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Let R be a ring, n a fixed non-negative integer and ������n (��� n) the class of
all right (left) R-modules of FP-injective (flat) dimension at most n. We prove
that (������n�������⊥

n � is a perfect cotorsion theory if R is a right coherent ring with
FP-id�RR� ≤ n. This result was proven by Aldrich, Enochs, Jenda, and Oyonarte in
Noetherian case. The modules in ���⊥

n are also studied. Some applications are given.
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1. NOTATION

In this section, we shall recall some known notions and definitions which we
need in the later sections.

Throughout this article, R is an associative ring with identity and all modules
are unitary. MR (RM) denotes a right (left) R-module. For an R-module M , E�M�
denotes the injective envelope of M , the character module Hom��M��/�� is
denoted by M+. wD�R� stands for the weak global dimension of a ring R. fd�M�
and id�M� denote the flat and injective dimensions of M , respectively. Let M and
N be R-modules. Hom�M�N� (Extn�M�N�) means HomR�M�N� (ExtnR�M�N�), and
similarly M ⊗ N (Torn�M�N�) denotes M ⊗R N (TorRn �M�N�) for an integer n ≥ 1.

Let M be a right R-module. M is called FP-injective (Stenström, 1970) if
Ext1�N�M� = 0 for all finitely presented right R-modules N . Following Stenström
(1970), the FP-injective dimension of M , denoted by FP-id�M�, is defined to be the
smallest integer n ≥ 0 such that Extn+1�F�M� = 0 for every finitely presented right
R-module F (if no such n exists, set FP-id�M� = �), and r � FP-dim�R� is defined as
sup�FP-id�M� � M is a right R-module�.
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In what follows, the symbol ��n (�n) denotes the class of all right (left)
R-modules with FP-injective (flat) dimension less than or equal to a fixed non-
negative integer n.

Let � be a class of right R-modules and M a right R-module. Following
Enochs (1981), we say that a homomorphism � � M → C is a �-preenvelope
if C ∈ � and the Abelian group homomorphism HomR���C

′� � Hom�C�C ′� →
Hom�M�C ′� is surjective for each C ′ ∈ �. A �-preenvelope � � M → C is said
to be a �-envelope if every endomorphism g � C → C such that g� = � is an
isomorphism. A �-envelope � � M → F is said to have the unique mapping property
(Ding, 1996) if for any homomorphism f : M → F ′ with F ′ ∈ �, there is a unique
homomorphism g � F → F ′ such that g� = f . Dually, we have the definitions of
a �-precover and a �-cover (with the unique mapping property). �-envelopes
(�-covers) may not exist in general, but if they exist, they are unique up to
isomorphism.

Let � be a class of R-modules and M an R-module. A right �-resolution of
M (Enochs and Jenda, 2000) is a Hom�−��� exact complex 0 → M → C0 → C1 →
· · · with each Ci ∈ �.

If 0 → M → C0 → C1 → · · · is a right �-resolution of M , let

L0 = M� L1 = coker�M → C0�� Li = coker�Ci−2 → Ci−1� for i ≥ 2�

The nth cokernel Ln �n ≥ 0� is called the nth �-cosyzygy of M .
If � is the class of injective modules, then Ln is simply called the nth cosyzygy.
Let R be a right coherent ring. Then every finitely presented left R-module M

has a right �0-resolution 0 → M → P0 → P1 → · · · with each Pi finitely generated
projective by Enochs and Jenda (2000, Example 8.3.10). So by the nth �0-cosyzygy
of a finitely presented left R-module, we will mean the nth cokernel in such a right
�0-resolution.

Given a class � of right R-modules and a class �′ of left R-modules, we write

�⊥ = KerExt1���−� = �C � Ext1�L� C� = 0 for all L ∈ ���

⊥� = KerExt1�−��� = �C � Ext1�C� L� = 0 for all L ∈ ���

�� = KerTor1���−� = �C � Tor1�L� C� = 0 for all L ∈ ���

��′ = KerTor1�−��′� = �C � Tor1�C� L� = 0 for all L ∈ �′��

A pair (� , �) of classes of R-modules is called a cotorsion theory (Enochs
and Jenda, 2000) if �⊥ = � and � = ⊥�. A cotorsion theory (� , �) is called
complete (Trlifaj, 2000) if every R-module has a special �-preenvelope (and a special
� -precover). A cotorsion theory (� , �) is called perfect (Enochs et al., 1998; García
Rozas, 1999) if every R-module has a �-envelope and an � -cover. A cotorsion
theory (� , �) is said to be hereditary (Enochs et al., 1998; García Rozas, 1999)
if whenever 0 → L′ → L → L′′ → 0 is exact with L�L′′ ∈ � then L′ is also in � ,
or equivalently, if 0 → C ′ → C → C ′′ → 0 is exact with C ′� C ∈ � then C ′′ is also
in �.

