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ABSTRACT

Let S and R be rings. The objective is to study the bimodule

SNR satisfying the annihilator conditions lNðrRðxÞÞ ¼ Sx for
all x 2 N. This approach will clearly show how the ring R or
the module NR is connected to the properties of the ring S
through the annhilator condition. Specializing to the parti-
cular bimodule RRR or EndðNÞNR, we obtain some new results
and known results as corollaries.
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INTRODUCTION

All rings are associative with identity and all modules are unitary. Let
S and R be rings. One objective is to study the bimodule SNR satisfying the
annihilator condition (I) lNðrRðxÞÞ ¼ Sx for all x 2 N. Clearly, the ring R is
a right principally injective ring (or P-injective ring) if and only if RRR

satisfies (I). For the detailed study of P-injective rings, we refer to[1–8]. For
a right R-module N with S ¼ EndðNRÞ, SNR satisfies (I) if and only if NR is
a principally quasi-injective module (due to[9]). Thus, the above annihilator
condition naturally extends the P-injectivity of rings. An advantage of our
approach using a bimodule setting is that one can see much better how the
rings R;S and the modules SN;NR are related to each other through the
annihilator condition. For condition (I), our main results include a bijective
correspondence between the set of simple submodules of SN and the set of
maximal right ideals I of R, a characterization of right perfectness of S
using a chain condition in NR, and a determination of results on the
endomorphism ring EndðNRÞ. We also investigate how to characterize the
Jacobson radical JðSÞ using elements of S that are annihilated by essential
submodules of NR. Section 2 contains a characterization of V-modules
using an annihilator condition, which extends a result of Faith and Menal
on V-rings.

If M is a right R-module, we write lMðrÞ ¼ fm 2M : mr ¼ 0g for all
r 2 R, rRðmÞ ¼ fr 2 R : mr ¼ 0g for all m 2M, lMðAÞ ¼ \a2AlMðaÞ for all
A � R and rRðXÞ ¼ \x2XrRðxÞ for all X �M. If M is a left R-module, lRðXÞ
and rMðAÞ can be defined similarly. We use K �e N to indicate that K is an
essential submodule of N. As usual, JðNÞ and SocðNÞ denote respectively the
Jacobson radical and the socle of the module N. JðRÞ stands for the
Jacobson radical of the ring R.

1. ANNIHILATOR CONDITION (I)

Let SNR be a bimodule. Then there is a canonical ring homomorphism
l : S! EndðNRÞ given by lðsÞðxÞ ¼ sx for x 2 N and s 2 S.

Lemma 1.1. Let SNR be a bimodule and x 2 N. The following are equivalent:

1. lNðrRðxÞÞ ¼ Sx.
2. Every R-homomorphism f : xR! NR extends to lðsÞ : NR ! NR for

some s 2 S.
3. If rRðxÞ � rRðyÞ where y 2 N, then Sy � Sx.

Proof. The verification is straightforward. u

2310 DING, YOUSIF, AND ZHOU
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We say that a bimodule SNR satisfies (I) if lNðrRðxÞÞ ¼ Sx for all
x 2 N. Note that RRR has (I) if and only if R is a right P-injective ring (see[3])
and EndðNRÞNR has (I) if and only if NR is a principally quasi-injective module
(due to[9]).

Theorem 1.2. Let SNR be a bimodule satisfying (I) such that NR is faithful.
Then JðSNÞ � fx 2 N : rRðxÞ �eRRg. The equality holds if in addition SN is
cyclic.

Proof. Let x 2 JðSNÞ. If rRðxÞ is not essential in RR, then rRðxÞ \ aR ¼ 0
where 0 6¼ a 2 R. It follows that N ¼ lNð0Þ ¼ lNðrRðxÞ \ aRÞ � lNðrRðxÞÞ
þlNðaÞ � Sxþ lNðaÞ. We show that N ¼ Sxþ lNðaÞ. To see this, let
y 2 lNðrRðxÞ \ aRÞ. Then, rRðxaÞ � rRðyaÞ, and so lNðrRðxaÞÞ � lNðrRðyaÞÞ.
Since SNR has (I), it follows that Sxa � Sya. Write ya ¼ txa where t 2 S.
Thus, y� tx 2 lNðaÞ and so y ¼ txþ ðy� txÞ 2 Sxþ lNðaÞ. Therefore,
N ¼ Sxþ lNðaÞ. Since x 2 JðSNÞ, Sx is a small submodule of SN. It
follows that N ¼ lNðaÞ, which gives a ¼ 0 since NR is faithful. This is
a contradiction.

