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ABSTRACT

Let R be a ring. For two fixed positive integers m and n, a
right R-module M is called ðm; nÞ-injective if every right R-
homomorphism from an n-generated submodule of Rm to M
extends to one from Rm to M. This definition unifies several
definitions on generalizations of injectivity of modules. The
aim of this paper is to investigate properties of the ðm; nÞ-
injective modules. Various results are developed, many ex-
tending known results.
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1. INTRODUCTION

Throughout R is an associative ring with identity and all modules are
unitary. We write MR (RM) to indicate a right (left) R-module, and we use
the notation Rm�n for the set of all m� nmatrices over R. For A 2 Rm�n, AT

will denote the transpose of A. In general, for an R-module N, we write
Nm�n for the set of all formalm� nmatrices whose entries are elements ofN.
LetMR and RN be R-modules. For x 2 Ml�m, s 2 Rm�n and y 2 Nn�k, under
the usual multiplication of matrices, xs (resp. sy) is a well-defined element in
Ml�n (resp. Nm�k). If X � Ml�m, S � Rm�n and Y � Nn�k, define

lMl�mðSÞ ¼ fu 2 Ml�m : us ¼ 0; 8 s 2 Sg

rNn�kðSÞ ¼ fv 2 Nn�k : sv ¼ 0; 8 s 2 Sg

rRm�nðXÞ ¼ fs 2 Rm�n : xs ¼ 0; 8 x 2 Xg

lRm�nðYÞ ¼ fs 2 Rm�n : sy ¼ 0; 8 y 2 Yg:

We will write Nn ¼ N1�n, Nn ¼ Nn�1, Rn ¼ R1�n and Rn ¼ Rn�1. Multi-
plication maps x 7! ax and x 7! xa will be denoted a� and �a, respectively.

Generalizations of injectivity have been discussed in many papers, for
example, see [2, 4, 5, 6, 8, 9, 11, 12, 13, 14, 15, 18]. In this paper, for two
fixed positive integers m and n, ðm; nÞ-injective modules are defined
and studied. We prove that MR is ðm; nÞ-injective if and only if
lMnrRn

fa1; a2; . . . ; amg ¼ Ma1 þMa2 þ � � � þMam for all ai 2 Rn, i ¼ 1; 2;
. . . ;m [Theorem 2.4]. This fact is then used to prove that a left Kasch left
ðn;mþ 1Þ-injective ring R is right ðm; nÞ-injective [Theorem 2.7]. The ðm; nÞ-
injective modules are also characterized as those ðm; 1Þ-injective modules
MR for which lMmðI \ KÞ ¼ lMmðIÞ þ lMmðKÞ, where I and K are submodules
of ðRmÞR such that Iþ K is n-generated [Theorem 2.9]. Any left Kasch, left
P-injective and left IN-ring R is proved to be right f-injective and left dual
(i.e., every left ideal of R is a left annihilator ) [Theorem 2.13]. Another
characterization of ðm; nÞ-injective modules is obtained as stated as follows:
MR is ðm; nÞ-injective if and only if, for any z ¼ ðm1;m2; . . . ; mnÞ 2 Mn and
A 2 Rm�n satisfying rRn

ðAÞ � rRn
ðzÞ, z ¼ yA for some y 2 Mm [Theorem

2.15]. We use this theorem to prove that R is right ðm; nÞ-injective if and only
if the exactness of RR

m !RR
n !RN ! 0 implies the torsionlessness of N

[Theorem 2.17] and that R is right ðm; nÞ-injective and left ðn;mÞ-injective if
and only if R is right ðm; nÞ-wlec and left ðn;mÞ-wlec [Theorem 2.20]. Some
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known results appearing in [2, 6, 8, 10, 12, 14, 15] are obtained as corollaries
of the main results of this paper.

2. RESULTS

In this section, m and n will be two fixed positive integers (unless
specified otherwise). We start with the following.

Definition 2.1. A right R-module M is called ðm; nÞ-injective if every right
R-homomorphism from an n-generated submodule of Rm (or Rm) to M ex-
tends to one from Rm (or Rm) to M. The ring R is a right ðm; nÞ-injective ring
if RR is ðm; nÞ-injective.

It is easy to see that MR is ðm; nÞ-injective if and only if MR is ðm; kÞ-
injective for all 1 � k � n if and only ifMR is ðl; nÞ-injective for all 1 � l � m
if and only if MR is ðl; kÞ-injective for all 1 � l � m and 1 � k � n.

A module MR is called n-injective if every right R-homomorphism
from an n-generated right ideal to M extends to one from RR to M, while
MR is f-injective [6] (¼ f.g.injective in [2]¼Coflat in [5]) in case every right
R-homomorphism from a finitely generated right ideal to M extends to one
from RR to M. We call MR a P-injective module if every right R-homo-
morphism aR ! M, a 2 R, extends to R ! M. A moduleMR is FP-injective
[8] in case, for every finitely generated submodule K of a free right R-module
F, every homomorphism from K toM extends to one from F toM. The ring
R is right n-injective (resp. f-injective, P-injective, FP-injective) in case RR is
n-injective (resp. f-injective, P-injective, FP-injective).

