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GENERALIZED MORPHIC RINGS AND
THEIR APPLICATIONS
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A ring R is called “left generalized morphic” if for every element a in R, there exists
b ∈ R such that l�a� � R/Rb, where l�a� denotes the left annihilator of a in R. The
aim of this article is to investigate these rings. Several examples are given. They include
left morphic rings and left p.p. rings. As applications, some homological dimensions
over these rings are defined and studied.
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1. INTRODUCTION

Let R be a ring. An element a in R is called left morphic (Nicholson and
Sánchez Campos, 2004a) if l�a� � R/Ra, where l�a� denotes the left annihilator of a
in R. The ring itself is called a left morphic ring if every element is left morphic. Left
morphic rings were first introduced by Nicholson and Sánchez Campos (2004a) and
were discussed in great detail there and in Nicholson and Sánchez Campos (2004b,
2005).

Our focus is on the case that the condition becomes l�a� � R/Rb for some
b ∈ R. We say that the ring R is left generalized morphic if every element satisfies this
condition.

In Section 2, the definition and some general results are given. Examples of
left generalized morphic rings include left morphic rings and left p.p. rings. It is
shown that a ring R is left generalized morphic if and only if the exactness of 0 →
I → RR → RR of left R-modules implies that I is a principal left ideal. It is also
shown that, if R is a left P-injective ring, then R is left generalized morphic if and
only if �R/aR�∗ is cyclic for every torsionless right R-module of the form R/aR
with a ∈ R. Let �� (��) be the class of P-projective (P-injective) left R-modules.
We prove that ������� is a hereditary cotorsion theory if R is left generalized
morphic.
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Section 3 is devoted to some homological dimensions over generalized
morphic rings. Let R be a ring. The P-injective dimension P-id�M� of RM is
defined to be the smallest integer n ≥ 0 such that Extn+1�R/Ra�M� = 0 for all
a ∈ R. If no such n exists, set P-id�M� = �. l�P-i dim�R� is defined as sup�P-
id�M� �M ∈ R-Mod}. The P-flat dimension P-fd�M� of MR is defined to be
the least non-negative integer n such that Torn+1�M�R/Ra� = 0 for all a∈R.
If no such n exists, set P-fd�M� = �. r�P-f dim�R� is defined to be sup�P-
fd�M� �M ∈ Mod-R}. We shall see that l�P-i dim�R� and r�P-f dim�R� measure
how far away a ring R is from being a von Neumann regular ring. If the ring
in question is generalized morphic, the homological dimensions defined here
have the properties that we expect of a “dimension”. It is proven that, if R

is left generalized morphic, then l�P-i dim�R� = r�P-f dim�R� = sup�P-id�M� �
RM ∈��� = sup�P-fd�M� �MR is cyclic� = sup�pd�M� � RM ∈ ��� = sup�pd�R/
Ra� � a ∈ R� = sup�fd�R/Ra� � a ∈ R�. As a corollary, we have that a ring R is unit
regular if and only if R is a left p.p. and right morphic ring.

Next we recall some known notions and facts needed in the sequel.
Given a class � of R-modules, we denote by �⊥ = �C � Ext1�L� C� = 0

for all L ∈ �� the right orthogonal class of �, and by ⊥� = �C � Ext1�C� L� = 0 for
all L∈�� the left orthogonal class of �.

Let � be a class of R-modules and M an R-module. Following Enochs
and Jenda (2000), we say that a homomorphism � � M → C is a �-preenvelope
if C ∈ � and the abelian group homomorphism HomR���C

′�: Hom�C�C ′� →
Hom�M�C ′� is surjective for each C ′ ∈ �. A �-preenvelope � � M → C is said
to be a �-envelope if every endomorphism g � C → C such that g� = � is an
isomorphism. A monomorphism 	 � M → C with C ∈ � is said to be a special
�-preenvelope of M if coker �	� ∈ ⊥�. Dually we have the definitions of a (special)
�-precover and a �-cover. �-envelopes (�-covers) may not exist in general, but if
they exist, they are unique up to isomorphism.

A pair (� , �) of classes of R-modules is called a cotorsion theory if � = ⊥�
and � = �⊥. A cotorsion theory �� ��� is called complete (perfect) provided that
every R-module has a special �-preenvelope and a special � -precover (a �-envelope
and an � -cover). A cotorsion theory (� ��) is said to be hereditary if Exti�F� C� = 0
for all i ≥ 1 and all F ∈ � and C ∈ �, or equivalently, if whenever 0 → C ′ → C →
C ′′ → 0 is exact with C ′� C ∈ � then C ′′ is also in �. See Enochs and Jenda (2000),
Enochs et al. (1998), García Rozas (1999), Trlifaj (2000), and Xu (1996) for more
details about covers, envelopes and cotorsion theories.

Throughout this article, R is an associative ring with identity and all modules
are unitary R-modules. R-Mod (Mod-R) is the category of all left (right) R-modules.
We write RM �MR� to indicate that M is a left (right) R-module. For an R-
module M , M∗ =HomR�M�R� stands for the dual module, and the character module
Hom��M��/�� is denoted by M+. pd�M� and id�M� denote the projective and
injective dimensions of M , respectively. Let M and N be R-modules. Hom�M�N�

(Extn�M�N�� means HomR�M�N� (ExtnR�M�N��, and similarly M ⊗ N (Torn�M�N��

stands for M ⊗R N (TorRn �M�N�) for an integer n ≥ 1. General background materials
can be found in Anderson and Fuller (1974), Lam (1999), Rotman (1979), and
Wisbauer (1991).
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2. GENERALIZED MORPHIC RINGS

We start with the following definition.

