then the equation and initial datum for V̇ are

(5.2)

 ∂tV̇ −
1

ε
A(∂x)V̇ +

1

ε2
A0V̇ =

1

ε2

(
F (U (1)

a + ε2V̇ )− F (U (1)
a )
)

+R(2)
ε ,

V̇ (0) = Ψ(2)
ε ,

where R
(2)
ε and Ψ

(2)
ε satisfy the uniform estimate in (2.10).

Similar to Proposition 4.1, we have
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Proposition 5.1. Under the assumptions in Theorem 2.4, the Cauchy problem (5.2) admits a
unique solution V̇ ∈ C([0, T̂ ∗ε );Hs−4) where T̂ ∗ε is the maximal existence time. Moreover, there
holds

(5.3) lim inf
ε→0

T̂ ∗ε ≥ T ∗0

and for any T < min{T ∗0 , T̂ ∗ε }:

(5.4) sup
0<ε<1

‖V̇ ‖L∞(0,T ;Hs−4) ≤ C(T ).

The proof is the same as the proof of Proposition 4.1. Theorem 2.4 follows from Proposition
5.1 through a similar argument as in the end of Section 4.
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