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We define a dimension, called an FP-projective dimension, for modules and rings. It
measures how far away a finitely generated module is from being finitely presented, and
how far away a ring is from being Noetherian. This dimension has nice properties when
the ring in question is coherent. The relations between the FP-projective dimension and
other homological dimensions are discussed.
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1. INTRODUCTION

Let R be a ring and M a right R-module. Ng (1984) defined the finitely
presented dimension f�p�dim�M� of M as inf�n � there exists an exact sequence
Pn+1 → Pn → · · · → P0 → M → 0 of right R-modules, where each Pi is projective,
and Pn+1� Pn are finitely generated�. If no such sequence exists for any n, set
f�p�dim�M� = �. The right finitely presented dimension r�f�p�dim�R� of R is defined
as sup�f�p�dim�M� � M is a finitely generated right R-module�. The dimension
defined in this way has some nice properties, but no ring or finitely generated
module can have finitely presented dimension 1 by Ng (1984), Proposition 1.5 and
Corollary 1.6. To fill the gap, we shall introduce another kind of finitely presented
dimension of modules and rings in this paper.

In Section 2, the definition and some general results are given. For a right R-
module M , we define the FP-projective dimension fpd�M� of M to be the smallest
integer n ≥ 0 such that Extn+1�M�N� = 0 for any FP-injective right R-module N . If
no such n exists, set fpd�M� = �. The right FP-projective dimension rfpD�R� of
a ring R is defined as sup�fpd�M� � M is a finitely generated right R-module�. M
is called FP-projective if fpd�M� = 0, i.e., Ext1�M�N� = 0 for any FP-injective right
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R-module N . The FP-projective dimension for modules and rings defined here is
different from the finitely presented dimension Ng (1984), and the �-dimension in
Vasconcelos (1976), and it measures how far away a finitely generated module is
from being finitely presented, and how far away a ring is from being Noetherian.

In Section 3, with the additional assumption of coherence, we show that
the FP-projective dimenion has the properties that we expect of a “dimension.”
Let R be a right coherent ring. It is shown that rfpD�R� = sup�fpd�M� � M is
a cyclic right R-module� = sup�id�F� � F is an FP-injective right R-module� =
sup�fpd�F� � F is an FP-injective right R-module�. As corollaries, we have that
R is a right Noetherian ring if and only if every FP-injective right R-module is
FP-projective; and rfpD�R� ≤ 1 if and only if for any pure submodule N of an
injective right module M , the quotient M/N is injective. For a right semi-Artinian
right coherent ring R, we prove that rfpD�R� = sup�fpd�M� � M is a simple right
R-module�. If R and S are right coherent rings, then we get that rfpD�R⊗ S� =
sup�rfpD�R�� rfpD�S��. Let R be a commutative coherent ring and P any prime
ideal of R, then fpD�Rp� ≤ fpD�R�, where Rp is the localization of R at P.

In the last section, it is proven that wD�R� = sup�pd�M� � M is an FP-
projective right R-module� and rD�R�≤ wD�R�+rfpD�R� for a right coherent ringR.

Throughout this paper, all rings are associative with identity and all modules
are unitary. We write MR �RM� to indicate a right (left) R-module. Let R be a
ring and M�N be R-modules. rD�R� �wD�R�� stands for the right (the weak)
global dimension of R. pd�M�, fd�M�, and id�M� denote the projective, flat,
and injective dimensions of M , respectively. Hom�M�N� �Extn�M�N�� means
HomR�M�N� �ExtnR�M�N�� for an integer n ≥ 1, and similary M ⊗ N �Tor1�M�N��
denotes M ⊗R N �TorR1 �M�N��, unless otherwise specified. General background
materials can be found in Anderson and Fuller (1974), Enochs and Jenda (2000),
Rotman (1979), and Xu (1996).

2. DEFINITION AND GENERAL RESULTS

Recall that a right R-module M is called FP-injective (or absolutely pure)
(Madox, 1967; Stenström, 1970) if Ext1�N�M� = 0 for all finitely presented right
R-modules N .

Definition 2.1. Let R be a ring. For a right R-module M , let fpd�M� denote
the smallest integer n ≥ 0 such that Extn+1�M�N� = 0 for any FP-injective right
R-module N and call fpd�M� the FP-projective dimension of M . If no such n exists,
set fpd�M� = �.

Put rfpD�R� = sup�fpd�M� � M is a finitely generated right R-module� and
call rfpD�R� the right FP-projective dimension of R. Similarly, we have lfpD�R�
(when R is a commutative ring, we drop the unneeded letters r and l).

A right R-module M is called FP-projective if fpd�M� = 0, i.e., Ext1�M�N� = 0
for any FP-injective right R-module N .

Remarks 2.2. (1) It is clear that fpd�M� ≤ pd�M� for any right R-module M and
rfpD�R� ≤ rD�R� for any ring R. It is also easy to see that a ring R is von Neumann
regular if and only if fpd�M� = pd�M� for any right R-module M if and only if
every FP-projective right R-module is projective (flat).
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(2) Enochs (1976) proved that a finitely generated right R-module M is
finitely presented if and only if Ext1�M�N� = 0 for any FP-injective right R-module
N . Thus fpd�M� measures how far away a finitely generated right R-module M is
from being finitely presented.

Proposition 2.3. Let R be a ring and M a right R-module. Then fpd�M� ≤
f�p�dim�M�.