Suppose that SN is also cyclic. Let x 2 N such that rRðxÞ �e RR. To
show x 2 JðSNÞ, it suffices to prove that Sx is a small submodule of SN. Let
N ¼ Yþ Sx where Y is a submodule of SN. Because SN is cyclic, there exists
a cyclic submodule Sy of Y such that N ¼ Syþ Sx. Then
rRðNÞ ¼ rRðyÞ \ rRðxÞ. Since NR is faithful, 0 ¼ rRðyÞ \ rRðxÞ. Because rRðxÞ
is essential in RR, rRðyÞ ¼ 0. Since SNR has (I), N ¼ lNðrRðyÞÞ ¼ Sy � Y. So
N ¼ Y. Thus we have proved that Sx is small in SN, and so x 2 JðSNÞ.

u

Following Albu and Wisbauer,[10,2.6] a right R-module NR is called a
Kasch module if any simple module in s½N� embeds in NR, where s½N� is the
category consisting of all N-subgenerated right R-modules. For a right R-
module NR, we let BN ¼ fIR � RR : I is a maximal right ideal of R and
R=I 2 s½N�g and JNðRÞ ¼ \fIR � RR : I 2 BNg. Note that JNðRÞ is a two-
sided ideal of R. In fact, if F is the class of all simple right R-modules in
s½N�, then JNðRÞ is the reject of F in RR (see[11, p. 109 and 8.23]).

The proof of the next lemma uses an idea of Gómez Pardo and Guil
Asensio.[12]

Lemma 1.3. Let SNR be a bimodule such that NR is a Kasch module and
fMi : i 2 Ig is a family of maximal right ideals of R with all R=Mi 2 s½N�.
Then there exists a subset K of I such that the family flNðMiÞ : i 2 Kg of
submodules of SN is independent and \i2IMi ¼ \i2KMi. In particular,
R=JNðRÞ is semisimple artinian if SN is also of finite uniform dimension.

ANNIHILATOR CONDITIONS 2311
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Proof. By Zorn’s lemma, there exists a subset K of I such that flNðMiÞ :
i 2 Kg is a maximal independent subset of flNðMiÞ : i 2 Ig. Thus, for any
j 2 I, lNðMjÞ \ ½SKlNðMiÞ� 6¼ 0. It follows that lNðMj þ \KMiÞ ¼ lNðMjÞ\
lNð\KMiÞ 6¼ 0. So, Mj þ \KMi is a proper right ideal of R. Because Mj is a
maximal right ideal of R, \KMi �Mj. Thus, we proved that
\KMi ¼ \IMi. If, in addition, SN has finite uniform dimension, K must be
a finite set. Our proof implies that JNðRÞ must be an intersection of a finite
number of maximal right ideals of R. Thus, R=JNðRÞ is semisimple
artinian. u

Theorem 1.4. Let SNR be a bimodule satisfying (I) such that NR is a Kasch
module. Then

1. The map X 7�! rRðXÞ gives a bijection from the set of all simple
submodules of SN onto the set BN, whose inverse map is given by
I 7�! lNðIÞ.

2. For x 2 N, SðSxÞ is simple if and only if ðxRÞR is simple.
3. SocðNRÞ ¼ SocðSNÞ �eSN.
4. JNðRÞ ¼ rRðWÞ where W ¼ SocðNRÞ ¼ SocðSNÞ.
5. R=JNðRÞ is semisimple artinian if and only if SN is of finite uniform

dimension.

Proof. (1) Let X ¼ Sx be a simple submodule of SN. Clearly,
rRðXÞ ¼ rRðxÞ 6¼ R. There exists a maximal right ideal K of R such that

rRðxÞ � K. Then, R=K is a factor of R=rRðxÞ ffi xR. So, K 2 BN. Since NR

is Kasch, R=K ,!f N. Let x0 ¼ fð1þ KÞ 2 N. Then 0 6¼ x0 2 lNðKÞ �
lNðrRðxÞÞ ¼ Sx. The last equality is because SNR has (I). Since SðSxÞ is
simple, Sx ¼ lNðKÞ. It follows that K � rRðlNðKÞÞ ¼ rRðxÞ. So,
rRðXÞ ¼ K 2 BN.

