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Abstract

We study the homogenization of stationary compressible Navier–Stokes–Fourier system in a bounded
three dimensional domain perforated with a large number of very tiny holes. Under suitable assumptions
imposed on the smallness and distribution of the holes, we show that the homogenized limit system
remains the same in the domain without holes.
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1 Introduction

Homogenization in fluid mechanics gives rise to system of partial differential equations considered on
physical domains perforated by a large number of tiny holes (obstacles). The main concern is the asymptotic
behavior of the fluid flows when the size of the holes goes to zero and the number of the holes goes to
infinity simultaneously. The ratio between the diameter and mutual distance of these holes plays a crucial
role. Mathematically, the goal is to describe the limit behavior of the solutions to the partial differential
equations used to describe the fluid flows. With an increasing number of holes, the fluid flow approaches
an effective state governed by certain homogenized equations which are defined in homogeneous domains—
domains without holes.

For Stokes and stationary incompressible Navier–Stokes equations, Allaire [1, 2] (see also earlier results
by Tartar [23]) gave a systematic study for different sizes of holes. We recall Allaire’s result in more details
for domains in three dimensions. Consider a family of holes of diameter O(εα), where ε is their mutual
distance. Allaire showed that when 1 ≤ α < 3 (corresponding to the case of large holes), the limit fluid

∗Nanjing University, Department of Mathematics, 22 Hankou Road, Gulou District, 210093 Nanjing, China. Email:
luyong@nju.edu.cn. Yong Lu acknowledges the support of the Recruitment Program of Global Experts of China. This work is
partially supported by project ANR JCJC BORDS funded by l’ANR of France.

†Charles University, Faculty of Mathematics and Physics, Sokolovská 83, 186 75 Praha 8, Czech Republic. Email:
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behavior is governed by the classical Darcy’s law; when α > 3 (corresponding to the case of tiny holes), the
equations do not change in the homogenization process and the limit problem is determined by the same
system of Stokes or Navier–Stokes equations; when α = 3 (corresponding to the case of critical size of holes),
the limit system includes the Brinkman’s law—a damping term is added to the original system, which looks
like a combination of the original Stokes or Navier–Stokes equations and the Darcy’s law. Related results
for the evolutionary (time-dependent) incompressible Navier–Stokes system were obtained by Mikelić [20]
and, more recently, by Feireisl, Namlyeyeva and Nečasová [11]. We note that the holes are assumed to be
periodically distributed in Allaire’s results, while in [11] more general distribution of holes was considered.

For the homogenization of compressible fluids, even under periodic setting of the distribution of holes,
there are no systematic results as in the incompressible case. The earlier results mainly focus on the specific
case α = 1, meaning that the size of holes is proportional to their mutual distance. Masmoudi [19] identified
rigorously the porous medium equation and Darcy’s law as a homogenization limit for the evolutionary
barotropic compressible Navier–Stokes system in the case where the diameter of the holes is comparable to
their mutual distance. Similar results for the full Navier–Stokes–Fourier system were obtained in [14].

When α > 1, the perforated domain has three scales and the homogenization problem becomes quite
different in compressible case. Unlike the incompressible case where one works only in L2 framework, for the
compressible case it is necessary to work in general Lp framework. We refer to [17] for more explanations.
For the case with large holes (1 < α < 3) and the case with critical size of holes (α = 3), there are basically
no results. While for the case with small holes (α > 3), the first author and his collaborators proved
similar results as the incompressible setting and showed that the motion is not affected by the obstacles and
the limit problem coincides with the original one: in [10] and [6] for stationary compressible (isentropic)
Navier–Stokes system, in [18] for evolutionary compressible (isentropic) Navier–Stokes system.

While, according to the authors’ knowledge, there are no results in the homogenization of full
compressible Navier–Stokes–Fourier system when α 6= 1. In this paper, we start to work in this direction
and focus on the case of small holes α > 3 for the stationary case. The main new difficulties lie in obtaining
uniform estimates for the temperatures and building a compatible extension of the temperatures. Based on
an idea of [5] which goes back to [4], we construct an extension operator which is bounded from W 1,2(Ωε)
to W 1,2(Ω), and is bounded from Lr(Ωε) to Lr(Ω) for all r ∈ [1,∞]. Moreover, it preserves the value in Ωε

and the non-negativity property of the temperature. By employing this extension operator, we proved the
uniform L3m(Ωε) bound for the family of temperatures as ε→ 0.

In the sequel, we use C to denote a positive constant independent of ε, for which the value may differ
from line to line.

2 Problem formulation, main results

2.1 Perforated domain

We study the steady compressible Navier–Stokes–Fourier system in a domain perforated with many tiny
holes. Let ε > 0 be a small number which is used to measure the mutual distance between the holes. We
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assume that our domain

Ωε = Ω \
N(ε)⋃
n=1

Tn,ε, (2.1)

where Ω ⊂ R3 is a bounded C2-domain and {Tn,ε}N(ε)
n=1 are C2-domains of the diameter comparable to εα

for some α ≥ 1 such that there exist δ0, δ1 and δ2 positive for which

Tn,ε = xn,ε + εαT 0
n,1 ⊂ Bδ0εα(xn,ε) ⊂ B2δ0εα(xn,ε) ⊂ Bδ1ε(xn,ε) ⊂ Bδ2ε(xn,ε) ⊂ Ω. (2.2)

We assume that the balls Bδ2ε(xn,ε) centred at xn,ε with diameter δ2ε are pairwise disjoint and we assume

that the domains {T 0
n,1}

N(ε)
n=1 are uniformly C2-domains. The former in fact gives an upper limit on the

number of the holes as N(ε) ∼ ε−3. Note, however, that we do not assume any periodicity for the distribution
of the holes, just certain uniform behavior expressed above.

2.2 The model

We consider the steady compressible Navier–Stokes–Fourier system which describes the steady flow of
compressible heat conducting Newtonian fluid in perforated domain Ωε given by (2.1) and (2.2). The purpose
is to study the homogenization of the system as ε→ 0. The system reads

divx(%u) = 0, (2.3)

divx(%u⊗ u) +∇p(%, ϑ)− divxS(ϑ,∇u) = %f , (2.4)

divx
(
%Eu + pu− S(ϑ,∇u)u + q

)
= %f · u. (2.5)

We complete the system by the boundary conditions on ∂Ωε

u = 0, (2.6)

−q · n + L(ϑ− ϑ0) = 0 (2.7)

and by prescribing the total mass ∫
Ωε

%dx = Mε > 0. (2.8)

The unknown quantities are the density %: Ωε → R≥0, the velocity u: Ωε → R3 and the temperature ϑ:
Ω→ R+. We are not able to conclude that the density is positive, while we can ensure that the temperature
is positive, at least for the weak solutions presented below.

Furthermore, we have to specify the constitutive relations in the equations above. We first assume that
the pressure

p(%, ϑ) = %γ + %ϑ. (2.9)

Here we require γ > 2. Note that we could also consider more general pressure forms (as, e.g., in [21]).
However, our main concern is the homogenization for the system, so we will not work much on the direction
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of weakening the assumptions on the pressure term. It would, moreover, technically complicate the paper.
Next, the stress tensor corresponds to the compressible Newtonian fluid

S(ϑ,∇u) = µ(ϑ)
(
∇u +∇Tu− 2

3
divxu I

)
+ ν(ϑ)divxu I, (2.10)

where the viscosity coefficients are continuous functions of the temperature on R+, the shear viscosity µ(·)
is moreover globally Lipschitz continuous, and

C1(1 + ϑ) ≤ µ(ϑ) ≤ C2(1 + ϑ), 0 ≤ ν(ϑ) ≤ C2(1 + ϑ). (2.11)

The heat flux is given by the Fourier law

q(ϑ,∇ϑ) = −κ(ϑ)∇ϑ, (2.12)

where the heat conductivity is assumed to satisfy

C3(1 + ϑm) ≤ κ(ϑ) ≤ C4(1 + ϑm) (2.13)

for some positive m. In our case we require at least m > 2. The total energy is given as

E = e+
1

2
|u|2,

and the specific internal energy e fulfils the Gibbs relation

1

ϑ

(
De+ p(%, ϑ)D

(1

%

))
= Ds(%, ϑ) (2.14)

which leads to

e(%, ϑ) = cvϑ+
%γ−1

γ − 1
, (2.15)

where the undetermined function of temperature was set, for simplicity, as a linear one. The constant cv is
then the molar heat capacity at the constant volume. Moreover, we can view (2.14) as the definition of a
new thermodynamic potential, the specific entropy, which is given uniquely up to an additive constant. It
fulfils formally the balance of entropy

divx

(
%su +

q

ϑ

)
= σ =

S : ∇u

ϑ
− q · ∇ϑ

ϑ2
.

Finally, the data are the external force f , the given mass Mε > 0, the external temperature ϑ0 > 0 prescribed
on ∂Ωε, and the positive constant L.

The existence of strong (or classical) solutions to this system of PDEs under hypothesis made above is
out of reach of nowadays mathematics unless we require “smallness” of the data. We therefore work with
weak solutions which are known to exist for the above relations in the range of m’s and γ’s much wider than
we need for our purpose of the homogenization study.
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2.3 Weak formulation in perforated domains

We are in position to present the weak formulation of our problem in Ωε. Below we assume that all
functions are sufficiently regular, i.e., all integrals written down are finite.