Proof. We may assume f�p�dim�M� = n < �. Then there exists an exact sequence

Pn+1 → Pn → · · · → P0 → M → 0

of right R-modules, where each Pi is projective, and Pn+1� Pn are finitely generated.
Let Kn−1 = coker�Pn+1 → Pn�, then we have the exact sequence

0 → Kn−1 → Pn−1 · · · → P0 → M → 0

with Kn−1 finitely presented. Thus Extn+1�M�N� � Ext1�Kn−1� N� = 0 for any FP-
injective right R-module N , and so fpd�M� ≤ n, as required. �

Corollary 2.4. Let R be a ring. Then rfpD�R� ≤ r�f�p�dim�R�.

Remark 2.5. The inequalities in Proposition 2.3 and Corollary 2.4 may be strict.
In fact, let M be a nonfinitely generated projective module, then fpd�M� = 0, while
f�p�dim�M� = 1 by Ng (1984), Proposition 1.2. On the other hand, let

R =
(
� �
0 �

)
�

Then R is a right hereditary ring that is not right Noetherian (cf. Anderson and
Fuller, 1974, Example 28.12), thus r�f�p�dim�R� = 2 by the remark just before
Ng (1984), Proposition 1.7. However, rfpD�R� = 1. Clearly, the FP-projective
dimension defined here is different from the finitely presented dimension in Ng (1984).

Proposition 2.6. For any ring R the following are equivalent:

(1) rfpD�R� = 0;
(2) R is right Noetherian;
(3) Every finitely generated right R-module is finitely presented;
(4) Every cyclic right R-module is finitely presented;
(5) Every right R-module is FP-projective;
(6) Every FP-injective right R-module is injective;
(7) Every direct limit of FP-projective right R-modules is FP-projective.

Proof. (1) ⇔ (2) ⇔ (3), (5) ⇒ (7) and (6) ⇒ (5) ⇒ (3) ⇒ (4) are obvious.

(4) ⇒ (6). Let N be an FP-injective right R-module and I a right ideal of R.
Then Ext1�R/I� N� = 0 by (4). Thus N is injective, as desired.
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(7) ⇒ (5). Note that every right R-module is a direct limit of finitely
presented right R-modules. Therefore (5) follows from the fact that every finitely
presented right R-module is FP-projective. �

Remarks 2.7. (1) By Proposition 2.6, rfpD�R� measures how far away a ring is
from being right Noetherian. It is well known that right Noetherian rings need not
be left Noetherian, so rfpD�R� 	= lfpD�R� in general.

(2) Let R be a commutative ring. The �-dimension �R�M� of an R-module
M and the �-dimension �-dim�R� of the ring R have been widely studied (see
Couchot, 2003; Vasconcelos, 1976). It is well known that R is Noetherian if and
only if �-dim�R� = 0, and R is coherent if and only if �-dim�R� ≤ 1. However the
�-dimension is completely different from the FP-projective dimension defined here.
In fact, take M to be a finitely presented R-module, then �R�M� ≥ 1, but fpd�M� = 0.
In addition, we can choose a commutative von Neumann regular ring R of global
dimension 2 by Pierce (1967), Corollary 5.2, then fpD�R� = D�R� = 2 by Remark
2.2, while �-dim�R� = 1.

(3) Recall that a right R-module M is said to be pure projective if for
every pure exact sequence 0 → T → N → N/T → 0, the sequence Hom�M�N� →
Hom�M�N/T� → 0 is exact. By Dauns (1994), Theorem 18-2.10, M is pure projective
if and only if M is a direct summand of a direct sum of finitely presented modules.
Clearly, pure projective modules are FP-projective, but the converse is not true.
In fact, Azumaya and Facchini (1989), Proposition 5, assert that if every right R-
module is pure projective, then R must be right Artinian. Take R to be a right
Noetherian ring which is not right Artinian, then there exists an FP-projective right
R-module which is not pure projective.

Let M be a right R-module. Recall that a homomorphism 	 � M → F , where
F is FP-injective, is called an FP-injective preenvelope of M (see Enochs and Jenda,
2000) if for any homomorphism f � M → F ′, where F ′ is FP-injective, there is a
homomorphism g � F → F ′ such that g	 = f . Moreover, if the only such g are
automorphisms of F , when F ′ = F and f = 	, the FP-injective preenvelope 	 is
called an FP-injective envelope of M . Clearly, 	 is a monomorphism. FP-projective
(pre)covers of M can be defined dually. By Enochs and Jenda (2000), Proposition
6.2.4, every R-module has an FP-injective preenvelope.

Remark 2.8. Denote by ��-proj (��-inj) the class of FP-projective (FP-
injective) right R-modules. Then (��-proj� ��-inj) is a cotorsion theory that is
cogenerated by the representative set of all finitely presented R-modules (cf. Enochs
and Jenda, 2000, Definiton 7.1.2). We note that the concept of FP-projective
modules coincides with that of finitely covered modules introduced by Trlifaj (see
Trlifaj, 2000, Definition 3.3 and Theorem 3.4). By Enochs and Jenda (2000),
Theorem 7.4.1 and Definition 7.1.5, every R-module has a special FP-injective
preenvelope, i.e., there is an exact sequence 0 → M → F → L → 0, where F is FP-
injective and L is FP-projective; and every R-module has a special FP-projective
precover, i.e., there is an exact sequence 0 → K → F → M → 0, where F is FP-
projective and K is FP-injective (note that every R-module has a pure projective
precover by Enochs and Jenda, 2000, Example 8.3.2). However, FP-injective
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envelopes may not exist in general (see Trlifaj, 2000, Theorem 4.9). We observe that,
if 
 � M → F is an FP-injective envelope of M , then coker�
� is FP-projective by
Enochs and Jenda (2000), Proposition 7.2.4, and if � � F → M is an FP-projective
cover of M , then ker��� is FP-injective by Enochs and Jenda (2000), Proposition
7.2.3.

Recall that a ring R is called right self-FP-injective if RR is an FP-injective
module. We end this section with the following characterizations of FP-projective
R-modules.