General background materials can be found in Enochs and Jenda (2000),
Rotman (1979), and Xu (1996).
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2. INTRODUCTION

The problem of the existence of envelopes and covers by different classes of
modules has become an active branch of algebra, especially after the appearance
of these concepts in Enochs (1981) (with the terminology envelopes and covers)
and in Auslander and Smalø (1980) (with the terminology minimal left and right
approximations). So the problem has been studied by many authors (see, for
example, Aldrich et al., 2001a,b; Angeleri Hügel et al., 2006; Asensio Mayor and
Martinez Hernandez, 1988; Bican et al., 2001; Chen and Ding, 1996; Ding, 1996;
Eklof and Trlifaj, 2001; Enochs, 1981, 1984; Enochs and Jenda, 2000; Enochs and
Oyonarte, 2002; Enochs et al., 1998, 2004; García Rozas, 1999; García Rozas and
Torrecillas, 1994; Guil Asensio and Herzog, 2005; Mao and Ding, 2005; Pinzon,
2005; Trlifaj, 2000; Xu, 1996).

Recently, Aldrich et al. (2001b) studied envelopes and covers by modules of
finite injective and projective dimensions. In the present discussion, we shall consider
envelopes and covers by modules of finite FP-injective and flat dimensions.

In Section 3, we prove that (��n���
⊥
n � is a perfect cotorsion theory if R is

a right coherent ring with FP-id�RR� ≤ n. This result was proven by Aldrich et al.
(2001b, Theorem 2.8) for right Noetherian rings.

In Section 4, n-cotorsion modules are defined and studied. A left R-module M
is called n-cotorsion if M ∈ �⊥

n , that is, Ext
1�N�M� = 0 for any N ∈ �n. For a right

coherent ring R with FP-id�RR� ≤ n, we prove that a left R-module M is n-cotorsion
if and only if M is a kernel of an �n-precover f � A → B with A injective if and only
if M is a direct sum of an injective left R-module and a reduced n-cotorsion left
R-module.

Section 5 concerns cokernels of ��n-preenvelopes and �n-preenvelopes. For a
right coherent ring R with FP-id�RR� ≤ n, it is shown that a finitely presented right
R-module M belongs to ��n if and only if M is a cokernel of an ��n-preenvelope
K → F of a right R-module K with F projective. We also get that over any right
coherent ring R, a finitely presented left R-module M belongs to ���

n if and only if
M is a cokernel of an �n-preenvelope K → F of a left R-module K with F projective.

Section 6 is dedicated to applications. Some results obtained in the last three
sections are used to characterize rings with finite weak global dimension in terms of,
among others, n-cotorsion modules. It is proven that wD�R� ≤ n if and only if every
n-cotorsion left R-module is injective if and only if every n-cotorsion left R-module
belongs to �n if and only if id�M� ≤ m for some m with 0 ≤ m ≤ n and any �n−m�-
cotorsion left R-module M . It is also shown that if every n-cotorsion left R-module
has an �n-envelope with the unique mapping property, then wD�R� ≤ n+ 2. We
conclude the article by proving that ��n is closed under direct limits if every right
R-module has an ��n-cover with the unique mapping property.

3. GENERAL RESULTS

We begin with some known facts needed frequently in the sequel.

Lemma 3.1 (Fieldhouse, 1972, Theorem 2.1). Let R be any ring and M an
R-module. Then fd�M� = id�M+� = FP-id�M+�.
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Lemma 3.2 (Fieldhouse, 1972, Theorem 2.2). Let R be a right coherent ring and M
a right R-module. Then fd�M+� = FP-id�M�.

Lemma 3.3 (Aldrich et al., 2001a, Corollary 2.13). Let � be a class of modules
closed under direct sums, extensions, continuous well-ordered unions, and contain all
projective modules. If �⊥ = S⊥ for a set S ⊆ � , then �� ��⊥� is a cotorsion theory.

For a fixed non-negative integer n, let ��n (�n) be the class of all right (left)
R-modules of FP-injective (flat) dimension at most n. Now we have the following
theorem.

Theorem 3.4. Let n be a fixed non-negative integer. The following hold:

(1) For a right coherent ring R with FP-id�RR� ≤ n, (��n���
⊥
n � is a perfect cotorsion

theory;
(2) For any ring R, (�n��

⊥
n � is a perfect hereditary cotorsion theory.

Proof. (1) Let Card(R� = ℵ	 and F ∈ ��n. By Enochs and Jenda (2000, Lemma
5.3.12), for each x ∈ F , there is a pure submodule S of F with x ∈ S such that
Card(S� ≤ ℵ	 (simply let N = Rx and f = idN in the lemma). So we can write F as a
union of a continuous chain �F
�
<� of pure submodules of F such that Card(F0� ≤
ℵ	 and Card(F
+1/F
� ≤ ℵ	 whenever 
+ 1 < �. If N is a right R-module such that
Ext1�F0� N� = 0 and Ext1�F
+1/F
� N� = 0 whenever 
+ 1 < �, then Ext1�F� N� = 0
by Eklof and Trlifaj (2001, Lemma 1) or Enochs and Jenda (2000, Theorem 7.3.4).
Since F
 is a pure submodule of F for any 
 < �, F+ → F+


 → 0 is split. Then F+

 ∈

�n since F
+ ∈ �n by Lemma 3.2, and so F
 ∈ ��n by Lemma 3.2 again. On the other

hand, F
 is a pure submodule of F
+1 whenever 
+ 1 < �, so the exact sequence
0 → F
 → F
+1 → F
+1/F
 → 0 induces the split exact sequence 0 → �F
+1/F
�

+ →
F+

+1 → F+


 → 0. Thus �F
+1/F
�
+ ∈ �n since F+


+1 ∈ �n by Lemma 3.2, and hence
F
+1/F
 ∈ ��n. Let X be a set of representatives of all modules G ∈ ��n with
Card(G� ≤ ℵ	. Then ��⊥

n = X⊥.
We note that ��n is closed under direct sums, extensions, direct limits since R

is right coherent, and contains all projective modules since FP-id�RR� ≤ n. Therefore
(��n���

⊥
n � is a cotorsion theory by Lemma 3.3.