Let I 2 BN. Then R=I embeds in NR, and, as above, lNðIÞ 6¼ 0. For any
0 6¼ x 2 lNðIÞ, rRðxÞ 6¼ R and I � rRðlNðIÞÞ � rRðxÞ. So I ¼ rRðxÞ since I is a
maximal right ideal of R. Then Sx ¼ lNðrRðxÞÞ ¼ lNðIÞ. So lNðIÞ is a simple
submodule of SN. Now ð1Þ follows because lNðrRðXÞÞ ¼ X for any simple
submodule X of SN and rRðlNðIÞÞ ¼ I for I 2 BN.

(2) For x 2 N, by ð1Þ, SðSxÞ is simple if and only if rRðxÞ 2 BN if and
only if ðxRÞR is simple.

(3) It follows from ð2Þ that SocðNRÞ ¼ SocðSNÞ. Let W ¼ SocðSNÞ.
Suppose that W \ Sx ¼ 0 where 0 6¼ x 2 N. Then SðSxÞ is not simple. By
ð1Þ, rRðxÞ is not a maximal right ideal. There exists a maximal right ideal I of
R such that rRðxÞ � I. Thus, I 2 BN and lNðrRðxÞÞ � lNðIÞ 6¼ 0. Then, since

SNR has (I), Sx ¼ lNðrRðxÞÞ, and lNðIÞ is a simple submodule of SN by ð1Þ.
So lNðIÞ �W, contradicting the assumption that W \ Sx ¼ 0.

2312 DING, YOUSIF, AND ZHOU
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(4) Clearly, WJNðRÞ ¼ SocðNRÞJNðRÞ ¼ 0. So JNðRÞ � rRðWÞ. Let
M 2 BN. Then, by ð1Þ, lNðMÞ �W. Thus, rRðlNðMÞÞ � rRðWÞ. But, by ð1Þ,
M ¼ rRðlNðMÞÞ. So M � rRðWÞ. It follows that JNðRÞ � rRðWÞ.

(5) One direction is by Lemma 1.3. Let R=JNðRÞ be semisimple arti-
nian. As a right R=JNðRÞ-module, lNðJNðRÞÞ is semisimple. Thus, lNðJNðRÞÞ
is a semisimple right R-module. So lNðJNðRÞÞ � SocðNRÞ. Clearly,
lNðJNðRÞÞ � SocðNRÞ, and so lNðJNðRÞÞ ¼ SocðNRÞ. Note that R=JNðRÞ is a
finitely cogenerated right R-module and \fI=JNðRÞ : I 2 BNg ¼ �0. So, there
exists a finite subset F of BN such that \fI=JNðRÞ : I 2 Fg ¼ �0. Thus, there
exists a finite subset fMi : i ¼ 1; � � � ; ng of BN such that JNðRÞ ¼ \ni¼1Mi and
JNðRÞ 6¼ \i 6¼jMi for any 1 � j � n. Arguing as in the proof of[2, Lemma 2.7], we
have that lNð\ni¼1MiÞ ¼ Sn

i¼1lNðMiÞ. Thus, W ¼ SocðNRÞ ¼ lNðJNðRÞÞ
¼ Sn

i¼1lNðMiÞ. But, by ð1Þ, each lNðMiÞ is a simple left S-module. So SW is
finitely generated. By ð3Þ, SN is of finite uniform dimension. u

The next corollary follows immediately.

Corollary 1.5.½9; Prop:1:4� Let NR be a principally quasi-injective, Kasch
module with S ¼ EndðNRÞ. Then SocðNRÞ ¼ SocðSNÞ � lNðJðRÞÞ and
SocðSNÞ �e SN.

For a right R-module NR, it is easy to prove that the following con-
ditions are equivalent:

1. lNðIÞ 6¼ 0 for every proper right ideal I of R.
2. lNðIÞ 6¼ 0 for every maximal right ideal I of R.
3. I ¼ rRðlNðIÞÞ for every maximal right ideal I of R.
4. Every simple right R-module embeds in NR.

Note that the condition (4) of NR above is strictly stronger than the
one that NR is a Kasch module. For instance, let R ¼ Z and N ¼ Z=pZ (p is
a prime number). Then NR is a Kasch module, but, clearly, NR does not
satisfy the above condition ð4Þ.

