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L-INJECTIVE HULLS OF MODULES

Lixin Mao and Nanqing Ding

Let R be a ring and L a class of R-modules. An R-module N is called L-injective if
Ext1R(L,N) = 0 for all L ∈ L. An L-injective hull of an R-module M is defined to be
a homomorphism φ : M → F with F L-injective such that for any monomorphism f :
M → F

′
with F

′ L-injective, there is a monomorphism g : F → F
′
satisfying gφ = f .

The aim of this paper is to study L-injective hulls and their relations with L-injective
envelopes in Enochs’ sense.

1. Introduction

Recall that an injective module E is called an injective hull of a module M if M

essentially embeds in E. It is well known that the injective hull of M can be regarded

simultaneously as the unique minimal injective extension and also the unique maximal

essential extension of M (up to isomorphism). Eckmann and Schöpf [3] proved that

every module has an injective hull. The result together with the Matlis’ structure theo-

rem [11] for injective modules has played an important role in homological algebra and

commutative algebra.

Let R be a ring, C a class of R-modules and M an R-module. Enochs [4] introduced

the concepts of C-(pre)envelopes of M . A homomorphism φ : M → F with F ∈ C is

called a C-preenvelope of M if for any homomorphism f : M → F
′
with F

′ ∈ C, there

is a homomorphism g : F → F
′

such that gφ = f . Moreover, if every endomorphism

g : F → F such that gφ = φ is an isomorphism, the C-preenvelope φ is called a C-
envelope of M . C-envelopes may not exist in general, but if they exist, they are unique

up to isomorphism. In particular, let C be the class of all injective modules, then C-
envelopes in Enochs’ sense agree with the injective hulls in Eckmann-Schöpf’s sense by

[17, Theorem 1.2.11].

Given a class L of R-modules. We let L⊥ be the class of R-modules M such that

Ext1
R(L,M) = 0 for all L ∈ L. Similarly, ⊥L denotes the class of R-modules N such

that Ext1
R(N,L) = 0 for all L ∈ L. An R-module M is called L-injective (see [7]) if

M ∈ L⊥, or equivalently, if M is injective with respect to every exact sequence 0 → A
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→ B → C → 0 with C ∈ L. L-injective modules stand for several known modules such

as injective modules, FP -injective modules, divisible modules and cotorsion modules in

case of different L. L-injective (pre)envelopes of modules for some special L have been

studied by many authors (see, for example, [6, 10, 16, 17]).

In this short note, we introduce the concept of L-injective hulls of modules which

generalises that of injective hulls of modules from another point of view. An L-injective

hull of a module M is defined to be the “minimal” L-injective extension of M . More

precisely, an L-injective hull of a module M is a homomorphism φ : M → F with F

L-injective such that for any monomorphism f : M → F
′
with F

′ L-injective, there is a

monomorphism g : F → F
′
satisfying gφ = f . It is shown that, if an R-module has an

L-injective hull, then it is unique up to isomorphism. It is also shown that, if L is closed

under extensions, quotients and direct limits, then every R-module has an L-injective

hull. Some relations between L-injective hulls and L-injective envelopes are also studied.

Throughout this paper, R is an associative ring with identity and all modules are

unitary right R-modules. L stands for a class of R-modules which is closed under isomor-

phisms and contains 0. For an R-module M , E(M) denotes the injective hull of M . We

use N 6e M to indicate that N is an essential submodule of M . For other unexplained

concepts and notations, we refer the reader to [1, 6, 14, 17].

2. Definition and results

We start with the following

Definition 2.1: Let L be a class of R-modules and M an R-module. A homo-

morphism φ : M → F with F L-injective is called an L-injective hull of M if for any

monomorphism f : M → F
′
with F

′ L-injective, there is a monomorphism g : F → F
′

such that gφ = f .

