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ABSTRACT

Let R be a ring. For two fixed positive integers m and n, a
right R-module M is called (m,n)-injective if every right R-
homomorphism from an n-generated submodule of R” to M
extends to one from R™ to M. This definition unifies several
definitions on generalizations of injectivity of modules. The
aim of this paper is to investigate properties of the (m,n)-
injective modules. Various results are developed, many ex-
tending known results.
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1. INTRODUCTION

Throughout R is an associative ring with identity and all modules are
unitary. We write M (rM) to indicate a right (left) R-module, and we use
the notation R™*" for the set of all m x n matrices over R. For 4 € R"™" AT
will denote the transpose of A. In general, for an R-module N, we write
N"" for the set of all formal m x n matrices whose entries are elements of V.
Let Mg and zN be R-modules. For x € M s € R"" and y € Nk, under
the usual multiplication of matrices, xs (resp. sy) is a well-defined element in
M (resp. N™F). If X C M S C R™" and Y C Nk define

Ly (S) = {u € M>" :us =0, Vs € S}
rawi(S) = {ve N"k 50 =0, Vs € S}
rRmxn(X) = {S S Rmxn XS = O, Vx € X}

[gman(Y) ={s € R"™":5y=0,Vye Y}

We will write N* = NP>, N, = N"*!, R" = R"" and R, = R™'. Multi-
plication maps x — ax and x — xa will be denoted a- and -a, respectively.
Generalizations of injectivity have been discussed in many papers, for
example, see [2, 4, 5, 6, 8,9, 11, 12, 13, 14, 15, 18]. In this paper, for two
fixed positive integers m and n, (m,n)-injective modules are defined
and studied. We prove that My is (m,n)-injective if and only if
g, {0, 0,y = Moy + Moy + -+ -+ Mo, for all o; € R, i=1,2,
...,m [Theorem 2.4]. This fact is then used to prove that a left Kasch left
(n,m + 1)-injective ring R is right (m, n)-injective [Theorem 2.7]. The (m, n)-
injective modules are also characterized as those (m, 1)-injective modules
Mg for which Iym (1N K) = lym(I) + Iy (K), where I and K are submodules
of (Ry)g such that I+ K is n-generated [Theorem 2.9]. Any left Kasch, left
P-injective and left /N-ring R is proved to be right f-injective and left dual
(i.e., every left ideal of R is a left annihilator ) [Theorem 2.13]. Another
characterization of (m, n)-injective modules is obtained as stated as follows:
My is (m, n)-injective if and only if, for any z = (my, my, ..., m,) € M" and
A € R™" satisfying rg,(A) C rg,(z), z=yA for some y € M [Theorem
2.15]. We use this theorem to prove that R is right (m, n)-injective if and only
if the exactness of gR" —grR" —xN — 0 implies the torsionlessness of N
[Theorem 2.17] and that R is right (m, n)-injective and left (n, m)-injective if
and only if R is right (m, n)-wlec and left (n,m)-wlec [Theorem 2.20]. Some
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known results appearing in [2, 6, 8, 10, 12, 14, 15] are obtained as corollaries
of the main results of this paper.

2. RESULTS

In this section, m and n will be two fixed positive integers (unless
specified otherwise). We start with the following.

Definition 2.1. A right R-module M is called (m, n)-injective if every right
R-homomorphism from an n-generated submodule of R™ (or R,,) to M ex-
tends to one from R" (or R,,) to M. The ring R is a right (m,n)-injective ring
if Ry is (m,n)-injective.

It is easy to see that My is (m, n)-injective if and only if My is (m, k)-
injective for all 1 < k < mif and only if My is (/, n)-injective forall 1 </ <m
if and only if My is (/, k)-injective for all 1 </<mand 1 <k <n.

A module My is called n-injective if every right R-homomorphism
from an n-generated right ideal to M extends to one from Ry to M, while
M is f-injective [6] (=f.g.injective in [2] = Coflat in [5]) in case every right
R-homomorphism from a finitely generated right ideal to M extends to one
from Ry to M. We call M a P-injective module if every right R-homo-
morphism aR — M, a € R, extends to R — M. A module My is FP-injective
[8] in case, for every finitely generated submodule K of a free right R-module
F, every homomorphism from K to M extends to one from F to M. The ring
R is right n-injective (resp. f-injective, P-injective, FP-injective) in case Ry is
n-injective (resp. f-injective, P-injective, FP-injective).