The weak formulation of the continuity equation reads∫
R3
%u · ∇ψ dx = 0 (2.16)

for all ψ ∈ C1
c (R3), where % and u are extended by zero outside of Ωε. Moreover, we need to work with a

renormalized form of this equation∫
R3

(
b(%)u · ∇ψ + (b(%)− %b′(%))divxuψ

)
dx = 0 (2.17)

for all ψ ∈ C1
c (R3) and all b ∈ C1([0,∞)) such that b′ ∈ C0([0,∞)), and both % and u are extended by zero

outside of Ωε. We remark that this restriction on b could be relaxed, see Remark 2.1 below.
The weak formulation of the momentum equation with the homogeneous Dirichlet boundary conditions

has the form ∫
Ωε

(
− %(u⊗ u) : ∇ϕϕϕ− p(%, ϑ)divxϕϕϕ+ S(ϑ,∇u) : ∇ϕϕϕ

)
dx =

∫
Ωε

%f ·ϕϕϕdx (2.18)

for all ϕϕϕ ∈ C1
c (Ωε;R3).

The weak formulation of the total energy balance reads

−
∫

Ωε

(
%Eu + p(%, ϑ)u− S(ϑ,∇u)u + q

)
· ∇ψ dx+

∫
∂Ωε

L(ϑ− ϑ0)ψ dS =

∫
Ωε

%f · uψ dx (2.19)

for all ψ ∈ C1(Ωε). Furthermore, we also have the entropy inequality∫
Ωε

(S(ϑ,∇u) : ∇u

ϑ
− q · ∇ϑ

ϑ2

)
ψ dx+

∫
∂Ωε

Lϑ0

ϑ
ψ dS ≤ L

∫
∂Ωε

ψ dS +

∫
Ωε

(
− q · ∇ψ

ϑ
− %s(%, ϑ)u · ∇ψ

)
dx

(2.20)
for all ψ ∈ C1(Ωε), non-negative.

Definition 2.1 We say that the triple (%, u, ϑ), % ≥ 0 and ϑ > 0 a.e. in Ωε, is a renormalized weak entropy
solution to our problem (2.3)–(2.15), if % ∈ Lγ(Ωε), u ∈ W 1,2

0 (Ωε;R3), ϑ, ϑ
m
2 and log ϑ ∈ W 1,2(Ωε) such

that %|u|3, |S(ϑ,∇u)u| and p(%,u)|u| ∈ L1(Ωε) and the relations (2.16), (2.17), (2.18), (2.19) and (2.20)
are fulfilled with test functions specified above.

For fixed ε > 0 we have the following existence result, see [21] for detailed proof.

Theorem 2.1 Let f ∈ L∞(Ω;R3), ϑ0 ∈ L1(∂Ωε), ϑ0 ≥ T0 > 0 a.e. on ∂Ωε, L > 0, Mε > 0. Let γ > 5
3 and

m > 1. Then there exists a renormalized weak entropy solution (%, u, ϑ) to our problem (2.3)–(2.15) in the
sense of Definition 2.1.
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2.4 Main result

We now investigate the limit passage ε→ 0. In what follows, we will consider a sequence of weak entropy
solutions to our problem from Theorem 2.1, denoted as (%ε, uε, ϑε). We will show that, extending suitably the
sequence to the whole domain Ω, it is bounded in certain spaces (%ε in Lγ+Θ(Ω) for some Θ = Θ(γ,m) > 0,
uε in W 1,2

0 (Ω;R3) and ϑε in W 1,2(Ω)∩L3m(Ω)). We show that the corresponding weak limit of the extension
sequence, taking a subsequence if necessary, solves the same stationary Navier–Stokes–Fourier system in the
weak sense in Ω. More precisely, our main result reads

Theorem 2.2 Let f ∈ L∞(Ω;R3), Mε > 0 with supεMε = M1 < ∞, infεMε = M0 > 0, L > 0 and let
ϑ0 ≥ T0 > 0 in Ω be defined so that it has finite Lq-norm over arbitrary smooth two-dimensional surface with
finite surface area contained in Ω for some q > 1. Let (%ε, uε, ϑε) denote the corresponding renormalized
weak entropy solution to (2.3)–(2.15) for fixed ε > 0, extended suitably to the whole Ω as shown in Section
3.2 below, for which in particular the extensions preserve their values in Ωε. Let α > 3, m > 2 and γ > 2
fulfil α > max{2γ−3

γ−2 ,
3m−2
m−2 }. Then, for ε ∈ (0, 1] the solutions are uniformly bounded

‖%ε‖Lγ+Θ(Ω) + ‖uε‖W 1,2
0 (Ω)

+ ‖ϑε‖W 1,2∩L3m(Ω) ≤ C, (2.21)

where Θ := min
{

2γ − 3, γ 3m−2
3m+2

}
and C is independent of ε. Moreover, the corresponding weak limit of the

sequence for ε → 0 (or for a suitable subsequence) is a renormalized weak solution to problem (2.3)–(2.15)
in Ω, i.e., it fulfils the continuity equation in the weak and renormalized sense, the mass balance and the
total energy balance in the weak sense in Ω, and % ≥ 0 and ϑ > 0 a.e. in Ω.

Note that we do not know whether the entropy inequality (2.20) is also fulfilled in the limit. This is an
interesting open question. Next, we could skip the requirement that the infimum over all total masses is
strictly positive. However, if the limit total mass would be zero, then the solution is trivial (% = 0, v = 0
with some temperature distribution) and we prefer to avoid this case. We remark that the assumption
f ∈ L∞(Ω;R3) is not optimal and can be relaxed accordingly. Indeed, following the same line as the proof
for the case with f ∈ L∞(Ω;R3), it is easy to see that the following assumption will be enough:

f ∈ Lr(Ω;R3),
1

r
+

1

6
+

1

γ + Θ
≤ 1.

The differences are mainly that in (3.17), in (3.4)2, and in (3.9), where the norm ‖%ε‖
L

6
5 (Ωε)

has to be

replaced by ‖%ε‖Lγ+Θ(Ωε).

We give a remark concerning the renormalized equation:

Remark 2.1 By DiPerna–Lions’ transport theory (see [7, Section II.3] and the modification in [22, Lemma
3.3]), for any ρ ∈ Lβ(Ω), β ≥ 2, v ∈ W 1,2

0 (Ω;R3), where Ω ⊂ R3 is a bounded domain of class C0,1, such
that

divx(ρv) = 0 in D′(Ω),
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there holds the renormalized equation

divx
(
b(ρ)v

)
+
(
ρb′(ρ)− b(ρ)

)
divxv = 0, in D′(R3),

for any b ∈ C0([0,∞)) ∩ C1((0,∞)) satisfying

b′(s) ≤ C s−λ0 for s ∈ (0, 1], b′(s) ≤ C sλ1 for s ∈ [1,∞) (2.22)

with

C > 0, λ0 < 1, −1 < λ1 ≤
β

2
− 1, (2.23)

provided ρ and v have been extended to be zero outside Ω.

From Remark 2.1 and estimate (2.21) we see that the continuity equation is satisfied in the renormalized
sense with b satisfying weaker assumptions (2.22) and (2.23).

3 Uniform bounds and extension of solutions

For each fixed ε > 0, Theorem 2.1 guarantees the existence of a weak solution (%ε,uε, ϑε) in the sense of

Definition 2.1; in particular %ε ∈ Lγ(Ωε), uε ∈ W 1,2
0 (Ωε;R3), ϑε, ϑ

m
2
ε and log ϑε ∈ W 1,2(Ωε). However, the

norm bounds depend on ε in general. In this section, we will derive uniform estimates for the weak solutions
(%ε,uε, ϑε).

3.1 A priori estimates

By virtue of the weak entropy formulation we can deduce several bounds for our solution sequence
(%ε,uε, ϑε) in Ωε. We use the weak formulation of the entropy inequality (2.20) with test function ψ ≡ 1

and get that (note that
∑N(ε)

n=1 |∂Tn,ε| ∼ ε2α−3 and that α > 3)∫
Ωε

(S(ϑε,∇uε) : ∇uε
ϑε

+
(1 + ϑmε )|∇ϑε|2

ϑ2
ε

)
dx+

∫
∂Ωε

Lϑ0

ϑε
dS ≤ C. (3.1)

Note that the inequality above implies that∫
Ωε

∣∣∣∇(ϑ q2ε )∣∣∣2 dx ≤ C (3.2)

for arbitrary 0 < q < m. Further, let us take ψ ≡ 1 also in the total energy balance (2.19). It gives∫
∂Ωε

Lϑε dS ≤ C
(

1 +

∫
Ωε

%ε|uε|dx
)
. (3.3)
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Since m > 2, we have 1 + ϑmε > ϑ2
ε. Hence by (3.1) and (3.3) we have, due to the form of the stress tensor

and the Korn inequality,1

‖uε‖W 1,2
0 (Ωε)

+ ‖∇ϑε‖L2(Ωε) + ‖∇ log ϑε‖L2(Ωε) + ‖∇|ϑε|
m
2 ‖L2(Ωε) +

∥∥∥ 1

ϑε

∥∥∥
L1(∂Ωε)

≤ C,

‖ϑε‖L1(∂Ωε) ≤ C
(
1 + ‖%ε‖

L
6
5 (Ωε)

)
.