Definition 2.1. Let R be a ring. An element a in R is called left generalized morphic
if l�a� � R/Rb for some b ∈ R. The ring itself is said to be left generalized morphic
if every element is left generalized morphic.

Lemma 2.2. The following are equivalent for an element a in R:

(1) a is left generalized morphic;
(2) There exist b� c ∈ R such that l�a� = Rb and l�b� = Rc;
(3) There exist b� c ∈ R such that l�a� � Rb and l�b� = Rc.

Proof. �1� ⇒ �2�� By (1), there is c ∈ R such that l�a� � R/Rc. Let

 � R/Rc→ l�a� be an isomorphism, and put b = 
�1+ Rc�. Then Rb = im�
� = l�a�
because 
 is onto, and l�b� = Rc because 
 is one-to-one.

�2� ⇒ �3� is trivial.

�3� ⇒ �1� follows since l�a� � Rb � R/l�b� = R/Rc. �

Corollary 2.3. A ring R is a left generalized morphic ring if and only if l�a� is a
principal left ideal for each a ∈ R.

Example 2.4. 1) Clearly, each left morphic ring is left generalized morphic, and
the converse is false. In fact, every principal left ideal ring (every left ideal is
principal) is a left generalized morphic ring by Corollary 2.3, but it need not be
left morphic. For example, the ring � of integers is generalized morphic but not
morphic.

2) Left p.p. rings (Endo, 1960) (principal left ideals are all projective) are left
generalized morphic. In particular, all domains are generalized morphic, and hence
generalized morphic rings need not be coherent (a ring R is called left coherent if
every finitely generated left ideal is finitely presented).

3) Let V be a vector space of countably infinite dimension over a field, then
R = End�V� is a von Neumann regular ring. So R is generalized mophic, but it
is not a morphic ring by the proof of Nicholson and Sánchez Campos (2004a,
Example 25).

An elementary argument using condition (2) in Lemma 2.2 shows that a direct
product of rings is left generalized morphic if and only if each component is left
generalized morphic.

Recall that a ring R is called left �1� 1�-coherent (Zhang et al., 2005) in case
each principal left ideal of R is finitely presented. Clearly, a left generalized morphic
ring is left �1� 1�-coherent, but the converse is false as shown by the following
example.

Example 2.5. Let R = ��x1� x2�, the ring of polynomials in 2 indeterminates
over �, then R is a coherent ring. Now let I be a left ideal of R generated by x21� x1x2,
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then R/I is a left coherent ring by Glaz (1989). In particular, R/I is a �1� 1�-coherent
ring. However, the left annihilator of x1 + I in R/I is generated by x1 + I� x2 + I ,
but it is not a principal left ideal. So R/I is not left generalized morphic.

Next we construct a right generalized morphic ring which is not left
generalized morphic. This example is taken from Lam (1999, Examples 4.46(e)).

Example 2.6. Let L = ��x2� x3� � � � � be a subfield of K = ��x1� x2� x3� � � � � with �
the field of rational numbers, and there exists a field isomorphism  � K → L. We
define a ring by taking R = K × K with multiplication

�x� y��x′� y′� = �xx′� �x�y′ + yx′�� where x� y� x′� y′ ∈ K�

Let a = �0� 1�, then l�a� = �0� K� is not a cyclic left ideal. On the other hand, it
is easy to see that R has exactly three right ideals, (0), R, and �0� K� = �0� 1�R.
Therefore, R is right generalized morphic.

Recall that a ring is called left special (Nicholson and Sánchez Campos, 2004a)
in case it is left morphic, local, and the Jacobson radical J is nilpotent. Here we
can construct a left and right artinian, left special ring that is not right generalized
morphic. The example traces back to Björk (1970).

Example 2.7. Let F be a field with an isomorphism x �→ x̄ from F to a subfield
F = F . Let R denote the left F -space on basis {1, c} where c2 = 0 and cx = x̄c
for all x ∈ F . Then R is a left and right artinian, left special ring by Björk (1970,
Example) and Nicholson and Sánchez Campos (2004a, Example 11). But R is not
right generalized morphic. Otherwise, assume R is right generalized morphic. Let
a ∈ J =Rc = Fc, then J ⊆ r�a� = R since J 2=0 where r�a� is the right annihilator
of a in R. Note that R is local, and so J = r�a�. It follows that J = bR for some
b ∈ R by assumption, and hence there is u ∈ R such that b = uc. Since b = 0, u ∈ J .
So u is a unit. Thus cR = u−1bR = u−1J = J = Fc. But cR = Fc, and so Fc = Fc,
which implies F = F , a contradiction.

Proposition 2.8. Let R be a local ring and J nilpotent. Then R is left morphic if and
only if R is left generalized morphic.

