

Gauss-Bonnet on certain open manifolds (Joint work with Tian)

Jiaqiang Mei

meijq@nju.edu.cn

Department of Mathematics Institute of Mathematical Science Nanjing University

Talk at Ningbo 2006 - p.1/2

Gauss-Bonnet in 19th Century

- Gauss-Bonnet in 19th Century
- Gauss-Bonnet in 20th Century

- Gauss-Bonnet in 19th Century
- Gauss-Bonnet in 20th Century
- Gauss-Bonnet on open manifolds

Content

- Gauss-Bonnet in 19th Century
- Gauss-Bonnet in 20th Century
- Gauss-Bonnet on open manifolds
- Gauss-Bonnet Renormalized

Content

- Gauss-Bonnet in 19th Century
- Gauss-Bonnet in 20th Century
- Gauss-Bonnet on open manifolds
- Gauss-Bonnet Renormalized
- Conformally compact 4-manifolds

 In this talk I will consider the Gauss-Bonnet-Chern formula on some open Riemannian manifolds.

- In this talk I will consider the Gauss-Bonnet-Chern formula on some open Riemannian manifolds.
- The question is as follows:

What is the Gauss-Bonnet-Chern formula on conformally compact four manifolds?

• Let *M* be the interior of a compact manifold with boundary. According to Penrose, a complete metric *g* on *M* is *conformally compact* if there is a smooth defining function ρ on $\overline{M} = M \cup \partial M$, i.e. $\rho(\partial M) = 0$, $d\rho \neq 0$ on ∂M and $\rho > 0$ on *M*, such that the metric

$$\bar{g} = \rho^2 \cdot g, \tag{1}$$

extends to a smooth metric on \overline{M} .

• Let *M* be the interior of a compact manifold with boundary. According to Penrose, a complete metric *g* on *M* is *conformally compact* if there is a smooth defining function ρ on $\overline{M} = M \cup \partial M$, i.e. $\rho(\partial M) = 0$, $d\rho \neq 0$ on ∂M and $\rho > 0$ on *M*, such that the metric

$$\bar{g} = \rho^2 \cdot g, \tag{1}$$

extends to a smooth metric on M.

• ρ is called special if $|d\rho|_{\bar{g}}^2 = 1$ on a neighborhood of the boundary.

 Under mild conditions, the Gauss-Bonnet-Chern formula for a conformally compact manifolds has the following form:

$$\begin{aligned} \frac{1}{8\pi^2} \int_M (|W|^2 - \frac{1}{2}|z|^2 + \frac{1}{24}(s+12)^2)dV \\ &= \chi(M) - \frac{3}{4\pi^2}\hat{V}, \end{aligned}$$

 Under mild conditions, the Gauss-Bonnet-Chern formula for a conformally compact manifolds has the following form:

$$\begin{aligned} \frac{1}{8\pi^2} \int_M (|W|^2 - \frac{1}{2}|z|^2 + \frac{1}{24}(s+12)^2)dV \\ &= \chi(M) - \frac{3}{4\pi^2}\hat{V}, \end{aligned}$$

W: Weyl tensor, z: trace-free Ricci tensor, s: scalar curvature.

Let's review briefly the history of the Gauss-Bonnet-Chern formula.

- Let's review briefly the history of the Gauss-Bonnet-Chern formula.
- Gauss, 1828: For a geodesic triangle ABC in a surface in R^3 , one has

$$\alpha + \beta + \gamma - \pi = \int_{ABC} k \mathrm{d}s.$$

- Let's review briefly the history of the Gauss-Bonnet-Chern formula.
- Gauss, 1828: For a geodesic triangle ABC in a surface in R^3 , one has

$$\alpha + \beta + \gamma - \pi = \int_{ABC} k \mathrm{d}s.$$

Bonnet, 1848: extended the formula to smooth curves on surfaces.