Since (��n���
⊥
n � is cogenerated by the set X, (��n���

⊥
n � is a complete

cotorsion theory by Eklof and Trlifaj (2001, Theorem 10). Moreover, (��n���
⊥
n � is

a perfect cotorsion theory by Enochs and Jenda (2000, Theorem 7.2.6) (for ��n is
closed under direct limits).

(2) Note that �n is closed under direct sums, extensions, direct limits, pure
submodules, cokernels of pure monomorphisms and �n contains all projective
modules. An argument similar to that of (1) shows that (�n��

⊥
n � is a perfect

cotorsion theory. On the other hand, let 0 → A → B → C → 0 be exact with B�C ∈
�n, then A ∈ �n. So (�n��

⊥
n � is hereditary. �

Remark 3.5. (1) The perfect cotorsion theories of Theorem 3.4 could be used to
define a model structure in the category of R-modules (see Hovey, 2002, for the
interaction between cotorsion pairs and model category structures).
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(2) We note that Theorem 3.4(1) extends the work of Aldrich et al. (2001b,
Theorem 2.8) where the same result is obtained under the hypothesis that R is right
Noetherian.

(3) Choose a field F , and set Fi = F for i = 1� 2� � � � , S = ∏�
i=1 Fi. Then S is

a commutative von Neumann regular ring. Let R = S�X1� X2� � � � � Xn, the ring of
polynomials in n indeterminates over S, then R is a coherent ring with wD�R� = n
(see Glaz, 1989). Clearly, the ring R satisfies the condition of Theorem 3.4(1), but it
is not Noetherian.

(4) It is pointed out in Angeleri Hügel et al. (2006, p. 5) that (�n��
⊥
n � is a

complete cotorsion theory.

The following proposition shows that over right coherent rings the existence
of �n-preenvelopes and ��n-preenvelopes is always guaranteed.

Proposition 3.6. The following hold for a right coherent ring R and a fixed integer
n ≥ 0:

(1) Every left R-module has an �n-preenvelope;
(2) �⊥��n���n� is a complete hereditary cotorsion theory.

Proof. (1) Let M be any left R-module with Card(M� = ℵ	. Then, by Enochs and
Jenda (2000, Lemma 5.3.12), there is an infinite cardinal ℵ
 such that if F ∈ �n and S
is a submodule of F with Card(S� ≤ ℵ	, there is a pure submodule G of F with S ⊆
G and Card(G� ≤ ℵ
. Note that G ∈ �n, thus M has an �n-preenvelope by Enochs
and Jenda (2000, Corollary 6.2.2) since the right coherence of R guarantees that �n

is closed under direct products.

(2) �⊥��n���n� is a complete cotorsion theory by Mao and Ding (2005,
Theorem 3.8) and hereditary by Stenström (1970, Lemma 3.1) and Enochs et al.
(2004, Proposition 1.2). �

Proposition 3.7. Let R be a right coherent ring and n a fixed non-negative integer.
Then the following are equivalent:

(1) FP-id�RR� ≤ n;
(2) Every left R-module has a monic �n-preenvelope;
(3) Every (FP-)injective left R-module belongs to �n;
(4) Every right R-module has an epic ��n-cover;
(5) Every flat right R-module belongs to ��n.

Proof. �1� ⇒ �2� Let M be any left R-module. Then M has an �n-preenvelope
f � M → F by Proposition 3.6(1). Since �RR�

+ is a cogenerator in the category of left
R-modules, there is an exact sequence 0 → M → ��RR�

+. Note that fd�RR�
+ = FP-

id�RR� ≤ n by Lemma 3.2, and so fd���RR�
+� ≤ n. Thus f is monic, and hence (2)

follows.

�2� ⇒ �3� Let M be an FP-injective left R-module. Then there exists a pure
exact sequence 0 → M → F with F ∈ �n by (2), and hence F+ → M+ → 0 splits.
So M ∈ �n by Lemma 3.1.
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�3� ⇒ �1� Note that �RR�
+ is injective, and so fd�RR�

+ ≤ n by (3). Thus FP-
id�RR� = fd�RR�

+ ≤ n by Lemma 3.2.

�1� ⇒ �4� follows from Theorem 3.4 (1).

�4� ⇒ �1� is clear since RR has an epic ��n-cover.

�3� ⇒ �5� Let M be a flat right R-module. Then FP-id�M� = fd�M+� ≤ n by
(3) and Lemma 3.2.

�5� ⇒ �1� is obvious. �

Corollary 3.8. Let R be a commutative coherent ring. Then the following are
equivalent:

(1) FP-id�R� ≤ n;
(2) �⊥�n��n� is a complete hereditary cotorsion theory.

Proof. (1) ⇒ (2) We note that �n = ��n by Proposition 3.7. Thus (2) follows
from Proposition 3.6(2).