The next lemma is immediate.

Lemma 2.2. Let M be a right R-module.

1. M is n-injective (resp. P-injective) if and only if M is (1, n)-injective
(resp. (1, 1)-injective).

2. M is f-injective if and only if M is (1, n)-injective for all positive
integers n.

3. M is FP-injective if and only if M is (m,n)-injective for all positive
integers m and n if and only if M is (n,n)-injective for all positive
integers n.

Remark 2.3. The (m,n)-injective modules lie between P-injective modules
and FP-injective modules. A right (m,n)-injective ring need not be left
(m, n)-injective as shown by [3, Example 2]. Rutter ([17, Example 1] ) has an
example of right (1, 1)-injective which is not right (1,2)-injective.
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Let M be a right R-module and o = (r1,r2,...,r,) € R". In what
follows, we write Mo = {xa | x € M}, where xa = (xr|,xr2,...,xr,) € M".

Theorem 2.4. The following conditions are equivalent for a right R-module M :

1. M is (m,n)-injective.
2. hprg{on,0n,. .. 0, = Moy + Moy + - -+ + Moy, for any m-ele-
ment subset {a,0,...,0,} of R".

Proof. (1) = (2). Let o; = (a1;, 424y .. ,an;) € R", i=1,2,...,m. Suppose
x=(x1,X2,...,Xy) € ywrr, {ot1,00,...,0m}. Take f;= (an,apn,...,am) €
R" i=1,2,...,n, and define g: R+ R+ --- + B,R — M such that

g(ZBm) =Y xit; for nER i=1,2...,n
=1 i=1

If Y0 Biti=0,then Y1 a;t; =0,j=1,2,...,m. Let a = (t1,t2,...,1y) €
R". Then oyu” =0, j=1,2,...,m, and so ol € rg {oy,00,...,0,}. Hence
>°%, xit; = 0. This shows that g is well-defined. Since M is (m,n)-injective, g
extends to a right R-homomorphism g: R" — M. Let ¢; = (0,...,0,1,
0,...,0) € R" (with 1 in the ith position and 0’s in all other positions),
vi=gle),i=1,2,....,m,and y = (y1,¥2,...,Ym) € M™. Then, for any u =
(ur,uz, ... um) € R™, g(u) = yiuy + yauz + Yty = yul. Thus x; = g(B;) =
g(B) =yB! =21 yjay. i=1,2,...,n, and hence,

m m m
X =(X1,X2,...,X,) = E yiayj, E Vi, ..., g Vil
J=1 J=1 J=1

m

m
=Y yilay,ay, ... ay) =y € Moy + Moy + -+ + Moy,
=1 =

So lymrr, {o1, 02, ..., 0m} C Moy + Moy + - - - + Mo,. The reverse inclusion
is clear.

(2) = (1). Let N=p R+ R+ ---+ p,R be an n-generated sub-
module of R™ and f: N — M a right R-homomorphism. Write f;, =

(an,ap,...,am) € R", i=1,2,...,n, and o; = (aij,a,...,a,) € R", j=1,

2,...,m. Letu; :f(ﬁi),i: 1,2,...,n,and u = (uy,uy, ..., u,). Then, for any
. n

E=(t,t,..., ty)" €rg o, o0,... 0}, wehave ;& =0,ie., > a;t; =0,

j=12,....m. Thus Z?Zl(ama,»z? c.. 7a,'m)t,< =0, ie., Z?:l ﬁ[[i =0, and
so ué=> " ut;=> i f(P)ti=0, whence u € lyrp{on,00,. .. 0m}.
Therefore
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u= (uy,uz,...,uy) € Moy + Moy + - - - + Moy,

by (2). Let (uj,un,...,uy) = y1oq + 202 + -+ + ymoyy, for some y; € M,
i=1,2,...,m. Then

m m m
(ur,up,y .oy uy) = E yiay, E Viljy s E Viaw |,
J=1 Jj=1 Jj=1

and hence u; = Y7 | ya; = Bl i=1,2,. ..,n, where y = (y1,¥2,...,Vm) €
M™. Now define f: R™ — M such that f(x) =yx" =37 yix; for each
X = (x1,X2,...,Xn) € R". Then f(;) = yp] = u; = f(B:), i = 1,2,...,n, and
it follows that f'is an extension of f. O

Corollary 2.5. The following statements hold for a module Mg:

1. My is P-injective if and only if Iyrgr(a)= Ma for all a € R.

2. Mgy is n-injective if and only if lyprg, (o)= Mo for all « € R".

3. Mg is f-injective if and only if Iynrr, ()= Mo for all o € R" and for
all positive integers n.

4. My is (m,1)-injective if and only if Iyrr(I)= MI for every
m-generated left ideal I of R. In particular, R is right (m, 1 )-injective if
and only if every m-generated left ideal of R is a left annihilator.