The next lemma is immediate.

Lemma 2.2. Let M be a right R-module.

1: M is n-injective (resp. P-injective) if and only if M is (1, n)-injective
(resp. (1, 1)-injective).

2: M is f-injective if and only if M is (1, n)-injective for all positive
integers n.

3: M is FP-injective if and only if M is (m; n)-injective for all positive
integers m and n if and only if M is (n; n)-injective for all positive
integers n.

Remark 2.3. The ðm; nÞ-injective modules lie between P-injective modules
and FP-injective modules. A right ðm; nÞ-injective ring need not be left
ðm; nÞ-injective as shown by [3, Example 2]. Rutter ( [17, Example 1] ) has an
example of right ð1; 1Þ-injective which is not right ð1; 2Þ-injective.

(m, n)-INJECTIVITY OF MODULES 5591
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Let M be a right R-module and a ¼ ðr1; r2; . . . ; rnÞ 2 Rn. In what
follows, we write Ma ¼ fxa j x 2 Mg, where xa ¼ ðxr1; xr2; . . . ; xrnÞ 2 Mn.

Theorem 2.4. The following conditions are equivalent for a right R-moduleM:

1: M is (m; n)-injective.
2: lMnrRn

fa1; a2; . . . ; amg ¼ Ma1 þMa2 þ � � � þMam for any m-ele-
ment subset fa1; a2; . . . ; amg of Rn.

Proof. ð1Þ ) ð2Þ. Let ai ¼ ða1i; a2i; . . . ; aniÞ 2 Rn, i ¼ 1; 2; . . . ;m. Suppose
x ¼ ðx1; x2; . . . ; xnÞ 2 lMnrRn

fa1; a2; . . . ; amg. Take bi ¼ ðai1; ai2; . . . ; aimÞ 2
Rm, i ¼ 1; 2; . . . ; n, and define g : b1Rþ b2Rþ � � � þ bnR ! M such that

g
Xn
i¼1

biti

 !
¼
Xn
i¼1

xiti for ti 2 R; i ¼ 1; 2; . . . ; n:

If
Pn

i¼1 biti ¼ 0, then
Pn

i¼1 aijti ¼ 0, j ¼ 1; 2; . . . ;m. Let a ¼ ðt1; t2; . . . ; tnÞ 2
Rn. Then ajaT ¼ 0, j ¼ 1; 2; . . . ;m, and so aT 2 rRn

fa1; a2; . . . ; amg. HencePn
i¼1 xiti ¼ 0. This shows that g is well-defined. Since M is ðm; nÞ-injective, g

extends to a right R-homomorphism �g : Rm ! M. Let ei ¼ ð0; . . . ; 0; 1;
0; . . . ; 0Þ 2 Rm (with 1 in the ith position and 0’s in all other positions),
yi ¼ �gðeiÞ, i ¼ 1; 2; . . . ;m, and y ¼ ðy1; y2; . . . ; ymÞ 2 Mm. Then, for any u ¼
ðu1; u2; . . . ; umÞ 2 Rm, �gðuÞ ¼ y1u1 þ y2u2 þ ymum ¼ yuT. Thus xi ¼ gðbiÞ ¼
�gðbiÞ ¼ ybTi ¼

Pm
j¼1 yjaij, i ¼ 1; 2; . . . ; n, and hence,

x ¼ ðx1; x2; . . . ; xnÞ ¼
Xm
j¼1

yja1j;
Xm
j¼1

yja2j; . . . ;
Xm
j¼1

yjanj

 !

¼
Xm
j¼1

yjða1j; a2j; . . . ; anjÞ ¼
Xm
j¼1

yjaj 2 Ma1 þMa2 þ � � � þMam:

So lMnrRn
fa1; a2; . . . ; amg � Ma1 þMa2 þ � � � þMam. The reverse inclusion

is clear.
ð2Þ ) ð1Þ. Let N ¼ b1Rþ b2Rþ � � � þ bnR be an n-generated sub-

module of Rm and f : N ! M a right R-homomorphism. Write bi ¼
ðai1; ai2; . . . ; aimÞ 2 Rm, i ¼ 1; 2; . . . ; n, and aj ¼ ða1j; a2j; . . . ; anjÞ 2 Rn, j ¼ 1;
2; . . . ;m. Let ui ¼ fðbiÞ, i ¼ 1; 2; . . . ; n, and u ¼ ðu1; u2; . . . ; unÞ. Then, for any
x ¼ ðt1; t2; . . . ; tnÞT 2 rRn

fa1; a2; . . . ; amg, we have ajx ¼ 0, i.e.,
Pn

i¼1 aijti ¼ 0,
j ¼ 1; 2; . . . ;m. Thus

Pn
i¼1ðai1; ai2; . . . ; aimÞti ¼ 0, i.e.,

Pn
i¼1 biti ¼ 0, and

so ux ¼
Pn

i¼1 uiti ¼
Pn

i¼1 fðbiÞti ¼ 0, whence u 2 lMnrRn
fa1; a2; . . . ; amg.

