《流形与几何》测验三 2015.5.27

说明:从下列题目中选择 5 题完成并于一周内交给我.

- 1. 设 M 为微分流形, E 为 M 上秩为 k 的向量丛. 设 E 的连接函数为 $\{g_{\beta\alpha}\}$, 则 $\{\det g_{\beta\alpha}\}$ 决定了 M 上秩为 1 的向量丛 $\det E$, 称为 E 的行列式丛. M 的余切丛 T^*M 的行列式丛是哪一个外形式丛?
- 2. 设 V, W 均为有限维实向量空间, 证明 $\operatorname{Hom}(V, W)$ 和 $V^* \otimes W$ 自然同构.
- 3. 设 V 为 n 维实向量空间, $\{\phi^i\}_{i=1}^n \subset V^*$. 令 $B = \sum_{i=1}^n \phi^i \otimes \phi^i$, 则 B 为 V 上的双线性型. 证明: B 为 V 的内积当且仅当 $\{\phi^i\}_{i=1}^n$ 为 V^* 的一组基.
- 4. 设 M 为 n 维微分流形. 如果 M 上存在一组处处线性无关的切向量场 $\{X_i\}_{i=1}^n$, 则 M 可定向. 由此说明 Lie 群都是可定向的.
- 5. 在平面 \mathbb{R}^2 上定义等价关系 ~ 如下: $(x,y) \sim (x',y')$ 当且仅当存在整数 m,n,使得 $(x',y') = (m+(-1)^{|n|}x,n+y)$. 记商空间 $K = \mathbb{R}^2/\sim$,称为 Klein 瓶. 试说明 Klein 瓶是不可定向的二维流形.
- 6. 设 (M,g) 为黎曼流形, $f:M\to\mathbb{R}$ 为光滑函数. 在局部坐标系 $\{x^i\}_{i=1}^n$ 中, 黎曼度量可表示为 $g=g_{ij}dx^i\otimes dx^j$. 证明: f 的梯度场 ∇f 可表示为

$$\nabla f = g^{ij} \frac{\partial f}{\partial x^i} \frac{\partial}{\partial x^j},$$

其中 g^{ij} 是度量矩阵 $\left(g_{ij}\right)_{n\times n}$ 的逆矩阵在 (i,j) 位置的元素.

- 7. 验证外微分算子的定义与局部坐标系的选取无关.
- 8. 设 $f: \mathbb{R}^n \to \mathbb{R}$ 为光滑函数, c 为 f 的正则值, $f^{-1}(c) \neq \emptyset$. 证明 $f^{-1}(c)$ 为可定向 (n-1) 维流形.