Remark 2.6. From Corollary 2.5 (4) we know that every finitely generated
left ideal of R is a left annihilator if and only if R is right (m, 1)-injective for
all positive integers m.

Recall that a ring R is left Kasch if every simple left R-module embeds
in R.

Theorem 2.7. Any left Kasch left (n,m + 1)-injective ring R is right (m,n)-
injective.

Proof. By Theorem 2.4, it is sufficient to prove that Iprg {0,
02,y 0mt = Roy + Roy + -+ + Roy, forallo; € R”,i=1,2,...,m. Clearly,
Roy + Rop + -+ + Ray,, C anVR"{OCl,Otz,...7OCm}. Suppose ﬁ S anar{acl,
02, ... 0}, but f & I= Roy + Ray + -+ Roy,. Since (R +1)/I is a non-
zero finitely generated left R-module, it has a maximal submodule M/I.
Hence (Rf+1)/M is a simple left R-module. Since R is left Kasch, let
0:(Rp+1I)/M —rR be an embedding, and define f: RS+ 1 —xR by

fix)=90(x+ M) for x € Rf+ I Clearly, f(I) =0 and f{(ff) #0. By hy-

pothesis, f extends to a left R-homomorphism f: R” —gR. Thus there exists
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u=(uy,u, ... ,u,) € R"such that f(x) = xu” = xyuy + x2up + - - - + x,u, for
any x = (x1,X2,...,x,) € R". Therefore 0=flo;) =flo;) =, i=1,
2,...,m, and hence u” € rg {o,00,... 0} But B € lpirg {0, 00, ..., %},
and then f(f) = f(B) = pu’” = 0. This is a contradiction, and the proof is
complete. O

Corollary 2.8. The following statements hold for a ring R:

1. ([12, Theorem 3.1]). If R is left Kasch and left FP-injective, then R
is right FP-injective.

2. ([14, Lemma 2.2]). If R is left Kasch and left 2-injective, then R is
right P-injective.

3. ([2, Proposition 4.1]). Let R be left Kasch and left f-injective, then
each finitely generated left ideal of R is a left annihilator.

4. If R is left Kasch and left (n, 2)-injective for all positive integers n,
then R is right f-injective.

Theorem 2.9. The following conditions are equivalent for a module Mg:

1. My is (m,n)-injective.

2. Mg is (m,l)-injective and lym(INK) = Ly (I)+lpm (K), where
I and K are submodules of (R,,)r such that I + K is n-generated.

3. Mg is (m,1)-injective and lym(INK)= lym(I)+lym(K), where
I and K are submodules of (R, )r such that I is cyclic and K is
(n—1)-generated (if n=1, K=10).

Proof. (1) = (2). Clearly, My is (m, 1)-injective and
ZMV"([) + IMV"(K) g le(Iﬁ K)

Conversely, let x € jm(INK), then f: I+ K— M is well defined by
fle+b)=xc for all c€l and be K, so f=y for some y=(y,
V2,.-.,¥m) € M™. Hence, for all ¢ € I and b € K, we have yc = f(c¢) = xc
and yb = f(b) =0. Thus x —y € [ym(I) and y € [ym(K), so x = (x —y) +
y e le(I) + le(K).

(2) = (3). Obvious.

(3) = (1). We proceed by induction on n. Let =0y R+ xR+ -+
o,R be an n-generated submodule of (Ru)g. It =« R and
I, =0R+ -+ a,R. Suppose f: I — M is a right R-homomorphism. Then
f|,=y1- by hypothesis and f|,= y,- by induction hypothesis for some
i€ M", i=1,2. Thus y; —y2 € (I} N Do) = Iy (1)) + Iy (L), and so
Y1 —y2 =z1+z; for some z; € ym([;), i=1,2. Let y =y —z1 = yr + 23.
Then f=y-. Infact,ifa e I=1) + I, then o = oy + oy witho; € I;, i = 1,2,
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and so zjo; =0 and zpap = 0. Hence f(a) = floy) + flon) = 1o + y200 =
(y1 — z1)ou + (72 + 22)a2 = you + yop = y(op + o) = ya. So (1) follows. [

Corollary 2.10. Let M be a right R-module.