(2) ⇒ (1) Since every injective R-module belongs to �n by (2), (1) holds by
Proposition 3.7. �

4. n-COTORSION MODULES

Let R be a ring and n a fixed non-negative integer. In Section 3, it is shown
that (�n��

⊥
n � is a perfect hereditary cotorsion theory. Recall that a left R-module

C is called cotorsion (Enochs, 1984) provided that Ext1�F� C� = 0 for any flat left
R-module F . Clearly, cotorsion modules are exactly the modules in the class �⊥

0 . In
this section, n-cotorsion modules are defined to be the modules in the class �⊥

n .
We start with the following definition.

Definition 4.1. Let R be a ring and n a fixed non-negative integer. A left R-module
M is called n-cotorsion if M ∈ �⊥

n , that is, Ext
1�N�M� = 0 for any N ∈ �n.

Remark 4.2. (1) 0-cotorsion modules are precisely cotorsion modules. If m ≥ n,
then m-cotorsion modules are n-cotorsion.

(2) Recall that a left R-module C is called strongly cotorsion (Xu, 1996) if
Ext1�F� C� = 0 for any left R-module F with fd�F� < �. Obviously, for any non-
negative integer n, we have the following implications:

strongly cotorsion modules ⇒ n− cotorsion modules ⇒ cotorsion modules�

(3) Let R be an n-Gorenstein ring (that is, R is a left and right Noetherian ring
with id�RR� ≤ n and id�RR� ≤ n) and N an R-module. Then fd�N� ≤ n if and only
if fd�N� < � by Enochs and Jenda (2000, Theorem 9.1.10). Therefore, an R-module
M is n-cotorsion if and only if M is strongly cotorsion if and only if M is Gorenstein
injective by Enochs and Jenda (2000, Corollary 11.2.2).

Some general properties of n-cotorsion modules follow below.
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Proposition 4.3. Let R be a ring, m and n two non-negative integers.

(1) If M is an n-cotorsion left R-module, then Extj+1�N�M� = 0 for any integer j ≥ m
and any N ∈ �m+n.

(2) The mth cosyzygy of any n-cotorsion left R-module is �m+ n�-cotorsion.

Proof. (1) For any N ∈ �m+n, consider the exact sequence

0 → Km → Pm−1 → Pm−2 → · · · → P1 → P0 → N → 0�

where each Pi is projective. It is clear that Km ∈ �n. Therefore, Ext
m+1�N�M� 

Ext1�Km�M� = 0 since M is n-cotorsion, and the result follows by induction.

(2) Let N be any n-cotorsion left R-module and Lm the mth cosyzygy of N .
Note that Ext1�F� Lm�  Extm+1�F� N� = 0 for any F ∈ �m+n by (1). Thus Lm is �m+
n�-cotorsion. �

Proposition 4.4. Let R be a right coherent ring with FP-id�RR� ≤ n. Then the
following are equivalent for a left R-module M:

(1) M is n-cotorsion;
(2) For every exact sequence 0 → M → E → L → 0 with E injective, E → L is an

�n-precover of L;
(3) M is a kernel of an �n-precover f � A → B with A injective;
(4) M is injective with respect to every exact sequence 0 → A → B → C → 0 with

C ∈ �n.

Proof. (1) ⇒ (2) is easy since E ∈ �n by Proposition 3.7.

(2) ⇒ (3) follows from the short exact sequence 0 → M → E�M� → L → 0.

�3� ⇒ �1� Let M be a kernel of an �n-precover f � A → B with A injective.
Then we have an exact sequence 0 → M → A → B → 0� So, for any N ∈
�n, the sequence Hom�N�A� → Hom�N� B� → Ext1�N�M� → 0 is exact. Thus
Ext1�N�M� = 0 since Hom�N�A� → Hom�N� B� → 0 is exact by (3), and so (1)
follows.

�1� ⇒ �4� is clear by definition.

�4� ⇒ �1� For each N ∈ �n, there exists a short exact sequence 0 → K →
P → N → 0 with P projective, which induces an exact sequence Hom�P�M� →
Hom�K�M� → Ext1�N�M� → 0. Note that Hom�P�M� → Hom�K�M� → 0 is exact
by (4). Hence Ext1�N�M� = 0, as desired. �

Recall that an R-module M is called reduced (Enochs and Jenda, 2000) if M
has no nonzero injective submodules.

Proposition 4.5. Let R be a right coherent ring with FP-id�RR� ≤ n. Then the
following are equivalent for a left R-module M:

(1) M is a reduced n-cotorsion left R-module;
(2) M is a kernel of an �n-cover f � A → B with A injective.
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Proof. (1) ⇒ (2) By Proposition 4.4, the natural map � � E�M� → E�M�/M is an
�n-precover. Thus E�M� has no nonzero direct summand K contained in M since M
is reduced. Note that E�M�/M has an �n-cover by Theorem 3.4(2). It follows that
� � E�M� → E�M�/M is an �n-cover by Xu (1996, Corollary 1.2.8), and hence (2)
follows.