(3.4)

The uniform bound for uε from (3.4) will be enough for us. However, we do not obtain enough uniform
bounds on %ε and ϑε from (3.4). To obtain our desired uniform integrability of %ε, we will employ a Bogovskii
type operator. In this process as shown later in the proof of Lemma 3.3, we shall need the uniform bound
of the norm ‖ϑε‖L3m(Ωε). However, the bounds in (3.4)1 contain only the uniform bounds of ‖∇ϑε‖L2(Ωε)

and ‖∇|ϑε|
m
2 ‖L2(Ωε). Together with (3.4)2 and Poincaré inequality,2 by induction argument, we may derive

that the norm ‖ϑε‖L3m(Ωε) is finite, controlled by the L
6
5 norm of the density. However, we do not know

whether it is uniform with respect to ε→ 0 because the domain Ωε is not uniformly Lipschitz with respect
to ε → 0. We will overcome this difficulty by constructing a proper extension operator to ϑε and work in
the fixed domain Ω. This will be shown in the next two subsections.

3.2 Extensions of the functions

To derive the limit equations defined in the fixed domain Ω, we must extend our triple of functions to
the whole Ω. For the density and the velocity we simply extend the functions by zero. After this extension
we still have

‖uε‖W 1,2
0 (Ω)

= ‖uε‖W 1,2
0 (Ωε)

≤ C, ‖%ε‖Lγ(Ω) = ‖%ε‖Lγ(Ωε).

Note that at this moment, we do not know whether the bound ‖%ε‖Lγ(Ωε) is uniform in ε as ε→ 0.
However, the issue with the temperature is more delicate. We start with a more general result which is

due to Conca and Dorato [5] which uses even an older idea of Cioranescu and Paulin [4]. Since we need a
slightly stronger information from their result, we present the full proof of the result.

1Korn inequality: Let 1 < p <∞. For arbitrary u ∈W 1,p
0 (Rd;Rd) with d ≥ 3, there holds

‖∇u‖Lp(Rd) ≤ C1(p, d)
∥∥∇u +∇Tu

∥∥
Lp(Rd)

≤ C2(p, d)
∥∥∥∇u +∇Tu− 2

d
divu

∥∥∥
Lp(Rd)

.

2Poincaré inequality: Let 1 ≤ p <∞ and Ω be a bounded Lipschitz domain in Rd, d ≥ 2. For each Γ ⊂ ∂Ω with nonzero
surface measure, for arbitrary u ∈W 1,p(Ω), there holds

‖u‖Lp(Ω) ≤ C3(p, d,Γ,Ω)

(
‖∇u‖Lp(Ω) +

∫
Γ

|u|dSx
)
.
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Lemma 3.1 Let Ωε be given by (2.1) and (2.2). There exists an extension operator Eε: W 1,2(Ωε) →
W 1,2(Ω) such that for each ϕ ∈W 1,2(Ωε),

Eεϕ(x) = ϕ(x), x ∈ Ωε,

‖∇Eεϕ‖L2(Tn,ε) ≤ C‖∇ϕ‖L2(B2δ0ε
α (xn,ε)\Tn,ε)

and hence ‖∇Eεϕ‖L2(Ω) ≤ C‖∇ϕ‖L2(Ωε). Moreover, for all 1 ≤ q ≤ ∞,

‖Eεϕ‖Lq(Tn,ε) ≤ C‖ϕ‖Lq(B2δ0ε
α (xn,ε)\Tn,ε).

The constant C is independent of ε and n.
Furthermore, there is an extension operator Ẽε : W 1,2

≥0 (Ωε)→W 1,2
≥0 (Ω) such that the above properties are

also satisfied. Here W 1,2
≥0 (Ωε) denotes the set of nonnegative functions in W 1,2(Ωε).

Proof. We start as in the proof of [5, Lemma A.1]. We namely show the existence of the extension
operator from W 1,2(B2δ0εα(xn,ε) \ Tn,ε) → W 1,2(B2δ0εα(xn,ε)) satisfying the properties above. To this aim,
recall the assumption on the distribution of the holes in (2.2) and let ϕ ∈W 1,2(B2δ0(0) \T 0

n,1). We write for

x ∈ B2δ0(0) \ T 0
n,1

ϕ = Mϕ+ ψ,

where Mϕ := 1
|B2δ0

(0)\T 0
n,1|
∫
B2δ0

(0)\T 0
n,1
ϕdx (the mean value) and Mψ = 0. Since T 0

n,1 are uniformly C2-

domains, then for each n, there exists an extension operator S̃ from W 1,2(B2δ0(0) \ T 0
n,1) to W 1,2(B2δ0(0))

such that for each ψ ∈W 1,2(B2δ0(0) \ T 0
n,1), there holds

S̃ψ(x) = ψ(x), x ∈ B2δ0(0) \ T 0
n,1,

‖S̃ψ‖W 1,2(B2δ0
(0)) ≤ C‖ψ‖W 1,2(B2δ0

(0)\T 0
n,1),

‖S̃ψ‖Lr(B2δ0
(0)) ≤ C‖ψ‖Lr(B2δ0

(0)\T 0
n,1), ∀ 1 ≤ r ≤ ∞,

(3.5)

where C is independent of n and r. We apply S̃ on the function ψ in B2δ0(0) \ T 0
n,1. Since the mean value

of ψ is zero in B2δ0(0) \ T 0
n,1, we get

‖S̃ψ‖W 1,2(B2δ0
(0)) ≤ C‖ψ‖W 1,2(B2δ0

(0)\T 0
n,1) ≤ C‖∇ψ‖L2(B2δ0

(0)\T 0
n,1) = C‖∇ϕ‖L2(B2δ0

(0)\T 0
n,1). (3.6)

We now set for x ∈ B2δ0(0)
Sϕ := Mϕ+ S̃ψ. (3.7)

By (3.5) and (3.6), we still keep

Sϕ(x) = ϕ(x), x ∈ B2δ0(0) \ T 0
n,1,

‖∇Sϕ‖L2(B2δ0
(0)) ≤ C‖∇ϕ‖L2(B2δ0

(0)\T 0
n,1),

‖Sϕ‖Lq(B2δ0
(0)) ≤ C‖ϕ‖Lq(B2δ0

(0)\T 0
n,1), ∀ 1 ≤ q ≤ ∞,

(3.8)
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where the constant C can be taken independent of n.

We are now ready to define our desired extension operator Eε. For each ϕ ∈ W 1,2(B2δ0εα(xn,ε) \ Tn,ε),
set

ϕ̃(y) := ϕ(xn,ε + εαy), ∀ y ∈ B2δ0(0) \ T 0
n,1.

Then ϕ̃ ∈ W 1,2(B2δ0(0) \ T 0
n,1). We apply the extension operator S defined through (3.7) to ϕ̃ and obtain

Sϕ̃ ∈W 1,2(B2δ0(0)). Finally we define the extension operator Eε as

Eεϕ(x) := (Sϕ̃)

(
x− xn,ε
εα

)
.

Clearly Eεϕ ∈ W 1,2(B2δ0εα(xn,ε)) and Eεϕ = ϕ in B2δ0εα(xn,ε) \ Tn,ε due to the first property in (3.8). By
the second property in (3.8), we then calculate∫

B2δ0ε
α (xn,ε)

|∇xEεϕ|2 dx =

∫
B2δ0ε

α (xn,ε)
ε−2α

∣∣∣∣(∇ySϕ̃)

(
x− xn,ε
εα

)∣∣∣∣2 dx

= εα
∫
B2δ0

(0)
|(∇ySϕ̃)(y)|2 dy

≤ Cεα
∫
B2δ0

(0)\T 0
n,1

|∇yϕ̃|2 dy

= C

∫
B2δ0ε

α (xn,ε)\Tn,ε
|∇xϕ|2 dx.

The third property in (3.8) yields

‖Eεϕ‖Lq(Tn,ε) ≤ C‖ϕ‖Lq(B2δ0ε
α (xn,ε)\Tn,ε), ∀ 1 ≤ q ≤ ∞.

To obtain the extension from W 1,2(Ωε) to W 1,2(Ω), we simply sum the extensions for n = 1 to N(ε).

To finish the proof, we assume that the function ϕ is nonnegative. It is sufficient to modify the
construction by taking

Ẽεϕ := max{0, Eεϕ},
and recall that

‖∇Ẽεϕ‖L2(B2δ0ε
α (xn,ε)) ≤ ‖∇Eεϕ‖L2(B2δ0ε

α (xn,ε))

and
‖Ẽεϕ‖Lq(B2δ0ε

α (xn,ε)) ≤ ‖Eεϕ‖Lq(B2δ0ε
α (xn,ε)), ∀ 1 ≤ q ≤ ∞.

2

Remark 3.1 Indeed, in the previous lemma we can replace the L2 norm of the gradient by an arbitrary Lp

norm with 1 ≤ p ≤ ∞, as well as instead of three space dimensions we can work in Rd, d ≥ 2. However, we
do not need all these generalizations in this paper.
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3.3 Uniform estimates on temperature

We apply this extension Ẽε on ϑε and we have the following result:

Lemma 3.2 The extended temperature Ẽεϑε satisfies the estimates

‖Ẽεϑε‖W 1,2(Ω) + ‖Ẽεϑε‖L3m(Ω) ≤ C(1 + ‖%ε‖
L

6
5 (Ωε)

), (3.9)

where C is independent of ε.