Therefore

5592 CHEN ET AL.
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u ¼ ðu1; u2; . . . ; unÞ 2 Ma1 þMa2 þ � � � þMam

by (2). Let ðu1; u2; . . . ; unÞ ¼ y1a1 þ y2a2 þ � � � þ ymam for some yi 2 M,
i ¼ 1; 2; . . . ;m. Then

ðu1; u2; . . . ; unÞ ¼
Xm
j¼1

yja1j;
Xm
j¼1

yja2j; . . . ;
Xm
j¼1

yjanj

 !
;

and hence ui ¼
Pm

j¼1 yjaij ¼ ybTi , i ¼ 1; 2; . . . ; n, where y ¼ ðy1; y2; . . . ; ymÞ 2
Mm. Now define �f : Rm ! M such that �fðxÞ ¼ yxT ¼

Pm
i¼1 yixi for each

x ¼ ðx1; x2; . . . ; xmÞ 2 Rm. Then �fðbiÞ ¼ ybTi ¼ ui ¼ fðbiÞ, i ¼ 1; 2; . . . ; n, and
it follows that �f is an extension of f. u

Corollary 2.5. The following statements hold for a module MR:

1: MR is P-injective if and only if lMrR(a)¼ Ma for all a 2 R.
2: MR is n-injective if and only if lMnrRn

(a)¼ Ma for all a 2 Rn.
3: MR is f-injective if and only if lMnrRn

(a)¼ Ma for all a 2 Rn and for
all positive integers n.

4: MR is (m; 1)-injective if and only if lMrR(I)¼ MI for every
m-generated left ideal I ofR. In particular,R is right (m; 1)-injective if
and only if every m-generated left ideal of R is a left annihilator.

Remark 2.6. From Corollary 2.5 (4) we know that every finitely generated
left ideal of R is a left annihilator if and only if R is right ðm; 1Þ-injective for
all positive integers m.

Recall that a ring R is left Kasch if every simple left R-module embeds
in R.

Theorem 2.7. Any left Kasch left ðn;mþ 1Þ-injective ring R is right ðm; nÞ-
injective.

Proof. By Theorem 2.4, it is sufficient to prove that lRnrRn
fa1;

a2; . . . ; amg ¼ Ra1 þ Ra2 þ � � � þ Ram for all ai 2 Rn, i ¼ 1; 2; . . . ;m. Clearly,
Ra1 þ Ra2 þ � � � þ Ram � lRnrRn

fa1; a2; . . . ; amg. Suppose b 2 lRnrRn
fa1;

a2; . . . ; amg, but b 62 I ¼ Ra1 þ Ra2 þ � � � þ Ram. Since ðRbþ IÞ=I is a non-
zero finitely generated left R-module, it has a maximal submodule M=I.
Hence ðRbþ IÞ=M is a simple left R-module. Since R is left Kasch, let
d : ðRbþ IÞ=M !RR be an embedding, and define f : Rbþ I !RR by
fðxÞ ¼ dðxþMÞ for x 2 Rbþ I. Clearly, fðIÞ ¼ 0 and fðbÞ 6¼ 0. By hy-
pothesis, f extends to a left R-homomorphism �f : Rn !RR. Thus there exists

(m, n)-INJECTIVITY OF MODULES 5593
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u ¼ ðu1; u2; . . . ; unÞ 2 Rn such that �fðxÞ ¼ xuT ¼ x1u1 þ x2u2 þ � � � þ xnun for
any x ¼ ðx1; x2; . . . ; xnÞ 2 Rn. Therefore 0 ¼ fðaiÞ ¼ �fðaiÞ ¼ aiuT, i ¼ 1;
2; . . . ;m, and hence uT 2 rRn

fa1; a2; . . . ; amg. But b 2 lRnrRn
fa1; a2; . . . ; amg,

and then fðbÞ ¼ �fðbÞ ¼ buT ¼ 0. This is a contradiction, and the proof is
complete. u

Corollary 2.8. The following statements hold for a ring R:

1: ([12, Theorem 3.1]). If R is left Kasch and left FP-injective, then R
is right FP-injective.

2: ([14, Lemma 2.2]). If R is left Kasch and left 2-injective, then R is
right P-injective.

3: ([2, Proposition 4.1]). Let R be left Kasch and left f-injective, then
each finitely generated left ideal of R is a left annihilator.

4: If R is left Kasch and left (n, 2)-injective for all positive integers n,
then R is right f-injective.