�2� ⇒ �1� Let M be a kernel of an �n-cover 
 � A → B with A injective. By
Proposition 4.4, M is n-cotorsion. Now let K be an injective submodule of M .
Suppose A = K ⊕ L, p � A → L is the projection and i � L → A is the inclusion. It
is easy to see that 
�ip� = 
 since 
�K� = 0. Therefore ip is an isomorphism, and
hence i is epic. Thus A = L, K = 0, and so M is reduced. �

Theorem 4.6. Let R be a right coherent ring with FP-id�RR� ≤ n. Then a left
R-module M is n-cotorsion if and only if M is a direct sum of an injective left R-module
and a reduced n-cotorsion left R-module.

Proof. “⇐” is clear.

“⇒” Let M be an n-cotorsion left R-module. Consider the short exact
sequence 0 → M → E�M� → E�M�/M → 0. Note that E�M� → E�M�/M is an �n-
precover of E�M�/M by Proposition 4.4. But E�M�/M has an �n-cover L →
E�M�/M by Theorem 3.4(2), so we have the following commutative diagram with
exact rows:

Since 	� is an isomorphism, E�M� = ker�	�⊕ im���. So L and ker�	� are injective
(for im���  L). Therefore K is a reduced n-cotorsion module by Proposition 4.5.
Note that �� is an isomorphism by Five Lemma. Thus M = ker���⊕ im���, where
im���  K. On the other hand, we get the following commutative diagram:
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Hence ker���  ker�	� by 3× 3 Lemma (Rotman, 1979, Exercise 6.16, p. 175). This
completes the proof. �

The following result generalizes Xu (1996, Proposition 3.3.1).

Theorem 4.7. Let R be a ring. Then the following are equivalent for a fixed non-
negative integer n:

(1) Every left R-module is n-cotorsion;
(2) Every left R-module in �n is projective;
(3) Every flat left R-module is n-cotorsion;
(4) Every projective left R-module is n-cotorsion;
(5) RR is n-cotorsion and every left R-module has an �⊥

n -precover.

Proof. (1) ⇔ (2) holds by Theorem 3.4(2).

�1� ⇒ �3� ⇒ �4� and �1� ⇒ �5� are trivial.

�4� ⇒ �1� Let M be a left R-module. Then there exists an exact sequence
0 → K → F → M → 0 with F ∈ �n and K ∈ �⊥

n by Theorem 3.4(2). Since every
projective left R-module is cotorsion by (4), R is left perfect by Guil Asensio and
Herzog (2005, Corollary 10). Thus F is n-cotorsion by (4) and Enochs et al. (2004,
Proposition 1.2) since (�n��

⊥
n � is hereditary. So M is n-cotorsion.

�5� ⇒ �4� By García Rozas and Torrecillas (1994, Proposition 1), �⊥
n is

closed under direct sums. Hence every free (projective) left R-module is n-cotorsion
since RR is n-cotorsion. �

5. COKERNELS OF ������n-PREENVELOPES AND ��� n-PREENVELOPES

In this section, we shall investigate some properties of the cokernels of ��n-
preenvelopes and �n-preenvelopes.

Proposition 5.1. The following are true:

(1) If M is a cokernel of an ��n-preenvelope K → F of a right R-module K with F
flat, then M ∈ ��n;

(2) If R is a right coherent ring, M is a cokernel of an �n-preenvelope L → F of a left
R-module L with F flat, then M ∈ ���

n .

Proof. (1) Assume M is a cokernel of an ��n-preenvelope K → F of a right R-
module K with F flat. Then 0 → K → F → M → 0 is exact. Note that E+ ∈ ��n

for any E ∈ �n by Lemma 3.1. Thus we obtain an exact sequence Hom�F� E+� →
Hom�K�E+� → 0, which gives rise to the exactness of �F ⊗ E�+ → �K ⊗ E�+ → 0.
So the sequence 0 → K ⊗ E → F ⊗ E is exact. But the flatness of F implies the
exactness of 0 → Tor1�M�E� → K ⊗ E → F ⊗ E, and hence Tor1�M�E� = 0.

(2) Suppose M is a cokernel of an �n-preenvelope L → F of a left R-module
L with F flat. Let K = im�L → F�, then 0 → K → F → M → 0 is exact and K → F
is an �n-preenvelope of K. We can prove that M ∈ ���

n in a way similar to that of
(1) using Lemma 3.2 in place of Lemma 3.1. �
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Corollary 5.2. The following are true for a right coherent ring R:

(1) Every �n+ 1�th �0-cosyzygy of any finitely presented left R-module belongs to ���
n ;

(2) ⊥�n ⊆ ���
n .

Proof. (1) Let M be a finitely presented left R-module and 0 → M → F 0 → F 1 →
· · · be any right �0-resolution of M with each Fi finitely generated projective. By
Enochs and Jenda (2000, Remark 8.4.35) or Chen and Ding (1994, Lemma 2.1),
Ln → Fn is an �n-preenvelope, where L

n is the nth �0-cosyzygy of M . Thus the �n+
1�th �0-cosyzygy Ln+1 belongs to ���

n by Proposition 5.1(2).

(2) Let M ∈ ⊥�n. Consider the exact sequence 0 → K → P → M → 0 with P
projective. It is easy to see that K → P is an �n-preenvelope of K. Thus M ∈ ���

n

by Proposition 5.1(2). �

Theorem 5.3. Let R be a right coherent ring.

(1) If M is a finitely presented right R-module and FP-id�RR� ≤ n, then M ∈ ��n if
and only if M is a cokernel of an ��n-preenvelope K → P of a right R-module K
with P projective.

