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A ring R is called left P-coherent in case each principal left ideal of R is finitely
presented. A left R-module M (resp. right R-module N) is called D-injective (resp.
D-flat) if Ext1�G�M� = 0 (resp. Tor1�N�G� = 0) for every divisible left R-module
G. It is shown that every left R-module over a left P-coherent ring R has a divisible
cover; a left R-module M is D-injective if and only if M is the kernel of a divisible
precover A → B with A injective; a finitely presented right R-module L over a left
P-coherent ring R is D-flat if and only if L is the cokernel of a torsionfree preenvelope
K → F with F flat. We also study the divisible and torsionfree dimensions of modules
and rings. As applications, some new characterizations of von Neumann regular rings
and PP rings are given.

Key Words: D-flat module; D-injective module; Divisible module; P-coherent ring; (Pre)Cover;
(Pre)Envelope; Torsionfree module; Warfield cotorsion module.
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1. INTRODUCTION

Let R be a ring. A left R-module M is said to be divisible (or P-injective)
if Ext1�R/Ra�M� = 0 for all a ∈ R. A right R-module N is called torsionfree if
Tor1�N�R/Ra� = 0 for all a ∈ R. The definitions of divisible and torsionfree modules
coincide with the classical ones in case R is a commutative domain. It is clear that a
right R-module N is torsionfree if and only if the character module N+ is divisible
by the standard isomorphism Ext1�R/Ra�N+� � Tor1�N�R/Ra�

+ for every a ∈ R.
These modules have been studied by many authors (see, for example, Couchot, 2006;
Dauns and Fuchs, 2004; Enochs et al., 2001; Fuchs and Salce, 2001; Göbel and
Trlifaj, 2006; Hattori, 1960; Lam, 1999; Lee, 2003; Mao and Ding, 2006; Nicholson
and Yousif, 1995; Puninski et al., 1995; Shamsuddin, 2001; Xue, 1990; Yue Chi
Ming, 1974; Zhang et al., 2005).

Let � ��� � be the class of all divisible left R-modules (torsionfree right
R-modules). In Section 2 of this article, we study the existence of �-covers. To
this aim, the concept of P-coherent rings is introduced as a generalization of
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ON DIVISIBLE AND TORSIONFREE MODULES 709

coherent rings. Recall that R is called a left coherent ring if every finitely generated
left ideal of R is finitely presented. We call R a left P-coherent ring if every
principal left ideal of R is finitely presented. Some properties and characterizations
of P-coherent rings are developed. It is shown that (1) R is a left coherent ring if
and only if every n× n matrix ring Mn�R� is a left P-coherent ring for every n ≥ 1;
(2) R is a left P-coherent ring if and only if any direct product of torsionfree right
R-modules is torsionfree if and only if any direct limit of divisible left R-modules
is divisible. Finally, we show that every left R-module over a left P-coherent ring R
has a �-cover.

In Section 3, divisible modules are used to define the concepts of D-injective
and D-flat modules. It is shown that a left R-module M is D-injective if and only
if M is the kernel of a �-precover A → B with A injective. For a left P-coherent
ring R, we prove that a left R-module M is D-injective if and only if M is a direct
sum of an injective left R-module and a reduced D-injective left R-module; a finitely
presented right R-module L is D-flat if and only if L is the cokernel of a �� -
preenvelope K → F with F flat.

Section 4 investigates the divisible and torsionfree dimensions of modules
and rings. Suppose that R is a left P-coherent ring and n a nonnegative
integer. It is shown that right �-dimM ≤ n for a left R-module M if and
only if Hom�M� Fn� → Hom�M� ker�Fn−1 → Fn−2�� is an epimorphism for every
left �-resolution · · · → Fn → Fn−1 → · · · → F0 → N → 0 of every left R-module
N ; left �� -dimG ≤ n for a right R-module G if and only if Hom�Fn�G� →
Hom�coker�Fn−2 → Fn−1��G� is an epimorphism for every right �� -resolution
0 → H → F 0 → · · · → Fn−1 → Fn → · · · of every right R-module H . If R is a left
strongly P-coherent ring, we get that gl right �-dim R� = gl left �� -dim�R =
sup�projective (flat) dimensions of all cyclically presented left R-modules�.

Section 5 is devoted to some applications. It is shown that R is a von Neumann
regular ring if and only if every Warfield cotorsion right R-module is injective
(divisible) if and only if R is a left strongly P-coherent ring and every Warfield
cotorsion right R-module is flat (torsionfree) if and only if every nonzero right
R-module contains a nonzero torsionfree submodule. It is also shown that R is a
left PP ring if and only if R is a left P-coherent ring and every D-injective left R-
module is injective if and only if R is a left strongly P-coherent ring and gl right
�-dim R� ≤ 1 (gl left �� -dim�R ≤ 1).

Let � be a class of R-modules and M an R-module. Recall that a
homomorphism � � C → M is a �-precover of M (Enochs, 1981) if C ∈ � and
the abelian group homomorphism Hom�C ′� �� � Hom�C ′� C� → Hom�C ′�M� is
surjective for every C ′ ∈ �. A �-precover � � C → M is said to be a �-cover of M
if every endomorphism g � C → C such that �g = � is an isomorphism. Dually we
have the definitions of a �-preenvelope and a �-envelope. �-covers (�-envelopes)
may not exist in general, but if they exist, they are unique up to isomorphism.

Throughout this article, R is an associative ring with identity and all modules
are unitary. wD�R� stands for the weak global dimension of a ring R. R� (�R) is
the class of all left (right) R-modules. RM �MR) denotes a left (right) R-module. For
an R-module M�E�M� stands for the injective envelope of M�pd�M� denotes the
projective dimension of M , the character module Hom��M��/�� is denoted by M+.
For a ∈ R, the left annihilator of a in R is denoted by l�a�. Let M and N be
R-modules. Hom�M�N� (resp. Extn�M�N�) means HomR�M�N� (resp. ExtnR�M�N�),



D
ow

nl
oa

de
d 

B
y:

 [N
an

jin
g 

U
ni

ve
rs

ity
] A

t: 
07

:4
0 

8 
A

pr
il 

20
08

 

710 MAO AND DING

and similarly M ⊗ N (resp. Torn�M�N�) denotes M ⊗R N (resp. TorRn �M�N�) for
an integer n ≥ 1. For unexplained concepts and notations, we refer the reader to
Enochs and Jenda (2000), Fuchs and Salce (2001), Göbel and Trlifaj (2006), Lam
(1999), Rotman (1979), and Xu (1996).

2. P -COHERENT RINGS AND THE EXISTENCE OF DIVISIBLE COVERS

We begin with the following definition.

Definition 2.1. R is called a left P-coherent ring if every principal left ideal of R
is finitely presented, or equivalently, l�a� is finitely generated for every a ∈ R. The
right version can be defined similarly.

The next example shows that the definition of P-coherent rings is not left-right
symmetric.

Example 2.2. Let K be a field with a subfield L such that dimLK = � and
there exists a field isomorphism � � K → L (for instance, K = ��x1� x2� x3� 	 	 	 �,
L=��x2� x3� 	 	 	 ��. Define a ring R by taking R = K × K with multiplication

�x� y��x′� y′� = �xx′� ��x�y′ + yx′�� where x� y� x′� y′ ∈ K	

It is easy to see that R has exactly three right ideals: 0, R, and �0� K� = �0� 1�R.
Thus R is a right P-coherent ring. On the other hand, let a = �0� 1� ∈ R, then l�a� is
not a finitely generated left ideal (see Lam, 1999, Example 4.46(e)). So R is not left
P-coherent.

Coherent rings are obviously P-coherent. However, the converse is not true in
general as shown by the following example.