• (Gauss-Bonnet)Let Σ be a smooth closed oriented surface in R^3 , then

$$\int_{\Sigma} k \mathrm{d}s = 2\pi \chi(\Sigma).$$

• (Gauss-Bonnet)Let Σ be a smooth closed oriented surface in R^3 , then

$$\int_{\Sigma} k \mathrm{d}s = 2\pi \chi(\Sigma).$$

Hopf, 1925: For a hypersurface Mⁿ in Rⁿ⁺¹(n even), one has

$$\int_M k \mathrm{d}v = \frac{1}{2} \mathrm{vol}(S^n) \chi(M),$$

where k is the Gauss-Kronecker curvature.

 Allendoerfer and Weil(independently), 1940: Extended the formula to submanifolds of any co-dimensions.

- Allendoerfer and Weil(independently), 1940: Extended the formula to submanifolds of any co-dimensions.
- Allendoerfer and Weil, 1943: For any abstract oriented riemannian manifolds, one has

$$\int_M \Theta = \chi(M^n)$$

- Allendoerfer and Weil(independently), 1940: Extended the formula to submanifolds of any co-dimensions.
- Allendoerfer and Weil, 1943: For any abstract oriented riemannian manifolds, one has

$$\int_M \Theta = \chi(M^n)$$

• Remarks: For odd n, $\Theta = 0$; They use the local isometric embedding theorem to obtain the global formula.

Chern, 1944: "A simple intrinsic proof of the Generalized Gauss-Bonnet theorem".

Chern, 1944: "A simple intrinsic proof of the Generalized Gauss-Bonnet theorem".

Results for open manifolds:

Chern, 1944: "A simple intrinsic proof of the Generalized Gauss-Bonnet theorem".

- Results for open manifolds:
- Cohn-Vossen, 1935: For complete surface M, if dim $H_1(M, R)$ is finite, then

$$\int_{M} \Theta \le \chi(M).$$

Chern, 1944: "A simple intrinsic proof of the Generalized Gauss-Bonnet theorem".

- Results for open manifolds:
- Cohn-Vossen, 1935: For complete surface M, if dim $H_1(M, R)$ is finite, then

$$\int_{M} \Theta \le \chi(M).$$

Huber, 1957: Extended the above result to general 2-manifolds.

Walter, 1975: For complete 4-manifolds with non-negative sectional curvature,

 $\int_{M} \Theta \le \chi(M).$

Walter, 1975: For complete 4-manifolds with non-negative sectional curvature,

$$\int_{M} \Theta \le \chi(M).$$

Greene and Wu, 1976: The above formula holds for 4-manifolds with positive sectional curvature outside some compact set. Walter, 1975: For complete 4-manifolds with non-negative sectional curvature,

$$\int_{M} \Theta \leq \chi(M).$$

- Greene and Wu, 1976: The above formula holds for 4-manifolds with positive sectional curvature outside some compact set.
- Cheeger and Gromov, 1985: They considered complete manifolds with bounded curvature and finite volume.

In this case, if the manifold is of finite topological type, then

$$\int_{M} \Theta = \chi(M).$$

In this case, if the manifold is of finite topological type, then

$$\int_{M} \Theta = \chi(M).$$

□ Chang, Qing, Yang, 2000: For certain complete metric on R^4 , one has

$$\int_{R^4} Q e^{4w} dx \le 4\pi^2 \chi(R^4) = 4\pi^2.$$

In this case, if the manifold is of finite topological type, then

$$\int_{M} \Theta = \chi(M).$$

□ Chang, Qing, Yang, 2000: For certain complete metric on R^4 , one has

$$\int_{R^4} Q e^{4w} dx \le 4\pi^2 \chi(R^4) = 4\pi^2.$$

Fang, 2005: Considered a class of complete locally conformally flat manifolds.

□ Let's now return back to conformally compact manifolds. When (M, g) is a complete conformally compact Einstein metric with $Ric_g = -(n-1)g$, then the sectional curvatures of g necessarily approach -1 uniformly at infinity at an exponential rate, i.e, the manifolds are asymptotically hyperbolic.