Theorem 2.9. The following conditions are equivalent for a module MR:

1: MR is (m; n)-injective.
2: MR is (m,1)-injective and lMm(I \ K) ¼ lMm(I)þlMm(K), where

I and K are submodules of (Rm)R such that Iþ K is n-generated.
3: MR is (m; 1)-injective and lMm(I \ K)¼ lMm(I)þlMm(K), where

I and K are submodules of (Rm)R such that I is cyclic and K is
(n�1)-generated (if n ¼1, K ¼ 0).

Proof. ð1Þ ) ð2Þ. Clearly, MR is ðm; 1Þ-injective and

lMmðIÞ þ lMmðKÞ � lMmðI \ KÞ:

Conversely, let x 2 lMmðI \ KÞ, then f : Iþ K ! M is well defined by
fðcþ bÞ ¼ xc for all c 2 I and b 2 K, so f ¼ y� for some y ¼ ðy1;
y2; . . . ; ymÞ 2 Mm. Hence, for all c 2 I and b 2 K, we have yc ¼ fðcÞ ¼ xc
and yb ¼ fðbÞ ¼ 0. Thus x� y 2 lMmðIÞ and y 2 lMmðKÞ, so x ¼ ðx� yÞþ
y 2 lMmðIÞ þ lMmðKÞ.

ð2Þ ) ð3Þ. Obvious.
ð3Þ ) ð1Þ. We proceed by induction on n. Let I ¼ a1Rþ a2Rþ � � � þ

anR be an n-generated submodule of ðRmÞR, I1 ¼ a1R and
I2 ¼ a2Rþ � � � þ anR. Suppose f : I ! M is a right R-homomorphism. Then
f jI1¼ y1� by hypothesis and f jI2¼ y2� by induction hypothesis for some
yi 2 Mm, i ¼ 1; 2. Thus y1 � y2 2 lMmðI1 \ I2Þ ¼ lMmðI1Þ þ lMmðI2Þ, and so
y1 � y2 ¼ z1 þ z2 for some zi 2 lMmðIiÞ, i ¼ 1; 2. Let y ¼ y1 � z1 ¼ y2 þ z2.
Then f ¼ y�. In fact, if a 2 I ¼ I1 þ I2, then a ¼ a1 þ a2 with ai 2 Ii, i ¼ 1; 2,

5594 CHEN ET AL.
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and so z1a1 ¼ 0 and z2a2 ¼ 0. Hence fðaÞ ¼ fða1Þ þ fða2Þ ¼ y1a1 þ y2a2 ¼
ðy1 � z1Þa1 þ ðy2 þ z2Þa2 ¼ ya1 þ ya2 ¼ yða1 þ a2Þ ¼ ya. So (1) follows. u

Corollary 2.10. Let M be a right R-module.

1: The following conditions are equivalent:
(a) MR is n-injective.
(b) MR is P-injective and lM (I \ K)¼ lM(I)þlMðKÞ; where I

and K are right ideals of R such that Iþ K is n-generated.
(c) MR is P-injective and lM(I \ K)¼ lM(I)þlM(K), where I is

a principal right ideal of R and K is an (n�1)-generated right
ideal of R.
In particular, MR is 2-injective if and only if MR is P-injective
and lM(aR \ bR)¼ lM(a)þlM(b) for all a; b 2 R.

2: ([6, Theorem 2.1]). MR is f-injective if and only if MR is P-injective
and lM(I \ K)¼ lM(I)þlM(K) for each pair of finitely generated
right ideals I and K of R.

3: MR is (m, 2)-injective if and only if MR is (m, 1)-injective and

lMmðaR \ bRÞ ¼ lMmðaÞ þ lMmðbÞ

for a; b 2 Rm.
4: MR is FP-injective if and only if lMrR(I)¼ MI for all finitely gen-

erated left ideals I of R and lMm(H \ K Þ ¼ lMm(H)þlMm(K) for
each pair of finitely generated submodules H and K of (Rm)R and
for all positive integers m.

In [8], Jain has shown that, if R is a right FP-injective ring, then every
finitely generated left ideal is a left annihilator. This result can be improved
as follows:

Corollary 2.11. A ring R is right FP-injective if and only if every finitely
generated left ideal is a left annihilator and lRmðH \ KÞ ¼ lRmðHÞ þ lRmðKÞ for
each pair of finitely generated submodules H and K of ðRmÞR and for all po-
sitive integers m.

Recall that a ring R is called a left IN-ring [4] if rRðH \ KÞ ¼
rRðHÞ þ rRðKÞ for all left ideals H and K of R. By [4, Example 16], an IN-
ring need not be Kasch or P-injective. A ring R is called left simple-injective
if every R-homomorphism with simple image from a left ideal of R to R is
given by right multiplication by an element of R. We also recall the
following conditions:

(m, n)-INJECTIVITY OF MODULES 5595
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C1: Every nonzero left ideal is essential in a direct summand of R.
C2: Every left ideal that is isomorphic to a direct summand of R is

itself a direct summand.
C3: If Re \ Rf ¼ 0, where e and f are idempotents in R, then Re� Rf is

a direct summand of R.
A ring R is called left continuous if it satisfies C1 and C2, and R is

called quasi-continuous if it satisfies C1 and C3.
By Corollary 2.10 (2), a left P-injective and left IN-ring is left f-in-

jective. The proof of the next Lemma is essentially due to Hajarnavis and
Norton [7, Proposition 5.2].