(2) If M is a finitely presented left R-module, then M ∈ ���
n if and only if M is a

cokernel of an �n-preenvelope K → F of a left R-module K with F projective if and
only if M ∈ ⊥�n.

Proof. (1) “⇐” follows from Proposition 5.1(1).

“⇒” Since M is a finitely presented right R-module, there is an exact sequence
0 → K → P → M → 0 with P finitely generated projective and K finitely generated.
It is clear that P ∈ ��n since FP-id�RR� ≤ n. We claim that K → P is an ��n-
preenvelope. In fact, for any F ∈ ��n, we have F+ ∈ �n by Lemma 3.2 since R
is right coherent. Thus Tor1�M� F+� = 0, and so we get the exact commutative
diagram

0 −−−−→ K ⊗ F+ 
−−−−→ P ⊗ F+

�K



� �P



�

Hom�K� F�+
�−−−−→ Hom�P� F�+�

On the other hand, there exists an exact sequence Q → K → 0 with Q finitely
generated projective since K is finitely generated. So we have the exact commutative
diagram

Q⊗ F+ −−−−→ K ⊗ F+ −−−−→ 0

�Q



� �K



�

Hom�Q� F�+ −−−−→ Hom�K� F�+ −−−−→ 0�

Note that �Q is an isomorphism by Rotman (1979, Lemma 3.59), so �K is epic.
Thus � is a monomorphism since �P is an isomorphism, and hence the sequence
Hom�P� F� → Hom�K� F� → 0 is exact, as desired.
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(2) The proof of the first equivalence is similar to that of (1) by Lemma 3.1
and Proposition 5.1(2). The second equivalence is easy by Corollary 5.2(2). �

Recall that an R-module M is said to be coreduced (Chen, 1996) if it has
no nonzero projective quotient modules. A ring R is called semiregular (Nicholson,
1976) if idempotents lift modulo the Jacobson radical J�R� and R/J�R� is von
Neumann regular.

Proposition 5.4. Let R be a semiregular 2-sided coherent ring and M a finitely
presented left R-module. Then the following are equivalent for an integer n ≥ 0:

(1) M ∈ ⊥�n and M is coreduced;
(2) M is a cokernel of an �n-envelope K → P of a left R-module K with P projective.

Proof. �2� ⇒ �1� M ∈ ⊥�n holds by Theorem 5.3(2), and M is coreduced by Ding
(1996, Lemma 3.7).

�1� ⇒ �2� Consider the exact sequence 0 → K
�→ P → M → 0 with P finitely

generated projective and K finitely generated. Then � � K → P is an �n-preenvelope
(for M ∈ ⊥�n). Since R is left coherent, K is finitely presented. So K has an �0-
envelope 
 � K → Q by Asensio Mayor and Martinez Hernandez (1988, Corollary 3)
since R is semiregular and right coherent. Thus there exist f � Q → P and g �
P → Q such that f
 = � and g� = 
, and hence �gf�
 = 
. It follows that gf is
an isomorphism, P = im�f�⊕ ker�g�, and 
 � K → Q is an �n-envelope. Note that
im��� ⊆ im�f�, and so P/im��� → P/im�f� → 0 is exact. But P/im��� is coreduced,
and hence P/im�f� = 0, that is, P = im�f�. So f is an isomorphism, and then � �
K → P is an �n-envelope. �

Corollary 5.5. Let R be a semiregular 2-sided coherent ring, and M a finitely
presented left R-module. Then M ∈ ⊥�n if and only if M = P ⊕ N , where P is a
projective left R-module, N ∈ ⊥�n and N is coreduced.

Proof. “⇐” is clear.

“⇒” can be proven in a way dual to that of Theorem 4.6 using Proposition 5.4
and its proof. �

6. APPLICATIONS

In this section, some results obtained in the last three sections are used to
characterize rings with finite weak global dimension in terms of, among others, n-
cotorsion modules.

To this aim, we need the following lemmas.

Lemma 6.1. The following are equivalent for a left R-module M and an integer
n ≥ 0:

(1) M ∈ ���
n ;

(2) M+ ∈ ��⊥
n ;
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(3) M ∈ ⊥�, where � = �B+ � B ∈ ��n�;
(4) For every exact sequence 0 → A → B → C → 0 with C ∈ ��n, the functor −⊗M

preserves the exactness.

Proof. By Cartan and Eilenberg (1956, VI. 5.1) or Rotman (1979, p. 360), for any
right R-module N , there are the following standard isomorphisms:

Ext1�M�N+�  Tor1�N�M�+  Ext1�N�M+��

Thus �1� ⇔ �2� ⇔ �3� follows. �1� ⇔ �4� is easy. �

Corollary 6.2. The following hold for a right coherent ring R and an integer n ≥ 0:

(1) A right R-module M is injective if and only if M ∈ ��⊥
n and M ∈ ��n+1;

(2) A left R-module N is flat if and only if N ∈ ���
n and N ∈ �n+1�

Proof. (1) “⇒” is trivial.

“⇐” Let M ∈ ��⊥
n and M ∈ ��n+1. Consider the exact sequence 0 → M →

E�M� → E�M�/M → 0. Note that FP-id�E�M�/M� ≤ n since FP-id�M� ≤ n+ 1. So
Ext1�E�M�/M�M� = 0, and hence the above sequence is split. Thus M is injective.