Proof. Necessity is clear.
Conversely, let Jn = 0 but Jn−1 = 0 for some n ≥ 1. Choose 0 = a ∈ Jn−1, then

J ⊆ l�a� = R, and so J = l�a�. Since R is left generalized morphic, l�a� = Rb for
some b ∈ R. Note that b ∈ J , then bn=0. Thus R is left morphic by Nicholson and
Sánchez Campos (2004a, Theorem 9(2)). �

Theorem 2.9. The following are equivalent for a ring R:

(1) R is a left generalized morphic ring;
(2) If 0 → I → RR → RR is an exact sequence of left R-modules, then I is a

principal left ideal;
(3) �R/aR�∗ is a principal left ideal for any a ∈ R.
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Proof. �1� ⇒ �2� Let I be a left ideal of R such that 0 → I → R → R is exact.
Then we have a monomorphism  � R/I → R, and so R/I � Ra where a=�1R + I�.
Thus I = l�a� is a principal left ideal by (1).

�2� ⇒ �3� For any a ∈ R, there are two exact sequences

0 → r�a� → RR → aR → 0 and 0 → aR → RR → R/aR → 0�

Applying Hom�−� R� to the sequences above, we have the exactness of the following
sequences

0 → �aR�∗ → RR → �r�a��∗ and 0 → �R/aR�∗ → RR → �aR�∗�

It follows that the sequence 0 → �R/aR�∗ → RR → RR is exact, and hence �R/aR�∗

is a principal left ideal for any a ∈ R by hypothesis.

�3� ⇒ �1� follows from the fact that l�a� � �R/aR�∗ for all a ∈ R. �

Recall that a left R-module M is called P-injective (Nicholson and Yousif,
1995) provided that Ext1�R/Ra�M� = 0 for all a ∈ R. A ring R is said to be left
P-injective if RR is P-injective. A left morphic ring is right P-injective by Nicholson
and Sánchez Campos (2004a, Theorem 24), but a generalized morphic ring need
not be P-injective. For instance, let K be a field, then the polynomial ring K�x� is
generalized morphic but not P-injective by Nicholson and Yousif (1995, Example 5,
p. 78).

Proposition 2.10. Let R be a left P-injective ring, then the following are equivalent:

(1) R is a left generalized morphic ring;
(2) �R/aR�∗ is cyclic for every torsionless right R-module of the form R/aR with a∈R.

Moreover, if R is also a right P-injective ring, then the above conditions are
equivalent to:

(3) Every torsionless right R-module of the form R/aR embeds in the regular module
RR with a ∈ R.

Proof. �1� ⇒ �2� is clear by Theorem 2.9.

�2� ⇒ �1� Let a ∈ R. Then the exact sequence 0 → Ra
i→ RR → R/Ra → 0

gives rise to the exactness of

0 → �R/Ra�∗ → RR

i∗→ �Ra�∗ → Ext1�R/Ra�R� = 0

since R is left P-injective. On the other hand, there is an exact sequence

0 → l�a� → RR
f→ Ra → 0

which induces the exactness of

0 → �Ra�∗
f∗→ RR → CR → 0
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where C = coker�f ∗�. Since i∗ is epic and f ∗ is monic, �Ra�∗ � bR for some b ∈ R.
Then C � R/bR is a torsionless right R-module (for C ⊆ �l�a��∗). Note that we have
the following commutative diagram with exact rows:

0 −−−−→ l�a� −−−−→ R −−−−→ Ra −−−−→ 0

�


�


�

0 −−−−→ C∗ −−−−→ R∗∗ −−−−→ �Ra�∗∗�

Thus l�a� � C∗ � �R/bR�∗ is cyclic by (2). So R is a left generalized morphic ring
by Corollary 2.3.

�1� ⇒ �3� Let a ∈ R and R/aR be a torsionless right R-module, then �R/aR�∗

is a principal left ideal by Theorem 2.9. It follows that there is an exact sequence
R → �R/aR�∗ → 0 which induces the exactness of 0 → �R/aR�∗∗ → R. Since R/aR
is torsionless, there exists a monomorphism i � R/aR → R.

�3� ⇒ �2� Let a ∈ R and R/aR be a torsionless right R-module. By
hypothesis, there is an exact sequence

0 → R/aR → RR → CR → 0 (∗)

which induces the exact sequence

0 → C∗ → RR → �R/aR�∗ → Ext1�C�R��

Note that C � R/bR for some b ∈ R by the exact sequence �∗�. Since R is right
P-injective, Ext1�C�R� = 0. So �R/aR�∗ is cyclic. �

Definition 2.11. A left R-module N is said to be P-projective if Ext1�N�M� = 0 for
any P-injective left R-module M . A right R-module M is called P-flat in case 0 →
M ⊗R Ra → M ⊗R R is exact for any a ∈ R.

Remark 2.12. Denote by �� (��) the class of P-projective (P-injective) left
R-modules, and by �� the class of P-flat right R-modules. We note that the
concepts of P-injective, P-projective, and P-flat modules coincide with those of
divisible modules, cyclically covered modules, and torsion-free modules, respectively
(see Trlifaj, 2000). But the concept of P-projective modules is different from that
of P-projective modules introduced by Chen (1996). P-flat modules are also called
“(1,1)-flat” in Zhang et al. (2005). Note that a left R-module M is P-projective if and
only if M is a direct summand in a left R-module N such that N is a union of a
continuous chain, (N	 � 	 < �), for a cardinal �, N0 = 0 and N	+1/N	 � R/Ra for all
	 < � by Trlifaj (2000, Definition 3.3).

By definition, we have the following lemma.