Proposition 2.9. Let R be a right self-FP-injective ring. If M is a right R-module,
then the following are equivalent:

(1) M is FP-projective;
(2) M is projective with respect to every exact sequence 0 → A → B → C → 0, where

A is FP-injective;
(3) For every exact sequence 0 → K → F → M → 0, where F is FP-injective,

K → F is an FP-injective preenvelope of K;
(4) M is a cokernel of an FP-injective preenvelope K → F with F projective.

Proof. �1� ⇒ �2� Let 0 → A → B → C → 0 be an exact sequence, where A is
FP-injective. Then Ext1�M�A� = 0 by (1). Thus Hom�M�B� → Hom�M�C� → 0 is
exact, and (2) holds.

�2� ⇒ �1� For every FP-injective right R-module N , there is a short
exact sequence 0 → N → E → L → 0 with E injective, which induces an exact
sequence Hom�M�E� → Hom�M�L� → Ext1�M�N� → 0. Since Hom�M�E� →
Hom�M�L� → 0 is exact by (2), we have Ext1�M�N� = 0, and (1) follows.

�1� ⇒ �3� is easy to verify.

�3� ⇒ �4� Let 0 → K → P → M → 0 be an exact sequence with P
projective. Note that P is FP-injective by hypothesis, thus K → P is an FP-injective
preenvelope.

�4� ⇒ �1� By (4), there is an exact sequence 0 → K → P → M → 0, where
K → P is an FP-injective preenvelope with P projective. It gives rise to the
exactness of Hom�P� N� → Hom�K�N� → Ext1�M�N� → 0 for each FP-injective
right R-module N . Note that Hom�P� N� → Hom�K�N� → 0 is exact by (4). Hence
Ext1�M�N� = 0, as desired. �

3. THE FP-PROJECTIVE DIMENSION OVER COHERENT RINGS

Recall that a ring R is called right coherent if every finitely generated right
ideal of R is finitely presented.

Proposition 3.1. Let R be a right coherent ring. For any right R-module M and an
integer n ≥ 0, the following are equivalent:

(1) fpd�M� ≤ n;
(2) Extn+1�M�N� = 0 for any FP-injective right R-module N ;
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(3) Extn+j�M�N� = 0 for any FP-injective right R-module N and j ≥ 1;
(4) There exists an exact sequence 0 → Pn → Pn−1 → · · · → P1 → P0 → M → 0,

where each Pi is FP-projective.

Proof. �3� ⇒ �1� is obvious.

�2� ⇒ �3� For any FP-injective right R-module N , there is a short
exact sequence 0 → N → E → L → 0, where E is injective. Then the sequence
Extn+1�M�L� → Extn+2�M�N� → Extn+2�M�E� = 0 is exact. Note that L is FP-
injective by Stenström (1970), Lemma 3.1, so Extn+1�M�L� = 0 by (2). Hence
Extn+2�M�N� = 0, and (3) follows by induction.
The proof of �1� ⇒ �2� is similar to that of �2� ⇒ �3�.

�1� ⇔ �4� is straightforward. �

The proof of the next proposition is standard homological algebra.

Proposition 3.2. Let R be a right coherent ring, 0 → A → B → C → 0 an exact
sequence of right R-modules. If two of fpd�A�, fpd�B�, and fpd�C� are finite, so is the
third. Moreover,

(1) fpd�B� ≤ sup�fpd�A�� fpd�C��.
(2) fpd�A� ≤ sup�fpd�B�� fpd�C�− 1�.
(3) fpd�C� ≤ sup�fpd�B�� fpd�A�+ 1��

Corollary 3.3. Let R be a right coherent ring.

(1) If 0 → A → B → C → 0 is an exact sequence of right R-modules, where
0 < fpd�A� < � and B is FP-projective, then fpd�C� = fpd�A�+ 1.

(2) rfpD�R� = n if and only if sup�fpd�I� : I is any right ideal of R� = n− 1 for any
integer n ≥ 2.

Proof. (1) is true by Proposition 3.2.

(2) For a right ideal I of R, consider the exact sequence 0 → I → R →
R/I → 0. Then (2) follows from (1). �

Theorem 3.4. Let R be a right coherent ring, then the following are identical:

(1) rfpD�R�;
(2) sup{fpd�M� � M is a cyclic right R-module};
(3) sup{fpd�M� � M is any right R-module};
(4) sup{id�F� � F is an FP-injective right R-module};
(5) sup{fpd�F� � F is an FP-injective right R-module}.

Proof. �2� ≤ �1� ≤ �3� and �5� ≤ �3� are obvious.

�3�≤ �4� We may assume sup�id�F� � F is an FP-injective right R-module� =
m < �. Let M be any right R-module and N any FP-injective right R-module. Since
id�N� ≤ m, it follows that Extm+1�M�N� = 0. Hence fpd�M� ≤ m.
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�4� ≤ �2� We may assume sup�fpd�M�� M is a cyclic right R-module� =
n < �. Let N be an FP-injective right R-module and I any right ideal, then
fpd�R/I� ≤ n. By Proposition 3.1, Extn+1�R/I� N� = 0, and so id�N� ≤ n.

�3� ≤ �5� We may assume that sup�fpd�F� � F is an FP-injective right
R-module� = n < �. Let M be any right R-module. By Remark 2.8, there is a
short exact sequence 0 → M → F → L → 0, where F is FP-injective and L is
FP-projective. Thus fpd�M� ≤ fpd�F� ≤ n. This completes the proof. �

Corollary 3.5. Let R be a right coherent ring. Then the following are equivalent for
an integer n ≥ 0:

(1) rfpD�R� ≤ n;
(2) id�M� ≤ n for all FP-injective right R-modules M;
(3) fpd�M� ≤ n for all FP-injective right R-modules M;
(4) id�M� ≤ n for all right R-modules M that are both FP-projective and FP-injective,

and rfpD�R� < �;
(5) fpd�M� ≤ n for all injective right R-modules M , and rfpD�R� < �;
(6) Extn+1�M�N� = 0 for all FP-injective right R-modules M and N ;
(7) Extn+j�M�N� = 0 for all FP-injective right R-modules M , N and j ≥ 1.