Example 2.3. Let x� y1� y2� 	 	 	 be indeterminates over a field K, S = K
x� yi� and
R = K
x2� x3� yi� xyi�. Then R is a subring of the commutative domain S. Hence R is
also a commutative domain, and so R is a P-coherent ring. But R is not a coherent
ring (see Glaz, 1989, p. 110).

Proposition 2.4. A ring R is left coherent if and only if every n× n matrix ring
Mn�R� is left P-coherent for every n ≥ 1.

Proof. The necessity is clear since Mn�R� is left coherent for every n ≥ 1.
Conversely, let I = Ra1 + Ra2 + · · · + Ran be a finitely generated left ideal of R. Put

A =




a1 0 · · · 0

a2 0 · · · 0

			
			

			
			

an 0 · · · 0




∈ Mn�R�	
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ON DIVISIBLE AND TORSIONFREE MODULES 711

Then

Mn�R�A =




I 0 · · · 0

I 0 · · · 0

			
			

			
			

I 0 · · · 0




is a finitely presented left ideal of Mn�R� by assumption. So there is a left Mn�R�-
module exact sequence 0 → K → F → Mn�R�A → 0, where F is a finitely generated
free left Mn�R�-module and K is a finitely generated left Mn�R�-module. On the other
hand, Mn�R� is a free left R-module generated by the n2 matrix units. Thus it is not
difficult to verify that F is a finitely generated free left R-module and K is a finitely
generated left R-module. Thus Mn�R�A is a finitely presented left R-module, and
hence I is a finitely presented left ideal of R since there exists a left R-isomorphism
Mn�R�A � In. So R is a left coherent ring. �

Remark 2.5. It is well known that being left coherent is Morita invariant. But
being left P-coherent is not Morita invariant by Proposition 2.4.

In what follows, we write � and �� for the classes of all divisible left
R-modules and all torsionfree right R-modules, respectively.

It is easy to see that the classes � and �� are closed under extensions, direct
sums, and direct summands. Moreover, we have the following lemma.

Lemma 2.6. The classes � and �� are closed under pure submodules.

Proof. Let N be a pure submodule of a divisible left R-module M . For any
principal left ideal I of R, we have the exact sequence

Hom�R/I�M� → Hom�R/I�M/N� → Ext1�R/I� N� → Ext1�R/I�M� = 0	

But Hom�R/I�M� → Hom�R/I�M/N� → 0 is exact since R/I is finitely presented
and N is a pure submodule of M , so Ext1�R/I� N� = 0. Thus N is divisible.

Now, let N be a pure submodule of a torsionfree right R-module M ,
then the pure exact sequence 0 → N → M → M/N → 0 induces the split exact
sequence 0→ �M/N�+ → M+ → N+ → 0. Since M+ is divisible, so is N+. Thus N is
torsionfree. �

Now we give some characterizations of left P-coherent rings.

Theorem 2.7. The following are equivalent for a ring R:

(1) R is a left P-coherent ring;
(2) Any direct product of copies of RR is torsionfree;
(3) Any direct product of torsionfree right R-modules is torsionfree;
(4) Any direct limit of divisible left R-modules is divisible;
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712 MAO AND DING

(5) A left R-module M is divisible if and only if M+ is torsionfree;
(6) Every right R-module has a �� -preenvelope.

Proof. �1� ⇒ �5� Note that Tor1�M
+� R/I� � Ext1�R/I�M�+ for every left R-

module M and every principal left ideal I of R by Chen and Ding (1996,
Lemma 2.7(2)) since I is finitely presented. So M is divisible if and only if M+ is
torsionfree.

�5� ⇒ �3� Let �Mi�i∈J be a family of torsionfree right R-modules. Then
�M++

i � �
⊕

M+
i �

+ is torsionfree by (5). Since �Mi is a pure submodule of �M++
i

by Cheatham and Stone (1981, Lemma 1(2)), �Mi is torsionfree by Lemma 2.6.

�3� ⇒ �2� is trivial.

�2� ⇒ �1� Let I be a principal left ideal of R. Then Tor1�
∏

R�R/I� = 0 by
(2). Thus we have a commutative diagram with exact rows:

0 −−−−→ �
∏

R�⊗ I −−−−→ �
∏

R�⊗ R −−−−→ �
∏

R�⊗ R/I −−−−→ 0




 �


 �



0 −−−−→ ∏

I −−−−→ ∏
R −−−−→ ∏

R/I −−−−→ 0	

Note that � and � are isomorphisms by Enochs and Jenda (2000, Theorem 3.2.22)
since R/I is finitely presented. Thus  is an isomorphism by the Five Lemma, and
so I is finitely presented by Enochs and Jenda (2000, Theorem 3.2.22) again. Hence
R is a left P-coherent ring.

�1� ⇒ �4� For any principal left ideal I of R and any direct system �Mi�i∈J of
divisible left R-modules, we have Ext1�R/I� lim→ Mi� � lim→ Ext1�R/I�Mi� = 0 by Chen

and Ding (1996, Lemma 2.9(2)) because I is finitely presented. So lim→ Mi is divisible.

�4� ⇒ �1� Let I be a principal left ideal of R and �Mi�i∈J a family of injective
left R-modules, where J is a directed set. Then lim→ Mi is divisible by (4), and so

Ext1�R/I� lim→ Mi� = 0	 Thus we have a commutative diagram with exact rows:

Hom�R/I� lim→ Mi� −−−−→ Hom�R� lim→ Mi� −−−−→ Hom�I� lim→ Mi� −−−−→ 0




 �


 �



lim→ Hom�R/I�Mi� −−−−→ lim→ Hom�R�Mi� −−−−→ lim→ Hom�I�Mi� −−−−→ 0	

Since  and � are isomorphisms by Jones (1982, Proposition 2.5), � is an isomorphism
by the Five Lemma. So I is finitely presented by Jones (1982, Proposition 2.5) again.
Hence R is a left P-coherent ring.

�1� ⇔ �6� follows from Mao and Ding (2006, Theorem 3.1). �

The following lemmas are needed to prove the existence of �-covers.

Lemma 2.8 (Enochs and Jenda, 2000, Proposition 5.2.2). If � is a class of R-
modules closed under direct sums, then an R-module M has an � -precover if and only
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ON DIVISIBLE AND TORSIONFREE MODULES 713

if there is a cardinal number ℵ such that any homomorphism D → M with D ∈ � has
a factorization D → C → M with C ∈ � and Card�C� ≤ ℵ.

Lemma 2.9 (Bican et al., 2001, Theorem 5). Let R be an arbitrary ring. Then for
each cardinal �, there is a cardinal � such that for any R-module M and any L≤M
satisfying Card�M� ≥ � and Card�M/L� ≤ �, the submodule L contains a nonzero
submodule that is pure in M .

We are now in a position to prove the following theorem.

Theorem 2.10. Let R be a left P-coherent ring. Then every left R-module has a
�-cover. In particular, if R is a left coherent ring or a domain, then every left R-module
has a �-cover.

Proof. Assume that N is a left R-module with Card�N� = �. We first prove that N
has a �-precover. Let � be a cardinal as in Lemma 2.9. By Lemma 2.8, it suffices
to show that any homomorphism f � D → N with D divisible has a factorization
D → C → N with C divisible and Card�C� ≤ �.

If Card�D� ≤ �, then we are done. Hence we may assume Card�D� > �.
Let K = ker�f�. Note that Card�D/K� ≤ � since D/K embeds in N . Thus

K contains a nonzero submodule D0 which is pure in D by Lemma 2.9. The
pure exact sequence 0→D0 → D → D/D0 → 0 induces the split exact sequence
0→ �D/D0�

+ → D+ → D+
0 → 0. Thus �D/D0�

+ is torsionfree since D+ is torsionfree
by Theorem 2.7. So D/D0 is divisible by Theorem 2.7 again.