Proof. First of all, since ϑε ∈ W 1,2(Ωε) and ϑε > 0 a.e. in Ωε, we have Ẽεϑε ∈ W 1,2(Ω) and Ẽεϑε ≥ 0
a.e. in Ω. The point is to have uniform control of the norms in (3.9).

The extension Ẽϑε coincides with ϑε near the boundary ∂Ω. Thus, by (3.4), Lemma 3.1, and Poincaré
inequality, we have

‖∇Ẽϑε‖L2(Ω) ≤ C‖∇ϑε‖L2(Ωε) ≤ C,

‖Ẽϑε‖L2(Ω) ≤ C
(
‖∇Ẽϑε‖L2(Ω) +

∫
∂Ω
|Ẽϑε|dS

)
= C

(
‖∇Ẽϑε‖L2(Ω) +

∫
∂Ω
|ϑε|dS

)
≤ C

(
1 + ‖%ε‖

L
6
5 (Ωε)

)
.

Thus
‖Ẽϑε‖W 1,2(Ω) ≤ C

(
1 + ‖%ε‖

L
6
5 (Ωε)

)
.

Then the Sobolev embedding implies that

‖Ẽεϑε‖L6(Ω) ≤ C‖Ẽεϑε‖W 1,2(Ω) ≤ C
(
1 + ‖%ε‖

L
6
5 (Ωε)

)
.

Since Ẽεϑε coincides with ϑε in Ωε, we deduce that

‖ϑε‖L6(Ωε) = ‖Ẽεϑε‖L6(Ωε) ≤ C
(
1 + ‖%ε‖

L
6
5 (Ωε)

)
.

We now show that also the L3m(Ωε)-norm of ϑε satisfies the same bound. Then the result follows from
Lemma 3.1.

Denote q1 := min{6,m}. Recall that ∥∥∥∇(ϑ q12ε )∥∥∥
L2(Ωε)

≤ C.

It follows from (3.10) that∥∥∥ϑ q12ε ∥∥∥
L2(Ωε)

= ‖ϑε‖
q1
2

Lq1 (Ωε)
≤ C‖ϑε‖

q1
2

Lq1 (Ωε)
≤ C

(
1 + ‖%ε‖

q1
2

L
6
5 (Ωε)

)
.
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Together with (3.2), we have ∥∥∥ϑ q12ε ∥∥∥
W 1,2(Ωε)

≤ C
(
1 + ‖%ε‖

q1
2

L
6
5 (Ωε)

)
.

Then we apply the extension operator Ẽ from Lemma 3.1 on ϑ
q1
2
ε and we have∥∥∥Ẽ(ϑ q12ε )∥∥∥

W 1,2(Ω)
≤ C

(
1 + ‖%ε‖

q1
2

L
6
5 (Ωε)

)
.

Again by Sobolev embedding, we deduce∥∥∥Ẽ(ϑ q12ε )∥∥∥
L6(Ω)

≤ C
(
1 + ‖%ε‖

q1
2

L
6
5 (Ωε)

)
.

Since Ẽε(ϑ
q1
2
ε ) coincides with ϑ

q1
2
ε in Ωε, we deduce that

‖ϑε‖L3q1 (Ωε) =
∥∥∥ϑ q12ε ∥∥∥ 2

q1

L6(Ωε)
≤
∥∥∥Ẽ(ϑ q12ε )∥∥∥ 2

q1

L6(Ω)
≤ C

(
1 + ‖%ε‖

L
6
5 (Ωε)

)
.

If m > q1, we set q2 = min{18,m} and proceed as above. By induction, after finite number of steps, we
find qk such that qk = m.

At the end, since we know that ‖ϑε‖L3m(Ωε) ≤ C
(
1 + ‖%ε‖

L
6
5 (Ωε)

)
, the same holds also for the L3m-norm

of Ẽϑε in Ω. 2

3.4 Uniform bound on density

In order to estimate the density, we use the result of Diening, Feireisl and Lu (see [6, Theorem 2.3]). It
reads

Theorem 3.1 Let a family of domains Ωε be defined by (2.1) and (2.2). Then there exists a family of linear
operators

Bε : Lq0(Ωε)→W 1,q
0 (Ωε;R3), 1 < q <∞,

such that for arbitrary f ∈ Lq0(Ωε) it holds

divxBε(f) = f a.e. in Ωε,

‖Bε(f)‖
W 1,q

0 (Ωε)
≤ C

(
1 + ε

(3−q)α−3
q

)
‖f‖Lq(Ωε),

where the constant C is independent of ε. Here Lq0(Ωε) denote the set of Lq(Ωε) functions which have zero
mean value.
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In bounded Lipschitz domain the existence of Bogovskii operator is well-known (see [3], [15]). While the
operator norm depends on the Lipschitz character of the domain, and for the perforated domain Ωε, its
Lipschitz norm is unbounded as ε → 0 due to the presence of small holes. The above result gives a
Bogovskii type operator on perforated domain Ωε with a precise dependency of the operator norm on ε. For
some ε and q, such a Bogovskii-type operator is uniformly bounded.

Using this result we may get the following estimate of the density:

Lemma 3.3 Let γ > 2, m > 2 and α > max
{2γ−3
γ−2 ,

3m−2
m−2

}
. Then the sequence {%ε} is bounded in Lγ+Θ(Ωε),

where

Θ = min
{

2γ − 3, γ
3m− 2

3m+ 2

}
. (3.10)

Proof. We use the version of the Bogovskii operator from Theorem 3.1 and consider the following test
function in (2.18):

ϕϕϕ := Bε
(
%Θ
ε − 〈%Θ

ε 〉
)
, 〈%Θ

ε 〉 :=
1

|Ωε|

∫
Ωε

%Θ
ε dx,

where Θ > 0 is to be determined. Recall that

‖∇ϕϕϕ‖Lq(Ωε)CAε,q‖%
Θ
ε ‖Lq(Ωε), with Aε,q := 1 + ε

(3−q)α−3
q . (3.11)

We see that Aε,q is independent of ε provided 1 < q < 3 satisfying (3− q)α− 3 ≥ 0. We get∫
Ωε

p(%ε, ϑε)%
Θ
ε dx =

∫
Ωε

(
p(%ε, ϑε)

1

|Ωε|

∫
Ωε

%Θ
ε dx−%ε(uε⊗uε) : ∇ϕϕϕ+S(ϑε,∇uε) : ∇ϕϕϕ−%εf ·ϕϕϕ

)
dx. (3.12)

We now estimate the right hand-side of (3.12) term by term. We start with the two most restrictive terms
which give the limit on the exponent Θ. First, we consider∣∣∣ ∫

Ωε

%ε(uε ⊗ uε) : ∇ϕϕϕdx
∣∣∣ ≤ ‖uε‖2L6(Ωε)

‖%ε‖Lγ+Θ(Ωε)‖∇ϕϕϕ‖Lq1 (Ωε)

≤ CAε,q1‖uε‖2L6(Ωε)
‖%ε‖Lγ+Θ(Ωε)‖%

Θ
ε ‖Lq1 (Ωε)

≤ CAε,q1‖uε‖2L6(Ωε)
‖%ε‖Lγ+Θ(Ωε)‖%ε‖

Θ
Lq1Θ(Ωε)

,

(3.13)

where Aε,q1 is defined in (3.11) with q = q1, and

1

q1
= 1− 1

3
− 1

γ + Θ
. (3.14)

We want to choose Θ as large as possible such that %ε enjoys as high as possible uniform integrability. For
this reason, we choose Θ such that q1Θ = γ + Θ. Together with (3.14), we end up with

Θ = Θ1 := 2γ − 3 > 1, q1 =
3(γ − 1)

2γ − 3
, (3− q1)α− 3 = 3

[
γ − 2

2γ − 3
α− 1

]
.
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Hence, under the condition
γ − 2

2γ − 3
α ≥ 1,

we have Aε,q1 independent of ε. Then by using (3.4), we deduce from (3.13) that∣∣∣ ∫
Ωε

%ε(uε ⊗ uε) : ∇ϕϕϕdx
∣∣∣ ≤ C‖%ε‖Θ1+1

Lγ+Θ1 (Ωε)
,

where in particular C is independent of ε and Θ1 + 1 < γ + Θ1.

Next, by virtue of Lemma 3.2, we have∣∣∣ ∫
Ωε

S(ϑε,∇uε) : ∇ϕϕϕdx
∣∣∣ ≤ CAε, 6m

3m−2
(1 + ‖ϑε‖L3m(Ωε))‖∇uε‖L2(Ωε)‖∇ϕϕϕ‖L 6m

3m−2 (Ωε)

≤ CAε, 6m
3m−2

(
1 + ‖%ε‖

L
6
5 (Ωε)

)
‖∇uε‖L2(Ωε)‖%

Θ
ε ‖

L
6m

3m−2 (Ωε)

≤ CAε, 6m
3m−2
‖∇uε‖L2(Ωε)

(
1 + ‖%ε‖Θ+1

L
6mΘ
3m−2 (Ωε)

)
,

(3.15)

where Aε, 6m
3m−2

is defined in the same manner as Aε,q in (3.11). We choose Θ such that 6mΘ
3m−2 = γ + Θ and

we end up with

Θ = Θ2 :=
γ(3m− 2)

(3m+ 2)
> 1,

(
3− 6m

3m− 2

)
α− 3 = 3

[
m− 2

3m− 2
α− 1

]
.