Proof. By Theorem 3.4, it suffices to show that �4� ⇒ �2� and �5� ⇒ �3�.

�4� ⇒ �2� Let M be any FP-injective right R-module. Since rfpD�R� < �,
fpd�M� = m for a nonnegative integer m by Theorem 3.4 (4). Note that every right
R-module has a special FP-projective precover, then there exists an exact sequence

0 → Pm → Pm−1 → · · · → P1 → P0 → M → 0�

where each Pi is both FP-projective and FP-injective. Since id�Pi� ≤ n by (4),
id�M� ≤ n.

�5� ⇒ �3� Let M be any FP-injective right R-module. Since rfpD�R� < �,
id�M� = m for an integer m ≥ 0 by Theorem 3.4 (5). Hence M admits an injective
resolution

0 → M → E0 → E1 → · · · → Em−1 → Em → 0�

Note that fpd�Ei� ≤ n for each Ei by (5), so fpd�M� ≤ n by Proposition 3.2. �

In what follows, �M � M → E�M��M � FP�M� → M� denotes the injective
envelope (FP-projective cover) of a right R-module M . Recall that an injective
envelope �M � M → E�M� has the unique mapping property (see Ding, 1996)
if for any homomorphism f � M → N with N injective, there exists a unique
homomorphism g � E�M� → N such that g�M = f . The concept of an FP-projective
cover (FP-injective envelope) with the unique mapping property can be defined
similarly.

Corollary 3.6. Let R be a right coherent ring. Then the following are equivalent:

(1) R is a right Noetherian ring;
(2) Every FP-injective right R-module is FP-projective;
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(3) rfpD�R� < �, and every injective right R-module is FP-projective;
(4) Ext1�M�N� = 0 for all FP-injective right R-modules M and N ;
(5) Every FP-injective right R-module has an injective envelope with the unique

mapping property;
(6) Every FP-injective right R-module has an FP-projective cover with the unique

mapping property.

Proof. It is enough to show that �5� ⇒ �1� and �6� ⇒ �2�.

�5� ⇒ �1� Let M be any FP-injective right R-module. There is the following
exact commutative diagram

0
�↓

0 −→ M
�M−−→ E�M�

�−−→ L −→ 0
�↓�L

E�L�

�
��

���������0

�L�

Note that �L��M = 0 = 0�M , so �L� = 0 by (5). Therefore L = im��� ⊆ ker��L� = 0,
and hence M is injective. Thus (1) follows.

�6� ⇒ �2� Let M be any FP-injective right R-module. There is the following
exact commutative diagram

FP�K�

K
�↓

0 −→ K −−→



FP�M� −−−→
M

M −→ 0
�↓
0

�
���

���������

0

K

where K is FP-injective by Remark 2.8. Note that M
K = 0 = M0, so

K = 0 by (6). Therefore K = im�K� ⊆ ker�
� = 0, and so M is FP-projective, as
required.

�

It is known that a ring R is right coherent if and only if for any pure
submodule N of an FP-injective right R-module M , the quotient M/N is FP-injective
(see Wisbauer, 1991, 35.9, p. 302). Here we have the following

Proposition 3.7. Let R be a right coherent ring. Then the following are equivalent:

(1) rfpD�R� ≤ 1;
(2) For any pure submodule N of an injective right module M , the quotient M/N is

injective;
(3) Every submodule of an (FP-)projective right R-module is FP-projective;
(4) Every right ideal of R is FP-projective.
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Proof. �1� ⇒ �2� Let N be a pure submodule of an injective right module M .
Then N is FP-injective, and so id�N� ≤ 1 by Theorem 3.4 (4). Thus the exactness of
0 → N → M → M/N → 0 implies the injectivity of M/N .

�2� ⇒ �1� Suppose N is an FP-injective right R-module. Then N is a pure
submodule of its injective envelope E�N�, and hence E�N�/N is injective by (2).
Therefore id�N� ≤ 1, and so (1) follows from Theorem 3.4 (4).

�3� ⇒ �4� is trivial.

�1� ⇒ �3� Let N be a submodule of an FP-projective right R-module M .
Then, for any FP-injective right R-module L, we get an exact sequence

0 = Ext1�M�L� → Ext1�N� L� → Ext2�M/N�L��

Note that the last term is zero by (1), hence Ext1�N� L� = 0, and (3) follows.

�4� ⇒ �1� Let I be a right ideal of R. The exact sequence 0 → I →
R → R/I → 0 implies fpd�R/I� ≤ 1 by Proposition 3.1. So (1) follows from
Theorem 3.4 (2). �

It is well known that for a right coherent ring R, the dual module Hom�M�R�
of any finitely presented left R-module M is finitely presented. Here we have the
following

Corollary 3.8. If R is a right coherent ring with rfpD�R� ≤ 1, then the dual module
Hom�M�R� of any finitely generated left R-module M is FP-projective.

In addition, if R is also left coherent, then the following are equivalent:

(1) Every flat right R-module is FP-projective;
(2) M+ is right FP-projective for any (FP-)injective left R-module M , where M+

denotes the character module Hom��M��/��;
(3) N++ is right FP-projective for any flat right R-module N .