If Card�D/D0� ≤ �, then we are done by Lemma 2.8 since f factors through
D/D0.

Suppose Card�D/D0� > �	 Put

� = �X � D0 ≤ X ≤ K and D/X is divisible�	

Then � is a nonempty set since D0 ∈ � . Let �Xi ∈ � � i ∈ I} be an ascending
chain. Note that D0 ≤

⋃
Xi ≤ K and D/

⋃
Xi = D/ lim→ Xi = lim→ �D/Xi� is divisible by

Theorem 2.7 since each D/Xi is divisible. Thus
⋃

Xi ∈ � , and so � has a maximal
element C by Zorn’s Lemma.

We claim that Card�D/C� ≤ �. Suppose Card�D/C� > �	 Since C ⊆ K,
there exists g � D/C → N with ker�g� = K/C. Note that Card(�D/C�/�K/C�� =
Card�D/K� ≤ �, and so K/C contains a nonzero submodule C1/C which is pure
in D/C by Lemma 2.9. Therefore D/C1 � �D/C�/�C1/C� is divisible by the proof
above, and hence C1 ∈ � , which contradicts the maximality of C.

It is clear that D/C is divisible and f factors through D/C. So N has a
�-precover by Lemma 2.8.

Note that � is closed under direct limits by Theorem 2.7. Thus N has a
�-cover by Enochs and Jenda (2000, Corollary 5.2.7). �

3. D-INJECTIVE MODULES AND D-FLAT MODULES

Definition 3.1. A left R-module M is called D-injective if Ext1�G�M� = 0 for every
divisible left R-module G.
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714 MAO AND DING

A right R-module N is said to be D-flat if Tor1�N�G� = 0 for every divisible
left R-module G.

Remark 3.2. (1) By Wakamutsu’s Lemma (see Xu, 1996, Lemma 2.1.1), any
kernel of a �-cover is D-injective.

(2) A right R-module M is D-flat if and only if M+ is D-injective by
the standard isomorphism Ext1�N�M+� � Tor1�M�N�+ for every divisible left
R-module N .

(3) Recall that a left R-module M is called FP-injective (Stenström, 1970)
if Ext1�N�M� = 0 for every finitely presented left R-module N . M is called FI-
injective (Mao and Ding, 2007) (resp. copure injective, Enochs and Jenda, 1993)
if Ext1�G�M� = 0 for every FP-injective (resp. injective) left R-module G. A right
R-module N is said to be FI-flat (Mao and Ding, 2007) (resp. copure flat, Enochs
and Jenda, 1993) if Tor1�N�G� = 0 for every FP-injective (resp. injective) left
R-module G. Obviously, we have the following implications:

D-injective modules ⇒ FI-injective modules ⇒ copure injective modules;

D-flat modules ⇒ FI-flat modules ⇒ copure flat modules.
By the way, we note that FI-flat modules are exactly copure flat modules.

In fact, let M be a copure flat right module and N be an FP-injective left
R-module. Then there exists a pure exact sequence 0 → N → E → L → 0 with E
injective. Thus we get a split exact sequence 0 → L+ → E+ → N+ → 0, and so N+ is
isomorphic to a direct summand of E+. Note that Tor1�M�E� = 0 since M is copure
flat, and so Ext1�M�E+� � Tor1�M�E�+ = 0. Thus Tor1�M�N�+ � Ext1�M�N+� = 0,
and hence Tor1�M�N� = 0. So M is FI-flat.

Proposition 3.3. The following are equivalent for a left R-module M:

(1) M is D-injective;
(2) For every exact sequence 0 → M → E → L → 0 with E divisible, E → L is a

�-precover of L;
(3) M is the kernel of a �-precover f � A → B with A injective;
(4) M is injective with respect to every exact sequence 0 → A → B → C → 0 with C

divisible.

Proof. �1� ⇒ �2� and �1� ⇒ �4� are clear by definitions.

�2� ⇒ �3� is obvious since there exists a short exact sequence 0 → M →
E�M� → E�M�/M → 0.

�3� ⇒ �1� Let M be the kernel of a �-precover f � A → B with A injective.
Then we have an exact sequence 0 → M → A → A/M → 0	 So, for any divisible
left R-module N , the sequence Hom�N�A� → Hom�N�A/M� → Ext1�N�M� → 0 is
exact. It is easy to verify that Hom�N�A� → Hom�N�A/M� → 0 is exact by (3).
Thus Ext1�N�M� = 0, and so (1) follows.

�4� ⇒ �1� For every divisible left R-module N , there exists a short exact
sequence 0 → K → P → N → 0 with P projective, which induces an exact
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ON DIVISIBLE AND TORSIONFREE MODULES 715

sequence Hom�P�M� → Hom�K�M� → Ext1�N�M� → 0. Note that Hom�P�M� →
Hom�K�M� → 0 is exact by (4). Hence Ext1�N�M� = 0, as desired. �

Recall that a left R-module M is called reduced (Enochs and Jenda, 2000) if M
has no nonzero injective submodules.

Proposition 3.4. Let R be a left P-coherent ring. Then the following are equivalent
for a left R-module M:

(1) M is a reduced D-injective left R-module;
(2) M is the kernel of a �-cover f � A → B with A injective.

Proof. �1� ⇒ �2� By Proposition 3.3, the natural map � � E�M� → E�M�/M is a
�-precover. Note that E�M�/M has a �-cover, and E�M� has no nonzero direct
summand K contained in M since M is reduced. It follows that � � E�M� → E�M�/M
is a �-cover by Xu (1996, Corollary 1.2.8), and hence (2) follows.

�2� ⇒ �1� Let M be the kernel of a �-cover  � A → B with A injective. By
Remark 3.2(1), M is D-injective. Now let K be an injective submodule of M . Suppose
A = K ⊕ L, p � A → L is the projection and i � L → A is the inclusion. It is easy to
see that �ip� =  since �K� = 0. Therefore ip is an isomorphism since  is a cover.
Thus i is epic, and hence A = L, K = 0. So M is reduced. �

Recall that a left R-module exact sequence 0 → A → B → C → 0 is said
to be RD-exact (“RD” for “relatively divisible”) if, for every a ∈ R, the sequence
Hom�R/Ra� B� → Hom�R/Ra�C� → 0 is exact, or equivalently, the sequence 0 →
�R/aR�⊗ A → �R/aR�⊗ B is exact (see Warfield, 1969, Proposition 2). So an R-
module A is divisible if and only if any exact sequence 0 → A → B → C → 0 is
RD-exact. On the other hand, an R-module L is torsionfree if and only if any exact
sequence 0 → M → N → L → 0 is RD-exact.

An R-module M is called RD-injective if for every RD-exact sequence 0→A →
B → C → 0, the sequence Hom�B�M� → Hom�A�M� → 0 is exact. Clearly, a
divisible RD-injective module is injective.

Corollary 3.5. Let R be a left P-coherent ring. Then every RD-injective left R-module
M has a �-cover f � F → M with F injective. Moreover, ker�f� is a reduced D-injective
left R-module.

Proof. By Theorem 2.10, M has a �-cover f � F → M . There is an exact sequence
0 → F

i→ E → L → 0 with E injective. Since the exact sequence is RD-exact, there
exists g � E → M such that gi = f . So there exists � � E → F such that f� = g since
f is a cover. Therefore f�i = f and hence �i is an isomorphism. It follows that F
is isomorphic to a direct summand of E, and so F is injective.

By Proposition 3.4, ker�f� is a reduced D-injective left R-module. �

Theorem 3.6. Let R be a left P-coherent ring. Then a left R-module M is D-injective
if and only if M is a direct sum of an injective left R-module and a reduced D-injective
left R-module.
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716 MAO AND DING

Proof. “⇐” is clear.