Lemma 2.12. If R is a a left P-injective and left IN-ring, then R is left simple-
injective and left continuous.

Proof. Let I be a left ideal of R and f : I !RR a homomorphism with
simple image fðIÞ ¼ Ry for some y 2 R. Choose t 2 I such that fðtÞ ¼ y and
write K ¼ Kerf. Then I ¼ Rtþ K. Since R is left P-injective, fjRt: Rt !RR
extends to RR. Hence there exists z 2 R such that fðxÞ ¼ xz for all x 2 Rt.
Since uz ¼ fðuÞ ¼ 0 for all u 2 Rt \ K, z 2 rRðRt \ KÞ ¼ rRðRtÞ þ rRðKÞ. Let
z ¼ bþ c, where b 2 rRðRtÞ and c 2 rRðKÞ. For any a 2 I, write a ¼ a1 þ a2,
where a1 2 Rt and a2 2 K. Then a1b ¼ 0 ¼ a2c, and so fðaÞ ¼ fða1Þ ¼
a1z ¼ a1c ¼ ac, i.e., f ¼ �c.

Since R is left P-injective, R satisfies C2-condition by [14, Theorem
1.2]. On the other hand, R is left quasi-continuous by [4, Theorem 5]. So R is
left continuous. u

Theorem 2.13. Let R be a left Kasch, left P-injective and left IN-ring. Then
every left ideal of R is a left annihilator, and R is right f-injective.

Proof. By Lemma 2.12 and [13, Lemma 4.2], every left ideal of R is a left
annihilator, and in particular, R is right P-injective. By Corollary 2.10 (2), it
is sufficient to prove that lRðH \ KÞ ¼ lRðHÞ þ lRðKÞ for each pair of finitely
generated right ideals H and K of R. In fact, since R is a left P-injective and
left IN-ring, H ¼ rRlRðHÞ and K ¼ rRlRðKÞ by [9, Lemma 5]. Clearly,
lRðHÞ þ lRðKÞ � lRðH \ KÞ. Suppose lRðHÞ þ lRðKÞ 6¼ lRðH \ KÞ. Choose
b 2 lRðH \ KÞ but b 62 L ¼ lRðHÞ þ lRðKÞ. Then ðRbþ LÞ=L has a maximal
submodule M=L, and so ðRbþ LÞ=M is simple. Let s : ðRbþ LÞ=M !RR
be monic (for R is left Kasch) and f : Rbþ L !RR be defined by fðxÞ ¼
sðxþMÞ for x 2 Rbþ L. Then Im(f) is simple. Thus f ¼ �c for some c 2 R
since R is left simple-injective by Lemma 2.12, and so bc ¼ fðbÞ 6¼ 0. But
Mc ¼ fðMÞ ¼ 0, and hence Lc ¼ 0. Therefore c 2 rRðLÞ ¼ rRðlRðHÞþ
lRðKÞÞ ¼ rRlRðHÞ \ rRlRðKÞ ¼ H \ K, and so bc ¼ 0, a contradiction. u
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Remark 2.14. We already know that a left P-injective and left IN-ring is
left f-injective, and a left Kasch and left FP-injective ring is right FP-in-
jective. But we wonder whether a left Kasch and left f-injective ring is right
f-injeceive.

Theorem 2.15. The following conditions are equivalent for a right R-module
M.

1: MR is (m, n)-injective.
2: If z ¼ ðm1;m2; . . . ;mnÞ 2 Mn and A 2 Rm�n satisfy rRn

ðAÞ �
rRn

(z), then z ¼ yA for some y 2 Mm.

Proof. ð1Þ ) ð2Þ. Let z ¼ ðm1;m2; . . . ;mnÞ 2 Mn and A ¼ ðaijÞ 2 Rm�n.

Put ai ¼ ðai1; ai2; . . . ; ainÞ 2 Rn, then A ¼
a1
a2
..
.

am

0
B@

1
CA. Let u 2 rRn

fa1; a2; . . . ; amg.

Then aiu ¼ 0, i ¼ 1; 2; . . . ;m, and hence Au ¼ 0. Thus u 2 rRn
ðAÞ � rRn

ðzÞ,
and so zu ¼ 0. It follows that

z 2 lMnrRn
fa1; a2; . . . ; amg ¼ Ma1 þMa2 þ � � � þMam

by Theorem 2.4. Therefore there exists yi 2 M, i ¼ 1; 2; . . . ;m, such that

z ¼ y1a1 þ y2a2 þ � � � þ ymam ¼ ðy1; y2; . . . ; ymÞ
a1
a2
..
.

am

0
B@

1
CA ¼ yA, where

y ¼ ðy1; y2; . . . ; ymÞ 2 Mm.