Proof. Let M be a finitely generated left R-module. Then there exists an exact
sequence P → M → 0 with P finitely generated projective. So we have a right
R-module exact sequence 0 → Hom�M�R� → Hom�P� R�. Note that Hom�P� R� is
projective, therefore Hom�M�R� is FP-projective by Proposition 3.7.

If R is also left coherent, then �1� ⇒ �2� ⇒ �3� are clear.

�3� ⇒ �1� Let N be any flat right R-module. There exists an exact sequence
0 → N → N++. Since rfpD�R� ≤ 1 and N++ is right FP-projective by (3), we have
that N is FP-projective by Proposition 3.7. �

Corollary 3.9. Let R be a commutative hereditary ring. Then Tor1�M�N� is
FP-projective for any R-module M and any FP-projective R-module N .

Proof. For any R-module M , there is an exact sequence 0→P1 →P0 →M→ 0,
with P0 and P1 projective by hypothesis, which induces an exact sequence
0 → Tor1�M�N� → P1 ⊗ N . It is easy to see that P1 ⊗ N is FP-projective (for N is
FP-projective). Thus Tor1�M�N� is FP-projective by Proposition 3.7. �
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A ring R is called right semi-Artinian if every nonzero cyclic right R-module
has a nonzero socle. The following proposition shows that we may compute the FP-
projective dimension of a semi-Artinian coherent ring using just the FP-projective
dimensions of simple modules.

Proposition 3.10. If R is a right semi-Artinian right coherent ring, then rfpD�R� =
sup{fpd(M): M is a simple right R-module}.

Proof. It suffices to show that rfpD�R� ≤ sup�fpd�M� � M is a simple right
R-module�. We may assume that sup�fpd�M�� M is a simple right R-module� =
n < �. Let N be an FP-injective right R-module and I a maximal right ideal of R.
Consider the injective resolution of N

0 → N → E0 → E1 → · · · → En−1 → En → · · · �

Write L = coker�En−2 → En−1�. Then Ext1�R/I� L� = Extn+1�R/I� N� = 0 by
Proposition 3.1. Therefore L is injective by Smith (1981), Lemma 4, since R is right
semi-Artinian. So id�N� ≤ n, and hence rfpD�R� ≤ n by Theorem 3.4. �

Corollary 3.11. Let R be a right coherent ring.

(1) If R is right semi-Artinian, then R is a right Noetherian ring if and only if every
simple right R-module is finitely presented.

(2) If R is a left perfect ring with Jacobson radical J , then rfpD�R� = fpd�R/J�, where
R/J is considered as a right R-module.

Proof. (1) follows from Proposition 3.10.

(2) Note that R is left perfect if and only if R is right semi-Artinian and
semilocal (cf. Stenström, 1975). (2) follows immediately since every simple right R-
module is the direct summand of the right R-module R/J by Kasch (1982), Theorem
9.3.4. �

Proposition 3.12. Let J be the Jacobson radical of a ring R. Then the following are
equivalent:

(1) R is a left perfect right coherent ring with rfpD�R� < �, and R/J (as a right
R-module) embeds in an FP-projective right R-module;

(2) R is a right Artinian ring.

Proof. �2� ⇒ �1� is clear.

�1� ⇒ �2� Since R is a left perfect and right coherent ring, then rfpD�R� =
fpd�R/J� = n < � by Corollary 3.11. We claim that n = 0. Otherwise, let 
 � R/J →
F be the embedding, where F is FP-projective. Thus the exactness of the sequence
0 → R/J → F → L → 0 implies that fpd�L� = fpd�R/J�+ 1 = n+ 1 by Corollary
3.3. However, fpd�L� ≤ rfpD�R� = n, this is impossible. Thus R is right Noetherian
and hence right Artinian. �
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To prove the next main result, we need the following three lemmas.

Lemma 3.13. If � � R → S is a surjective ring homomorphism, both RS and SR are
projective. Let M be a right S-module (and hence a right R-module), then M is a finitely
presented right S-module if and only if M is a finitely presented right R-module.

Proof. (S ⇒ R). If M is a finitely presented right S-module, then there is an exact
sequence 0 → K → P → M → 0 of right S-modules, where K and P are finitely
generated, and P is projective. It is easy to see that K is a finitely generated right R-
module and P is a finitely generated projective right R-module (for SR is projective).
Therefore M is a finitely presented right R-module.

(S ⇐ R). If M is a finitely presented right R-module, then there is an exact
sequence 0 → K → P → M → 0 of right R-modules, where K is finitely generated
and P is finitely generated projective. Since RS is projective, we have the exact
sequence

0 → K ⊗R SS → P ⊗R SS → M ⊗R SS → 0�

Note that K ⊗R SS is a finitely generated right S-module, P ⊗R SS is a finitely
generated projective right S-module, and M ⊗R SS � MS . Thus MS is a finitely
presented right S-module. �

The following fact can be verified easily, so we omit its proof.

Lemma 3.14. Let R and S be rings. Every right (R⊕ S)-module M has a
unique decomposition that M = A⊕ B, where A = M�R� 0� is a right R-module and
B = M�0� S� is a right S-module via xr = x�r� 0� for x ∈ A� r ∈ R, and ys = y�0� s� for
y ∈ B� s ∈ S.

Lemma 3.15. Let R and S be rings. If M is a right R-module (and hence a right
�R⊕ S�-module), then M is an FP-projective right R-module if and only if M is an
FP-projective right �R⊕ S�-module.

Proof. (R ⇒ R⊕ S). Suppose M is an FP-projective right R-module. By Remark
2.8, M is finitely covered, i.e., M is a direct summand in a right R-module N such
that N is a union of a continuous chain �N
 � 
 < ��, for a cardinal �, N0 = 0,
and N
+1/N
 is a finitely presented right R-module for all 
 < � (see Trlifaj, 2000,
Definition 3.3). Note that N
+1/N
 is a finitely presented right �R⊕ S�-module for
all 
 < � by Lemma 3.13. Thus M is also an FP-projective right �R⊕ S�-module.