Corollary 1.6. Let SNR be a bimodule satisfying (I) such that lNðIÞ 6¼ 0 for
every maximal right ideal I of R. Then

1. The map X 7�! rRðXÞ gives a bijection from the set of all simple
submodules of SN onto the set of all maximal right ideals of R, whose
inverse map is given by I 7�! lNðIÞ.

2. For x 2 N, SðSxÞ is simple if and only if ðxRÞR is simple.
3. SocðNRÞ ¼ SocðSNÞ �e SN.
4. JðRÞ ¼ rRðWÞ where W ¼ SocðNRÞ ¼ SocðSNÞ.
5. R=JðRÞ is semisimple artinian if and only if SN is of finite uniform

dimension.

ANNIHILATOR CONDITIONS 2313
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Proof. Note that, if lNðIÞ 6¼ 0 for every maximal right ideal I of R, then BN
is the set of all maximal right ideals of R and JNðRÞ ¼ JðRÞ. u

In Corollary 1.6, the condition that lNðIÞ 6¼ 0 for every maximal right
ideal I of R cannot be replaced by the one that NR is Kasch. To see this, let
R ¼ Z and N ¼ Z=pZ (p is a prime number). The bimodule RNR satisfies
(I), NR is Kasch, JðRÞ ¼ 0 and SocðNÞ ¼ N. It is easy to see that none of the
statements (1),(4) and (5) in Corollary 1.6 holds.

Note that Corollary 1.6 (1,5) extends[4, Theorem 1.2] and [4, Theorem 1.3]

respectively.
For a bimodule SNR, let WNðSÞ ¼ ft 2 S : rNðtÞ �e NRg. Then WNðSÞ

is an ideal of S. To see this, let t; s 2WNðSÞ and u 2 S. Since rNðtÞ \ rNðsÞ �
rNðtþ sÞ and rNðtÞ � rNðutÞ, it follows that tþ s 2WNðSÞ and ut 2WNðSÞ.
Since rNðtÞ �e NR, fx 2 N : ux 2 rNðtÞg �e NR. Thus tu 2WNðSÞ since
fx 2 N : ux 2 rNðtÞg � rNðtuÞ. So WNðSÞ is an ideal of S. It is easy to see
that WNðSÞ � ft 2 S : rNð1S � stÞ ¼ 0; 8s 2 Sg.

Lemma 1.7. Let SNR be a bimodule satisfying (I).

1. JðSÞ �WNðSÞ ¼ ft 2 S : rNð1S � stÞ ¼ 0; 8s 2 Sg.
2. If s =2WNðSÞ, then the inclusion rNðsÞ � rNðs� stsÞ is proper for some

t 2 S.

Proof. (1) Assume that t 2 S such that rNð1S � stÞ ¼ 0 for all s 2 S. Let
rNðtÞ \ xR ¼ 0 for some x 2 N. Then rRðtxÞ � rRðxÞ, and so x ¼ stx for
some s 2 S by Lemma 1.1. Hence x 2 rNð1S � stÞ ¼ 0. This shows that
rNðtÞ �e NR, i.e., t 2WNðSÞ. Therefore WNðSÞ ¼ ft 2 S : rNð1S � stÞ ¼ 0;
8s 2 Sg, and hence JðSÞ �WNðSÞ.

(2) If s =2WNðSÞ, then rNðsÞ \ xR ¼ 0 where 0 6¼ x 2 N. Thus
rRðxÞ ¼ rRðsxÞ, and so Sx ¼ lNðrRðxÞÞ ¼ lNðrRðsxÞÞ ¼ SðsxÞ. Write x ¼ tsx
where t 2 S. Then ðs� stsÞx ¼ 0. Thus rNðsÞ � rNðs� stsÞ is proper. u

Proposition 1.8. Let SNR be a bimodule satisfying lSðrNðtÞÞ ¼ St for all t 2 S.
Then WNðSÞ � JðSÞ. If SNR also satisfies (I), then WNðSÞ ¼ JðSÞ.
Proof. We have WNðSÞ � ft 2 S : rNð1S � stÞ ¼ 0 for all s 2 Sg � JðSÞ
since, if rNð1S � stÞ ¼ 0 for all s 2 S, S ¼ lSð0Þ ¼ lSðrNð1S � stÞÞ ¼ Sð1S �
stÞ for all s 2 S. The second statement then follows from Lemma 1.7(1).

u

Lemma 1.9. Let SNR be a bimodule such that SN is faithful and, for any
sequence fs1; s2; . . .g � S, the chain rNðs1Þ � rNðs2s1Þ � � � � terminates. Then

1. WNðSÞ is right T-nilpotent.

2314 DING, YOUSIF, AND ZHOU
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2. S=WNðSÞ contains no infinite set of nonzero pairwise orthogonal
idempotents.