- ❑ Let's now return back to conformally compact manifolds. When (M, g) is a complete conformally compact Einstein metric with Ric_g = −(n − 1)g, then the sectional curvatures of g necessarily approach −1 uniformly at infinity at an exponential rate, i.e, the manifolds are asymptotically hyperbolic.
- The study of this kind of manifolds has become very active recently due to the so called AdS/CFT correspondence in string theory.

Let ρ be a special defining function. Graham observed that, in even dimensions,

$$\int_{\rho>\varepsilon} dvol_g = C_0 \varepsilon^{1-n} + C_2 \varepsilon^{3-n} + \dots \text{ (odd powers)}$$

$$\ldots + C_{n-2}\varepsilon^{-1} + \widehat{V} + o(1),$$

Let ρ be a special defining function. Graham observed that, in even dimensions,

$$\int_{\rho>\varepsilon} dvol_g = C_0 \varepsilon^{1-n} + C_2 \varepsilon^{3-n} + \dots \text{ (odd powers)}$$

$$\ldots + C_{n-2}\varepsilon^{-1} + \widehat{V} + o(1),$$

Gauss-Bonnet Renormalized

Anderson (2001) showed that, for 4-dim conformally compact Einstein manifolds,

$$\frac{1}{8(2\pi)^2} \int_M |W|^2 + \frac{3}{(2\pi)^2} \hat{V} = \chi(M),$$

where W is the Weyl curvature tensor.

Anderson (2001) showed that, for 4-dim conformally compact Einstein manifolds,

$$\frac{1}{8(2\pi)^2} \int_M |W|^2 + \frac{3}{(2\pi)^2} \hat{V} = \chi(M),$$

where W is the Weyl curvature tensor.

This formula can be thought as a Renormalized Gauss-Bonnet formula. From it one can also see that the renormalized volume *V* is only depend on (*M*, *g*).

Gauss-Bonnet Renormalized

Albin (2005) then proved a Renormalized Gauss-Bonnet formula for any even dimensional conformally compact Einstein manifolds:

$$\int_{M}^{R} \Theta = \chi(M).$$

Gauss-Bonnet Renormalized

Albin (2005) then proved a Renormalized Gauss-Bonnet formula for any even dimensional conformally compact Einstein manifolds:

$$\int_{M}^{R} \Theta = \chi(M).$$

A particular case was also obtained by Epstein (2001) for convex cocompact hyperbolic manifold:

$$\frac{(-1)^{m/2}}{2^{m/2}(2\pi)^{m/2}}\frac{m!}{(m/2)!}\hat{V} = \chi(M)$$

Also, Chang, Qing, and Yang (2004) obtained the following general formula:

$$\int_{M} \widetilde{W} dvol_g + (-1)^{\frac{m}{2}} \frac{\Gamma \frac{m+1}{2}}{\pi^{\frac{m+1}{2}}} \hat{V} = \chi(M),$$

where \widetilde{W} is a full contraction of the Weyl tensor and its covariant derivatives.

Also, Chang, Qing, and Yang (2004) obtained the following general formula:

$$\int_{M} \widetilde{W} dvol_g + (-1)^{\frac{m}{2}} \frac{\Gamma \frac{m+1}{2}}{\pi^{\frac{m+1}{2}}} \hat{V} = \chi(M),$$

where \widetilde{W} is a full contraction of the Weyl tensor and its covariant derivatives.

e

Question 1. Both formulas are the generalizations of the Gauss-Bonnet-Chern formula. What's the relation between them?

Question 2. What happens if the manifolds are not Einstein?

Question 2. What happens if the manifolds are not Einstein?

To our knowledge, the answer to question 1 is unclear up to now. We consider question 2 for the case of dimension 4.

- Question 2. What happens if the manifolds are not Einstein?
- To our knowledge, the answer to question 1 is unclear up to now. We consider question 2 for the case of dimension 4.
- □ Let *M* be a 4-dimensional open manifold with a complete metric *g*. Suppose ρ is a positive function on *M* such that $\rho^2 \cdot g$ can be extended to a metric \overline{g} on $\overline{M} = M \cup \partial M$. So $\rho|_{\partial M} = 0$.