Lemma 2.13. Let �Pj�j∈J be a family of left (right) R-modules. Then
⊕

j∈J Mj is
P-projective (P-flat) if and only if each Mj is P-projective (P-flat).
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Lemma 2.14. Let R be a ring, then the following hold:

(1) (Trlifaj, 2000, Theorem 3.4) ������� is a complete cotorsion theory;
(2) (Mao and Ding, 2006, Theorem 2.3) ��� ���⊥� is a perfect cotorsion theory.

In general, a cotorsion theory need not be hereditary, but we have the
following proposition.

Proposition 2.15. If R is a left generalized morphic ring, then the following hold:

(1) ������� is a hereditary cotorsion theory;
(2) ��� ���⊥� is a hereditary cotorsion theory.

Proof. (1) Let a ∈ R and M be a P-injective left R-module. The exactness of

0 → Ra → RR → R/Ra → 0

gives rise to

Exti�Ra�M� � Exti+1�R/Ra�M�� i = 1� 2� � � � �

If R is a left generalized morphic ring, then Ra � R/l�a� � R/Rb for some b ∈ R,
and so Ext1�Ra�M� = 0. Hence Ext2�R/Ra�M� = 0.

Let 0 → N ′ → N → N ′′ → 0 be exact with N ′� N P-injective, then we have an
exact sequence

Ext1�R/Ra�N� → Ext1�R/Ra�N ′′� → Ext2�R/Ra�N ′��

The first term is zero by definition, and the last term is zero by the preceding proof.
Thus Ext1�R/Ra�N ′′� = 0, and so N ′′ is P-injective. This completes the proof.

The proof of (2) is analogous to that of (1). �

As an application of Proposition 2.15, we end this section with the following
proposition.

Proposition 2.16. Let R be a left generalized morphic and left P-injective ring. If RM
is P-projective with finite projective dimension, then RM is projective.

Proof. Suppose RM is P-projective with pd�M� = n < �. Then M admits a
projective resolution

0 → Pn → Pn−1 → · · · → P1 → P0 → M → 0�

Note that R is left P-injective and �� is closed under direct sums and direct
summands, then each Pi is P-injective for any 0 ≤ i ≤ n. Since �� is closed under
cokernels of monomorphisms by Proposition 2.15(1), Kn−1 = coker�Pn → Pn−1� is
P-injective. It follows that K1 = coker�P2 → P1� is also P-injective by induction.
Thus Ext1�M�K1� = 0 by hypothesis, and hence the sequence 0 → K1 → P0 →
M → 0 is split. So M is projective, as required. �
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3. HOMOLOGICAL DIMENSIONS OVER GENERALIZED MORPHIC RINGS

In this section, we study some homological dimensions over generalized
morphic rings.

Definition 3.1. Let R be a ring. The P-injective dimension of RM , denoted by
P-id�M�, is defined to be the smallest integer n ≥ 0 such that Extn+1�R/Ra�M� = 0
for all a ∈ R. If no such n exists, set P-id�M� = �.

l�P-i dim�R� is defined as sup�P-id�M��M is a left R-module}.
The P-flat dimension of MR, denoted by P-fd�M�, is defined to be the least

non-negative integer n such that Torn+1�M�R/Ra� = 0 for all a ∈ R. If no such n
exists, set P-fd�M� = �.

r�P-f dim�R� is defined to be sup�P-fd�M��M is a right R-module}.

Remark 3.2.

(1) It is clear that M is P-injective (P-flat) if and only if P-id�M� = 0 (P-
fd�M� = 0).

(2) In general, r�P-f dim�R� ≤ l�P-i dim�R�. In fact, suppose l�P-
i dim�R� = n < �. Let M ∈ Mod-R, then there is an integer m ≤ n such
that �Torm+1�M�R/Ra��+ � Extm+1�R/Ra�M+� = 0 for all a ∈ R. Thus
Torm+1�M�R/Ra� = 0 for all a ∈ R, and hence P-fd�M� ≤ m ≤ n. It follows that
r�P-f dim�R� ≤ l�P-i dim�R�.

Proposition 3.3. The following are equivalent for a ring R:

(1) r�P-f dim�R� = 0;
(2) l�P-i dim�R� = 0;
(3) R is a von Neumann regular ring;
(4) All left R-modules are P-injective;
(5) All right R-modules are P-flat;
(6) Every P-projective left R-module is projective.

Proof. �3� ⇒ �1�, �3� ⇒ �4� ⇒ �6�� �1� ⇔ �5�, and �2� ⇔ �4� are trivial.

�6� ⇒ �3� Let a ∈ R. Then R/Ra is projective by (6), and so Ra is a direct
summand of R. Hence (3) follows.

�1� ⇒ �3� Let r�P-f dim�R� = 0. Then Tor1�M�R/Ra� = 0 for all right
R-modules M and all a ∈ R, and so R/Ra is flat for all a ∈ R. Note that R/Ra
is finitely presented, so R/Ra is projective for all a ∈ R. It follows that R is von
Neumann regular. �

Remark 3.4. Proposition 3.3 shows that l�P-i dim�R� and r�P-f dim�R� measure
how far away a ring R is from being a von Neumann regular ring.

In what follows, we shall see that the homological dimensions defined above
have the properties that we expect of a “dimension” if the ring in question is
generalized morphic.
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Lemma 3.5. If R is a left generalized morphic ring and a ∈ R, then there is an exact
sequence:

· · · → Rn → Rn−1 → · · · → R0 → R/Ra → 0

with Ri = R� i = 0� 1� � � � � n� � � � .