We see Aε, 6m
3m−2

is independent of ε provided m−2
3m−2α ≥ 1. Moreover by using (3.4) we deduce from (3.15)

that ∣∣∣ ∫
Ωε

S(ϑε,∇uε) : ∇ϕϕϕdx
∣∣∣ ≤ C (1 + ‖%ε‖Θ2+1

Lγ+Θ2 (Ωε)

)
. (3.16)

From (3.13)–(3.16), we see that by choosing

Θ := min{Θ1,Θ2} = min
{

2γ − 3, γ
3m− 2

3m+ 2

}
> 1, α > max

{2γ − 3

γ − 2
,
3m− 2

m− 2

}
> 3,

there holds ∣∣∣ ∫
Ωε

%ε(uε ⊗ uε) : ∇ϕϕϕdx
∣∣∣+
∣∣∣ ∫

Ωε

S(ϑε,∇uε) : ∇ϕϕϕdx
∣∣∣ ≤ C (1 + ‖%ε‖Θ+1

Lγ+Θ(Ωε)

)
. (3.17)

Further, due to the restriction Θ ≤ 2γ−3 we have 3
2Θ < γ+Θ; note also that ‖ϕϕϕ‖L3(Ωε) ≤ C‖∇ϕϕϕ‖L3/2(Ωε)

holds with a constant independent of ε due to the zero trace of ϕϕϕ on ∂Ωε; we thus deduce∣∣∣ ∫
Ωε

%εf ·ϕϕϕdx
∣∣∣ ≤ ‖f‖L∞(Ωε)‖%ε‖L3/2(Ωε)

‖ϕϕϕ‖L3(Ωε)

≤ C‖f‖L∞(Ωε)‖%ε‖L3/2(Ωε)
‖∇ϕϕϕ‖L3/2(Ωε)

≤ C‖%ε‖1+Θ
Lγ+Θ(Ω)

.

(3.18)
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Finally, due to the form of the pressure,∫
Ωε

p(%ε, ϑε) dx
1

|Ωε|

∫
Ωε

%Θ
ε dx ≤ C

∫
Ωε

(%εϑε + %γε ) dx

∫
Ωε

%Θ
ε dx

≤ C
(
‖ϑε‖L6(Ωε)‖%ε‖L 6

5 (Ωε)
+ ‖%ε‖γLγ(Ωε)

)
‖%ε‖ΘLΘ(Ωε)

≤ C
(

1 + ‖%ε‖2
L

6
5 (Ωε)

+ ‖%ε‖γLγ(Ωε)

)
‖%ε‖ΘLΘ(Ωε)

≤ C
(

1 + ‖%ε‖γLγ(Ωε)
‖%ε‖ΘLΘ(Ωε)

)
≤ C

(
1 + ‖%ε‖λLγ+Θ(Ωε)

)
,

(3.19)

for some λ < γ + Θ. Here we used Lemma 3.2 and the fact γ > 2. In the last inequality in (3.19) we used
the interpolation between the L1 and Lγ+Θ norms to control ‖%ε‖Lγ(Ωε) and ‖%ε‖LΘ(Ωε), as we control the

L1 norm of the density (i.e., the total mass).

Collecting the estimates in (3.17), (3.18) and (3.19), we derive from (3.12) that

‖%ε‖γ+Θ
Lγ+Θ(Ωε)

≤ C
(

1 + ‖%ε‖λLγ+Θ(Ωε)

)
, for some 1 < λ < γ + Θ.

This immediately implies our desired uniform bound ‖%ε‖Lγ+Θ(Ωε) ≤ C, and we completed the proof.
2

3.5 Summary of the uniform bounds

To summarize, by Lemma 3.2 and Lemma 3.3, together with (3.4), the sequence of weak solutions
(%ε,uε, ϑε) satisfies

‖uε‖W 1,2
0 (Ωε)

+ ‖%ε‖Lγ+Θ(Ωε) + ‖ϑε‖W 1,2(Ωε) + ‖∇ log ϑε‖L2(Ωε) + ‖ϑ
m
2
ε ‖W 1,2(Ωε) + ‖ϑε‖L3m(Ωε) ≤ C,

‖ϑε‖L1(∂Ωε) + ‖ϑ−1
ε ‖L1(∂Ωε) ≤ C,

(3.20)

where Θ is as in Lemma 3.3.

Starting from the solution sequence (%ε,uε, ϑε), we extend %ε and uε to the whole domain Ω by zero
extension. For the temperature ϑε, we consider the extension Ẽϑε where the extension operator Ẽ is defined
in Lemma 3.1. Then we find a sequence of extension of functions, still denoted by %ε,uε, ϑε, which coincide
with the original functions on Ωε. Moreover, by (3.20), we have the following uniform bounds

‖uε‖W 1,2(Ω) ≤ C, ‖%ε‖Lγ+Θ(Ω) ≤ C, ‖ϑε‖W 1,2(Ω) + ‖ϑε‖L3m(Ω) ≤ C. (3.21)
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3.6 Trace estimates for ϑε

The last information we need is a version of the trace theorem. Indeed, in a fixed domain, the trace of
ϑε belongs to L2m(∂Ωε). The question is whether we can control its norm uniformly with respect to ε. The
following lemma gives a quantitative estimate on each ∂Tn,ε.

Lemma 3.4 Under the assumptions stated in Theorem 2.2 there holds

‖ϑε‖2mL2m(∂Tn,ε)
≤ C

(
‖∇|ϑε|

m
2 ‖2L2(B2δ0ε

α (xn,ε)\Tn,ε) + ‖ϑε‖3mL3m(B2δ0ε
α (xn,ε)\Tn,ε) + ‖ϑε‖2mL3m(B2δ0ε

α (xn,ε)\Tn,ε)
)
,

where the constant C is independent of ε and n.

Proof. Recalling the standard proof of the trace theorem for Sobolev functions (see, e.g., [8]), one can
arrive at (by partition of unity and smooth approximation) the following inequality∫

∂Tn,ε

|ϑε|2m dS ≤ C
∫
B2δ0ε

α (xn,ε)\Tn,ε

∣∣∇(ϕε|ϑε|2m)
∣∣ dx, (3.22)

where the function ϕε is a non-negative and smooth cut-off function which equals to 1 on ∂Tn,ε and vanishes
near ∂B2δ0εα(xn,ε), hence its gradient is bounded by Cε−α, due to the fact that the domain Tn,ε is close
to a ball with diameter εα, uniformly with respect to ε. To finish the proof, we need to estimate the right
hand-side of the inequality (3.22). We calculate∫

B2δ0ε
α (xn,ε)\Tn,ε

∣∣∇(ϕε|ϑε|2m)
∣∣ dx

≤
∫
B2δ0ε

α (xn,ε)\Tn,ε
|∇ϕε||ϑε|2m dx+

∫
B2δ0ε

α (xn,ε)\Tn,ε
ϕε
∣∣∇|ϑε|2m∣∣dx

≤ Cε−α
∫
B2δ0ε

α (xn,ε)\Tn,ε
|ϑε|2m dx+ C

∫
B2δ0ε

α (xn,ε)\Tn,ε

∣∣∇|ϑε|m2 ∣∣|ϑε| 3m2 dx

≤ C
(∫

B2δ0ε
α (xn,ε)\Tn,ε

|ϑε|3m dx
) 2

3

+ C
(∫

B2δ0ε
α (xn,ε)\Tn,ε

∣∣∇|ϑε|m2 ∣∣2 dx
) 1

2
(∫

B2δ0ε
α (xn,ε)\Tn,ε

|ϑε|3m dx
) 1

2
.

This implies that ∫
∂Tn,ε

|ϑε|2m dS ≤ C
(∫

B2δ0ε
α (xn,ε)\Tn,ε

|ϑε|3m dx
) 2

3

+ C

∫
B2δ0ε

α (xn,ε)\Tn,ε

∣∣∇|ϑε|m2 ∣∣2 dx+ C

∫
B2δ0ε

α (xn,ε)\Tn,ε
|ϑε|3m dx,

(3.23)
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which leads to the desired inequality.
2

A direct corollary from Lemma 3.4 is the following trace estimate on the whole boundary of the holes. We
will see that this estimate is not uniformly bounded as ε → 0. However, we obtain an explicit dependency
on ε. This will be needed later when passing to the limit in the total energy balance.

Corollary 3.1 Under the assumptions stated in Theorem 2.2 there holds

‖ϑε‖L2m(∪N(ε)
n=1 ∂Tn,ε)

≤ Cε−
1

2m .