Proof. (1) For si 2WNðSÞ, i ¼ 1; 2; . . ., rNðs1Þ � rNðs2s1Þ � � � �. Thus
rNðsn � � � s1Þ ¼ rNðsnþ1sn � � � s1Þ for some n > 0. Hence rNðsnþ1Þ \ ðsn � � � s1Þ
N ¼ 0. Since snþ1 2WNðSÞ, rNðsnþ1Þ is essential in NR. It follows that
ðsn � � � s1ÞN ¼ 0. Thus, since SN is faithful, sn � � � s1 ¼ 0. So WNðSÞ is right
T-nilpotent.

(2) Since WNðSÞ is right T-nilpotent, orthogonal sets of idempotents of
S=WNðSÞ can be lifted to orthogonal sets of idempotents of S. Suppose ð2Þ
does not hold. Then, S=WNðSÞ contains an infinite set f�tig of nonzero
pairwise orthogonal idempotents, where t2i ¼ ti 2 S and titj ¼ 0 for i 6¼ j. Let
si ¼ 1S � ðt1 þ � � � þ tiÞ, i ¼ 1; 2; � � �. Then, for all i, siþ1 ¼ si � sitiþ1si,
siþ1tiþ1 ¼ 0, and sitiþ1 ¼ tiþ1 6¼ 0. It follows that siðtiþ1NÞ ¼ tiþ1N and
siþ1ðtiþ1NÞ ¼ 0. Since SN is faithful, tiþ1N 6¼ 0. Hence rNðsiÞ � rNðsiþ1Þ is
proper for all i. Let bi ¼ 1S � ti, then si ¼ bibi�1 � � � b1, i ¼ 1; 2; . . . . Thus
there is the following strictly ascending chain rNðb1Þ � rNðb2b1Þ �
rNðb3b2b1Þ � � � �. This is a contradiction. u

Theorem 1.10. Let SNR be a bimodule satisfying (I) such that SN is faithful.
The following are equivalent:

1. S is a right perfect ring.
2. For any sequence fs1; s2; . . .g � S, the chain rNðs1Þ � rNðs2s1Þ � � � �

terminates.

Proof. ð1Þ ) ð2Þ. Let si 2 S, i ¼ 1; 2; . . . . Since S is right perfect, R satisfies
DCC on principal left ideals. So the chain Ss1 � Ss2s1 � � � � terminates.
Thus there exists n > 0 such that Sðsn � � � s1Þ ¼ Sðsnþ1sn � � � s1Þ ¼ � � �. It fol-
lows that rNðsn � � � s1Þ ¼ rNðsnþ1sn � � � s1Þ ¼ � � �.

ð2Þ ) ð1Þ. Note that, for any s 2 S and t 2 S, if s� sts is a regular
element of S=WNðSÞ, then so is �s. So, by ð2Þ and Lemma 1.7(2), S=WNðSÞ is
von Neumann regular by an argument similar to that in the proof of.[2,
Theorem 3.4] By Lemmas 1.7 and 1.9, JðSÞ ¼WNðSÞ is right T-nilpotent. Thus,
S=JðSÞ is semisimple artinian because of Lemma 1.9(2). Therefore S is right
perfect. u

Lemma 1.11. Let SNR be a bimodule such that SN is faithful and NR satisfies
ACC on frNðAÞ : A � Sg. Then WNðSÞ is nilpotent.
Proof. By Lemma 1.9(1), WNðSÞ is right T-nilpotent. Then it is easy to
show that WNðSÞ is nilpotent by a standard argument. u

The next corollary follows from Theorem 1.10 and Lemma 1.11.

ANNIHILATOR CONDITIONS 2315
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Corollary 1.12. Let SNR be a bimodule satisfying (I) such that SN is faithful
and NR satisfies ACC on frNðAÞ : A � Sg. Then S is semiprimary.

