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Introduction

In this talk I will consider the
Gauss-Bonnet-Chern formula on some open
Riemannian manifolds.

The question is as follows:

What is the Gauss-Bonnet-Chern formula on
conformally compact four manifolds?
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Introduction

Let M be the interior of a compact manifold
with boundary. According to Penrose, a
complete metric g on M is conformally compact if
there is a smooth defining function ρ on
M̄ = M ∪ ∂M, i.e. ρ(∂M) = 0, dρ 6= 0 on ∂M
and ρ > 0 on M , such that the metric

ḡ = ρ2 · g, (1)

extends to a smooth metric on M̄.

ρ is called special if |dρ|2ḡ = 1 on a
neighborhood of the boundary.
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Introduction

Under mild conditions, the
Gauss-Bonnet-Chern formula for a
conformally compact manifolds has the
following form:

1

8π2

∫

M

(|W |2 −
1

2
|z|2 +

1

24
(s + 12)2)dV

= χ(M) −
3

4π2
V̂ ,

W : Weyl tensor, z: trace-free Ricci tensor, s:
scalar curvature.
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Gauss-Bonnet in 19th Century

Let’s review briefly the history of the
Gauss-Bonnet-Chern formula.

Gauss, 1828: For a geodesic triangle ABC in
a surface in R3, one has

α + β + γ − π =

∫

ABC

kds.

Bonnet, 1848: extended the formula to
smooth curves on surfaces.
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Gauss-Bonnet in 20th Century

(Gauss-Bonnet)Let Σ be a smooth closed
oriented surface in R3, then

∫

Σ

kds = 2πχ(Σ).

Hopf, 1925: For a hypersurface Mn in Rn+1(n
even), one has

∫

M

kdv =
1

2
vol(Sn)χ(M),

where k is the Gauss-Kronecker curvature.
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Gauss-Bonnet in 20th Century

Allendoerfer and Weil(independently), 1940:
Extended the formula to submanifolds of any
co-dimensions.

Allendoerfer and Weil, 1943: For any abstract
oriented riemannian manifolds, one has

∫

M

Θ = χ(Mn)

Remarks: For odd n, Θ = 0; They use the
local isometric embedding theorem to obtain
the global formula.
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Gauss-Bonnet in 20th Century

❑ Chern, 1944: "A simple intrinsic proof of the
Generalized Gauss-Bonnet theorem".

❑ Results for open manifolds:

❑ Cohn-Vossen, 1935: For complete surface
M , if dim H1(M,R) is finite, then

∫

M

Θ ≤ χ(M).

❑ Huber, 1957: Extended the above result to
general 2-manifolds.
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Gauss-Bonnet on open manifolds

❑ Walter, 1975: For complete 4-manifolds with
non-negative sectional curvature,

∫

M

Θ ≤ χ(M).

❑ Greene and Wu, 1976: The above formula
holds for 4-manifolds with positive sectional
curvature outside some compact set.

❑ Cheeger and Gromov, 1985: They considered
complete manifolds with bounded curvature
and finite volume.
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Gauss-Bonnet on open manifolds

❑ In this case, if the manifold is of finite
topological type, then

∫

M

Θ = χ(M).

❑ Chang, Qing, Yang, 2000: For certain
complete metric on R4, one has

∫

R4

Qe4wdx ≤ 4π2χ(R4) = 4π2.

❑ Fang, 2005: Considered a class of complete
locally conformally flat manifolds.
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Conformally compact manifolds

❑ Let’s now return back to conformally compact
manifolds. When (M, g) is a complete
conformally compact Einstein metric with
Ricg = −(n − 1)g, then the sectional
curvatures of g necessarily approach −1
uniformly at infinity at an exponential rate, i.e,
the manifolds are asymptotically hyperbolic.

❑ The study of this kind of manifolds has
become very active recently due to the so
called AdS/CFT correspondence in string
theory.
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Renormalized volume

❑ Let ρ be a special defining function. Graham
observed that, in even dimensions,
∫

ρ>ε

dvolg = C0ε
1−n+C2ε

3−n+. . . (odd powers)

. . . + Cn−2ε
−1 + V̂ + o(1),

❑ V̂ is known as the renormalized volume, it
does not depend on the choice of special
defining functions.
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Gauss-Bonnet Renormalized

❑ Anderson (2001) showed that, for 4-dim
conformally compact Einstein manifolds,

1

8(2π)2

∫

M

|W |2 +
3

(2π)2
V̂ = χ(M),

where W is the Weyl curvature tensor.

❑ This formula can be thought as a
Renormalized Gauss-Bonnet formula. From it
one can also see that the renormalized
volume V̂ is only depend on (M, g).
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Gauss-Bonnet Renormalized

❑ Albin (2005) then proved a Renormalized
Gauss-Bonnet formula for any even
dimensional conformally compact Einstein
manifolds:

R∫

M

Θ = χ(M).

❑ A particular case was also obtained by
Epstein (2001) for convex cocompact
hyperbolic manifold:

(−1)m/2

2m/2(2π)m/2

m!

(m/2)!
V̂ = χ(M).
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Gauss-Bonnet Renormalized

❑ Also, Chang, Qing, and Yang (2004) obtained
the following general formula:

∫

M

W̃dvolg + (−1)
m

2

Γm+1
2

π
m+1

2

V̂ = χ(M),

where W̃ is a full contraction of the Weyl
tensor and its covariant derivatives.