(R⊕ S ⇒ R). Suppose M is an FP-projective right �R⊕ S�-module. Then
there exist right �R⊕ S�-modules N and Q such that M ⊕Q = N , and N is a union
of a continuous chain, �N
 � 
 < ��, for a cardinal �, N0 = 0, and N
+1/N
 is a
finitely presented right �R⊕ S�-module for all 
 < �. In view of Lemma 3.14, we
may assume Q = Q1 +Q2, N
 = N 1


 ⊕ N 2

 , where Q

1 and N 1
Q are right R-modules, Q2

and N 2

 are right S-modules. Then

N = ⋃

<�

N
 =
⋃

<�

(
N 1


 ⊕ N 2



) = ( ⋃

<�

N 1



)⊕ ( ⋃

<�

N 2



)
�
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Note that M is a right R-module, and so M ⊕Q1 = ⋃

<� N

1

 by Lemma 3.14. In

addition,

N
+1/N
 =
(
N 1


+1 ⊕ N 2

+1

)
/
(
N 1


 ⊕ N 2



) � (
N 1


+1 /N
1



)⊕ (
N 2


+2/N
2



)
�

which implies that each N 1

+1/N

1

 is fintiely presented as a right �R⊕ S�-module, and

so it is finitely presented as a right R-module by Lemma 3.13. Therefore, M is an
FP-projective right R-module. �

We are now in a position to prove the following

Theorem 3.16. Let R and S be right coherent rings. Then

rfpD�R⊕ S� = sup�rfpD�R�� rfpD�S���

Proof. The proof is motivated by that of Ng (1984), Theorem 2.11.
We first show that rfpD�R⊕ S� ≤ sup�rfpD�R�� rfpD�S��. We may assume

that rfpD�R� = m < �� rfpD�S� = n < �, and m ≥ n. Let M be a right �R⊕ S�-
module. Then M = A⊕ B, where A is a right R-module and B is a right S-
module. Since fpd�A� ≤ m, fpd�B� ≤ n ≤ m, by Proposition 3.1 there exist two
exact sequences

0 → Pm → Pm−1 → · · · → P1 → P0 → A → 0

and

0 → Qm → Qm−1 → · · · → Q1 → Q0 → B → 0

of right R-modules and right S-modules, respectively, where each Pi is an FP-
projective right R-module, and each Qi is an FP-projective right S-module.
Regarding these as exact sequences of right �R⊕ S�-modules, we have an exact
sequence of right �R⊕ S�-modules

0 → Pm ⊕Qm → Pm−1 ⊕Qm−1 → · · · → P1 ⊕Q1 → P0 ⊕Q0 → A⊕ B → 0�

Note that each Pi ⊕Qi is an FP-projective right �R⊕ S�-module by Lemma 3.15.
Thus fpd�MR⊕S� ≤ m, and hence rfpD�R⊕ S� ≤ sup�rfpD�R�� rfpD�S��.

Next we prove that sup�rfpD�R�� rfpD�S�� ≤ rfpD�R⊕ S�. Suppose that
rfpD�R⊕ S� = k < �, and rfpD�R� > k. Then there is a right R-module M
with fpd�M� > k. Note that M may be regarded as a right �R⊕ S�-module, so
fpd�MR⊕S� ≤ rfpD�R⊕ S� = k. Thus there exists an exact sequence

0 → Pk → Pk−1 → · · · → P1 → P0 → M → 0

of right �R⊕ S�-modules, where each Pi is an FP-projective right �R⊕ S�-module.
By Lemma 3.14, we may assume Pi = Ai ⊕ Bi, where Ai is a right R-module and Bi
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is a right S-module, i = 0� 1� � � � � k. Since M is a right R-module, we have the exact
sequence

0 → Ak → Ak−1 → · · · → A1 → A0 → M → 0

of right R-modules. Note that each Ai is an FP-projective right �R⊕ S�-module,
and so an FP-projective right R-module by Lemma 3.15, whence fpd�MR� ≤
k, a contradiction. Thus sup�rfpD�R�� rfpD�S�� ≤ rfpD�R⊕ S�. The proof is
complete. �

Remark 3.17. Theorem 3.16 shows that rfpD
(⊕n

i=1 Ri

) = sup1≤i≤n�rfpD�Ri�� if
each Ri is right coherent. In particular, we have the well-known result that

⊕n
i=1 Ri

is right Noetherian if and only if each Ri is right Noetherian, i = 1� 2� � � � � n.
However, rfpD

(⊕�
i=1 Ri

) 	= supi≥1�rfpD�Ri�� in general. For example,
⊕�

i=1 �2 is
not Noetherian, where �2 is the field of two elements.

The proof of the next main result requires a lemma.

Lemma 3.18. Let R and S be rings. Suppose SLR is an S-R-bimodule, LR is flat, and

SL is finitely generated projective.

(1) If M is a finitely presented left R-module, then SL⊗R M is a finitely presented left
S-module.

(2) If M is an FP-projective left R-module, then SL⊗R M is an FP-projective left
S-module.

Proof. (1) is straightforward.