Proof. By Lemma 3.4 (by (3.23) specifically), we have

∫
∪N(ε)
n=1 ∂Tn,ε

|ϑε|2m dS =

N(ε)∑
n=1

∫
∂Tn,ε

|ϑε|2m dS

≤ C
N(ε)∑
n=1

(∫
B2δ0ε

α (xn,ε)\Tn,ε
|ϑε|3m dx

) 2
3

+ C

N(ε)∑
n=1

∫
B2δ0ε

α (xn,ε)\Tn,ε

∣∣∇|ϑε|m2 ∣∣2 dx+ C

N(ε)∑
n=1

∫
B2δ0ε

α (xn,ε)\Tn,ε
|ϑε|3m dx

≤ C

N(ε)∑
n=1

(∫
B2δ0ε

α (xn,ε)\Tn,ε
|ϑε|3m dx

) 2
3
N(ε)∑
n=1

1

 1
3

+ C

∫
Ωε

∣∣∇|ϑε|m2 ∣∣2 dx+ C

∫
Ωε

|ϑε|3m dx

≤ Cε−1,

where we used the uniform boundedness of ‖∇|ϑε|
m
2 ‖L2(Ωε) and ‖ϑε‖L3m(Ωε). Our desired result follows

immediately.
2

4 Limit passage

To conclude, we need to show that, up to a remainder which goes to zero when ε→ 0, the functions fulfil
the weak formulations of the continuity, momentum and energy equations in the whole Ω. This will be the
goal of the following two subsections (for the continuity equations there is nothing to do). To show that the
weak limits of the sequences form in fact a weak solution to the steady compressible Navier–Stokes–Fourier
system we will have to show the strong convergence of the density sequence. This is, however, nowadays
standard in the mathematical fluid mechanics of compressible fluids. Last but not least, we have to check

17



that the limit of the temperatures is in fact positive a.e. in Ω since the extensions could become zero on a

nontrivial set, however, this set is contained in
⋃N(ε)
n=1 Tn,ε which is a set whose measure is of order O(ε3(α−1))

when ε→ 0.

First of all, from the uniform bound in (3.21), up to a selection of subsequences, we have the following
convergence results:

uε → u weakly in W 1,2
0 (Ω;R3), uε → u strongly in Lr(Ω;R3), for all 1 ≤ r < 6,

%ε → % weakly in Lγ+Θ(Ω),

ϑε → ϑ weakly in W 1,2(Ω), ϑε → ϑ strongly in Lr(Ω), for all 1 ≤ r < 3m.

(4.1)

4.1 Limit passage in the energy equation

We now want to show that for the extended solution (%ε,uε, ϑε), the energy balance in Ω is satisfied up
to a small remainder which goes to zero as ε→ 0. Moreover, we show that passing with ε→ 0, we get the
weak formulation of the total energy balance in Ω for the limit functions (%,u, ϑ). Here we, however, need
to show the strong convergence of the sequence of densities which is not obvious, but nowadays standard.
This is postponed to the last section.

Recall that uε = 0 on Ω \ Ωε. We then can rewrite the weak formulation of the total energy balance as
follows:

−
∫

Ω

(
%ε
(
e(%ε, ϑε) +

1

2
|uε|2

)
uε + p(%ε, ϑε)uε − S(ϑε,∇uε)uε − κ(ϑε)∇ϑε

)
· ∇ψ dx

+

∫
∂Ω
L(ϑε − ϑ0)ψ dS −

∫
Ω
%εf · uεψ dx

=

∫
Ω\Ωε

κ(ϑε)∇ϑε · ∇ψ dx−
∫
∪N(ε)
n=1 ∂Tn,ε

L(ϑε − ϑ0)ψ dS

=: I1 + I2

for each ψ ∈ C1(Ω). Let us show that both integrals on the right hand-side disappear when ε → 0. By
Hölder’s inequality, we have, as ε→ 0,

|I1| ≤ C‖∇ψ‖L∞(1 + ‖ϑε‖mL3m(Ω\Ωε))‖∇ϑε‖L2(Ω\Ωε)|Ω \ Ωε|
1
6 → 0.

Using Corollary 3.1 and the fact that the sequence ‖ϑ0‖Lq(∂Ωε) is bounded with respect to ε for some q > 1,
together with the fact that α > 3 and m > 2, we have

|I2| ≤ C
(
‖ϑε‖L2m(∪N(ε)

n=1 ∂Tn,ε)

∣∣∣N(ε)⋃
n=1

∂Tn,ε

∣∣∣ 2m−1
2m

+ ‖ϑ0‖Lq(∪N(ε)
n=1 ∂Tn,ε)

∣∣∣N(ε)⋃
n=1

∂Tn,ε

∣∣∣ q−1
q
)

≤ Cε−
1

2m ε(2α−3) 2m−1
2m + Cε

(2α−3) q−1
q

≤ Cε
(2m−1)(2α−3)−1

2m + Cε
(2α−3) q−1

q → 0, as ε→ 0.
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Hence, passing to the limit on the left hand-side, recalling that uε → u strongly in Lr(Ω;R3) with all
1 ≤ r < 6 and ϑε → ϑ strongly in Lr(Ω) with all 1 ≤ r < 3m, we get (recall that as α > 3m−2

m−2 , we know
(2m− 1)(2α− 3) > 1)

−
∫

Ω

((
%e(%, ϑ) + %

1

2
|u|2

)
u + p(%, ϑ)u− S(ϑ,∇u)u−κ(ϑ)∇ϑ

)
· ∇ψ dx+

∫
∂Ω
L(ϑ−ϑ0)ψ dS =

∫
Ω
%f ·uψ dx,

(4.2)
where we used the notation g(%) being a weak limit of g(%ε) in some suitable Lr(Ω) space. To conclude that
we get the total energy balance for the limit functions we need to show that the sequence of densities %ε
converges in fact strongly to % at least in L1(Ω). This will be the aim of the last subsection.

We finish this subsection by the following result.

Lemma 4.1 The limit temperature ϑ is positive a.e. in Ω.

Proof. We first apply the extension operator Eε constructed in Lemma 3.1 on the sequence log ϑε.
3 By

the uniform bounds on ‖∇ log ϑε‖L2(Ωε) obtained in (3.20) and Lemma 3.1, we have

‖∇Eε(log ϑε)‖L2(Ω) ≤ C‖∇ log ϑε‖L2(Ωε) ≤ C.

By the uniform bounds on ‖ϑε‖L1(∂Ωε) + ‖ϑ−1
ε ‖L1(∂Ωε) obtained in (3.20), using the inequality | log t| ≤

C(t+ t−1), we see that∫
∂Ω
|Eε(log ϑε)|dS =

∫
∂Ω
| log ϑε|dS ≤ C

∫
∂Ω
ϑε dS + C

∫
∂Ω
ϑ−1
ε dS ≤ C.

Then applying Poincaré inequality yields that

‖Eε(log ϑε)‖L2(Ω) ≤ C
(
‖∇Eε log ϑε‖L2(Ω) +

∫
∂Ω
|Eε log ϑε|dS

)
≤ C.

We thus have that the sequence Eε(log ϑε) is bounded in W 1,2(Ω) and in particular, up to a subsequence,
Eε(log ϑε)→ z in Lr(Ω) for all 1 ≤ r < 6 and a.e. in Ω. In particular, z > −∞ a.e. in Ω.

Next, we take a specific sequence of εl → 0 such that εl ≤ 1
l for all l ∈ N. Note that the three-dimensional

Lebesgue measure ∣∣∣N(εl)⋃
n=1

Tn,εl

∣∣∣ ≤ C

l3(α−1)
,

and since α > 2, the series
∑∞

l=1
1

l3(α−1) is convergent. Let us denote for l0 ∈ N

Dl0 =
∞⋃
l=l0

N(εl)⋃
n=1

Tn,εl .

3Recall that in Ω \ Ωε in general log Ẽε(ϑε) 6= Eε(log ϑε).
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Then for any δ > 0 there exists l0 ∈ N such that the three-dimensional Lebesgue measure of Dl0 is smaller
than δ.

Let us assume that the limit temperature constructed in (4.1) is zero on a set of positive three-dimensional
Lebesgue measure, say of measure δ0 > 0. We take l0 corresponding to δ0/2 from the above construction,
where we chose a subsequence from ε → 0 such that εl ≤ 1

l with l ≥ l0. Since we know that our sequence

of temperatures Ẽεϑεl converges strongly in Lq(Ω) for any q < 3m and a.e. in Ω, it also converges a.e. in
Ω \Dl0 . Hence we know that log(Ẽεϑε) converges strongly in Lq(Ω \Dl0) for some q ≥ 1 and a.e. in Ω \Dl0

to log ϑ, e.g., by virtue of Vitali’s convergence theorem. But then also lnϑ = z > −∞ a.e. in Ω \Dl0 . This
means that the limit temperature ϑ could be zero at most on Dl0 together with a set of measure zero. Thus
ϑ cannot be zero on a set of measure δ0 which leads to a contradiction. 2

4.2 Limit passage in the continuity and the momentum equation

First, recall that the continuity equation is satisfied in the weak and renormalized sense (2.16) and (2.17)
for all ψ ∈ C1

0 (Rd) with b ∈ C0([0,∞)) ∩ C1((0,∞)) satisfying (2.22) and (2.23). Passing with ε → 0 and
applying (4.1) yields

divx(%u) = 0 holds in D′(R3) (4.3)

and
divx

(
b(%)u

)
+
(
%b′(%)− b(%)

)
divxu = 0 holds in D′(R3),

where we used the common notation g(u) denoting the weak limit of g(un) for a nonlinear function g.
Moreover, by (4.1), (4.3) and Remark 2.1, we have (recall that γ ≥ 2)

divx
(
b(%)u

)
+
(
%b′(%)− b(%)

)
divxu = 0, holds in D′(R3), (4.4)

for any b ∈ C0([0,∞)) ∩ C1((0,∞)) satisfying (2.22) and (2.23).