❑ Question 1. Both formulas are the
generalizations of the Gauss-Bonnet-Chern
formula. What’s the relation between them?
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Conformally compact 4-manifolds

❑ Question 2. What happens if the manifolds
are not Einstein?

❑ To our knowledge, the answer to question 1 is
unclear up to now. We consider question 2 for
the case of dimension 4.

❑ Let M be a 4-dimensional open manifold with
a complete metric g. Suppose ρ is a positive
function on M such that ρ2 · g can be extended
to a metric ḡ on M̄ = M ∪ ∂M . So ρ|∂M = 0.
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Conformally compact 4-manifolds

❑ Let Kij, K̄ij be the sectional curvatures on M

and M̄ respectively. We have

❑

K̄ij = ρ−2(Kij + |∇̄ρ|2)

−ρ−1[D̄2ρ(ēi, ēi) + D̄2ρ(ēj, ēj)]

❑ Assume that

i).|∇̄ρ| = 1 near ∂M , ii).D̄2ρ = O(ρ).
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Conformally compact 4-manifolds

❑ Then we have

Kij + 1 = O(ρ2)

i.e, (M, g) is asymtotically hyperbolic. Also

❑

Ric + 3 = ρ2 · R̄ic + 2ρ · ∇̄2ρ + ρ · ∆̄ρ,

s + 12 = ρ2 · s̄ + 6ρ · ∆̄ρ.
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Conformally compact 4-manifolds

❑ Let ρ = e−r, and λi, λ̄i be the eigenvalues of
D2r and D̄2ρ respectively. We have

λi = 1 − ρ · λ̄i

❑ Since |∇̄ρ| = 1 near ∂M , the integral curves
of ∇̄ρ are geodesics. So along these
geodesics, we have the Ricatti equation:

H̄ ′ + |Ā|2 + R̄ic(∇̄ρ, ∇̄ρ) = 0.

Where H̄ is the mean curvature of ∂M .
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Conformally compact 4-manifolds

❑ In particular, Since

Ric(4, 4) + 3 = ρ2 · R̄ic(4, 4) + ρ · H̄,

we have the following estimate

❑

Ric(4, 4) + 3 = −
1

3
ρ3 · H̄ ′′(0) + O(ρ4)

which means Ricci along normal direction
decays at rate of order at least 3.
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Conformally compact 4-manifolds

❑ In particular, Since

Ric(4, 4) + 3 = ρ2 · R̄ic(4, 4) + ρ · H̄,

we have the following estimate

❑

Ric(4, 4) + 3 = −
1

3
ρ3 · H̄ ′′(0) + O(ρ4)

which means Ricci along normal direction
decays at rate of order at least 3.

Talk at Ningbo 2006 – p.21/27



Conformally compact 4-manifolds

❑ The idea of proof of the renormalized
Gauss-bonnet-Chern formula is to apply the
above computations to manifolds with
boundary.

❑
1

8π2

∫

D

(|R|2 − 4|z|2) = χ(D)−

1

2π2

∫

∂D

3∏

i=1

λi −
1

8π2

∫

∂D

∑

σ∈S3

Kσ1σ2
· λσ3
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Conformally compact 4-manifolds

❑ Take D = B(r) = {log ρ−1 ≤ r} ⊂ M ,
∂D = S(r). It follows that

1

8π2

∫

B(r)

[|W |2 −
1

2
|z|2 +

1

24
(s + 12)2]

= χ(B(r)) −
3

4π2
[I + II + III] + O(ρ),

I = volB(r) −
1

3
volS(r) =

1

3
ρ−1 ·

∫

S̄(0)

H̄ ′

−
1

6
log ρ ·

∫

S̄(0)

H̄ ′′ + C1 + o(1)
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Conformally compact 4-manifolds

❑

II =
1

6

∫

B(r)

(s + 12) −
1

6

∫

S(r)

(s + 12)

= −
1

6
log ρ ·

∫

S̄(0)

[2τ̄ ′(0) + H̄ ′′(0)] + C2 + o(1)

❑

III =
1

3

∫

S(r)

(ρ2H̄ ′ − 2ρH̄)

= −
1

3
ρ−1

∫

S̄(0)

H̄ ′(0) + O(ρ)
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Conformally compact 4-manifolds

❑ Thus we have

1

8π2

∫

B(r)

[|W |2 −
1

2
|z|2 +

1

24
(s + 12)2]

= χ(B(r)) + C3 · log ρ + C4 + o(1)

This implies that the constants C3 is 0.

❑ The final formula:

1

8π2

∫

M

[|W |2 −
1

2
|z|2 +

1

24
(s + 12)2]

= χ(M) −
3

4π2
V̂
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|z|2 +

1

24
(s + 12)2]

= χ(M) −
3

4π2
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Conformally compact 4-manifolds

❑ where V̂ is the following limit:

V̂ = lim
r→+∞

[volB(r)−
1

3
volS(r) +

1

6

∫

B(r)

(s + 12)

−
1

6

∫

S(r)

(s + 12) +
1

3

∫

S(r)

(ρ2H̄ ′ − 2ρH̄)]

❑ V̂ is called the renormalized volume.
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Remarks

❑ What’s the meaning of the renormalized
volume V̂ ?

❑ Which metric g can be conformally
compactified ?

❑ How about the Gauss-Bonnet-Chern formula
on higher dimensional manifolds?

❑ Acknowledgement: THANKS FOR YOUR
PATIENCE!
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