Lemma 3.6. Let R be a left generalized morphic ring, then the following are
equivalent for a left R-module M and an integer n ≥ 0:

(1) P-id�M� ≤ n;
(2) Extn+1�R/Ra�M� = 0 for all a ∈ R;
(3) Extn+j�R/Ra�M� = 0 for all a ∈ R and j ≥ 1;
(4) Extn+1�P�M� = 0 for all P ∈ ��;
(5) Extn+j�P�M� = 0 for all P ∈ �� and j ≥ 1;
(6) If the sequence 0 → M → E0 → E1 → · · · → En−1 → En → 0 is exact with

E0� E1� � � � � En−1 P-injective, then En is P-injective;
(7) There is an exact sequence 0 → M → E0 → E1 → · · · → En−1 → En → 0 with

E0� E1� � � � � EnP-injective.

Proof. �1� ⇒ �2� Let RM be a left R-module and a ∈ R, then P-id�M� = m ≤ n
by (1). If m = n, then Extn+1�R/Ra�M� = 0. Otherwise, since R is left generalized
morphic, by Lemma 3.5, there exists an exact sequence

· · · → Rn−m → Rn−m−1 → · · · → R0 → R/Ra → 0 (∗∗)

with each Ri = R. Clearly, Kn−m = im�Rn−m → Rn−m−1� is principal, and so Kn−m �
R/Rb for some b ∈ R. Thus Extn+1�R/Ra�M� � Extm+1�Kn−m�M� = 0 by (1).

�2� ⇒ �3� holds by induction.

�3� ⇒ �1� and �4� ⇒ �1� are trivial.

�2� ⇒ �6� Let 0 → M → E0 → E1 → · · · → En−1 → En → 0 be an
exact sequence with E0� E1� � � � � En−1 P-injective. Note that P-id�Ei� = 0, then
Extk�R/Ra�Ei� = 0 for all k ≥ 1 and for all a ∈ R since �1� ⇔ �3�, i = 0� 1� � � � � n−
1. Put Ci = ker�Ei → Ei+1�, i = 1� 2� � � � � n− 1� Then we have isomorphisms

Ext1�R/Ra�En� � Ext2�R/Ra�Cn−1� � · · · � Extn�R/Ra�C1� � Extn+1�R/Ra�M��

Thus Ext1�R/Ra�En� = 0 by (2), and so En is P-injective.

�6� ⇒ �7� follows from the fact that there exists an injective resolution for
each left R-module.

�7� ⇒ �5� By (7), there is an exact sequence

0 → M → E0 → E1 → · · · → En−1 → En → 0
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with E0� E1� � � � � En P-injective. Since Extn+j�P�M� � Extj�P� En� for any P ∈ ��
and En is P-injective, (5) follows.

�5� ⇒ �4� is obvious. �

The proof of the next corollary is standard homological algebra.

Corollary 3.7. Let R be a left generalized morphic ring and 0 → A → B → C → 0
an exact sequence of left R-modules. If two of P-id�A�, P-id�B�, P-id�C� are finite, so
is the third. Moreover:

(1) P-id�B� ≤ sup{P-id�A�, P-id�C�};
(2) P-id�A� ≤ sup{P-id�B�, P-id�C�+ 1};
(3) P-id�C� ≤ sup{P-id�B�, P-id�A�− 1}.

In particular, if B = A⊕ C then P-id�B�= sup{P-id�A�, P-id�C�}.

The following easy result may be viewed as the dual of Lemma 3.6.

Lemma 3.8. Let R be a left generalized morphic ring. The following are equivalent
for any right R-module M and an integer n ≥ 0:

(1) P-fd�M� ≤ n;
(2) Torn+1�M�R/Ra� = 0 for all a ∈ R;
(3) Torn+j�M�R/Ra� = 0 for all a ∈ R and j ≥ 1;
(4) Extn+1�M�N� = 0 for all N ∈ ��⊥;
(5) Extn+j�M�N� = 0 for all N ∈ ��⊥ and j ≥ 1;
(6) If the sequence 0 → Fn → Fn−1 → · · · → F1 → F0 → M → 0 is exact with

F0� F1� � � � � Fn−1 P-flat, then Fn is P-flat;
(7) There is an exact sequence 0 → Fn → Fn−1 → · · · → F1 → F0 → M → 0 with

F0� F1� � � � � Fn P-flat.

Proposition 3.9. Let R be a ring and M a right R-module, then P-fd�M� = P-
id�M+�.

Proof. This follows from the standard isomorphism

Torm+1�M�R/Ra�+ � Extm+1�R/Ra�M+�� �

Proposition 3.10. If R is a left generalized morphic ring, then P-id�M� = P-fd�M+�
for any left R-module M .

Proof. Since R is a left generalized morphic ring,

Tor1�M
+� R/Ra� � Ext1�R/Ra�M�+ (∗)

for any a ∈ R by Lemma 3.5, Rotman (1979, Theorem 9.51) and the remark
following it. So we have that a left R-module is P-injective if and only if its character
module is P-flat.
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Let

0 −→ M −→ E0 −→ E1 −→ · · ·Em−1 −→ Em −→ · · ·

be an injective resolution of M and set Ci = im�Ei−1 → Ei� for all i ≥ 1, then we get
an exact sequence

0 −→ C+
m −→ E+

m−1 −→ · · · −→ E+
1 −→ E+

0 −→ M+ −→ 0�

where each E+
i �i = 0� 1� � � � � m− 1� is P-flat by the foregoing proof.