“⇒” Let M be a D-injective left R-module. Since 0 → M → E�M� →
E�M�/M → 0 is exact, E�M� → E�M�/M is a �-precover of E�M�/M by
Proposition 3.3. Note that E�M�/M has a �-cover L → E�M�/M by Theorem 2.10,
so we have the commutative diagram with exact rows:

where K is a reduced D-injective left R-module by Proposition 3.4. Note that �� is
an isomorphism, and so E�M� � ker���⊕ im���. Thus L and ker��� are injective (for
im��� � L). Since �� is an isomorphism by the Five Lemma, M = ker���⊕ im���,
where im��� � K. By the Snake Lemma (Rotman, 1979, Theorem 6.5), ker��� �
ker���. This completes the proof. �

Proposition 3.7. Let R be a ring.

(1) If M is a finitely presented D-flat right R-module, then M is the cokernel of a �� -
preenvelope f � K → F with F flat.

(2) If R is a left P-coherent ring and L is the cokernel of a �� -preenvelope f � K → F
with F flat, then L is D-flat.

Proof. (1) Let M be a finitely presented D-flat right R-module. There is an
exact sequence 0 → K → F → M → 0 with F projective and both F and K
finitely generated. We claim that K → F is a �� -preenvelope. In fact, for any
torsionfree right R-module Q, we have Tor1�M�Q+� = 0, and so we get the following
commutative diagram with the first row exact:

0 −−−−→ K ⊗Q+ −−−−→ F ⊗Q+

�1


 �2



Hom�K�Q�+

�−−−−→ Hom�F�Q�+	

By Colby (1975, Lemma 2), �1 is an epimorphism and �2 is an isomorphism. Thus
� is a monomorphism, and hence Hom�F�Q� → Hom�K�Q� is epic, as required.

(2) There is an exact sequence 0 → im�f�
i→ F → L → 0. It is clear that

i � im�f� → F is a �� -preenvelope. For any divisible left R-module N , N+ is
torsionfree by Theorem 2.7. Thus we obtain an exact sequence Hom�F� N+� →
Hom�im�f�� N+� → 0, which yields the exactness of �F ⊗ N�+ → �im�f�⊗ N�+ → 0.
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ON DIVISIBLE AND TORSIONFREE MODULES 717

So the sequence 0 → im�f�⊗ N → F ⊗ N is exact. Thus the exactness of
0→Tor1�L�N� → im�f�⊗ N → F ⊗ N implies Tor1�L�N� = 0. �

4. DIVISIBLE AND TORSIONFREE DIMENSIONS

Since every left R-module over a left P-coherent ring R has a �-cover by
Theorem 2.10, every left R-module M has a left �-resolution, that is, there is a
Hom���−� exact complex · · · → F1 → F0 → M → 0 (not necessarily exact) with
each Fi divisible. On the other hand, every left R-module M over any ring R has
a �-preenvelope (see Göbel and Trlifaj, 2006). So M has a right �-resolution, that
is, there is a Hom�−��� exact complex 0 → M → F 0 → F 1 → · · · with each Fi

divisible. Obviously, this complex is exact.
Following Enochs and Jenda (2000, Definition 8.4.1), the right �-dimension

of a left R-module M , denoted by right �-dimM , is defined as inf{n: there is a right
�-resolution of M of the form 0 → M → F 0 → F 1 → · · · → Fn → 0}. If there is
no such n, set right �-dimM = �. The global right �-dimension of R�, denoted
by gl right �-dim R�, is defined to be sup{right �-dimM : M ∈ R�� and is infinite
otherwise. The left versions can be defined similarly.

If R is a left P-coherent ring, then Hom�−�−� is left balanced on R�× R�
by �×� (see Enochs and Jenda, 2000, Definition 8.2.13). Let Extn�−�−� denote
the nth left derived functor of Hom�−�−� with respect to �×�. Then, for two left
R-modules M and N , Extn�M�N� can be computed using a right �-resolution of M
or a left �-resolution of N .

Let 0 → M
g→ F 0 f→ F 1 → · · · be a right �-resolution of M . Applying

Hom�−� N�, we obtain the deleted complex · · · → Hom�F 1� N�
f∗→ Hom�F 0� N�→ 0.

Then Extn�M�N� is exactly the nth homology of the complex above. There is a
canonical map

� � Ext0�M�N� = Hom�F 0� N�/im�f ∗� → Hom�M�N�

defined by ��+ im�f ∗�� = g for  ∈ Hom�F 0� N�.

Proposition 4.1. Let R be a left P-coherent ring. The following are equivalent for a
left R-module M:

(1) M is divisible;
(2) The canonical map � � Ext0�M�N� → Hom�M�N� is an isomorphism (epimorphism)

for every left R-module N ;
(3) The canonical map � � Ext0�M�M� → Hom�M�M� is an isomorphism

(epimorphism).

Proof. �1� ⇒ �2� is obvious by letting F 0 = M .

�2� ⇒ �3� is trivial.

�3� ⇒ �1� By (3), there exists  ∈ Hom�F 0�M� such that ��+ im�f ∗�� =
g = 1M . Thus M is isomorphic to a direct summand of F 0, and hence it is divisible.

�
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718 MAO AND DING

Recall that a right R-module M is cyclically presented if M � R/rR for some
r ∈ R. In what follows, we will call R a left divisible ring if RR is divisible.

Proposition 4.2. The following are equivalent for a left P-coherent ring R:

(1) R is a left divisible ring;
(2) The canonical map � � Ext0�RR�N� → Hom�RR�N� is an isomorphism

(epimorphism) for every left R-module N ;
(3) The canonical map � � Ext0�RR� RR� → Hom�RR, RR) is an isomorphism

(epimorphism);
(4) Every left R-module has an epic �-cover;
(5) Every right R-module is a submodule of a torsionfree right R-module;
(6) Every injective right R-module is torsionfree;
(7) Every cyclically presented right R-module embeds in a free right R-module.

Proof. �1� ⇔ �2� ⇔ �3� follow from Proposition 4.1.

�1� ⇒ �4� Let M be a left R-module, then M has a �-cover g. On the other
hand, there is an exact sequence F → M → 0 with F free. Since F is divisible by (1),
g is an epimorphism.

�4� ⇒ �1� Let f � N → RR be an epic �-cover. Then RR is isomorphic to a
direct summand of N , and so RR is divisible.

�1� ⇒ �5� Let N be a right R-module. Then N embeds in ��RR�
+. Note that

��RR�
+ is torsionfree by (1) and Theorem 2.7, and so (5) follows.

�5� ⇒ �6� is clear.

�6� ⇒ �7� Let N be a cyclically presented right R-module. Then N embeds in
a torsionfree right R-module since E�N� is torsionfree by (6). So N embeds in a free
right R-module by Zhang et al. (2005, Theorem 4.3).

�7� ⇒ �1� Let N be a cyclically presented right R-module. Then there is a
monomorphism i � N → F with F a free right R-module by (7). For any f � N →
�RR�

+, since �RR�
+ is injective, there exists g � F → �RR�

+ such that f = gi. Thus
�RR�

+ is torsionfree by Zhang et al. (2005, Theorem 4.3), and so RR is divisible by
Theorem 2.7. �

Proposition 4.3. Let R be a left P-coherent ring. Then the following are equivalent
for a left R-module M:

(1) right �-dimM ≤ 1;
(2) The canonical map � � Ext0�M�N� → Hom�M�N� is a monomorphism for every left

R-module N .

Proof. �1� ⇒ �2� By (1), M has a right �-resolution 0 → M → F 0 → F 1 → 0.
Thus we get an exact sequence 0 → Hom�F 1� N� → Hom�F 0� N� → Hom�M�N� for
every left R-module N . Hence � is a monomorphism.