□ Let K_{ij} , \overline{K}_{ij} be the sectional curvatures on Mand \overline{M} respectively. We have

□ Let K_{ij} , \bar{K}_{ij} be the sectional curvatures on Mand \bar{M} respectively. We have

> $\bar{K}_{ij} = \rho^{-2} (K_{ij} + |\bar{\nabla}\rho|^2)$ $-\rho^{-1} [\bar{D}^2 \rho(\bar{e}_i, \bar{e}_i) + \bar{D}^2 \rho(\bar{e}_j, \bar{e}_j)]$

□ Let K_{ij} , \bar{K}_{ij} be the sectional curvatures on Mand \bar{M} respectively. We have

$$\bar{K}_{ij} = \rho^{-2} (K_{ij} + |\bar{\nabla}\rho|^2)$$
$$-\rho^{-1} [\bar{D}^2 \rho(\bar{e}_i, \bar{e}_i) + \bar{D}^2 \rho(\bar{e}_j, \bar{e}_j)]$$

Assume that

$$i).|\bar{\nabla}\rho| = 1$$
 near ∂M , $ii).\bar{D}^2\rho = O(\rho).$

Then we have

$$K_{ij} + 1 = O(\rho^2)$$

i.e, (M,g) is asymtotically hyperbolic. Also

Then we have

$$K_{ij} + 1 = O(\rho^2)$$

i.e, (M,g) is asymtotically hyperbolic. Also

$$Ric + 3 = \rho^2 \cdot \bar{Ric} + 2\rho \cdot \bar{\nabla}^2 \rho + \rho \cdot \bar{\Delta}\rho,$$
$$s + 12 = \rho^2 \cdot \bar{s} + 6\rho \cdot \bar{\Delta}\rho.$$

□ Let $\rho = e^{-r}$, and $\lambda_i, \overline{\lambda}_i$ be the eigenvalues of D^2r and $\overline{D}^2\rho$ respectively. We have

$$\lambda_i = 1 - \rho \cdot \bar{\lambda}_i$$

□ Let $\rho = e^{-r}$, and $\lambda_i, \overline{\lambda}_i$ be the eigenvalues of D^2r and $\overline{D}^2\rho$ respectively. We have

$$\lambda_i = 1 - \rho \cdot \bar{\lambda}_i$$

□ Since $|\overline{\nabla}\rho| = 1$ near ∂M , the integral curves of $\overline{\nabla}\rho$ are geodesics. So along these geodesics, we have the Ricatti equation:

$$\bar{H}' + |\bar{A}|^2 + \bar{Ric}(\bar{\nabla}\rho, \bar{\nabla}\rho) = 0.$$

Where \overline{H} is the mean curvature of ∂M .

In particular, Since

$$Ric(4,4) + 3 = \rho^2 \cdot \bar{Ric}(4,4) + \rho \cdot \bar{H},$$

we have the following estimate

In particular, Since

$$Ric(4,4) + 3 = \rho^2 \cdot \bar{Ric}(4,4) + \rho \cdot \bar{H},$$

we have the following estimate

$$Ric(4,4) + 3 = -\frac{1}{3}\rho^3 \cdot \bar{H}''(0) + O(\rho^4)$$

which means *Ricci* along normal direction decays at rate of order at least 3.

The idea of proof of the renormalized Gauss-bonnet-Chern formula is to apply the above computations to manifolds with boundary.

The idea of proof of the renormalized Gauss-bonnet-Chern formula is to apply the above computations to manifolds with boundary.