(2) “⇒” is trivial.

“⇐” Let N ∈ ���
n and N ∈ �n+1� Then N+ ∈ ��⊥

n by Lemma 6.1. Thus N+

is injective by (1) since FP-id�N+� = fd�N� ≤ n+ 1. Hence N is flat. �

Lemma 6.3. Let R be a right coherent ring with FP-id�RR� ≤ n and n ≥ 1. If M ∈
���

n−1, then there is an exact sequence 0 → M → F → L → 0 such that F is flat and
L ∈ ���

n .

Proof. Consider the following pushout diagram:

where P is projective and P → E�P� is an injective envelope. Note that FP-id�C� ≤
n− 1 by Stenström (1970, Lemma 3.1) since FP-id�P� ≤ n. So Ext1�C�M+� = 0 (for
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M+ ∈ ��⊥
n−1 by Lemma 6.1), then the sequence 0 → M+ → Q → C → 0 is split.

Therefore, there exists an exact sequence E�P� → M+ → 0� which in turn yields the
exactness of 0 → M++ → E�P�+. So M embeds in a flat left R-module (for E�P�+ is
flat).

Now let 	 � M → F be a flat preenvelope of M , then 	 is monic. So we have the
exact sequence 0 → M → F → L → 0. Note that L ∈ ���

0 by Proposition 5.1(2).
We claim that L ∈ ���

n . In fact, let X ∈ ��n. Consider the exact sequence 0 → X →
E�X� → D → 0. Then D ∈ ��n−1. Thus we get the induced exact sequence

0 = Tor2�D� F� → Tor2�D� L� → Tor1�D�M� = 0�

Therefore Tor2�D� L� = 0. On the other hand, the short exact sequence 0 → X →
E�X� → D → 0 induces the exactness of the sequence

0 = Tor2�D� L� → Tor1�X� L� → Tor1�E�X�� L� = 0�

Therefore, Tor1�X� L� = 0, as desired. �

We are now in a position to prove the following theorem which improves
Xu (1996, Theorem 3.3.2).

Theorem 6.4. The following are equivalent for a ring R and a fixed non-negative
integer n:

(1) wD�R� ≤ n;
(2) Every n-cotorsion left R-module is injective;
(3) id�M� ≤ n for any 0-cotorsion left R-module M;
(4) Every n-cotorsion left R-module belongs to �n;
(5) id�M� ≤ m for any m with 0 ≤ m ≤ n and any �n−m�-cotorsion left R-module

M;
(6) id�M� ≤ m for some m with 0 ≤ m ≤ n and any �n−m�-cotorsion left R-module

M .

If R is a right coherent ring and n ≥ 1, then the above conditions are also
equivalent to:

(7) r � FP-dim�R� ≤ n;
(8) Every (�n− 1�-cotorsion) left R-module has an epic �n−1-envelope;
(9) Every right R-module M (with M ∈ ⊥��n−1) has a monic ��n−1-cover;
(10) FP-id�RR� ≤ n and every right R-module in ��⊥

n is injective;
(11) Every right R-module in ⊥��n is projective;
(12) FP-id�RR� ≤ n and every right R-module in ��⊥

n belongs to ��n;
(13) Every right R-module in ⊥��n belongs to ��n;
(14) FP-id�RR� ≤ n and M is flat for any M ∈ ���

n ;
(15) FP-id�RR� ≤ n and M is flat for any M ∈ ���

n−1.

Proof. �1� ⇔ �2� follows from Theorem 3.4 (2). �1� ⇒ �4�, �5� ⇒ �6� are trivial.
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�4� ⇒ �1� Let M be any left R-module. By Theorem 3.4 (2), there is a short
exact sequence 0 → M → C → L → 0 with C ∈ �⊥

n and L ∈ �n. Then C ∈ �n by
(4), and hence M ∈ �n. Thus wD�R� ≤ n.

�1� ⇒ �5� Let M be any �n−m�-cotorsion left R-module and N any left R-
module. Since fd�N� ≤ n, Extm+1�N�M� = 0 by Proposition 4.3(1). So id�M� ≤ m.

�6� ⇒ �3� Let M be any 0-cotorsion left R-module. Then the �n−m�th
cosyzygy Ln−m of M is �n−m�-cotorsion by Proposition 4.3(2). Thus id�Ln−m� ≤ m
by (6), and so id�M� ≤ n.

�3� ⇒ �1� follows since fd�N� = id�N+� ≤ n for any right R-module N by
Lemma 3.1.

�1� ⇔ �7� holds by Stenström (1970, Theorem 3.3).

�7� ⇔ �10� follows from Theorem 3.4(1). �1� ⇔ �9� ⇔ �13� follow from the
equivalence of (1), (6) and (9) in Mao and Ding (2005, Theorem 4.1).

�7� ⇔ �11� follows from Proposition 3.6(2).

�7� ⇒ �12� and �15� ⇒ �14� are clear.

(1) ⇒ �8� Let M be a left R-module. Then M has an �n−1-preenvelope 
 �
M → N by Proposition 3.6 (1). It is easy to check that im�
� ∈ �n−1 since N/im�
� ∈
�n. Thus M → im�
� is an epic �n−1-envelope.