�2� ⇒ �1� Consider the exact sequence 0 → M → F 0 → L1 → 0, where
M → F 0 is a �-preenvelope. We only need to show that L1 is divisible. By Enochs
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ON DIVISIBLE AND TORSIONFREE MODULES 719

and Jenda (2000, Theorem 8.2.3), we have the commutative diagram with exact
rows:

Ext0�L
1� L1� −−−−→ Ext0�F

0� L1� −−−−→ Ext0�M�L1� −−−−→ 0

�1


 �2


 �3



0 −−−−→ Hom�L1� L1� −−−−→ Hom�F 0� L1� −−−−→ Hom�M�L1�	

Note that �2 is an epimorphism by Proposition 4.1 and �3 is a monomorphism
by (2). Hence �1 is an epimorphism by the Snake Lemma. Thus L1 is divisible by
Proposition 4.1, and so (1) follows. �

Proposition 4.4. Let R be a left P-coherent ring. Then the following are equivalent
for an integer n ≥ 2:

(1) gl right �-dimR� ≤ n;
(2) Extn+k�M�N� = 0 for all left R-modules M and N , and all k ≥ −1;
(3) Extn−1�M�N� = 0 for all left R-modules M and N .

Proof. �1� ⇒ �2� Let 0 → M → F 0 → F 1 → · · · → Fn → 0 be a right
�-resolution of a left R-module M , which induces an exact sequence

0 → Hom�Fn� N� → Hom�Fn−1� N� → Hom�Fn−2� N�

for every left R-module N . Hence Extn�M�N� = Extn−1�M�N� = 0. It is clear that
Extn+k�M�N� = 0 for all k ≥ 1. So (2) holds.

�2� ⇒ �3� is trivial.

�3� ⇒ �1� Suppose that 0 → M → F 0 → F 1 → · · · → Fn−2 f→ Fn−1 is a
partial right �-resolution of M with Ln = coker�Fn−2 → Fn−1�. We only need to
show that Ln is divisible. Let � � Fn−1 → Ln be the canonical projection, � � Ln → Fn

be a �-preenvelope and g = ��. By (3), Extn−1�M�Ln� = 0. Thus the sequence

Hom�Fn� Ln�
g∗→ Hom�Fn−1� Ln�

f∗→ Hom�Fn−2� Ln�

is exact. Since f ∗��� = �f = 0, � ∈ ker�f ∗� = im�g∗�. Thus there exists h ∈
Hom�Fn� Ln� such that � = g∗�h� = hg = h��, and hence h� = 1 since � is epic.
Therefore Ln is divisible. �

Theorem 4.5. Let R be a left P-coherent ring, M a left R-module, and n ≥ 0 an
integer. Then right �-dimM ≤ n if and only if for every left �-resolution · · · →
Fn → Fn−1 → · · · → F1 → F0 → N → 0 of every left R-module N , Hom�M� Fn� →
Hom�M�Kn� is an epimorphism, where Kn = ker�Fn−1 → Fn−2�.

Proof. We proceed by induction on n. Let n = 0. If M is divisible, it is clear
that Hom�M� F0� → Hom�M�K0� is an epimorphism. Conversely, put N = M . Then
Hom�M� F0� → Hom�M�M� is an epimorphism, and so M is divisible.
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720 MAO AND DING

Let n ≥ 1. By Göbel and Trlifaj (2006, Theorem 4.1.6(a)), there is an exact
sequence 0 → M → E → L → 0 with E divisible and Ext1�L�G� = 0 for all divisible
left R-modules G. Then we have the following exact commutative diagrams:

Hom�E� Fn� −−−−→ Hom�E�Kn� −−−−→ 0




Hom�M� Fn� −−−−→ Hom�M�Kn�

0

and

0 0 0






0 −−−−→ Hom�L�Kn� −−−−→ Hom�L� Fn−1� −−−−→ Hom�L�Kn−1�







0 −−−−→ Hom�E�Kn� −−−−→ Hom�E� Fn−1� −−−−→ Hom�E�Kn−1� −−−−→ 0






0 −−−−→ Hom�M�Kn� −−−−→ Hom�M� Fn−1� −−−−→ Hom�M�Kn−1�


0

where Kn−1 = ker�Fn−2 → Fn−3�. Then right �-dimM ≤ n if and only if right �-dim
L ≤ n− 1 if and only if Hom�L� Fn−1� → Hom�L�Kn−1� is epic by induction if and
only if Hom�E�Kn� → Hom�M�Kn� is an epimorphism by the second diagram if
and only if Hom�M� Fn� → Hom�M�Kn� is an epimorphism by the first diagram.

�

Corollary 4.6. The following are equivalent for a left P-coherent ring R and an
integer n ≥ 0:

(1) right �-dimRR ≤ n;
(2) Every left �-resolution · · · → Fn → Fn−1 → · · · → F1 → F0 → N → 0 of every

left R-module N is exact at Fi for every i ≥ n− 1.

Proof. �1� ⇒ �2� By Theorem 4.5, Hom�RR� Fn� → Hom�RR�Kn� is an
epimorphism. So Fn → Kn is an epimorphism. It follows that Fn → Fn−1 → Fn−2 is
exact. In addition, right �-dim RR ≤ k for every k ≥ n+ 1 by (1). So Fk → Fk−1 →
Fk−2 is exact, and hence (2) holds.

�2� ⇒ �1� holds by Theorem 4.5. �
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ON DIVISIBLE AND TORSIONFREE MODULES 721

Note that every right R-module over a left P-coherent ring R has a �� -
preenvelope by Theorem 2.7, so every right R-module M has a right �� -resolution,
that is, there is a Hom�−��� � exact complex 0 → M → F 0 → F 1 → · · · (not
necessarily exact) with each Fi torsionfree. On the other hand, every right R-module
M over any ring R has a torsionfree cover (see Göbel and Trlifaj, 2006). So M

has a left �� -resolution, that is, there is a Hom��� �−� exact complex · · · → F1 →
F0 → M → 0 with each Fi torsionfree. Obviously, this complex is exact. The left �� -
dimension of a right R-module M , denoted by left �� -dimM , is defined as inf{n: there
is a left �� -resolution of M of the form 0 → Fn → · · · → F1 → F0 → M→ 0}. If no
such n exists, set left �� -dimM = �. The global left �� -dimension of �R, denoted
by gl left �� -dim�R, is defined to be sup{left �� -dimM : M ∈ �R� and is infinite
otherwise.

Recall that a right R-module C is called Warfield cotorsion (Fuchs and Salce,
2001; Göbel and Trlifaj, 2006) provided that Ext1�F� C� = 0 for every torsionfree
right R-module F . Clearly, any RD-injective module is Warfield cotorsion.

Theorem 4.7. Let R be a left P-coherent ring, G a right R-module, and n≥ 0 an
integer. Then left �� -dimG ≤ n if and only if for every right �� -resolution 0→H →
F 0 → F 1 → · · ·Fn−1 → Fn → · · · of every right R-module H , Hom�Fn�G� →
Hom�Ln�G� is an epimorphism, where Ln = coker�Fn−2 → Fn−1�.

Proof. By Göbel and Trlifaj (2006, Theorem 4.1.1(b)) and Wakamutsu’s Lemma,
for any right R-module G, there is an exact sequence 0 → K → T → G → 0 with T

torsionfree and K Warfield cotorsion. So the result holds by the proof dual to that
of Theorem 4.5. �

Corollary 4.8. The following are equivalent for a left P-coherent ring R and an
integer n ≥ 0:

(1) left �� -dim �RR�
+ ≤ n;

(2) Every right �� -resolution 0 → N → F 0 → F 1 → · · ·Fn−1 → Fn → · · · of every
right R-module N is exact at Fi for every i ≥ n− 1.