Suppose P-fd�M+� = m < �, then Tor1�C
+
m� R/Ra� � Torm+1�M

+� R/Ra� = 0
for all a ∈ R. Since Tor1�C

+
m� R/Ra� � Ext1�R/Ra�Cm�

+, Ext1�R/Ra�Cm� = 0 for all
a ∈ R. It follows that P-id�M� ≤ m.

Conversely, if P-id�M�= n < �, then Ext1�R/Ra�Cn� � Extn+1�R/Ra�MR�= 0
for all a ∈ R. It follows that C+

n is P-flat, and so Tor1�C
+
n � R/Ra� = 0. Thus

Torn+1�M
+� R/Ra� = 0, and hence P-fd�M+� ≤ n. �

We are now in a position to prove the following theorem.

Theorem 3.11. The following are identical for a left generalized morphic ring R:

(1) l�P-i dim�R�;
(2) r�P-f dim�R�;
(3) sup�P-id�M��RM ∈ ���;
(4) sup�P-fd�M��MR ∈ ��⊥�;
(5) sup�P-fd�M��MR is cyclic�;
(6) sup�pd�M��RM ∈ ���;
(7) sup�pd�R/Ra��a ∈ R�;
(8) sup�fd�R/Ra��a ∈ R�;
(9) sup

{
id�M��MR ∈ ��⊥}.

Proof. �1� = �2� Suppose that r�P-f dim�R� = n < �. Then for any left R-
module M , P-id�M� = P-fd�M+� ≤ n by Proposition 3.10, and so l�P-i dim�R� ≤ n.

Conversely, suppose l�P-i dim�R� = n < �. Then P-fd�N� = P-id�N+� ≤ n for
any right R-module N by Proposition 3.9, and hence �2� ≤ �1�.

�1� ≥ �3�, �2� ≥ �5�, and �6� ≥ �7� ≥ �8� are obvious.

�3� ≥ �6� Assume sup�P-id�M��RM ∈ ��� = n. Let M and N be two
P-projective left R-modules. M admits a projective resolution

· · · → Pn → Pn−1 → · · · → P1 → P0 → M → 0�

N admits a ��-resolution by Lemma 3.6

0 → N → E0 → E1 → · · · → En−1 → En → 0�



GENERALIZED MORPHIC RINGS 2831

where E0� E1� � � � � En are P-injective. Therefore we form the following double
complex:

0 0 0

↑ ↑ ↑
0 → Hom�M�En� → Hom�P0� E

n� → · · · → Hom�Pn� E
n� → · · ·

↑ ↑ ↑
���

���
���

↑ ↑ ↑
0 → Hom�M�E1� → Hom�P0� E

1� → · · · → Hom�Pn� E
1� → · · ·

↑ ↑ ↑
0 → Hom�M�E0� → Hom�P0� E

0� → · · · → Hom�Pn� E
0� → · · ·

↑ ↑ ↑
0 → Hom�P0� N� → · · · → Hom�Pn� N� → · · ·

↑ ↑
0 0�

Note that all rows are exact except for the bottom row since M is P-projective and
all Ei are P-injective, also note that all columns are exact except for the left column
since all Pi are projective.

Using a spectral sequence argument, we know that the two complexes

0 → Hom�P0� N� → Hom�P1� N� → · · · → Hom�Pn� N� → · · ·

and

0 → Hom�M�E0� → Hom�M�E1� → · · · → Hom�M�En� → 0

have isomorphic homology groups. Thus Extn+j�M�N� = 0 for P-projective left
R-modules M�N and j ≥ 1. We claim that pd�M� ≤ n. In fact, for any left R-module
L, there exists an exact sequence 0 → K → F → L → 0, where F is P-projective and
K is P-injective by Lemma 2.14(1). Thus we have the exactness of

Extn+1�M� F� → Extn+1�M�L� → Extn+2
R �M�K��

Since Extn+2�M�K� = 0 by Proposition 2.15 (1) and Extn+1�M� F� = 0 by the
foregoing proof, Extn+1�M�L� = 0. So pd�M� ≤ n.

�8� ≥ �9� Suppose that sup�fd�R/Ra��a ∈ R� = n < � and N is a right
R-module, then Torn+1�N�R/Ra� = 0 for all a ∈ R by hypothesis. Thus Extn+1�N�
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M� = 0 for any MR ∈ ��⊥ by Lemma 3.8. Since N is arbitrary, id�M� ≤ n, as
required.

�9� ≥ �4� Suppose sup
{
id�M��MR ∈ ��⊥} = n < �, then Extn+1�M�N� = 0

for any MR�NR ∈ ��⊥. It follows that P-fd�M� ≤ n by Lemma 3.8. So (4) holds.

�4� ≥ �2� Assume that sup
{
P-fd�M��MR ∈ ��⊥} = n < �. For any right

R-module M , there exists an exact sequence 0 → M → F → C → 0, where F ∈ ��⊥

and C is P-flat by Lemma 2.14 (2). Thus Torn+1�M�R/Ra� � Torn+1�F� R/Ra� = 0
for all a ∈ R by hypothesis and Lemma 3.8, and so P-fd�M� ≤ n, as desired.