It is more complicated to deduce a modified momentum system in homogeneous domain Ω, due to the
choice of test functions: the original momentum equations are satisfied in Ωε and one should choose C1

c (Ωε)
test function, while our target equations are defined in Ω and one should choose C1

c (Ω) test functions. We
will employ the argument in [6] and prove the following lemma:

Lemma 4.2 Under the assumptions in Theorem 2.2, there holds

div(%εuε ⊗ uε) +∇p(%ε, ϑε)− divS(ϑε,∇uε) = %εf + rε, in D′(Ω), (4.5)

where the distribution rε is small in the following sense:

|〈rε,ϕϕϕ〉D′(Ω),D(Ω)| ≤ C εδ1
(
‖∇ϕϕϕ‖

L
3(γ+Θ)

2(γ+Θ)−3
+δ0 (Ω)

+ ‖ϕϕϕ‖Lr1 (Ω)

)
, (4.6)

for all ϕϕϕ ∈ C∞c (Ω;R3), where Θ is given by (3.10), δ0 > 0 is chosen such that (4.11) or (4.16) is satisfied,
1 < r1 <∞ is determined by (4.8) and δ1 > 0 is defined in (4.18) later on.
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Proof. From the assumptions on the holes in (2.2), we can find a sequence of smooth functions
gε ∈ C∞(Ω) such that

0 ≤ gε ≤ 1, gε = 0 on

N(ε)⋃
n=1

Tn,ε, gε = 1 in Ω \
N(ε)⋃
n=1

B2δ0εα(xε,n), ‖∇gε‖L∞(Ω) ≤ C ε−α.

Then for each 1 ≤ r ≤ ∞, there holds

‖1− gε‖Lr(Ω) ≤ C ε
3(α−1)

r , ‖∇gε‖Lr(Ω) ≤ C ε
3(α−1)

r
−α. (4.7)

Let ϕϕϕ ∈ C∞c (Ω;R3). Then ϕϕϕgε ∈ C∞c (Ωε;R3) is a good test function for the momentum equations (2.4)
in Ωε. Direct calculation gives∫

Ω

(
%ε(uε ⊗ uε) : ∇ϕϕϕ+ p(%ε, ϑε) divϕϕϕ− S(ϑε,∇uε) : ∇ϕϕϕ+ %εf ·ϕϕϕ

)
dx

=

∫
Ωε

(
%ε(uε ⊗ uε) : ∇(ϕϕϕgε) + p(%ε, ϑε) div(ϕϕϕgε)− S(ϑε,∇uε) : ∇(ϕϕϕgε) + %εf · (ϕϕϕgε)

)
dx+ Iε

= Iε,

where Iε :=
∑4

j=1 Ij,ε with:

I1,ε :=

∫
Ω

(
%ε(uε ⊗ uε) : (1− gε)∇ϕϕϕ− %ε(uε ⊗ uε) : (∇gε ⊗ϕϕϕ)

)
dx,

I2,ε :=

∫
Ω

(
p(%ε, ϑε)(1− gε)divϕϕϕ− p(%ε, ϑε)∇gε ·ϕϕϕ

)
dx,

I3,ε :=

∫
Ω

(
− S(ϑε,∇uε) : (1− gε)∇ϕϕϕ+ S(ϑε,∇uε) : (∇gε ⊗ϕϕϕ)

)
dx,

I4,ε :=

∫
Ω
%εf · (1− gε)ϕϕϕ dx.

For I1,ε we estimate

|I1,ε| ≤ C ‖%ε‖Lγ+Θ(Ω)‖uε‖2L6(Ω)

(
‖(1− gε)∇ϕϕϕ‖

L
3(γ+Θ)

2(γ+Θ)−3 (Ω)
+ ‖∇gε ⊗ϕϕϕ‖

L
3(γ+Θ)

2(γ+Θ)−3 (Ω)

)
≤ C

(
‖1− gε‖Lr1 (Ω)‖∇ϕϕϕ‖

L
3(γ+Θ)

2(γ+Θ)−3
+δ0 (Ω)

+ ‖∇gε‖
L

3(γ+Θ)
2(γ+Θ)−3

+δ0 (Ω)
‖ϕϕϕ‖Lr1 (Ω)

)
,

where

0 < δ0 < 1, 1 < r1 <∞,
1

r1
+

(
3(γ + Θ)

2(γ + Θ)− 3
+ δ0

)−1

=
2(γ + Θ)− 3

3(γ + Θ)
. (4.8)
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By virtue of (4.7), we have

‖1− gε‖Lr1 (Ω) ≤ C ε
3(α−1)
r1 , ‖∇gε‖

L
3(γ+Θ)

2(γ+Θ)−3
+δ0 (Ω)

≤ C ε3(α−1)
(

3(γ+Θ)
2(γ+Θ)−3

+δ0
)−1
−α
. (4.9)

By the definition of Θ in Theorem 2.2 (or in Lemma 3.3), we will calculate the sign of the power to ε in
(4.9) for two cases.

The first case is

Θ = min
{

2γ − 3, γ
3m− 2

3m+ 2

}
= 2γ − 3.

Then

3(α− 1)

(
3(γ + Θ)

2(γ + Θ)− 3

)−1

− α = 3(α− 1)

(
3γ − 3

2γ − 3

)−1

− α =
αγ − 2α− 2γ + 3

γ − 1
> 0, (4.10)

where we used the condition

α > max
{2γ − 3

γ − 2
,
3m− 2

m− 2

}
≥ 2γ − 3

γ − 2

which implies
αγ − 2α− 2γ + 3 > 0.

Then by (4.9) and (4.10), we can choose δ0 > 0 small enough such that

3(α− 1)

(
3(γ + Θ)

2(γ + Θ)− 3
+ δ0

)−1

− α =: h1(δ0) > 0. (4.11)

We finally obtain in this case

|I1,ε| ≤ C εδ1
(
‖∇ϕϕϕ‖

L
3γ−3
2γ−3 +δ0 (Ω)

+ ‖ϕϕϕ‖Lr1 (Ω)

)
,

where

δ1 := min

{
3(α− 1)

r1
, h1(δ0)

}
> 0

with δ0 > 0 chosen such that (4.11) is satisfied and 1 < r1 <∞ is determined by (4.8).

The second case is

Θ = min
{

2γ − 3, γ
3m− 2

3m+ 2

}
= γ

3m− 2

3m+ 2
. (4.12)

Then

3(α− 1)

(
3(γ + Θ)

2(γ + Θ)− 3

)−1

− α = 3(α− 1)
4γm− (3m+ 2)

6mγ
− α

=
α(2γm− 3m− 2)− 4γm+ 3m+ 2

2mγ

=: h2(α).
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Since γ > 2,m > 2, then

h′2(α) =
2γm− 3m− 2

2mγ
>
m− 2

2mγ
> 0, (4.13)

which means that h is strictly increasing in α. Moreover,

h2

(3m− 2

m− 2

)
=

(m+ 2)γ − (3m+ 2)

γ(m− 2)
. (4.14)

Recalling in this case (4.12), we have

2γ − 3 ≥ γ 3m− 2

3m+ 2
⇐⇒ 2γ − γ 3m− 2

3m+ 2
≥ 3

⇐⇒ γ
m+ 2

3m+ 2
≥ 1⇐⇒ γ ≥ 3m+ 2

m+ 2
.

(4.15)

By (4.14) and (4.15), we obtain in case (4.12) that

h2

(3m− 2

m− 2

)
≥ 0.

Hence, by (4.13) we deduce

h2(α) = 3(α− 1)

(
3(γ + Θ)

2(γ + Θ)− 3

)−1

− α > 0

for all

α > max
{2γ − 3

γ − 2
,
3m− 2

m− 2

}
≥ 3m− 2

m− 2
.

Then we can repeat the argument for the first case and choose δ0 > 0 small enough such that

3(α− 1)
( 3(γ + Θ)

2(γ + Θ)− 3
+ δ0

)−1
− α =: h3(δ0) > 0. (4.16)

We finally have
|I1,ε| ≤ C εδ1

(
‖∇ϕϕϕ‖

L
3(γ+Θ)

2(γ+Θ)−3
+δ0 (Ω)

+ ‖ϕϕϕ‖Lr1 (Ω)

)
, (4.17)

where

δ1 := min

{
3(α− 1)

r1
, h3(δ0)

}
> 0 (4.18)

with δ0 > 0 is chosen such that (4.16) is satisfied and 1 < r1 <∞ is determined by (4.8).

The estimates for other Ij,ε are similar and the results are the same (or even better). Thus we may write

|I2,ε|+ |I3,ε|+ |I4,ε| ≤ C εδ1
(
‖∇ϕϕϕ‖

L
3(γ+Θ)

2(γ+Θ)−3
+δ0 (Ω)

+ ‖ϕϕϕ‖Lr1 (Ω)

)
. (4.19)
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Summing up the estimates in (4.17) and (4.19) implies (4.6). This completes the proof of Lemma 4.2.
2

By (4.1) and Lemma 4.2, passing ε→ 0 in (4.5) gives

div(%u⊗ u) +∇p(%, ϑ)− divS(ϑ,∇u) = %f , in D′(Ω). (4.20)

To complete the proof of Theorem 2.2, we see from (4.2) and (4.20) that it suffices to show

%e(%, ϑ) = %e(%, ϑ), p(%, ϑ) = p(%, ϑ). (4.21)

Recall the formula of e and p in (2.15) and (2.9), and recall the strong convergence of ϑε in (4.1). Thus,
to show (4.21), it is sufficient to prove the strong convergence of %ε. This is the main purpose of the next
subsection.