For a module NR, a submodule X of NR is called a kernel submodule if
X ¼ kerðfÞ for some f 2 EndðNRÞ, and X is called an annihilator submodule if
X ¼ \f2AkerðfÞ for some A � EndðNRÞ. Part 2 of the next corollary extends
a result of Fisher and Harada-Ishii that the endomorphism ring of a noe-
therian QI-module is semiprimary (see[13, Theorem 1.1] and [14, Theorem 1]).

Corollary 1.13. Let NR be a principally quasi-injective module and
S ¼ EndðNRÞ.

1. If NR satisfies ACC on kernel submodules, then S is right perfect.
2. If NR satisfies ACC on annihilator submodules, then S is semi-

primary.

It was proved in[7, Theorem] that, if R is right P-injective and has ACC
on annihilator right ideals, then R is left artinian. But we do not know if the
ring S in Corollary 1.13(2) is left artinian.

2. V-MODULES AND ANNIHILATOR CONDITIONS

In this section, the V-modules are characterized using an annihilator
condition, extending a result of Faith and Menal. All modules in this section
are right R-modules.

Given two R-modules M and N, consider HomRðN;MÞ, a left
EndðMÞ-module. For a subset K of N and a subset X of HomRðN;MÞ, put
AnðKÞ ¼ ff : f 2 HomRðN;MÞ and fðKÞ ¼ 0g and KeðXÞ ¼ \fkerðgÞ
: g 2 Xg.
Definition 2.1. A module N is said to be M-annular if, for every submodule K
of N, K ¼ KeðAnðKÞÞ.

It can easily be proved that, for a submodule K of N, K ¼ KeðAnðKÞÞ if
and only if N=K is cogenerated by M. Therefore, N is M-annular if and only
if every factor of N is cogenerated by M.

Example 2.2.

1. RR is RR-annular if and only if every right ideal of R is a right
annihilator. In this case, the ring R is called right dual.

2. RR is M-annular if and only if I ¼ rRðlMðIÞÞ for every right ideal I.
This condition was termed by Faith-Menal[15] as saying that M
satisfies the double annihilator condition with respect to right
ideals.
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A module MR is called a V-module if every submodule of M is an
intersection of maximal submodules, or equivalently, every simple R-
module is M-injective. When RR is a V-module, we call R a right V-ring. It
was proved in[15] that R is a right V-ring if and only if R is M-annular for
some semisimple module M, and that in this case M is a cogenerator in
Mod-R. They further show that if R is right noetherian and right dual (i.e.,
R is a right Johns ring by[15]) then R=JðRÞ is a right V-ring. These results can
be extended as follows.

Lemma 2.3. Let K be a submodule of NR. Then K is an intersection of
maximal submodules of NR if and only if KeðAnðKÞÞ ¼ K for some semisimple
module M.

Proof. ‘(’. By assumption, K ¼ KeðAnðKÞÞ ¼ \kerðgÞ : g 2 AnðKÞg. For
g 2 AnðKÞ, K � kerðgÞ and N=kerðgÞ ,!M. Thus, N=kerðgÞ is semisimple.
Then kerðgÞ is an intersection of maximal submodules of N. Because
K ¼ KeðAnðKÞÞ ¼ \fkerðgÞ : g 2 AnðKÞg, it follows that K is an intersection
of maximal submodules of N.

‘)’. Let fMig be a complete set of non-isomorphic simple modules in
s½N� and M ¼ �Mi. Since K is an intersection of maximal submodules of N,
it follows that N=K ,!PXj with each Xj 2 s½N� a simple module. Therefore,
there exists an embedding l : N=K ,!MI for an index set I. Let p :
N �! N=K be the natural homomorphism and pa : MI �!M be the
canonical projection onto the ath-component. Then ffa ¼ fpia + l+ p :
a 2 Ig � AnðKÞ. Thus, K � KeðAnðKÞÞ � KeðffagÞ. But, it is clear that
KeðffagÞ � K. So, K ¼ KeðAnðKÞÞ. u

Theorem 2.4. 1. A module N is a V-module if and only if N is M-annular for
some semisimple module M.

2. If N is M-annular for a semisimple module M then M is a cogenerator
in s½N�.

3. If N is M-annular and lMðJðRÞÞ ¼ SocðMÞ, then N=NJðRÞ is a V-
module.

Proof. (1) By Lemma 2.3.