Remark 2.2. (1) If we choose L to be the class of all R-modules, then L-injective

hulls agree with injective hulls by [1, Corollary 18.11]. However, if we choose L such

that the class of injective modules is a proper subclass of L-injective modules, then there

exists an L-injective M whose L-injective hulls do not agree with its injective hulls.

(2) Note that the injective hull E(M) of M is L-injective and is an essential ex-

tension of M , so every L-injective hull φ : M → F is an essential monomorphism by [1,

Exercise 5.14 (1), p. 77] (if it exists).

It is well known that L-injective envelopes are unique up to isomorphism if they

exist. Now we have the analogous result for L-injective hulls.

Theorem 2.3. If an R-module has an L-injective hull, then it is unique up to

isomorphism.

Proof: Let M be an R-module and S =
{
N : M 6 N 6 E(M), N is L-injective

}
.

Note that the set S is nonempty since E(M) ∈ S. We shall show that S has a minimal
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element. Let {Nα ∈ S : α ∈ I} be a descending chain. It is enough to show that ∩Nα ∈ S

by Zorn’s Lemma. We shall prove that any exact sequence 0 → ∩Nα
i→ P → C → 0

with C ∈ L is split (we may regard i as an inclusion). In fact, we have the following

pushout diagram of the inclusions i and λα:

0 // ∩Nα
i //

λα

��

P

µα

��

// C // 0

0 // Nα
να // Aα

tα // C // 0,

where Aα = (P ⊕Nα)/
{
(a,−a) : a ∈ ∩Nα

}
, µα(p) = (p, 0) for any p ∈ P , να(q) = (0, q)

for any q ∈ Nα. Since Nα is L-injective, the second row is split. Thus we get a split

exact sequence 0 → ∩Nα
ν→ ∩Aα

t→ C → 0. We claim that P ∼= ∩Aα. Indeed, there

exists β : P → ∩Aα such that β(p) = µα(p) for any p ∈ P and α ∈ I. Note that β is

monic since µα is monic. Now we define γ : ∩Aα → P via (pα, nα) 7→ pα + nα. Assume

(pα, nα) ∈ ∩Aα, then for any β ∈ I, (pα, nα) ∈ Aβ, and so (pα, nα) = (pβ, nβ) for some

pβ ∈ P and nβ ∈ Nβ. Then (pα − pβ, nα − nβ) = 0, and hence nα − nβ = −a for some

a ∈ ∩Nα. Thus nα = nβ − a ∈ Nβ, it follows that nα ∈ ∩Nα. Therefore pα + nα ∈ P ,

and so γ is well-defined. Note that βγ = 1, and hence β is an isomorphism. Thus the

first row in the pushout diagram above is split, and so ∩Nα is L-injective. Consequently,

S has a minimal element N0.

Suppose φ : M → F is any L-injective hull of M . Then there exists a monomorphism

ψ: F → N0 such that ψφ = ι, where ι : M → N0 is the inclusion. It is obvious that

ψ(F ) ⊆ N0. In addition, M = ι(M) = ψφ(M) ⊆ ψ(F ). Since ψ(F ) ∼= F is L-injective,

ψ(F ) ∈ S. So ψ(F ) = N0 by the minimality of N0, and hence F ∼= N0.

This completes the proof.

Remark 2.4. By Theorem 2.3, if an R-module M has an L-injective hull, then we may

choose the minimal L-injective extension of M contained in E(M) as its L-injective hull.

Proposition 2.5. Let φ : M → F be a homomorphism.

(1) If φ is an L-injective preenvelope, then φ is an L-injective hull if and only

if φ is an essential monomorphism.

(2) If M admits an L-injective envelope, then φ is an L-injective hull if and

only if φ is an L-injective envelope and φ is an essential monomorphism.

Proof: (1) The necessity follows from Remark 2.2 (2). Conversely, assume that

φ is essential. For any L-injective module N and any monomorphism f : M → N , there

exists g : F → N such that gφ = f since φ is an L-injective preenvelope. Thus g is a

monomorphism by [1, Corollary 5.13], and so φ is an L-injective hull.