ð2Þ ) ð1Þ. Let N ¼ a1Rþ a2Rþ � � � þ anR be an n-generated sub-
module of Rm

R and f : N ! M a right R-homomorphism. Put A ¼ ðaT1 ;
aT2 ; . . . ; a

T
n Þ 2 Rm�n, mi ¼ fðaiÞ, i ¼ 1; 2; . . . ; n, and z ¼ ðm1;m2; . . . ;mnÞ 2

Mn. Let u ¼ ðu1; u2; . . . ; unÞT 2 rRn
ðAÞ. Then Au ¼ 0, i.e., aT1 u1þ

aT2 u2 þ � � � þ aTn un ¼ 0. Thus a1u1 þ a2u2 þ � � � þ anun ¼ 0, and hence
zu ¼ m1u1 þm2u2 þ � � � þmnun ¼ fða1u1 þ a2u2 þ � � � þ anunÞ ¼ 0, i.e., u 2
rRn

ðzÞ. By hypothesis, there exists y ¼ ðy1; y2; . . . ; ymÞ 2 Mm such that
z ¼ yA ¼ yðaT1 ; aT2 ; . . . ; aTn Þ, and then mi ¼ yaTi , i ¼ 1; 2; . . . ; n. Define
�f : Rm ! M such that �fðxÞ ¼ yxT for x 2 Rm. Then �fðaiÞ ¼ yaTi ¼ mi ¼ fðaiÞ,
i ¼ 1; 2; . . . ; n. So �f is an extension of f. u

Corollary 2.16. The following statements hold:

1. The following conditions are equivalent:
(a) R is right (n, n)-injective.
(b) If z ¼(m1;m2; . . . ;mn)2 Rn and A 2 Rn�n satisfy rRn

ðAÞ �
rRn

ðzÞ, then z ¼ yA for some y 2 Rn.
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(c) MnðRÞ is right P-injective.
2. ([14, Theorem 4.2]). If Mn(R) is right P-injective, then R is right

n-injective.

Proof. The equivalence ðaÞ , ðbÞ follows from Theorem 2.15, and
ðaÞ , ðcÞ is by the remark following [15, Theorem 2.2]. (2) follows from (1)
since the ðn; nÞ-injectivity of MR implies the n-injectivity of MR. u

Theorem 2.17. The following conditions are equivalent:

1. R is right (m, n)-injective.
2. If RR

m !RR
n !RN ! 0 is exact, then N is torsionless.

Proof. ð1Þ ) ð2Þ. Let RR
m!f RR

n !RN ! 0 be exact. Then there exists
A 2 Mm�nðRÞ such that fðzÞ ¼ zA for z 2RR

m, and so Im(f)=RmA, whence
N ffi Rn=ðRmAÞ. We will show that Rn=ðRmAÞ is torsionless. Let 0 6¼ �z 2
Rn=ðRmAÞ, where z ¼ ðz1; z2; . . . ; znÞ 2 RnnðRmAÞ. By Theorem 2.15,
rRn

ðAÞ 6� rRn
ðzÞ. Thus there exists a ¼ ða1; a2; . . . ; anÞT 2 Rn such that

Aa ¼ 0 but za 6¼ 0. Define g : Rn=ðRmAÞ ! R such that gð�xÞ ¼ xa for every
x 2 Rn. Clearly, g is well-defined, and gð�zÞ ¼ za 6¼ 0. So N ffi Rn=ðRmAÞ is
torsionless.

ð2Þ ) ð1Þ. Let A 2 Rm�n. Then N ¼ Rn=ðRmAÞ is torsionless by (2)
because N is the cokernel of f :RR

m!RR
n defined by fðxÞ ¼ xA. Let

z ¼ ðz1; z2; . . . ; znÞ 2 Rn. By Theorem 2.15, it is sufficient to show that, for
z 62 RmA, rRn

ðAÞ 6� rRn
ðzÞ. In fact, if z 62 RmA, then 0 6¼ �z 2 Rn=ðRmAÞ ¼ N.

Thus, there exists a left R-homomorphism g : Rn=ðRmAÞ ! R such that
gð�zÞ 6¼ 0 ( for N is torsionless ). Let ei ¼ ð0; . . . ; 0; 1; 0; . . . ; 0Þ 2 Rn (with 1
in the ith position and 0’s in all other positions), i ¼ 1; 2; . . . ; n, and
a ¼ ðgð�e1Þ; gð�e2Þ; . . . ; gð�enÞÞ 2 Rn. Then 0 6¼ gð�zÞ ¼ gðz1�e1 þ z2�e2 þ � � � þ
zn�enÞ ¼ zaT, i.e., aT 62 rRn