 $\frac{1}{8\pi^2} \int_D (|R|^2 - 4|z|^2) = \chi(D) - \frac{1}{2\pi^2} \int_{\partial D} \prod_{i=1}^3 \lambda_i - \frac{1}{8\pi^2} \int_{\partial D} \sum_{\sigma \in S_3} K_{\sigma_1 \sigma_2} \cdot \lambda_{\sigma_3}$

Take
$$D = B(r) = \{\log \rho^{-1} \le r\} \subset M,\$$

 $\partial D = S(r)$. It follows that

$$\frac{1}{8\pi^2} \int_{B(r)} [|W|^2 - \frac{1}{2}|z|^2 + \frac{1}{24}(s+12)^2]$$

$$= \chi(B(r)) - \frac{3}{4\pi^2} [I + II + III] + O(\rho),$$
 $I = volB(r) - \frac{1}{3}volS(r) = \frac{1}{3}\rho^{-1} \cdot \int_{\bar{S}(0)} \bar{H}'$
 $-\frac{1}{6}\log \rho \cdot \int_{\bar{S}(0)} \bar{H}'' + C_1 + o(1)$

$$II = \frac{1}{6} \int_{B(r)} (s+12) - \frac{1}{6} \int_{S(r)} (s+12)$$
$$= -\frac{1}{6} \log \rho \cdot \int_{\bar{S}(0)} [2\bar{\tau}'(0) + \bar{H}''(0)] + C_2 + o(1)$$

$$II = \frac{1}{6} \int_{B(r)} (s+12) - \frac{1}{6} \int_{S(r)} (s+12)$$
$$= -\frac{1}{6} \log \rho \cdot \int_{\bar{S}(0)} [2\bar{\tau}'(0) + \bar{H}''(0)] + C_2 + o(1)$$

$$III = \frac{1}{3} \int_{S(r)} (\rho^2 \bar{H}' - 2\rho \bar{H})$$
$$= -\frac{1}{3} \rho^{-1} \int_{\bar{S}(0)} \bar{H}'(0) + O(\rho)$$

Thus we have

$$\frac{1}{8\pi^2} \int_{B(r)} [|W|^2 - \frac{1}{2}|z|^2 + \frac{1}{24}(s+12)^2]$$
$$= \chi(B(r)) + C_3 \cdot \log \rho + C_4 + o(1)$$

This implies that the constants C_3 is 0.

Talk at Ningbo 2006 - p.25/2

Thus we have

$$\frac{1}{8\pi^2} \int_{B(r)} [|W|^2 - \frac{1}{2}|z|^2 + \frac{1}{24}(s+12)^2]$$

= $\chi(B(r)) + C_3 \cdot \log \rho + C_4 + o(1)$
This implies that the constants C_3 is 0.
The final formula:

$$\frac{1}{8\pi^2} \int_M [|W|^2 - \frac{1}{2}|z|^2 + \frac{1}{24}(s+12)^2]$$
$$= \chi(M) - \frac{3}{4\pi^2}\hat{V}$$

Talk at Ningbo 2006 – p.25/2

 \Box where \hat{V} is the following limit:

$$\hat{V} = \lim_{r \to +\infty} [volB(r) - \frac{1}{3}volS(r) + \frac{1}{6}\int_{B(r)} (s+12) \\ -\frac{1}{6}\int_{S(r)} (s+12) + \frac{1}{3}\int_{S(r)} (\rho^2 \bar{H}' - 2\rho \bar{H})]$$

Talk at Ningbo 2006 - p.26/2

 \Box where \hat{V} is the following limit:

$$\hat{V} = \lim_{r \to +\infty} [volB(r) - \frac{1}{3}volS(r) + \frac{1}{6}\int_{B(r)} (s+12) \\ -\frac{1}{6}\int_{S(r)} (s+12) + \frac{1}{3}\int_{S(r)} (\rho^2 \bar{H}' - 2\rho \bar{H})]$$

 \bigcirc \hat{V} is called the renormalized volume.

□ What's the meaning of the renormalized volume \hat{V} ?

□ What's the meaning of the renormalized volume \hat{V} ?

Which metric g can be conformally compactified ?

- □ What's the meaning of the renormalized volume \hat{V} ?
- Which metric g can be conformally compactified ?
- How about the Gauss-Bonnet-Chern formula on higher dimensional manifolds?

Remarks

- □ What's the meaning of the renormalized volume \hat{V} ?
- Which metric g can be conformally compactified ?
- How about the Gauss-Bonnet-Chern formula on higher dimensional manifolds?
- Acknowledgement: THANKS FOR YOUR PATIENCE!