1. The following conditions are equivalent:

(a) Mg is n-injective.

(b) Mg is P-injective and lyy (INK)=ly(1)+1y(K), where I
and K are right ideals of R such that I + K is n-generated.

(¢c) Mg is P-injective and Iy (INK) = Iy (1)+1y(K), where I is
a principal right ideal of R and K is an (n—1)-generated right
ideal of R.
In particular, Mg is 2-injective if and only if M g is P-injective
and Iy (aRNDR)= Iy(a)+In(b) for all a, b € R.

2. ([6, Theorem 2.1]). My is f~injective if and only if M g is P-injective
and Ly (INK)= 1y (1)+1y(K) for each pair of finitely generated
right ideals I and K of R.

3. Mg is (m, 2)-injective if and only if Mg is (m, 1)-injective and

L (R OV BR) = Ly (o) + Lagn (B)

fora, p€R,.

4. My is FP-injective if and only if Iyrgr(1)= MI for all finitely gen-
erated left ideals I of R and lyw(HNK) = lym(H)+lyn(K) for
each pair of finitely generated submodules H and K of (R,,)r and
for all positive integers m.

In [8], Jain has shown that, if R is a right FP-injective ring, then every
finitely generated left ideal is a left annihilator. This result can be improved
as follows:

Corollary 2.11. A ring R is right FP-injective if and only if every finitely
generated left ideal is a left annihilator and Ign(H N K) = Ign(H) + Ign (K) for
each pair of finitely generated submodules H and K of (R, and for all po-
sitive integers m.

Recall that a ring R is called a left IN-ring [4] if rr(HNK) =
rr(H) + rr(K) for all left ideals H and K of R. By [4, Example 16], an IN-
ring need not be Kasch or P-injective. A ring R is called left simple-injective
if every R-homomorphism with simple image from a left ideal of R to R is
given by right multiplication by an element of R. We also recall the
following conditions:
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C1: Every nonzero left ideal is essential in a direct summand of R.

C2: Every left ideal that is isomorphic to a direct summand of R is
itself a direct summand.

C3: If Re N Rf = 0, where e and f'are idempotents in R, then Re @& Rfis
a direct summand of R.

A ring R is called left continuous if it satisfies C1 and C2, and R is
called quasi-continuous if it satisfies C1 and C3.

By Corollary 2.10 (2), a left P-injective and left /N-ring is left f-in-
jective. The proof of the next Lemma is essentially due to Hajarnavis and
Norton [7, Proposition 5.2].

Lemma 2.12. If Ris a a left P-injective and left IN-ring, then R is left simple-
injective and left continuous.

Proof. Let I be a left ideal of R and f: I — xR a homomorphism with
simple image f{/) = Ry for some y € R. Choose ¢ € I such that f(r) = y and
write K = Kerf. Then I = Rt + K. Since R is left P-injective, f|z,: Rt —rR
extends to gR. Hence there exists z € R such that f{x) = xz for all x € Rz.
Since uz = flu) =0 forallu € RtN K, z € rr(Rt N K) = rr(Rt) + rr(K). Let
z=b+c, where b € rr(Rt) and ¢ € rr(K). For any a € I, write a = a) + a,
where a; € Rt and a; € K. Then a;b=0=ae, and so fl(a) = fla)) =
az=ac=ac,ie., f=-c.

Since R is left P-injective, R satisfies C2-condition by [14, Theorem
1.2]. On the other hand, R is left quasi-continuous by [4, Theorem 5]. So Ris
left continuous. O

Theorem 2.13. Let R be a left Kasch, left P-injective and left IN-ring. Then
every left ideal of R is a left annihilator, and R is right f-injective.