ðzÞ.
On the other hand, let Ej ¼ ð0; . . . ; 0; 1; 0; . . . ; 0Þ 2 Rm (with 1 in the jth

position and 0’s in all other positions), j ¼ 1; 2; . . . ;m. Note that gð�xÞ ¼ xaT

for x 2 Rn. Thus ðEjAÞaT ¼ gðEjAÞ ¼ 0 for j ¼ 1; 2; . . . ;m, and hence
AaT ¼ 0, i.e., aT 2 rRn

ðAÞ. Therefore rRn
ðAÞ 6� rRn

ðzÞ, as required. u

Corollary 2.18. The following statements hold for a ring R:

1. R is right n-injective if and only if the exactness of RR !RR
n !

RN ! 0 implies the torsionlessness of N.
2. The following conditions are equivalent:

(a) R is right FP-injective.
(b) Every finitely presented left R-module is torsionless.
(c) For every positive integer n, the exactness of RR

n !R

Rn !R N ! 0 implies the torsionlessness of N.
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Remark 2.19. The equivalence of (a) and (b) in Corollary 2.18 (2) is due to
S. Jain [8, Theorem 2.3].

Recall that a ring R is said to be right ðm; nÞ-weakly linearly ex-
istentially closed (or ðm; nÞ-wlec) [10] if every system of linear equations and
a single linear inequation of the form

x1a11 þ x2a12 þ � � � þ xma1m ¼ b1
..
. ..

.

x1an1 þ x2an2 þ � � � þ xmanm ¼ bn
x1anþ1;1 þ x2anþ1;2 þ � � � þ xmanþ1;m 6¼ bnþ1

which has a solution in some ring extension of R has a solution in R itself.
A ring R is right weakly linearly existentially closed (or wlec) if R is right
ðm; nÞ-wlec for all positive integers m and n. Left ðm; nÞ-wlec rings and left
wlec rings can be defined similarly.

Let X ¼ ðx1; x2; . . . ; xmÞ, A ¼ ðaijÞT 2 Rm�n, g ¼ ðb1; b2; . . . ; bnÞ 2 Rn

and a ¼ ðanþ1;1; anþ1;2; . . . ; anþ1;mÞT 2 Rm. The system above can be written
in matrix form as

XA ¼ g
Xa 6¼ b;

where b ¼ bnþ1 2 R.

Theorem 2.20. The ring R is right (m, n)-injective and left (n, m)-injective if
and only if R is right (m, n)-wlec and left (n, m)-wlec.

Proof. The proof is motivated by that of [10, Theorem 8].

‘‘)’’. Let A 2 Rm�n, X ¼ ðx1; x2; . . . ; xmÞ, a 2 Rm, g 2 Rn and b 2 R. If
the system

XA ¼ g
Xa 6¼ b;

has a solution in the ring extension S of R, i.e., there exists X0 2 Sm such
that X0A ¼ g and X0a 6¼ b. Since X0A ¼ g, rRn

ðAÞ � rRn
ðgÞ. By Theorem

2.15, there exists d0 2 Rm such that g ¼ d0A ( for RR is ðm; nÞ-injective ). We
claim that there exists s1 2 lRmðAÞ such that ðd0 þ s1Þa 6¼ b. Otherwise,
ðd0 þ sÞa ¼ b for all s 2 lRmðAÞ, and in particular, d0a ¼ b. It follows that
sa ¼ 0 for all s 2 lRmðAÞ, and hence lRmðAÞ � lRmðaÞ. Therefore there exists

(m, n)-INJECTIVITY OF MODULES 5599
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b 2 Rn such that a ¼ Ab by Theorem 2.15 ( for RR is ðn;mÞ-injective ), and
so b ¼ d0a ¼ d0ðAbÞ ¼ ðd0AÞb ¼ gb ¼ ðX0AÞb ¼ X0ðAbÞ ¼ X0a, a contra-
diction. Let d1 ¼ d0 þ s1. Then d1 2 Rm and d1A ¼ d0A ¼ g and d1a 6¼ b,
i.e., the system above has a solution in R. So R is right ðm; nÞ-wlec. Similarly,
R is left ðn;mÞ-wlec.

‘‘(’’. We shall show that RR is ðm; nÞ-injective. By Theorem 2.15, we
have to show that if b 2 Rn and A 2 Rm�n satisfy rRn

ðAÞ � rRn
ðbÞ, then

b ¼ xA for some x 2 Rm.
First, let E be an ðR;RÞ-bimodule. Then we claim that rEn

ðAÞ � rEn
ðbÞ.