�8� ⇒ �1� Let M be a left R-module. Then by Theorem 3.4 (2), there exists
the exact sequence 0 → K → F → M → 0 with F ∈ �n−1 and K ∈ �⊥

n−1. Since K has
an epic �n−1-envelope by (8), K ∈ �n−1. Thus M ∈ �n� and so wD�R� ≤ n.

�12� ⇒ �7� Let M be any right R-module. By Theorem 3.4 (1), there is a short
exact sequence 0 → K → F → M → 0 with K ∈ ��⊥

n and F ∈ ��n. Then K ∈ ��n

by (12), and hence M ∈ ��n.

�10� ⇒ �14� follows from Lemma 6.1.

�14� ⇒ �15� holds by Lemma 6.3.

�14� ⇒ �1� By Corollary 5.2, the �n+ 1�th �0-cosyzygy Ln+1 of any finitely
presented left R-module M belongs to ���

n . Therefore L
n+1 is flat by (14), and hence

projective. So wD�R� ≤ n+ 3 < � by Enochs and Jenda (2000, Corollary 8.4.28).
Thus wD�R� = FP-id�RR� ≤ n by Stenström (1970, Proposition 3.5).

�

Corollary 6.5. The following are equivalent for a ring R and a fixed integer n ≥ 0:

(1) R is a semisimple Artinian ring;
(2) Every n-cotorsion left R-module is projective.

Proof. �1� ⇒ �2� is trivial.
�2� ⇒ �1�. Note that R is a QF ring since every injective left R-module is

projective. It follows that wD�R� ≤ n by Theorem 6.4. Thus wD�R� = 0, and hence
R is semisimple Artinian. �
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Theorem 6.6. Assume a ring R satisfies one of the following conditions:

(1) Every n-cotorsion left R-module has an �n-envelope with the unique mapping
property;

(2) Every finitely presented left R-module has an �n-envelope with the unique mapping
property;

(3) R is right coherent, and every right R-module M with M ∈ ⊥��n has an ��n-cover
with the unique mapping property.

Then wD�R� ≤ n+ 2.

Proof. Assume (1). Let M be any left R-module. Then we have the exact sequences

0 −→ C
i−→ F0


−→ M −→ 0 and 0 −→ F2

�−→ F1

	−→ C −→ 0

by Theorem 3.4 (2), where 
 � F0 → M and 	 � F1 → C are �n-covers, C and F2 are
n-cotorsion. Thus we get an exact sequence

0 −→ F2

�−→ F1

�=i	−−−→ F0

−→ M −→ 0�

Let � � F2 → H be an �n-envelope with the unique mapping property. Then there
exists � � H → F1 such that � = ��. Thus ��� = �� = 0, and hence �� = 0, which
implies that im��� ⊆ ker��� = im���. So there exists � � H → F2 such that �� = �,
and hence we get the following exact commutative diagram:

Note that ��� = �, and so �� = 1F2 since � is monic. Thus F2 is isomorphic to
a direct summand of H , and hence F2 ∈ �n. Therefore, fd�M� ≤ n+ 2, and so
wD�R� ≤ n+ 2.

Assume (2). By Ding (1996, Lemma 3.2), every left R-module has an �n-
envelope with the unique mapping property since �n is closed under direct limits.
So the result follows since condition (1) is satisfied.

Assume (3). We can prove that wD�R� ≤ n+ 2 in a way dual to that of (1)
using Proposition 3.6 (2) and the fact that wD�R� = FP-id�RR� for a right coherent
ring R. �

Finally, we prove the following result which may be of independent interest.

Proposition 6.7. Let n be a fixed non-negative integer. If every right R-module has
an ��n-cover with the unique mapping property, then ��n is closed under direct limits.

Proof. Let �Cj� �
j
i � be any direct system with Cj ∈ ��n. By hypothesis, lim→ Cj has

an ��n-cover 
 � E → lim→ Cj with the unique mapping property. Let 
j � Cj → lim→ Cj

with 
i = 
j�
i
j whenever i ≤ j. Then there exists fi � Ci → E such that 
i = 
fi for any
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i ≤ j. It follows that 
fi = 
fj�
i
j , and so fi = fj�

i
j . Therefore, by the definition of direct

limits, there exists 	 � lim→ Cj → E such that the following diagram is commutative:

Thus fi = 	
i, and so �
	�
i = 
�	
i� = 
fi = 
i for any i ≤ j. Therefore, 
	 = 1lim→ Cj

by the definition of direct limits, and hence lim→ Cj is a direct summand of E. So
lim→ Cj ∈ ��n. �

Remark 6.8. By Proposition 6.7, if every right R-module M has an ��0-cover with
the unique mapping property, then ��0 is closed under direct limits, and so R is
right coherent by Stenström (1970, Theorem 3.2). By Theorem 3.4 (1), if R is a
right coherent right self-FP-injective ring, then every right R-module M has an epic
��0-cover. By Chen and Ding (1996, Corollary 8), R is a right coherent ring with
wD�R� ≤ 1 if and only if every right R-module M has a monic ��0-cover. So it
seems reasonable to conjecture that a ring R is right coherent if and only if every
right R-module has an ��0-cover. In fact, Pinzon (see Pinzon, 2005) has proven
recently that if R is right coherent, then every right R-module has an ��0-cover. We
also wonder whether every right R-module over any ring R has an ��0-precover.
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