Proof. The proof is dual to that of Corollary 4.6 by Theorem 4.7. �

Lemma 4.9. The following are equivalent for a ring R:

(1) For every left R-module exact sequence 0 → A → B → C → 0 with A and B

divisible, C is divisible;
(2) R is left P-coherent and if 0 → N → M → Q → 0 is an exact sequence of right

R-modules with M and Q torsionfree, N is torsionfree;
(3) Exti�R/Ra�M� = 0 for every divisible left R-module M , every a ∈ R and every

i≥ 1;
(4) R is left P-coherent and Tori�N� R/Ra� = 0 for every torsionfree right R-module

N , every a ∈ R and every i≥ 1.
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722 MAO AND DING

Proof. �3� ⇒ �1� is easy.

�1� ⇒ �3� Let M be a divisible left R-module. Then there is an exact
sequence 0 → M → E → L → 0 with E injective, and so L is divisible by (1).
Thus Ext2�R/Ra�M� � Ext1�R/Ra� L� = 0 for every a ∈ R, and hence (3) holds by
induction.

�2� ⇔ �4� The proof is dual to that of �1� ⇔ �3�.

�1� ⇒ �2� Let I be a principal left ideal of R and N an FP-injective left
R-module. Then Ext2�R/I� N� = 0 since �1� ⇔ �3�. It follows that Ext1�I� N� �
Ext2�R/I� N� = 0. Thus I is finitely presented by Enochs (1976). So R is left P-
coherent.

Now let 0 → N → M → Q → 0 be an exact sequence of right R-modules with
M and Q torsionfree. Then we get an exact sequence 0 → Q+ → M+ → N+ → 0.
Since Q+ and M+ are divisible, so is N+ by (1). Thus N is torsionfree.

�2� ⇒ �1� Let 0 → A → B → C → 0 be an exact sequence of left R-modules
with A and B divisible. Then we get an exact sequence 0 → C+ → B+ → A+ → 0.
Note that A+ and B+ are torsionfree by Theorem 2.7. Thus C+ is torsionfree by (2),
and so C is divisible, as desired. �

We will call R a left strongly P-coherent ring if every principal left ideal of R is
cyclically presented. Examples of such rings include not only von Neumann regular
rings, but also left morphic rings (a ring R is called left morphic by Nicholson and
Sánchez Campos, 2004, if l�a� � R/Ra for every a ∈ R) as well as left generalized
morphic rings (a ring R is called left generalized morphic by Zhu and Ding, 2007, if,
for every a ∈ R, there is b ∈ R with l�a� � R/Rb).

Lemma 4.10. Let R be a left strongly P-coherent ring. Then R satisfies the equivalent
conditions of Lemma 4.9.

Proof. LetM be a divisible left R-module and a ∈ R, then Ra is cyclically presented.
Thus Ext1�Ra�M� = 0, and hence Ext2�R/Ra�M� = 0. So Exti�R/Ra�M� = 0 for
every i ≥ 2 by induction. �

Lemma 4.11. Let R be a left strongly P-coherent ring. If M is an RD-injective left
R-module, then M has a left �-resolution · · · → Fn−2 → Fn−3 → · · · → F1 → F0 →
M → 0 with each Fi injective.

Proof. By Corollary 3.5, M has a �-cover f � F0 → M with F0 injective and
ker�f� D-injective. Let g � F1 → ker�f� be a �-cover of ker�f�. Consider the short

exact sequence 0 → F1
i→ E → L → 0 with E injective. Note that L is divisible by

Lemma 4.9(1), and so there exists j � E → ker�f� such that ji = g since ker�f� is D-
injective. Thus there exists h � E → F1 such that gh = j since g is a cover. Therefore
ghi = g, and hence hi is an isomorphism. It follows that F1 is injective. Note that
ker�g� is also D-injective. So we can continue the above process to get the desired
left �-resolution of M . �
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ON DIVISIBLE AND TORSIONFREE MODULES 723

Theorem 4.12. Consider the following conditions for a left strongly P-coherent ring
R and an integer n ≥ 2:

(1) gl left �-dimR� ≤ n− 2;
(2) gl right �-dimR� ≤ n;
(3) left �-dimN ≤ n− 2 for all RD-injective left R-modules N .

Then �1� ⇒ �2� ⇒ �3�.

Proof. �1� ⇒ �2� Let N be any left R-module. By (1), N has a left �-resolution

0 → Fn−2 · · · → F1 → F0 → N → 0	

Then we have the complex

0 → Hom�M� Fn−2� → Hom�M� Fn−3� → · · · → Hom�M� F0� → 0

for every left R-module M . Hence Extn+k�M�N� = 0 for all k ≥ −1. So gl right
�-dim R� ≤ n by Proposition 4.4.

�2� ⇒ �3� Let N be an RD-injective left R-module. Then N has a left
�-resolution:

· · · → Fn

f→ Fn−1

g→ Fn−2
h→ Fn−3

j→ Fn−4 → · · · → F1 → F0 → N → 0

with each Fi injective by Lemma 4.11. Put K = ker�g�, H = Fn−1/K. Let � � K →
Fn−1 be the inclusion and � � Fn−1 → H the canonical projection. Then there exists
p � Fn → K such that f = �p and there exists a monomorphism  � H → Fn−2 such
that g = �. Put L = Fn−2/im�� and let � � Fn−2 → L be the canonical projection.
Then there exists a homomorphism i � L → Fn−3 such that h = i�. So we have the
following commutative diagram:

By (2) and Proposition 4.4, Extn−1�K�N� = 0. Thus the sequence

Hom�K� Fn�
f∗−→ Hom�K� Fn−1�

g∗−→ Hom�K� Fn−2�

is exact. Since g∗��� = g� = 0, � ∈ ker�g∗� = im�f∗�. So � = f∗�l� = fl for some l ∈
Hom�K� Fn�. But f = �p, and hence � = �pl. Thus pl = 1 since � is monic, and so
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724 MAO AND DING

K is injective. It follows that H and L are injective. We claim that the complex

0 → L
i→ Fn−3 → · · · → F1 → F0 → N → 0

is a left �-resolution of N . In fact, it is enough to show that the complex

0 −→ Hom�G�L�
i∗−→ Hom�G� Fn−3�

j∗→ Hom�G� Fn−4�

is exact for every divisible left R-module G. Note that we have the following exact
commutative diagram:

So ker�i∗�∗� = ker�h∗� = im�g∗� = im�∗�∗� = im�∗� = ker��∗�. Let � ∈ ker�i∗�.
Since �∗ is epic, � = �∗��� for some � ∈ Hom�G� Fn−2�. Thus i∗�∗��� = 0, and hence
� = �∗��� = 0. It follows that i∗ is monic. On the other hand, ker�j∗� = im�h∗� =
im�i∗�. So we obtain the desired exact sequence. This completes the proof. �

Proposition 4.13. Let R be a left strongly P-coherent ring and n a fixed non-negative
integer. The following are equivalent for a left R-module M:

(1) right �-dimM ≤ n;
(2) Extn+k�R/Ra�M� = 0 for every a ∈ R and every k ≥ 1;
(3) Extn+1�R/Ra�M� = 0 for every a ∈ R;
(4) If 0 → M → F 0 → F 1 → · · · → Fn−1 → L → 0 is exact and each Fi is divisible,

then L is divisible.

Proof. �1� ⇒ �2� Since right �-dimM ≤ n, there is a right �-resolution of
the form 0 → M → F 0 → F 1 → · · · → Fn−1 → Fn → 0. So Extn+k�R/Ra�M� �
Extk�R/Ra� Fn� = 0 for every a ∈ R and every k ≥ 1 by Lemma 4.9(3).