Let

S ¼ a 0
x a

� �


a 2 R; x 2 E

� �
:

We now consider the map

a ! â ¼ a 0
0 a

� �

ofR intoS. It is clear that this is amonomorphismof the ringR intoS.We shall
identifyRwith its image in S, identifying awith â. In this way we can regard S
as a ring extension ofR. LetA ¼ ðaijÞ 2 Rm�n � Sm�n and b ¼ ðb1; b2; . . . ; bnÞ
2 Rn � Sn. We write Â ¼ ðâijÞ 2 Sm�n and b̂ ¼ ðb̂1; b̂2; . . . ; b̂nÞ 2 Sn. If
rSn

ðÂÞ 6� rSn
ðb̂Þ, then there exists u 2 Sn such that Âu ¼ 0 and b̂u 6¼ 0. Note

that A (resp. b) is identified with Â (resp. b̂). So the system

AX ¼ 0
bX 6¼ 0

has a solution in S. Since R is left ðn;mÞ-wlec, the above system has a so-
lution in R. Thus there exists v 2 Rn such that

Av ¼ 0
bv 6¼ 0;

which contradicts rRn
ðAÞ � rRn

ðbÞ. So rSn
ðÂÞ � rSn

ðb̂Þ.
Now let u ¼ ðu1; u2; . . . ; unÞT 2 rEn

ðAÞ, then Au ¼ 0. Put �ui ¼�
0 0

ui 0

�
2 S, i ¼ 1; 2; . . . ; n, and �u ¼ ð�u1; �u2; . . . ; �unÞT. It follows that Â�u ¼ 0.

Thus �u 2 rSn
ðÂÞ � rSn

ðb̂Þ, and so b̂�u ¼ 0, whence bu ¼ 0, i.e., u 2 rEn
ðbÞ.

Therefore rEn
ðAÞ � rEn

ðbÞ.
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Next let G be the Z-injective envelope of the additive group of R and
put E ¼ HomZðR;GÞ. It is easy to see that E is an ðR;RÞ-bimodule, ER is
injective and RE is faithful. Let S ¼ EndRðERÞ, then E is a left S-module by
defining sx ¼ sðxÞ for s 2 S and x 2 E. For any r 2 R, we define r̂ 2 S such
that r̂ðxÞ ¼ rx for x 2 ER. It is easy to see that the map r ! r̂ of R into S is a
monomorphism. We shall now identify r with r̂. Then R is identified with a
subring of S. By the first part of the proof, rEn

ðAÞ � rEn
ðbÞ. Write

AEn ¼ fAgjg 2 Eng � Em and define f : AEn ! ER such that fðAgÞ ¼ bg,
then f is a right R-homomorphism. Since ER is injective, f extends to
g : Em ! ER. Let li : ER ! Em be the ith injection and fi ¼ gli, then fi 2 S,
i ¼ 1; 2; . . . ;m. For any a ¼ ða1; a2; . . . ; anÞT 2 Em, gðaÞ ¼ gðl1ða1Þþ
l2ða2Þ þ � � � þ lmðamÞÞ ¼ f1ða1Þ þ f2ða2Þ þ � � � þ fmðamÞ ¼ ðf1; f2; . . . ; fmÞa.
Since gjAEn

¼ f, for any g 2 En, we have bg ¼ fðAgÞ ¼ gðAgÞ ¼
ðf1; f2; . . . ; fmÞAg. In particular, for any x 2 E, let gi ¼ ð0; . . . ; 0; x;
0 . . . ; 0ÞT 2 En (with x in the ith position and 0’s in all other positions),
i ¼ 1; 2; . . . ; n. From ðf1; f2; . . . ; fmÞAgi ¼ bgi we have

Pm
j¼1 fjðajixÞ ¼ bix, i.e.,Pm

j¼1 fjâjiðxÞ ¼ b̂iðxÞ for all x 2 E, and so
Pm

j¼1 fjâji ¼ b̂i, i ¼ 1; 2; . . . ; n.
Therefore ðf1; f2; . . . ; fmÞÂ ¼ b̂. Identifying A (resp. b) with Â ( resp. b̂ ), we
have that the system YA ¼ b has a solution in S. Choose a 2 Rm and b 2 R
such that

ð f1; f2; . . . ; fmÞâ 6¼ b̂:

For example, take a ¼ ð1; 0; . . . ; 0ÞT, and

b ¼ 1; if f1 ¼ 0
0; if f1 6¼ 0:

�

Thus the system

YA ¼ b
Ya 6¼ b

has a solution in S, and hence it has a solution in R (for R is right ðm; nÞ-
wlec). Therefore there exists x 2 Rm such that b ¼ xA, as required. So RR is
ðm; nÞ-injective. Similarly, RR is ðn;mÞ-injective. u

Corollary 2.21. The following statements hold for a ring R:

1. R is left and right P-injective if and only if R is left and right (1, 1)-
wlec.
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2. R is right f-injective and every finitely generated right ideal of R is a
right annihilator if and only if R is right (1, n)-wlec and left (n, 1)-
wlec for all positive integers n.

3. The following conditions are equivalent:
(a) R is left and right FP-injective.

(b) R is left and right wlec.
(c) R is left and right (n, n)-wlec for all positive integers n.

Remark 2.22. The equivalence of (a) and (b) in Corollary 2.21 (3) is due to
P. Menal and P. Vamos [10, Theorem 8].
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