Proof. By Lemma 2.12 and [13, Lemma 4.2], every left ideal of R is a left
annihilator, and in particular, R is right P-injective. By Corollary 2.10 (2), it
is sufficient to prove that /x(H N K) = Ir(H) + [g(K) for each pair of finitely
generated right ideals H and K of R. In fact, since R is a left P-injective and
left IN-ring, H =rgrir(H) and K =rglgr(K) by [9, Lemma 5]. Clearly,
Ir(H) 4+ Ig(K) C Ir(HN K). Suppose Ir(H) + [r(K) # Ig(HN K). Choose
belg(HNK)but b ¢ L =Igr(H)+ Ig(K). Then (Rb+ L)/L has a maximal
submodule M/L, and so (Rb+ L)/M is simple. Let ¢ : (Rb+ L)/M —gR
be monic (for R is left Kasch) and f: Rb+ L — xR be defined by f(x) =
a(x + M) for x € Rb+ L. Then Im(y) is simple. Thus /= -¢ for some ¢ € R
since R is left simple-injective by Lemma 2.12, and so bc = f(b) # 0. But
Mc=f(M)=0, and hence Lc=0. Therefore ¢ € rr(L)=rr(lr(H)+
Ir(K)) = rrlr(H) Nrrir(K) = HN K, and so bc = 0, a contradiction.  [J
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Remark 2.14. We already know that a left P-injective and left IN-ring is
left f-injective, and a left Kasch and left FP-injective ring is right FP-in-
jective. But we wonder whether a left Kasch and left f-injective ring is right

f-injeceive.

Theorem 2.15. The following conditions are equivalent for a right R-module
M.
1. My is (m, n)-injective.
2. If z=(my,ma,...,my) € M" and A€ R™" satisfy rg,(A) C
rr,(z), then z = yA for some y € M™.

Proof. (1)= (2). Let z= (m,ms,...,m,) € M" and A4 = (a;) € R™".
o

Put o; = (ai1,ap, ..., ain) € R',then 4 = | 2 |. Letu € rg {ot,00, ..., 0}

Olm
Then o;u =0, i=1,2,...,m, and hence Au =0. Thus u € rg,(A) C rg,(z),
and so zu = 0. It follows that

z € hyprg,{on,00,... 0, = Moy + Moy + - + May,

by Theorem 2.4. Therefore there exists y; € M, i=1,2,...,m, such that
231

z=yp100 + 1200+ A+ Y = (15025 s Vm) “2 =yA, where
Om

y=01,Y2,-sVm) € M™.

(2) = (1). Let N=oyR+ R+ ---+a,R be an n-generated sub-
module of R% and f: N — M a right R-homomorphism. Put 4 = (af,
ol o aly e R my=flog), i=1,2,...,n, and z= (my,ma,...,m,) €
M". Let wu=(u,up,... ,un)T €rg,(A). Then Au=0, ie., olu+
oluy + -+ olu, =0. Thus oquy +oous + -+ +ou, =0, and hence
zu = myuy + mauy + - -+ mpuy = floquy + oty + -+ apuy) =0, de., u€
rg,(z). By hypothesis, there exists y = (y1,)2,...,Vm) € M™ such that

T

z=yA=y(af,ol,...,al), and then m;=yo!, i=1,2,...,n. Define

f+ R™ — M such that /(&) = y&” for & € R™. Then f(o;) = yol = m; = floy),

i=1,2,...,n. So fis an extension of f. O

Corollary 2.16. The following statements hold.:

1. The following conditions are equivalent:
(a) R isright (n, n)-injective.
(b) If z=(my,my,...,my,)€ R" and A € R"" satisfy rg,(A) C
rr,(z), then z = yA for some y € R".
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(¢c) My(R) is right P-injective.
2. ([14, Theorem 4.2]). If M, (R) is right P-injective, then R is right
n-injective.

Proof. The equivalence (a) < (b) follows from Theorem 2.15, and
(a) & (c) is by the remark following [15, Theorem 2.2]. (2) follows from (1)
since the (n,n)-injectivity of My implies the n-injectivity of M. O

Theorem 2.17. The following conditions are equivalent:

1. R s right (m, n)-injective.
2. If RR™ —rR" —xN — 0 is exact, then N is torsionless.

Proof. (1) = (2). Let RR’”LRR” —grN — 0 be exact. Then there exists
A € M,,(R) such that f(z) = zA4 for z €gR™, and so Im(f)= R™ A, whence
N=R"/(R"A). We will show that R"/(R"A) is torsionless. Let 0 # Z €
R'/(R"A), where z=(z1,22,...,2y) € R"\(R"A). By Theorem 2.15,
rr,(A) Z rg,(z). Thus there exists o= (a,as,...,a,)" € R, such that
Ao =0 but za # 0. Define g : R"/(R™A) — R such that g(X) = xa for every
x € R". Clearly, g is well-defined, and g(z) = za # 0. So N= R"/(R"A) is
torsionless.