(2) The sufficiency holds by (1). Conversely, suppose that φ is an L-injective hull.

Let λ : M → N be an L-injective envelope of M , then there exists f : N → F such that

fλ = φ, and there exists a monomorphism g : F → N such that gφ = λ. Thus gfλ = λ,
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and hence gf is an isomorphism. Thus g is an isomorphism. It follows that φ : M → F

is an L-injective envelope.

Recall that an R-module M is called cotorsion [5] if Ext1
R(F,M) = 0 for all flat

R-modules F . It is well known that every R-module has a cotorsion envelope [6]. So, if

φ : M → F is a cotorsion hull of M , then φ is a cotorsion envelope of M by Proposition

2.5 (2). But the converse is not true in general as shown by the following example.

Example 2.6. Let P =
{
p : p is a prime

}
, Z(p) =

{
a/b : b 6∈ Zp, (a, b) = 1

}
, where

p ∈ P . Then

ϕ : Z → Πp∈P Z(p)

x 7→ (x/1)

is a cotorsion envelope of Z. However ϕ is not essential. In fact, it is easy to observe that

Πp∈P

(
p/(p+ 1)

)
6= 0, but im(ϕ) ∩ Πp∈P

(
p/(p+ 1

)
= 0. Thus ϕ is not a cotorsion hull

of Z by Proposition 2.5 (1).

Proposition 2.7. If f : N →M is a monomorphism with M L-injective and

coker(f) ∈ L, then the following are equivalent:

(1) f is an L-injective hull of N .

(2) f is an essential monomorphism.

Moreover, if L is closed under quotients, then the above conditions are also

equivalent to:

(3) f is an L-injective envelope of N .

Proof: We first note that f : N →M is an L-injective preenvelope by assumption.

(1) ⇔ (2) holds by Proposition 2.5 (1).

(3) ⇒ (2). Let X be a submodule of M such that f(N) ∩ X = 0, and let π : M

→ M/X be the quotient map. Put g = πf , then we get an exact sequence

0 → N
g→ M/X → H → 0. So we have H ∼= M/X�g(N). Note that g(N)

=
(
f(N) +X

)
/X, and hence

H ∼= M/X�
(
f(N) +X

)
/X ∼= M�

(
f(N) +X

) ∼= M/f(N)�
(
f(N) +X

)
/f(N).

Since M/f(N) ∈ L and L is closed under quotients, we have H ∈ L. Thus there exists

h : M/X → M such that f = hg = hπf , and hence hπ is an isomorphism by (3).

Consequently X ∼= hπ(X) = 0. It follows that f is essential.

(2)⇒ (3). Let α be an endomorphism of M such that αf = f . Then α is an essential

monomorphism by [1, Corollary 5.13 and Exercise 5.14 (1)] since f is essential. Note that

the sequence M/f(N) = M/αf(N) → M/α(M) → 0 is exact. Therefore M/α(M) ∈ L
by assumption, and we obtain a split exact sequence 0 →M

α→M →M/α(M) → 0. So

α(M) = M since α(M) 6e M . Thus α is an epimorphism, and hence an isomorphism,

as desired.
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Remark 2.8. Let S be a set of R-modules, then for every R-module N , there is an

exact sequence 0 → N
f→M → C → 0 such that M is S-injective and C ∈ ⊥(S⊥) by [6,

Theorem 7.4.1]. Thus f is an S-injective hull if and only if f is an essential monomorphism

by Proposition 2.5 (1). In addition, if ⊥(S⊥) is closed under direct limits, then N has an

S-injective envelope by [6, Theorem 7.2.6], and so f is both an S-injective hull and an

S-injective envelope by Proposition 2.5 (2) if f is essential.

As is well known, for two R-modules M and N , if N 6e M , then E(N) = E(M)

(see [1, Proposition 18.12]). Next we consider the similar question when N and M share

a common L-injective hull under the condition that N 6e M .