�2� ⇒ �3� is trivial.

�3� ⇒ �4� Let 0 → M → F 0 → F 1 → · · · → Fn−1 → L → 0 be exact with
each Fi divisible. Then Ext1�R/Ra� L� � Extn+1�R/Ra�M� = 0 for every a ∈ R by
Lemma 4.9(3). So L is divisible.

�4� ⇒ �1� Let 0 → M → F 0 → F 1 → · · · → Fn−1 be a partial right �-
resolution of M . Then we get an exact sequence 0 → M → F 0 → F 1 → · · · →
Fn−1 → L → 0	 By (4), L is divisible. Thus right �-dimM ≤ n. �

Proposition 4.14. Let R be a left strongly P-coherent ring and n a nonnegative
integer. The following are equivalent for a right R-module N :
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ON DIVISIBLE AND TORSIONFREE MODULES 725

(1) left �� -dimN ≤ n;
(2) Torn+k�N�R/Ra� = 0 for every a ∈ R and every k ≥ 1;
(3) Torn+1�N�R/Ra� = 0 for every a ∈ R;
(4) If 0 → K → Fn−1 → · · · → F1 → F0 → N → 0 is exact with each Fi torsionfree,

then K is torsionfree.

Proof. The proof is analogous to that of Proposition 4.13 by Lemma 4.9(4). �

Theorem 4.15. The following are equivalent for a left strongly P-coherent ring R and
an integer n ≥ 0:

(1) gl right �-dimR� ≤ n;
(2) gl left �� -dim�R ≤ n;
(3) left �� -dimN ≤ n for every Warfield cotorsion right R-module N ;
(4) Extn+1�R/Ra�M� = 0 for every a ∈ R and every left R-module M;
(5) Torn+1�N�R/Ra� = 0 for every a ∈ R and every right R-module N ;
(6) Every cyclically presented left R-module has projective dimension ≤n;
(7) Every cyclically presented left R-module has flat dimension ≤n.

In this case, every Warfield cotorsion right R-module has injective dimension ≤n.

Proof. �1� ⇔ �4� and �2� ⇔ �5� follow from Propositions 4.13 and 4.14,
respectively.

�2� ⇒ �3� is trivial.

�3� ⇒ �2� Let M be any right R-module. Then, by Göbel and Trlifaj (2006,
Theorem 4.1.1(b)), there is an exact sequence 0 → M → N → L → 0� where N is
Warfield cotorsion and L is torsionfree. Thus we get an induced exact sequence
0 = Torn+2�L� R/Ra� → Torn+1�M�R/Ra� → Torn+1�N�R/Ra� = 0 for every a ∈ R
by (3) and Proposition 4.14. So left �� -dimM ≤ n and (2) follows.

�4� ⇒ �5� holds because Torn+1�N�R/Ra�
+ � Extn+1�R/Ra�N+� for every

a∈R and every right R-module N .

�5� ⇒ �4� holds because Extn+1�R/Ra�M�+ � Torn+1�M
+� R/Ra� for every

a∈R and every left R-module M by Rotman (1979, Theorem 9.51) and the remark
following it.

�4� ⇔ �6� and �5� ⇔ �7� are obvious.

Next we prove the last statement. Let M be a Warfield cotorsion right
R-module and N any right R-module. Then, by (5), there is an exact sequence
0→Fn → Pn−1 → · · · → P1 → P0 → N → 0 with Fn torsionfree and each Pi

projective, and so Extn+1�N�M� � Ext1�Fn�M� = 0. Thus M has injective dimension
≤n. �

Let � be a class of left R-modules and M a left R-module. Recall that a �-
cover � � C → M is said to have the unique mapping property (Ding, 1996) if for
any homomorphism f : C

′ → M with C
′ ∈ �, there is a unique homomorphism

g � C
′ →C such that �g = f .
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726 MAO AND DING

Corollary 4.16. The following are equivalent for a left strongly P-coherent ring R:

(1) gl right �-dimR� ≤ 2;
(2) gl left �� -dim�R ≤ 2;
(3) Every left R-module has a �-cover with the unique mapping property.

Proof. �1� ⇔ �2� holds by Theorem 4.15.

�1� ⇒ �3� Let M be a left R-module. Then M has a �-cover f � F → M by
Theorem 2.10. It is enough to show that, for any divisible left R-module G and any
homomorphism g � G → F such that fg = 0, we have g = 0. In fact, there exists � �
F/im�g� → M such that �� = f since im�g� ⊆ ker�f�, where � � F → F/im�g� is the
natural map. Consider the exact sequence 0 → ker�g� → G → F → F/im�g�→ 0.
Note that F/im�g� is divisible by (1) and Proposition 4.13. Thus there exists  �
F/im�g� → F such that � = f, and so f� = �� = f . Hence � is an isomorphism
since f is a cover. Therefore � is monic, and so g = 0.

�3� ⇒ �1� follows from Theorem 4.12 by letting n = 2. �

Theorem 4.17. The following are equivalent for a left strongly P-coherent ring R and
an integer n ≥ 0:

(1) right �-dimRR ≤ n;
(2) left �� -dim �RR�

+ ≤ n;
(3) right �-dimF ≤ n for every flat left R-module F ;
(4) left �� -dimE ≤ n for every injective right R-module E;
(5) Every right �� -resolution 0 → N → F 0 → F 1 → · · ·Fn−1 → Fn → · · · of every

right R-module N is exact at Fi for every i ≥ n− 1;
(6) Every left �-resolution · · · → Fn → Fn−1 → · · · → F1 → F0 → N → 0 of every

left R-module N is exact at Fi for every i ≥ n− 1.

Proof. �1� ⇒ �2� follows from Propositions 4.13 and 4.14 and the isomorphism

Extn+1�R/Ra� RR�
+ � Torn+1��RR�

+� R/Ra�

for every a ∈ R.

�2� ⇒ �4�	 Let E be an injective right R-module. Then E is isomorphic
to a direct summand of ��RR�

+. Note that Torn+1���RR�
+� R/Ra� �

�Torn+1��RR�
+� R/Ra� for every a ∈ R by Chen and Ding (1996, Lemma 2.10).

So left �� -dimE ≤ n by (2) and Proposition 4.14.

�4� ⇒ �3� Let F be a flat left R-module. Then F+ is injective and so left �� -
dimF+ ≤ n by (4). Since Extn+1�R/Ra, F�+ � Torn+1�F

+� R/Ra� for every a ∈ R, we
have right �-dimF ≤ n by Propositions 4.13 and 4.14.

�3� ⇒ �1� is trivial.

�1� ⇔ �6� holds by Corollary 4.6.

�2� ⇔ �5� comes from Corollary 4.8. �
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ON DIVISIBLE AND TORSIONFREE MODULES 727

Proposition 4.18. Let R be a left strongly P-coherent ring with wD�R� < �. Then
right �-dimRR = gl right �-dimR� = gl left �� -dim�R ≤ wD�R�.

Proof. It suffices to show that gl right �-dim R� ≤ right �-dim RR. We may
assume that right �-dim RR = m < �	 For any left R-module M , there exist an
integer n ≥ 0 and an exact sequence 0 → Fn → Fn−1 → Fn−2 → · · · → F0 → M→ 0
with each Fi flat by hypothesis. Since right �-dimFi ≤ m by Theorem 4.17,
i= 0� 1� 	 	 	 � n, we have right �-dimM ≤ m by Proposition 4.13. It follows that right
�-dim RR = gl right �-dim R�. �

5. WARFIELD COTORSION MODULES

It is easy to see that every right R-module is Warfield cotorsion if and
only if every torsionfree right R-module is projective by Göbel and Trlifaj (2006,
Theorem 4.1.1(b)). In addition, we have the following result, which has been proven
for commutative domains (see Lee, 2003, Theorem 3.3).