(2) = (1). Let 4 € R™". Then N = R"/(R"A) is torsionless by (2)
because N is the cokernel of f:grR™—rR" defined by f(x)=xA. Let
z=(z1,22,...,2y) € R". By Theorem 2.15, it is sufficient to show that, for
& R"A, rg, (A) € rg (2). In fact, if z ¢ R" A, then 0 £ z € R"/(R"A) = N.
Thus, there exists a left R-homomorphism g: R"/(R"A) — R such that
g(z) # 0 ( for N is torsionless ). Let ¢; = (0,...,0,1,0,...,0) € R" (with 1
in the ith position and 0’s in all other positions), i =1,2,...,n, and
a=(gler),g(e2),....g(en)) € R". Then 0#g(Z) =g(z1e1 + &2+ -+
zuen) = zol, ice., o € rp (2).

On the other hand, let ¢; = (0,...,0,1,0,...,0) € R” (with | in the jth
position and 0’s in all other positions), j = 1,2, ..., m. Note that g(x) = xa”
for x € R". Thus (gA)a’ =g(A)=0 for j=1,2,...,m, and hence
AoT =0, ie., aT € rg,(A). Therefore rg,(A4)  rg,(2), as required. O

Corollary 2.18. The following statements hold for a ring R:

1. R is right n-injective if and only if the exactness of RR —rR" —
rN — 0 implies the torsionlessness of N.
2. The following conditions are equivalent:
(a) R is right FP-injective.
(b) Every finitely presented left R-module is torsionless.
(c) For every positive integer n, the exactness of rR" —pg
R'" — g N — 0 implies the torsionlessness of N.
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Remark 2.19. The equivalence of (a) and (b) in Corollary 2.18 (2) is due to
S. Jain [8, Theorem 2.3].

Recall that a ring R is said to be right (m,n)-weakly linearly ex-
istentially closed (or (m,n)-wlec) [10] if every system of linear equations and
a single linear inequation of the form

xXiayn  +  Xoapp A+ - A+ Xpa, = b
X1dn1 + Xody2 + -+ Xmlnm - bn
X111+ X2Gup1p + 0+ Xwlupim F bt

which has a solution in some ring extension of R has a solution in R itself.
A ring R is right weakly linearly existentially closed (or wlec) if R is right
(m,n)-wlec for all positive integers m and n. Left (m, n)-wlec rings and left
wlec rings can be defined similarly.

Let X = (x1,%2,...,%n), A= (a;)" € R"™", y=(by,by,...,b,) € R"
and o« = (dut11,@nt125 - - Antim) € Ry. The system above can be written
in matrix form as

XA

s
Xo b,

ol

where b = b, € R.

Theorem 2.20. The ring R is right (m, n)-injective and left (n, m)-injective if
and only if R is right (m, n)-wlec and left (n, m)-wlec.

Proof. The proof is motivated by that of [10, Theorem 8§].

“=" Letd € R™", X = (x1,X2,...,Xm), 2 € Ry,y € R"and b € R. If
the system

XA = v
Xoo # b,

has a solution in the ring extension S of R, i.e., there exists Xy € S such
that Xo4 =y and Xoo # b. Since XoA4 =7, rg,(4) C rg,(y). By Theorem
2.15, there exists dp € R™ such that y = 94 ( for Rg is (m, n)-injective ). We
claim that there exists g| € Ign(A) such that (dp + 1) # b. Otherwise,
(0o + o) = b for all ¢ € Ign(A), and in particular, dooc = b. It follows that
oo =0 for all ¢ € [gn(A), and hence Ign(A4) C Igm (). Therefore there exists
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f € R, such that « = Af by Theorem 2.15 ( for gR is (n,m)-injective ), and
s0 b = dgoe = 8o(AP) = (00A)p =7 = (XoA)p = Xo(A4Af) = Xoo, a contra-
diction. Let 61 = 99 + g;. Then §; € R" and 014 = 694 =y and 0 #£ b,
i.e., the system above has a solution in R. So R is right (m, n)-wlec. Similarly,
R is left (n, m)-wlec.