Proposition 2.9. Let ι : N → M be an essential extension of N with M/N

∈ L.

(1) If L is closed under cokernels of monomorphisms, and N has an L-injective

hull f : N → K with coker(f) ∈ L, thenM has an L-injective hullM → K.

(2) If L is closed under extensions, and M has an L-injective hull λ : M → H

with coker(λ) ∈ L, then N has an L-injective hull N → H.

Proof: (1) Since M/N ∈ L, there is α : M → K such that αι = f . Thus

K/α(N) = K/f(N) = coker(f) ∈ L. By the exactness of 0 → M/N
α→ K/α(N)

→ K/α(M) → 0, we have K/α(M) ∈ L since L is closed under cokernels of monomor-

phisms. In addition, α is an essential monomorphism since f and ι are essential. So

α : M → K is an L-injective hull by Proposition 2.7.

(2) Consider the exact sequence 0 → M/N
λ→ H/λ(N) → H/λ(M) → 0. Then

H/λ(N) ∈ L since L is closed under extensions. Note that λι is essential, and hence

λι : N → H is an L-injective hull by Proposition 2.7.

Now we give a sufficient condition for the existence of L-injective hulls.

Theorem 2.10. If L is closed under extensions, quotients and direct limits,

then every R-module has an L-injective hull.

Proof: Let M be an R-module. Put T =
{
N : M 6 N 6 E(M), and N/M ∈ L

}
.

Then T is a nonempty set since M ∈ T. Let {Ni ∈ T : i ∈ I} be an ascending chain.

Note that M 6 ∪Ni 6 E(M) and (∪Ni)/M = ∪(Ni/M) = lim−→(Ni/M) ∈ T since L
is closed under direct limits. Thus ∪Ni ∈ T, and so T has a maximal element N ′ by

Zorn’s Lemma. We shall prove that N ′ is L-injective. It is enough to show that any

exact sequence 0 → N ′ f→ B → C → 0 with C ∈ L is split. Let ι : N ′ → E(N ′) be the

inclusion and π : E(N ′) → E(N ′)/N ′ the quotient map. Then there exist α : B → E(N
′
)

and β : C → E(N ′)/N ′ such that the following diagram commutes:

0 // N ′ f // B

α
��

// C

β
��

// 0

0 // N ′ ι // E(N ′) π // E(N ′)/N ′ // 0.
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Since β(C) 6 E(N ′)/N ′, there exists H such that N ′ 6 H 6 E(N ′) and β(C) = H/N ′.

So H/N ′ ∈ L since C ∈ L and L is closed under quotients. Thus the exactness of

0 → N ′/M → H/M → H/N ′ → 0 implies that H/M ∈ L by hypothesis. But the

maximality of N ′ forces that N ′ = H, and hence β(C) = 0. So α(B) ⊆ N ′. It follows

that the first row is split, and hence N ′ is L-injective.

On the other hand, M is an essential submodule of N ′ since M 6 N ′ 6 E(M).

Therefore the inclusion M → N ′ is an L-injective hull by Proposition 2.7.

Recall that an R-module M is called FP -injective (or absolutely pure) [12, 15] if

Ext1
R(N,M) = 0 for any finitely presented R-module N . M is called divisible (or P -

injective) [13, 16] if Ext1
R(R/aR,M) = 0 for all a ∈ R. If R is a commutative domain,

then M is divisible if and only if Mr = M for any 0 6= r ∈ R. A ring R is called

right semihereditary (right PP ) if every finitely generated (principal) right ideal of R is

projective.

Corollary 2.11. The following are true:

(1) Every R-module over a right semihereditary ring R has an FI-injective

hull, where FI denotes the class of all FP -injective R-modules.

(2) Every R-module over a right PP ring R has a DI-injective hull, where DI
denotes the class of all divisible R-modules.

Proof: (1) Note that FI is closed under extensions, direct limits by [15, Theorem

3.2] and quotients by [12, Theorem 2] since R is a right semihereditary ring. Thus (1)

follows from Theorem 2.10.