(2) Since M is an FP-projective left R-module, M is a direct summand in a
left R-module N such that N is a union of a continuous chain �N
 � 
 < ��, for a
cardinal �, N0 = 0, and N
+1/N
 is a finitely presented left R-module for all 
 < �.
Since LR is flat, the short exact sequence

0 −→ N


i
−→N
+1 −→ N
+1/N
 −→ 0

gives rise to the exactness of the sequence

0 −→S L⊗R N


1⊗i
−→SL⊗R N
+1 −→S L⊗R �N
+1/N
� −→ 0�

By (1), SL⊗R �N
+1/N
� is a finitely presented left S-module. Regarding each 1⊗ i

as an inclusion map, then SL⊗R N
 is a submodule of SL⊗R N
+1. Thus SL⊗R M
is a direct summand in a left S-module SL⊗R N such that SL⊗R N is a union
of a continuous chain �SL⊗R N
 � 
 < ��, for a cardinal �, SL⊗R N0 = 0, and
�SL⊗R N
+1�/�SL⊗R N
� �S L⊗R �N
+1/N
� is a finitely presented left S-module for
all 
 < �. That is to say, SL⊗R M is an FP-projective left S-module. �

Theorem 3.19. Let R be a commutative coherent ring. If P is any prime ideal of R,
then fpD�Rp� ≤ fpD�R�, where Rp is the localization of R at P.
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Proof. We may assume fpD�R� = n < �. Let M be any Rp-module, then M may
be viewed as an R-module and so fpd�MR� ≤ n. Thus there exists an FP-projective
resolution of MR

0 → Fn → Fn−1 → · · · → F1 → F0 → M → 0�

which induces an Rp-module exact sequence

0 → �Fn�P → �Fn−1�P → · · · → �F1�P → �F0�P → MP → 0�

Note that each �Fi�P is an FP-projective RP-module by Lemma 3.18, i = 0� 1� � � � � n,
it follows that fpd�MP�RP

≤ n. Since MP � M as RP-modules, fpd�M� ≤ n. Thus
fpD�RP� ≤ n, as required. �

Remark 3.20. The theorem above gives the well-known result that any localization
of a Noetherian ring is again Noetherian. However, in general, rfpD�R� 	=
sup{fpD�RP� � P is a prime ideal of R}. In fact, take R to be a commutative non-
Noetherian ring whose localization with respect to any prime ideal is Noetherian,
e.g. the direct product of countably many copies of �2. Then rfpD�R� > 0, while
fpD�RP� = 0 for all prime ideals P of R.

Proposition 3.21. Let R be a right coherent and right self-FP-injective ring. Then

(1) rfpD�R� ≥ sup�id�M� � M is a right R-module with fd�M� < ��
≥ sup�id�M� � M is a flat right R-module�.

(2) If R is a two-sided coherent and two-sided self-FP-injective ring, then the equalities
in �1� hold.

Proof. (1) Write rfpD�R� = n. Let M be a right R-module with fd�M� = m < �.
Then we have an exact sequence

0 → Fm → Fm−1 → · · ·F1 → F0 → M → 0�

Note that every Fi is FP-injective by Stenström (1970), Lemma 4.1, so id�Fi� ≤ n by
Theorem 3.4, whence id�M� ≤ n, as desired. The second inequality is trivial.

(2) If R is a two-sided coherent and two-sided self-FP-injective ring, then
every FP-injective right R-module is flat by Stenström (1970), Proposition 4.2, thus

rfpD�R� ≤ sup�id�M� � M is a flat right R-module�

and (2) follows from (1). �

4. RELATIONS WITH OTHER HOMOLOGICAL DIMENSIONS

It is well known that if R is a right coherent ring, then fd�M� = pd�M� for any
finitely presented right R-module M (see Jones and Teply, 1982, Lemma 5). Now
we have
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Proposition 4.1. Let R be a right coherent and right self-FP-injective ring. If M is
an FP-projective right R-module, then fd�M� = pd�M�.

Proof. It is clear that fd�M� ≤ pd�M�. Conversely, we may suppose that fd�M� =
n < �. There is an exact sequence

0 → Fn → Pn−1 → · · ·P1 → P0 → M → 0

with P0� P1� � � � � Pn−1 projective. Since fd�M� = n� Fn is flat. Hence we have a pure
exact sequence 0 → K → P → Fn → 0 of right R-modules with P projective. Since
P is FP-injective by hypothesis, so is K. Note that Fn is FP-projective (for M is
FP-projective). Thus the short exact sequence 0 → K → P → Fn → 0 splits, and
hence Fn is projective. So pd�M� ≤ n, as desired. �

Let R be a ring and M a right R-module. Following Stenström (1970), FP-
inj�dim�M� denotes the smallest integer n ≥ 0 such that Extn+1�F�M� = 0 for every
finitely presented module F , and r�FP-dim�R� = sup{FP-inj�dim�M� � M is a right
R-module}.

Theorem 4.2. Let R be a right coherent ring. Then the following are identical:

(1) wD�R�;
(2) r�FP-dim�R�;
(3) sup{pd(M):M is a finitely presented right R-module};
(4) sup{pd(M):M is an FP-projective right R-module};
(5) sup{fd(M):M is an FP-projective right R-module};
(6) sup{FP-inj.dim(M):M is an FP-projective right R-module}.

Proof. �1� = �2� = �3� = �6� follow from Stenström (1970), Theorem 3.3.

�3� ≤ �4� is trivial.