“«=". We shall show that Ry is (m,n)-injective. By Theorem 2.15, we
have to show that if f € R" and 4 € R™" satisfy rg,(A4) C rg,(f), then
p = &A for some & € R™.

First, let E be an (R, R)-bimodule. Then we claim that rg,(4) C rg, ().

Sz{(a 0)‘aeR,er}.
X d

We now consider the map

a—>fz—a0
“\0 a

of Rinto S. Itisclear that thisis a monomorphism of the ring Rinto S. We shall
identify R with its image in S, identifying @ with a. In this way we can regard S
as aring extension of R. Let A = (a;) € R"™" C 8" and f = (b1, b2, ...,b,)
€ R"C S§". We write A = (a;) € S"™" and B = (b1,bs,..., f;n) es". If

rs,(4) € rs,(B), then there exists u € S, such that Au =0 and Bu # 0. Note
that A4 (resp. p) is identified with A (resp. f8). So the system

Let

AX = 0
BX £ 0

has a solution in S. Since R is left (n,m)-wlec, the above system has a so-
lution in R. Thus there exists v € R, such that

Av = 0

pv # 0,
which contradicts rg, (4) C g, (B). So rs,(A) C rs, ().

Now let w= (uj,us,..., u,,)T €rg(A4), then Au=0. Put @ =
(0 g) €S, i=1,2,....,n,and i = (al,az,...,an)T. It follows that Aii = 0.

Thius uecrs, (/i) Crs, (B), and so Bﬁ =0, whence fu=0, ie., u€rg(f).
Therefore rg,(4) C rg, (B).
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Next let G be the Z-injective envelope of the additive group of R and
put E = Homy(R,G). It is easy to see that E is an (R, R)-bimodule, Ey is
injective and gF is faithful. Let S = Endgr(ER), then E is a left S-module by
defining sx = s(x) for s € S and x € E. For any r € R, we define 7 € S such
that 7(x) = rx for x € Eg. It is easy to see that the map r — 7 of Rinto Sisa
monomorphism. We shall now identify r with 7. Then R is identified with a
subring of S. By the first part of the proof, rg (A4) Crg (f). Write
AE, = {Ay|y € E,} C E,, and define f: AE, — Egr such that f(A4y) = f,
then f is a right R-homomorphism. Since Er is injective, f extends to
g: E, — Eg. Let A;: Er — E,, be the ith injection and f; = g/;, then f; € S,
i=1,2,...,m. For any o= (al,az,...,an)T €E,, gla)=gh(a)+
/12((12) +---+ j-m(am)) = fl ((l]) +f2(612) + - +fm(am) = (fl 7f21 ey m)OL
Since gl ; =/, for any ye€E, we have fy=f(Ay)=g(4y)=
(f1,/2,---+fm)Ay. In particular, for any x€E, let y,=(0,...,0,x,
0...,0)T € E, (with x in the ith position and 0’s in all other positions),
i=1,2,....n.From (fi,f2,...,fm)Ay; = By; we have 37", fi(apx) = bix, i.e.,
SO fidji(x) = bi(x) for all x € E, and so Y27, fidi = bi, i=1,2,...,n.
Therefore (fi,/2,...,fm)A = B. Identifying 4 (resp. ) with A (resp. ), we
have that the system YA = f has a solution in S. Choose « € R,, and b € R
such that

(flva? oo 7.}(;71)& 7& l;

For example, take o = (1,0,...,0)", and

b:{l, iffi =0
0, iffi #0.

Thus the system

YA = 8
Yo # b

has a solution in S, and hence it has a solution in R (for R is right (m,n)-
wlec). Therefore there exists ¢ € R” such that f = £A, as required. So Ry is
(m, n)-injective. Similarly, gR is (n, m)-injective. O

Corollary 2.21. The following statements hold for a ring R:

1. Ris left and right P-injective if and only if R is left and right (1, 1)-
wlec.
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2. Ris right f-injective and every finitely generated right ideal of R is a
right annihilator if and only if R is right (1, n)-wlec and left (n, 1)-
wlec for all positive integers n.

3. The following conditions are equivalent:

(a) R is left and right FP-injective.
(b) R is left and right wlec.
(c) R is left and right (n, n)-wlec for all positive integers n.

Remark 2.22. The equivalence of (a) and (b) in Corollary 2.21 (3) is due to
P. Menal and P. Vamos [10, Theorem §].
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