4.3 Strong convergence of the density

In the theory of weak solutions of compressible Navier–Stokes equations, the strong convergence of
the density is the main issue: the density has no uniform derivative estimates. While, this is nowadays
well understood and the starting key point is the compactness of the so called effective viscous flux (see
[16, 9, 22]):

Lemma 4.3 Under the assumptions in Theorem 2.2, up to a subsequence, there holds for any ψ ∈ C∞c (Ω),

lim
ε→0

∫
Ω
ψ

(
p(%ε, ϑε)−

(4µ(ϑε)

3
+ ν(ϑε)

)
divuε

)
%ε dx =

∫
Ω
ψ

(
p(%, ϑ)−

(4µ(ϑ)

3
+ ν(ϑ)

)
divu

)
%dx. (4.22)

Proof. The proof of Lemma 4.3 is quite tedious but nowadays well understood. The main idea is to employ
the following test functions:

ψ∇∆−1(1Ω%ε), ψ∇∆−1(1Ω%),

where ψ ∈ C∞c (Ω) and ∆−1 is the Fourier multiplier on R3 with symbol −|ξ|−2. We refer to Section 1.3.7.2
in [22] or Section 10.16 in [12] for more on Fourier multipliers and Riesz operators used here. We observe
that

(∇⊗∇)∆−1 = (Ri,j)1≤i,j≤3

are the classical Riesz operators (sometimes also called double Riesz operator). Then for any f ∈ Lr(R3), 1 <
r <∞:

‖(∇⊗∇)∆−1(f)‖Lr(R3) ≤ C(r) ‖f‖Lr(R3).

By the embedding theorem in homogeneous Sobolev spaces (see Theorem 1.55 and Theorem 1.57 in [22] or
Theorem 10.25 and Theorem 10.26 in [12]), we have for any f ∈ Lr(R3), supp f ⊂ Ω:

‖∇∆−1(f)‖Lr∗ (R3) ≤ C ‖f‖Lr(R3)
1

r∗
=

1

r
− 1

3
, if 1 < r < 3,

‖∇∆−1(f)‖Lr∗ (R3) ≤ C ‖f‖Lr(R3) for any r∗ <∞, if r ≥ 3.
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Recall the fact that
γ + Θ > 3, (4.23)

due to γ > 2 and Θ > 1 by the definition of Θ in (3.10). Then by the uniform estimate for %ε and % in
(3.21) and (4.1), we have for any 1 ≤ r <∞:

‖ψ∇∆−1(1Ω%ε)‖Lr(Ω) + ‖ψ∇∆−1(1Ω%)‖Lr(Ω) ≤ C,
‖∇
(
ψ∇∆−1(1Ω%ε)

)
‖Lγ+Θ(Ω) + ‖∇

(
ψ∇∆−1(1Ω%)

)
‖Lγ+Θ(Ω) ≤ C.

(4.24)

Again by (4.23), we have

3(γ + Θ)

2(γ + Θ)− 3
<

3(γ + Θ)

2(γ + Θ)− (γ + Θ)
= 3 < γ + Θ.

Thus, we can choose δ0 > 0 in Lemma 4.2 small such that

γ + Θ ≥ 3(γ + Θ)

2(γ + Θ)− 3
+ δ0.

Hence, by (4.6) and (4.24), we have

|〈rε, ψ∇∆−1(1Ω%ε)〉D′(Ω),D(Ω)|

≤ C εδ1
(
‖∇
(
ψ∇∆−1(1Ω%ε)

)
‖Lγ+Θ(Ωε) + ‖ψ∇∆−1(1Ω%ε)‖Lr1 (Ω)

)
≤ C εδ1 ,

which goes to zero as ε→ 0 due to δ1 > 0.

Now we choose ψ∇∆−1(1Ω%ε) as a test functions in the weak formulation of equation (4.5) and pass
ε → 0. Then we choose ψ∇∆−1(1Ω%) as a test functions in the weak formulation of (4.20). By comparing
the results of these two operations above and using the convergence results in (4.1), through long but
straightforward calculations, we obtain that

I : = lim
ε→0

∫
Ω
ψ

(
p(%ε, ϑε)−

(4µ(ϑε)

3
+ ν(ϑε)

)
divxuε

)
%ε dx−

∫
Ω
ψ

(
p(%, ϑ)−

(4µ(ϑ)

3
+ ν(ϑ)

)
divxu

)
%dx

= lim
ε→0

3∑
i,j=1

∫
Ω
%εu

i
εu
j
εψRi,j(1Ω%ε) dx−

3∑
i,j=1

∫
Ω
%uiujψRi,j(1Ω%) dx.

(4.25)
On the other hand, choosing 1Ωdivx∆−1(ψ%εuε) as a test function in the weak formulation (2.16) with

ψ = 1Ωdivx∆−1(ψ%u) as a test function in the weak formulation of (4.4) implies

3∑
i,j=1

∫
Ω
%εu

i
εRi,j(ψ%εujε) dx = 0,

3∑
i,j=1

∫
Ω
%uiRi,j(ψ%uj) dx = 0. (4.26)
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Plugging (4.26) into (4.25) yields

I = lim
ε→0

3∑
i,j=1

∫
Ω
uiε

(
%εu

j
εψRi,j(1Ω%ε)− 1Ω%εRi,j(ψ%εujε)

)
dx

−
3∑

i,j=1

∫
Ω
ui
(
%ujψRi,j(1Ω%)− 1Ω%Ri,j(ψ%uj)

)
dx.

We introduce the following lemma, which is a variant of the Div-Curl lemma. We refer to [13, Lemma
3.4] for its proof.

Lemma 4.4 Let 1 < p, q <∞ satisfy
1

r
:=

1

p
+

1

q
< 1.

Suppose
uε → u weakly in Lp(R3;R3), vε → v weakly in Lq(R3), as ε→ 0.

Then for any 1 ≤ i, j ≤ 3:

3∑
j=1

(
ujεRi,j(vε)− vεRi,j(ujε)

)
→

3∑
j=1

(
ujRi,j(v)− vRi,j(uj)

)
weakly in Lr(R3), i = 1, 2, 3.

Now, by the strong convergence of the velocity in (4.1) and Lemma 4.4, our desired result (4.22) follows
immediately. 2

We rewrite (4.22) into the form∫
Ω
ψ

(
%γ+1 + %2ϑ−

(4µ(ϑ)

3
+ ν(ϑ)

)
%divu

)
dx =

∫
Ω
ψ

(
%γ + %ϑ−

(4µ(ϑ)

3
+ ν(ϑ)

)
divu

)
% dx.

Recall that all terms are integrable in higher power than 1, therefore the limits exist. This implies that

%γ+1 + %2ϑ−
(4µ(ϑ)

3
+ ν(ϑ)

)
%divu = %%γ + %2ϑ−

(4µ(ϑ)

3
+ ν(ϑ)

)
%divu

a.e. in Ω and also
%γ+1 + %2ϑ
4µ(ϑ)

3 + ν(ϑ)
− %divu =

%%γ + %2ϑ
4µ(ϑ)

3 + ν(ϑ)
− %divu (4.27)

a.e. in Ω. Note that due to our assumptions on the viscosity coefficients, all terms are integrable over Ω.

Before formulating the last lemma, we recall one standard result (for the proof see [12, Theorem 10.19])
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Lemma 4.5 Let (P,G) ∈ C(R) × C(R) be a couple of non-decreasing functions. Assume that %n ∈ L1(Ω)
is a sequence such that

P (%n) ⇀ P (%),

G(%n) ⇀ G(%),

P (%n)G(%n) ⇀ P (%)G(%)

 in L1(Ω).

i) Then
P (%) G(%) ≤ P (%)G(%)

a.e. in Ω.

ii) If, in addition,
G(z) = z, P ∈ C(R), P non-decreasing

and
P (%) % = P (%)%

(where we have denoted by % = G(%)), then

P (%) = P (%).

We now have

Lemma 4.6 It holds %γ+1 = %γ% a.e. in Ω. Whence %ε → % strongly in L1(Ω) and thus also in Lr(Ω),
1 ≤ r < γ + Θ.

Proof. We follow the approach from [21], the second last limit passage ε → 0 from Section 4. First,
using Remark 2.1, we apply the renormalized continuity equation for the limit continuity equation with the
function b(%) = % log % and the test function identically equal one in Ω. This leads to∫

Ω
%divu dx = 0.

Similarly, using the same for the problem for ε > 0 and then passing ε→ 0 gives∫
Ω
%divu dx = 0.

Therefore we may integrate (4.27) over Ω to get∫
Ω

%γ+1 + %2ϑ
4µ(ϑ)

3 + ν(ϑ)
dx =

∫
Ω

%%γ + %2ϑ
4µ(ϑ)

3 + ν(ϑ)
dx.

We now apply Lemma 4.5 and see that

%2 ≤ %2 and %%γ ≤ %γ+1
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a.e. in Ω. Since ϑ > 0 a.e. in Ω (see Lemma 4.1), we conclude that %γ+1 = %%γ a.e. in Ω which implies that

%γ = %γ a.e. in Ω,

again by Lemma 4.5. Therefore, up to the choice of a subsequence, %ε → % in Lγ(Ω), thus also a.e. in Ω
and in Lr(Ω), 1 ≤ r < γ + Θ. This finishes the proof of Theorem 2.2. 2
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