�5� ≥ �8� Suppose sup�P-fd�M��MR is cyclic� = n. Let I be a right ideal of
R, then Torn+1�R/I� R/Ra� = 0 for all a ∈ R by Lemma 3.8. Thus fd�R/Ra� ≤ n for
all a ∈ R, and so �8� ≤ �5�. �

Recall that a ring R is called left p.f. (Jøndrup, 1971) in case every principal
left ideal of R is flat.

Corollary 3.12. The following are equivalent for a left generalized morphic ring R:

(1) R is a left p.p. ring;
(2) r�P-f dim�R� ≤ 1;
(3) l�P-i dim�R� ≤ 1;
(4) R is a left p.f. ring;
(5) Every quotient module of a P-injective left R-module is P-injective;
(6) Every submodule of a P-flat right R-module is P-flat.

Remark 3.13. (1) It is well known that a left p.p. ring need not be a right p.p.
ring, so l�P-i dim�R� = r�P-i dim�R� and l�P-f dim�R� = r�P-f dim�R� in general.
Therefore, for a ring R, the P-flat dimension of R is different from the weak global
dimension of R.

(2) Let R be a left p.p. ring that is not a right p.p. ring. Since R is left p.f., it
is right p.f. by Jøndrup (1971, Theorem 2.2). Note that R is left generalized morphic,
but it is not right generalized morphic. Otherwise, R is right p.p. by Corollary 3.12,
a contradiction. So Corollary 3.12 also implies that generalized morphic rings are
not left-right symmetric.

(3) Note that if R is a left morphic ring, then r�P-f dim�R� (or l�P-i dim�R�)
is infinite or R is a left p.p. ring. In fact, for any a in R, the exactness of the following
sequences

0 → l�a� → R → Ra → 0 �1� and 0 → Ra → R → l�a� � R/Ra → 0 (2)

induces an exact sequence

(3)

Suppose r�P-f dim�R� < �. Let a ∈ R. Then pd�R/Ra� < � by Theorem 3.11,
and so Ra or l�a� is projective by the exactness of (3). If l�a� is projective, then the
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exactness of (2) implies that Ra is projective. Thus Ra is always projective, and so
R is a left p.p. ring.

Proposition 3.14. A ring R is von Neumann regular if and only if R is a left
generalized morphic and left P-injective ring with sup�pd�Ra��a ∈ R� < �.

Proof. Necessity is clear.
Conversely, let sup�pd�Ra��a ∈ R� < �. For any left R-module M , there

is an exact sequence 0 → M → E → C → 0, where E is P-injective and C
is P-projective. Note that pd�C� ≤ sup�pd�R/Ra��a ∈ R� ≤ sup�pd�Ra��a ∈ R�+
1<� by Theorem 3.11, and hence C is projective by Proposition 2.16. Thus 0 →
M → E → C → 0 splits, and so M is P-injective, as required. �

Corollary 3.15. A ring R is von Neumann regular if and only if R is a left p.p. and
left P-injective ring.

An element a in a ring R is called unit regular if aba = a for some unit b∈R,
and the ring R is called a unit regular ring if every element is unit regular. Nicholson
and Sánchez Campos (2004a) proved that every unit regular ring is left and right
morphic and raised the question whether a left and right morphic ring with the
Jacobson radical J = 0 is unit regular. This is shown to be false in general by
Chen et al. (2005, Example 0.1). But we have the following corollary.

Corollary 3.16. A ring R is unit regular if and only if R is a left p.p. and right morphic
ring.

Proof. Necessity is obvious. Sufficiency follows from Corollary 3.15 and Nicholson
and Sánchez Campos (2004a, Theorem 24 and Proposition 5). �

Next, we consider approximations by modules of finite homological
dimensions. For a fixed non-negative integer n, denote by ��n the class of all left
R-modules of P-injective dimension ≤ n, then we get the following proposition.

Proposition 3.17. If R is left generalized morphic, then �⊥��n���n� is a complete
hereditary cotorsion theory.

Proof. Let M be a left R-module, then M ∈ ��n if and only if Extn+1�R/Ra�M�= 0
for all a ∈ R by Lemma 3.6. And the latter is equivalent to Ext1�Ka�M�= 0 with Ka

the nth syzygy module (in a projective resolution) of R/Ra. So ��n =
(⊕

a∈R Ka

)⊥
,

then �⊥��n���n� is a complete cotorsion theory by Enochs and Jenda (2000,
Theorem 7.4.1). The fact that �⊥��n���n� is hereditary can be proven in a way
similar to that of Proposition 2.15. �

Lemma 3.18. Let R be a left generalized morphic ring. Then ��n is closed under
direct sums.

Proof. Note that �� is closed under direct sums, and so the result follows from
Lemma 3.6. �
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Theorem 3.19. Let R be a left generalized morphic ring. If l�P-i dim�R� < �, then
the following are equivalent for a fixed non-negative integer n:

(1) l�P-i dim�R� ≤ n;
(2) sup�pd�M��RM is both P-projective and P-injective}≤ n;
(3) sup�P-id�M��RM is projective}≤ n;
(4) Every left R-module in ⊥��n is projective.

Moreover if n ≥ 1, then the above conditions are also equivalent to:
(5) Every left R-module (in ⊥��n−1) has a monic ��n−1-cover.

Proof. �1� ⇒ �2� follows from Theorem 3.11.