�4� ≤ �2� Let M be an FP-projective right R-module. It is enough to show
that pd�M� ≤ r�FP-dim�R�. We may assume that r�FP-dim�R� = n < �. M admits
a projective resolution

· · · → Pn → Pn−1 → · · ·P1 → P0 → M → 0�

Let N be any right R-module. We have FP-inj�dim�N� ≤ n, thus by Stenström
(1970), Lemma 3.1, there is an exact sequence

0 → N → E0 → E1 → · · ·En−1 → En → 0�
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where E0� E1� � � � � En are FP-injective. Therefore we form a double complex

0 0 0
↑ ↑ ↑

0 → Hom�M�En� → Hom�P0� E
n� → · · · → Hom�Pn� E

n� → · · ·
↑ ↑ ↑
���

���
���

↑ ↑ ↑
0 → Hom�M�E1� → Hom�P0� E

1� → · · · → Hom�Pn� E
1� → · · ·

↑ ↑ ↑
0 → Hom�M�E0� → Hom�P0� E

0� → · · · → Hom�Pn� E
0� → · · ·

↑ ↑ ↑
0 → Hom�P0� N� → · · · → Hom�Pn� N� → · · ·

↑ ↑
0 0

Note that all rows are exact except for the bottom row since M is FP-projective
and all Ei are FP-injective, also note that all columns are exact except for the left
column since all Pi are projective.
Using a spectral sequence argument, we know that the two complexes

0 → Hom�P0� N� → Hom�P1� N� → · · · → Hom�Pn� N� → · · ·

and

0 → Hom�M�E0� → Hom�M�E1� → · · · → Hom�M�En� → 0

have isomorphic homology groups. Thus Extn+j�M�N� = 0 for all j ≥ 1. Hence
pd�M� ≤ n.

�1� = �5� follows from the fact that wD�R� = sup�fd�M� � M is a finitely
presented right R-module� ≤ sup�fd�M� � M is an FP-projective right R-module� ≤
wD�R�. �

Corollary 4.3. Let R be a ring. Then the following are equivalent:

(1) R is von Neumann regular;
(2) R is right coherent and every FP-projective right R-module is FP-injective;
(3) Every right R-module has an FP-injective envelope with the unique mapping

property;
(4) R is right coherent and every FP-projective right R-module has an FP-injective

envelope with the unique mapping property.

Proof. This follows from Theorem 4.2 and an argument similar to that in
Corollary 3.6. �

It is proved that, if R is a Prüfer domain, then an R-module M is FP-
projective if and only if pd�M� ≤ 1 (see Fuchs and Salce, 2001, Theorem 6.5, p. 217).
Removing the commutative domain condition, we have the following result.
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Corollary 4.4. A ring R is right semihereditary if and only if pd�M� ≤ 1 for every
FP-projective right R-module M .

Proof. Since R is right semihereditary if and only if R is right coherent and
wD�R� ≤ 1, the necessity follows from Theorem 4.2. Conversely, for a finitely gene-
rated right ideal I of R, consider the exact sequence 0 → I → R → R/I → 0. Since
pd�R/I� ≤ 1 by hypothesis, I is projective. So R is a right semihereditary ring. �

It is known that rD�R� = wD�R� if R is a right Noetherian ring (see Rotman,
1979, Theorem 9.22), and rD�R� = rfpD�R� if R is a von Neumann regular ring by
Remark 2.2. In general, we have

Proposition 4.5. Let R be a right coherent ring. Then

rD�R� ≤ wD�R�+ rfpD�R��

Proof. We may assume without loss of generality that both rfpD�R� and wD�R�
are finite. Let rfpD�R� = m < � and wD�R� = n < �. Suppose M is a right R-
module, then fpd�M� ≤ m by Theorem 3.4. So M admits an FP-projective resolution

0 → Pm → Pm−1 → · · · → P1 → P0 → M → 0�

where each Pi is FP-projective, i = 0� 1� � � � � m. Let Ki = ker�Pi → Pi−1�, i =
0� 1� 2� � � � � m− 1� P−1 = M , Km−1 = Pm. Then we have the following short exact
sequences

0 → Pm → Pm−1 → Km−2 → 0�

0 → Km−2 → Pm−2 → Km−3 → 0�

���

0 → K0 → P0 → M → 0�

Note that sup�pd�M� � M is an FP-projective right R-module� = wD�R� = n by
Theorem 4.2. It follows that pd�Km−2� ≤ 1+ n� pd�Km−3� ≤ 2+ n� � � � � pd�M� ≤
m+ n, and hence rD�R� ≤ m+ n. This completes the proof. �

We conclude this paper with the following remark.

Remark 4.6. For convenience, we write �a� b� c� for the class of rings R with
wD�R� = a� rD�R� = b and rfpD�R� = c and call a ring R an �a� b� c�-ring if R ∈
�a� b� c�. It is easy to see that the class of semisimple Artinian rings = �0� 0� 0�, the
class of von Neumann regular rings = ⋃

m≥0�0�m�m�� the class of right Noetherian
rings = ⋃

m≥0�m�m� 0�, and the class of right hereditary rings = �0� 0� 0� ∪ �1� 1� 0� ∪
�0� 1� 1� ∪ �1� 1� 1�, and we also note that the class of right semihereditary
rings = �0� a� a� ∪ ��1� b� b� ∪ �1� c� c − 1�� ∩�� a ≥ 0� b ≥ 1� c ≥ 1 by Proposition
4.5, where � denotes the class of right coherent rings.

We observe that if R is a right coherent �a1� b1� c1�-ring and S is a right
coherent �a2� b2� c2�-ring, then R⊕ S is a right coherent �sup�a1� a2�� sup�b1� b2��
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sup�c1� c2��-ring by Theorem 3.16. Let m and n be integers with m ≥ n > 0. We
claim that �m�m� n�-rings and �n�m�m�-rings always exist. In fact, the polynomial
ring of m indeterminates over a field is an �m�m� 0�-ring. By Pierce (1967), Corollary
5.2, there exists a von Neumann regular ring of global dimension n. This is a
�0� n� n�-ring. The direct sum of an �m�m� 0�-ring and a �0� n� n�-ring is an �m�m� n�-
ring, and the direct sum of an �n� n� 0�-ring and a �0�m�m�-ring gives an �n�m�m�-
ring. This fact also shows that the inequality in Proposition 4.5 may be strict.
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