(2) DI is clearly closed under extensions and direct sums. Since R is right PP , DI
is closed under quotients by [18, Theorem 2]. Note that the sequence ⊕Mi → lim−→Mi → 0

is exact, and so DI is closed under direct limits. Therefore (2) holds by Theorem 2.10.

It is known that every finite direct sum of L-injective envelopes is still an L-injective

envelope. But L-injective envelopes are not closed under arbitrary direct sums in general

(even if the class of L-injective modules is closed under arbitrary direct sums) (see [17]).

The next proposition shows that L-injective hulls are preserved under arbitrary direct

sums.

Proposition 2.12. The following are true:

(1) If φi : Mi → Fi is an L-injective hull for i = 1, 2, then φ1 ⊕ φ2 : M1 ⊕M2

→ F1 ⊕ F2 is an L-injective hull.

(2) If the class of L-injective modules is closed under direct sums, and φi :

Mi → Fi is an L-injective hull for any i ∈ I, then ⊕φi : ⊕Mi → ⊕Fi is an

L-injective hull.

Proof: (1) Let f : M1 ⊕M2 → N with N L-injective be any monomorphism.

Suppose ιi : Mi → M1 ⊕ M2 is the canonical injection and πi : F1 ⊕ F2 → Fi the
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canonical projection, i = 1, 2. Then there exist monomorphisms gi : Fi → N such that

giφi = fιi. Define g : F1 ⊕ F2 → N by g(x1, x2) = g1(x1) + g2(x2). It is easy to verify

that g(φ1⊕ φ2) = f . Note that φ1⊕ φ2 is an essential monomorphism by [1, Proposition

5.20] since φi are essential monomorphisms by Remark 2.2 (2). So g is a monomorphism

by [1, Corollary 5.13], as desired.

(2) Note that ⊕φi is an essential monomorphism by [9, Proposition 1.1 (d)]. Thus

(2) holds by the proof of (1).

We should point out that, although the class of L-injective modules is closed under

direct products, L-injective hulls are not preserved under direct products in general (see

[17, Example, p. 15]).

Finally, as an application of the results above, we consider the special case that R

is a commutative domain.

Proposition 2.13. The following are equivalent for a commutative domain

R:

(1) Every free R-module has a divisible hull which is a divisible preenvelope.

(2) R has a divisible hull which is a divisible preenvelope.

(3) R has a divisible envelope.

Proof: (1) ⇒ (2) is trivial.

(2) ⇒ (1) follows from Proposition 2.12 and [17, Proposition 1.2.4] since the class

of divisible modules is closed under direct sums.

(2) ⇒ (3). Let f : R → N be a divisible hull of R. We may assume that f is

an inclusion. For any 0 6= r ∈ R, there exists tr ∈ N such that rtr = 1 since N is

divisible. Define pr : R → N via s 7→ str. If str = 0, then s = srtr = rstr = 0,

so pr is a monomorphism. Thus there exists a monomorphism gr : N → N such that

tr = pr(1) = grf(1) = gr(1). Define hr : N → N via x 7→ rx, then f = grhrf .

Thus grhr is a monomorphism since f is essential by Remark 2.2 (2), and hence hr is

a monomorphism. It follows that N is torsionfree. So N is injective by [2, Proposition

VII. 1.3] or [8, Theorem VI. 4.1]. Therefore f is an injective hull (envelope) since f is

essential. Hence every endomorphism g : N → N such that gf = f is an isomorphism.

Thus f is a divisible envelope since f is a divisible preenvelope.

(3) ⇒ (2). Let f : R → N be a divisible envelope of R. We may assume that f is

an inclusion. It is easy to show that N is injective using an argument similar to that in

the proof of (2) ⇒ (3). Therefore f is an injective envelope (hull) since f is a divisible

envelope. Hence f is a divisible hull by Proposition 2.5 (1) since f is essential.
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