�2� ⇒ �3� Let M be a projective left R-module. We shall show that
Extn+1�N�M� = 0 for any P-projective left R-module N . In fact, we may assume P-
id�N� = m < � since l�P-i dim�R� < �. By Lemmas 2.14 and 3.6, there is an exact
sequence

0 −→ N −→ E0 −→ E1 −→ · · · −→ Em−1 −→ Em −→ 0�

with each Ei both P-injective and P-projective, i = 0� 1� � � � � m. Since pd�Ei� ≤ n for
all 1 ≤ i ≤ m by (2), pd�N� ≤ n. Thus Extn+1�N�M� = 0. It follows that P-id�M� ≤ n.
So (3) holds.

�3� ⇒ �1� Let N be a left R-module and 0 → K → F → N → 0 an exact
sequence, where F is P-projective and K is P-injective, then pd�F� = m < � by
Theorem 3.11 and hypothesis. Hence there is a projective resolution of F

0 −→ Pm −→ Pm−1 −→ · · · −→ P1 −→ P0 −→ F −→ 0�

Note that P-id�Pi� ≤ n by (3), i = 0� 1� � � � � m, and so P-id�F� ≤ n by Corollary
3.7(3). Therefore P-id�N� ≤ n, as desired.

�1� ⇔ �4� comes from Proposition 3.17 and the fact that (�roj� R-Mod) is a
cotorsion theory, where �roj is the class of projective left R-modules.

�1� ⇒ �5� Let M be a left R-module. Write E = ∑
�N ≤ M � N ∈ ��n−1� and

L = ⊕
�N ≤ M � N ∈ ��n−1�. Then there exists an exact sequence 0 → K → L →

E → 0. Note that K ∈ ��n since l�P-i dim�R� ≤ n and L ∈ ��n−1 by Lemma 3.18,
we have E ∈ ��n−1 by Corollary 3.7(3). Next we prove that the inclusion i � E → M
is a ��n−1-cover of M . Let � � E′ → M with E′ ∈ ��n−1 be a left R-homomorphism.
Note that ��E′� ≤ E by the proof above. Define � � E′ → E via ��x� = ��x� for x ∈
E′. Then i� = �, and so i � E → M is a ��n−1-precover of M . In addition, it is clear
that the identity map 1E of E is the only homomorphism g � E → E such that ig = i,
and hence (5) follows.

�5� ⇒ �1� Let M be a left R-module, then there exists an exact sequence 0 →
M → E → C → 0 with E ∈ ��n−1 and C ∈ ⊥��n−1. Since C has a monic ��n−1-
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cover � � E′ → C, there is 	 � E → E′ such that the following exact diagram is
commutative:

Thus � is epic, and hence it is an isomorphism. Therefore C ∈ ��n−1, then M ∈ ��n

follows from Corollary 3.7(2), as desired. �

Let � be a class of left R-modules and M a left R-module. Recall that a
�-cover � � F → M is said to have the unique mapping property (Ding, 1996) if
for any homomorphism f : F

′ → M with F
′ ∈ �, there is a unique homomorphism

g � F
′ → F such that �g = f .
We conclude this article by the following theorem.

Theorem 3.20. The following are equivalent for a ring R:

(1) Every left R-module is P-projective;
(2) Every cyclic left R-module is P-projective;
(3) Every P-injective left R-module is injective;
(4) Every nonzero left R-module has a nonzero P-projective submodule.

Moreover if R is a left generalized morphic ring, then the above statements are also
equivalent to:

(5) Every P-injective left R-module is P-projective;
(6) Every (P-injective) left R-module has a ��-cover with the unique mapping

property.

Proof. �1� ⇔ �2� ⇔ �3� ⇔ �5� follows from Lemma 2.14 and Mao and Ding
(2006, Corollary 2.5).

�1� ⇒ �4� and �1� ⇒ �6� are trivial.

�4� ⇒ �3� Let E be a P-injective left R-module. Suppose we have the diagram

E

f

	

0 −−−−→ A
i−−−−→ B�

For notational convenience, let us assume i is an inclusion map. It suffices to show
that there is g � B → E that extends f . Now we approximate a map g by looking at
all modules between A and B that do possess an extension of f . More precisely, let �
consist of all pairs (A′� g′), where A ⊆ A′ ⊆ B and g′ � A′ → E extends f . Note that
� = ∅, for (A� f ) in �. Partially order � by saying �A′� g′� ≤ �A′′� g′′� if A′ ⊆ A′′ and
g′′ extends g′. By Zorn’s Lemma, there is a maximal pair (A0� g0) in �. If A0 = B,
we are done.

Assume A0 = B, then B/A0 = 0. By (4), there is a nonzero P-projective
submodule C/A0 of B/A0. Note that there is a exact sequence 0 → A0 → C →
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C/A0 → 0 with C/A0 P-projective, and so there exits a map h � C → E extending g0
since E is P-injective. It is easy to check that (C� h) belongs to � and is larger than
the maximal pair (A0� g0), a contradiction. Therefore A0 = B and E is injective, as
required.

�6� ⇒ �5� Let M be a P-injective left R-module. Then, by (6), M has a ��-
cover �M � P�M� → M with the unique mapping property. Let now K = ker��M� and
�K � P�K� → K be a ��-cover of K. Then there is the following exact commutative
diagram:

Note that �Mi�K = 0 = �M0, and so i�K = 0 by assumption. Therefore �K = 0, and
hence M ∈ ��. This completes the proof. �
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