Theorem 5.1. The following are equivalent for a ring R:

(1) Every quotient of a Warfield cotorsion right R-module is Warfield cotorsion;
(2) All torsionfree right R-modules are of projective dimension ≤ 1;
(3) For any RD-exact sequence 0 → A → B → C → 0 of right R-modules with B

projective, A is projective.

Proof. �1� ⇒ �3� Let 0 → A → B → C → 0 be an RD-exact sequence of right R-
modules with B projective. Then C is torsionfree. Let M be any right R-module.
Then there is an exact sequence 0 → M → E → L → 0 with E injective. Note
that L is Warfield cotorsion by (1), and hence Ext2�C�M� � Ext1�C� L� = 0. Thus
pd�C�≤ 1, and so A is projective.

�3� ⇒ �2� Let M be any torsionfree right R-module. There exists an exact
sequence 0 → N → P → M → 0 with P projective. Note that the sequence is RD-
exact, so N is projective by (3). It follows that pd�M� ≤ 1.

�2� ⇒ �1� Let E be any Warfield cotorsion right R-module and K a
submodule of E. For any torsionfree right R-module F , the exactness of the
sequence 0 → K → E → E/K → 0 induces the exact sequence 0 = Ext1�F� E� →
Ext1�F� E/K� → Ext2�F�K�	 Note that Ext2�F�K� = 0 by (2), so Ext1�F� E/K� = 0,
as required. �

Next we characterize von Neumann regular rings.

Theorem 5.2. The following are equivalent for a ring R:

(1) R is a von Neumann regular ring;
(2) Every Warfield cotorsion right R-module is injective;
(3) Every Warfield cotorsion right R-module is divisible;
(4) R is a left strongly P-coherent ring and every Warfield cotorsion right R-module is

flat (torsionfree);
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728 MAO AND DING

(5) Every nonzero right R-module contains a nonzero torsionfree submodule;
(6) R is a left strongly P-coherent and left divisible ring with wD�R� < �;
(7) gl right �-dimR� = 0;
(8) gl left �� -dim�R = 0.

Proof. �1� ⇒ �6�, �2� ⇒ �3�, and �8� ⇒ �5� are clear.

�1� ⇔ �7� ⇔ �8� follow from Mao and Ding (2006, Corollary 2.6) or Dauns
and Fuchs (2004, Theorem 2.2).

�2� ⇔ �8� holds by Göbel and Trlifaj (2006, Theorem 4.1.1(b)).

�3� ⇒ �1� Let M be any Warfield cotorsion right R-module. For any
a∈R, Ext1�R/aR�M� = 0 by (3). Thus R/aR is torsionfree by Göbel and Trlifaj
(2006, Theorem 4.1.1(b)) and so it is projective by Dauns and Fuchs (2004,
Proposition 1.2). It follows that aR is a direct summand of R, which implies that R
is von Neumann regular.

�4� ⇔ �8� comes from Theorem 4.15.

�5� ⇒ �2� Assume that 0 → A → B → C → 0 is any right R-module exact
sequence. To simplify the notation, we think of A as a submodule of B. Let M be
a Warfield cotorsion right R-module and f � A → M be any homomorphism. By a
simple application of Zorn’s Lemma, we can find a g � D → M where A⊆D⊆B,
g�A = f� such that g cannot be extended to any submodule of B properly containing
D. We claim that D = B. Indeed, if D �= B, then B/D �= 0	 By (5), there exists a
nonzero submodule N/D of B/D such that N/D is torsionfree. Since M is Warfield
cotorsion, there is h � N → M such that h�D = g	 It is obvious that h extends g, this
yields the desired contradiction, and so M is injective.

�6� ⇒ �7� holds by Proposition 4.18. �

Finally, we give some new characterizations of PP rings. Recall that a ring R
is called left PP if every principal left ideal of R is projective. Obviously, any left PP
ring is left strongly P-coherent. But the converse is false in general. For example, �4

is a strongly P-coherent ring, but it is not a PP ring.

Theorem 5.3. The following are equivalent for a ring R:

(1) R is a left PP ring;
(2) Every quotient of every divisible left R-module is divisible;
(3) Every left R-module has a monic divisible cover;
(4) R is a left P-coherent ring and every D-injective left R-module is injective;
(5) R is a left strongly P-coherent ring and every D-injective left R-module is divisible;
(6) R is a left strongly P-coherent ring and gl right �-dimR� ≤ 1;
(7) R is a left strongly P-coherent ring and gl left �� -dim�R ≤ 1;
(8) R is a left strongly P-coherent ring and left �� -dimN ≤ 1 for every Warfield

cotorsion right R-module N .

Proof. �1� ⇔ �2� follows from Xue (1990, Theorem 2).
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ON DIVISIBLE AND TORSIONFREE MODULES 729

�2� ⇒ �3� R is left P-coherent since (1) and (2) are equivalent. Let M be a
left R-module, then M has a divisible cover f � E → M by Theorem 2.10. Note that
im�f� is divisible by (2), so im�f� → M is a monic divisible cover of M .

�3� ⇒ �2� Let B → C → 0 be an exact sequence of left R-modules with B
divisible. Since C has a monic divisible cover E → C by (3), we have C � E is
divisible.

�2� ⇒ �4� Let M be a D-injective left R-module. Then there is an exact
sequence 0 → M → E�M� → L → 0. Note that L is divisible by (2). So the exact
sequence is split, and hence M is injective.

�4� ⇒ �2� Let M be a quotient of a divisible left R-module. Suppose
f � F →M is a �-cover of M . Then f is an epimorphism. By Remark 3.2(1), ker�f�
is D-injective, and hence it is injective by (3). So M is divisible.

�4� ⇒ �5� is clear since (4) is equivalent to (1).

�5� ⇒ �4� Let M be a D-injective left R-module. Then there is an exact
sequence 0 → M → E�M� → L → 0, and so L is divisible by (5) and Lemma 4.9(1).
Thus the sequence is split, and hence M is injective.

�2� ⇒ �6� is clear.

�6� ⇒ �2� Let B be any divisible left R-module and A a submodule of B.
By (6), there is a right �-resolution 0 → A → M → N → 0. Consider the following
pushout diagram

Thus H is divisible, so is B/A by Lemma 4.9(1), as desired.
�6� ⇔ �7� ⇔ �8� follow from Theorem 4.15. �

We conclude this article with the following corollary.

Corollary 5.4. The following are equivalent for a ring R:

(1) R is a two-sided PP ring;
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730 MAO AND DING

(2) R is a two-sided strongly P-coherent ring and every D-flat right R-module is flat
(torsionfree);

(3) R is a two-sided strongly P-coherent ring and every finitely presented D-flat right
R-module is flat (torsionfree).

Proof. �1� ⇒ �2� Let M be a D-flat right R-module. Then M+ is D-injective by
Remark 3.2(2), and hence M+ is injective by Theorem 5.3. So M is flat.

�2� ⇒ �3� is trivial.

�3� ⇒ �1� Let a ∈ R. Then aR has a monic �� -preenvelope f � aR → T by
Theorem 2.7. There is an exact sequence P

g→ T → 0 with P projective. Since aR is
cyclically presented, there is h � aR → P such that f = gh. It is easy to check that
h is a monic �� -preenvelope of aR. We may choose P to be finitely generated.
So coker�h� is finitely presented D-flat by Proposition 3.7(2). Thus coker�h� is
torsionfree by (3), and hence aR is torsionfree by Lemma 4.9(2). Therefore aR is flat
by Shamsuddin (2001, p. 2047, 5(a)). Note that Ra is also flat by Jøndrup (1971). It
follows that R is a two-sided PP ring. �
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