(2). By (1), N is a V-module and thus every simple module is N-
injective. Hence the N-injective hull of any simple module X 2 s½N� is itself.
By Wisbauer,[16,17.12, p.143] we only need to show thatM contains a copy of X
for each simple module X 2 s½N�. For a simple module X 2 s½N�, X ,!N=A
for some A � N by[17, 2.3]. Since N is M-annular, N=A ,!MI for some index
set I. It follows that X ,!MI, so X ,!M.

ANNIHILATOR CONDITIONS 2317



D
ow

nl
oa

de
d 

By
: [

N
an

jin
g 

U
ni

ve
rs

ity
] A

t: 
02

:1
7 

23
 M

ar
ch

 2
00

7 

(3). We first show that, if X is a submodule of N such that, for any g 2
HomðN;MÞ with gðXÞ ¼ 0, gðNÞ � SocðMÞ, then N=X is a V-module. To see
this, let Y be a submodule of N containing X. By the assumptions, we have
\fkerðgÞ : g 2 HomðN; SocðMÞÞ; gðYÞ ¼ 0g ¼ \fkerðgÞ : g 2 HomðN;MÞ;
gðYÞ ¼ 0g ¼ Y. Therefore, \fkerðgÞ : g 2 HomðN=X; SocðMÞÞ; gðY=XÞ ¼
0g ¼ ½\fkerðfÞ : f 2 HomðN; SocðMÞÞ; fðYÞ ¼ 0g�=X ¼ Y=X. This shows
that N=X is SocðMÞ-annular. By ð1Þ, N=X is a V-module.

Now let g 2 HomðN;MÞ with gðNJðRÞÞ ¼ 0. Thus, gðNÞJðRÞ ¼ 0,
implying gðNÞ � lMðJðRÞÞ ¼ SocðMÞ.As seen above,N=NJðRÞ is aV-module.

FromAnderson-Fuller,[11,15.17 and 15.18]R=JðRÞ is semisimple if and only
if SocðMÞ ¼ lMðJðRÞÞ for every right R-module M, and in this case, JðMÞ ¼
MJðRÞ for every right R-moduleM. The following is immediate.

Corollary 2.5. Suppose R is semilocal. If N is M-annular, then N=JðNÞ is a
V-module.

Part 2 of the next Corollary extends a result in[7].

Corollary 2.6. Let R be a right dual ring satisfying ACC on essential right
ideals.

1. SocðRRÞ ¼ lRðJðRÞÞ ¼ rRðJðRÞÞ is an essential right ideal of R.
2. R=JðRÞ is a right V-ring.

Proof. (1) Let Zr ¼ ZðRRÞ be the right singular ideal of R, J ¼ JðRÞ and
Sr ¼ SocðRRÞ. For convenience, we shall abbreviate lRðXÞ and rRðXÞ to lðXÞ
and rðXÞ respectively for a subsetX ofR. By[18, Theorem 2.9], J is nilpotent. Then
lðJÞ is essential inRR as argued in Johns.[19] SinceR hasACCon essential right
ideals, R=Sr is a right noetherian ring by.[20, Cor.2.9] By[17, Lemma 18.3], Zr is
nilpotent. So Zr � J. Define lnþ1ðJÞ ¼ lðlnðJÞÞ for n � 1. Following Johns’
arguments,[19] we have l2ðJÞ � Zr � J and this implies that
lðJÞ � l3ðJÞ � l5ðJÞ � � � �. Note that this is a chain of essential right ideals.
Since R satisfies ACC on essential right ideals, there exists anm > 0 such that
lmðJÞ ¼ lmþ2ðJÞ. Taking right annihilators ðmþ 1Þ-times, we have rðJÞ ¼ lðJÞ.
Finally, arguing as the proof of[19, Lemma 4], we have that rðJÞ � Sr � lðJÞ.

(2) By ð1Þ and Theorem 2.4(3), ðR=JÞR is a V-module. Thus, R=J is a
right V-ring. u

CONCLUSION

Let S and R be rings. The paper studies the bimodule SNR satisfying
the annihilator condition lNðrRðxÞÞ ¼ Sx for all x 2 N. This approach
clearly shows how the ring R or the module NR is connected to the
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properties of the ring S through the annihilator condition. Specializing to
the particular bimodule RRR or EndðNRÞNR, we obtain some new results
and known results as corollaries.
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