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ABSTRACT

A ring R is called a right WPF-ring (weak PF-ring) if R is a semiperfect right

simple-injective ring with essential right socle. The class of right WPF-rings is
broader than that of right PF-rings. In this article, we study and provide several
characterizations of this new class of rings. We also show that if R is a left perfect,
left and right f-injective ring, then R is QF if and only if Soc2ðRÞ is a finitely

generated right R-module if and only if R=SocðRÞ is a finitely cogenerated left
R-module. Some known results are obtained as corollaries.

Key Words: Simple-injective ring; PF-ring; WPF-ring; QF-ring.

1. INTRODUCTION

All rings are associative with identity and all modules are unitary. The socle of a
module M is denoted by SocðMÞ. If R is a ring, we denote by SocðRRÞ ¼ Sr ,
SocðRRÞ ¼ Sl, ZðRRÞ ¼ Zr and JðRÞ ¼ J for the right socle, the left socle, the
right singular ideal and the Jacobson radical of R, respectively. The left and right
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annihilators of a subset X of R are denoted by lðXÞ and rðXÞ, respectively. We use
K �e N to indicate that K is an essential submodule of N . General background mate-
rial can be found in Anderson and Fuller (1974) and Faith (1976).

A ring R is called quasi-Frobenius, briefly QF , if it is right (or left) artinian and
right (or left) self-injective. R is said to be a right PF-ring if the right R-module RR is
an injective cogenerator in the category of right R-modules, equivalently, R is semi-
perfect, right self-injective with essential right socle. Osofsky (1966) proved that a
two-sided PF and one-sided perfect ring is QF . However, it is an open question
whether a right PF and one-sided perfect (or two-sided perfect, or even semiprimary)
ring is QF (see Faith, 1976, p. 218; 1990, Question 2.4). This question has been
studied in many papers such as Armendariz and Park (1992), Clark and Huynh
(1994a,b), Herbera and Shamsuddin (1996), Nicholson and Yousif (1997b, 2001a,b)
and Xue (1996). In this article we consider a generalization of right PF-rings,
namely the class of semiperfect right simple-injective rings with essential right socle
(called right WPF-rings). We provide examples of right WPF-rings which are not
right PF . We also show that many of the properties of right PF-rings are still valid
for right WPF-rings. Several characterizations of right WPF-rings are provided. For
instance, it is shown that R is a right WPF-ring if and only if R is semilocal, right
Kasch and right simple-injective if and only if R is right continuous, right finitely
cogenerated and right simple-injective. We prove that, for a right WPF-ring R, if R
is left semi-dual or J2 is a right annihilator of a finite subset of R, then Soc2ðRÞ is a
finitely generated left R-module. Finally, we show that if R is a left perfect, left and
right f-injective ring, then R is QF if and only if Soc2ðRÞ is a finitely generated
right R-module if and only if R=SocðRÞ is a finitely cogenerated left R-module.
Some known results appearing in Clark and Huynh (1994a), Nicholson and Yousif
(2001a,b) and Xue (1996) are obtained as corollaries.

2. WEAK PF-RINGS

We say that a ring R is right simple-injective if every homomorphism from
a right ideal of R to R with simple image can be given by left multiplication by an
element of R. R is said to be right Kasch if every simple right R-module can be
embedded in RR. R is called right P-injective (mininjective) if every right R-homo-
morphism from a principal (simple) right ideal to R is given by left multiplication
by an element of R.

Lemma 2.1. Let R be a right Kasch right simple-injective ring. Then

(1) rðlðIÞÞ ¼ I for every right ideal I of R. In particular, R is left P-injective.
(2) Sr ¼ Sl.
(3) lðJÞ is an essential left ideal.
(4) J ¼ rðSÞ ¼ rðlðJÞÞ, where S ¼ Sr ¼ Sl.
(5) Zl ¼ J .
(6) xR is minimal if and only if Rx is minimal for x 2 R.
(7) Minimal left and right ideals are annihilators.

522 Chen, Ding, and Yousif
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(8) The map K 7�! rðKÞ gives a bijection from the set of all minimal left
ideals of R onto the set of all maximal right ideals of R, whose inverse
map is given by I 7�! lðIÞ.

Proof. (1) and (2) follow from Nicholson and Yousif (1997a, Lemma 4.2).

(3) follows from Chen and Ding (2001, Lemma 2.1).

(4) Since R is right Kasch, J ¼ rðSÞ. So (4) holds.

(5) follows from (1) since R is left P-injective.

(6) and (7) follow since R is left and right mininjective.

(8) Let K ¼ Ra be a minimal left ideal. Then aR is a minimal right ideal, and so
rðKÞ ¼ rðaÞ is a maximal right ideal. Clearly, K ¼ lðrðKÞÞ since K is an annihilator.
Note that R is right Kasch and right simple-injective. Thus, for all maximal right
ideals T , lðTÞ is simple and T ¼ rðlðTÞÞ. So (8) follows.

Remark 1. The ring Z of integers is an example of a simple-injective ring which is
not P-injective (and hence not self-injective). In Nicholson and Yousif (1997b, Exam-
ple 4) and Björk (1970, Example, p. 70) examples are given of right P-injective rings
which are not right simple-injective.

A ring R is called right finitely cogenerated if Sr is finitely generated and
Sr �e RR. Recall that if M is a module, the submodules Soc1ðMÞ � Soc2ðMÞ � � � �
are defined by setting Soc1ðMÞ ¼ SocðMÞ and, if SocnðMÞ has been specified, by
Socnþ1ðMÞ=SocnðMÞ ¼ SocðM=SocnðMÞÞ. We also recall the following conditions:

C1: Every nonzero left ideal is essential in a direct summand of R.

C2: Every left ideal that is isomorphic to a direct summand of R is itself a
direct summand.

C3: If Re \ Rf ¼ 0, where e and f are idempotents in R, then Re� Rf is a
direct summand of R.

A ring R is called left continuous if it satisfies C1 and C2. If R satisfies only C1, it is
called a left CS ring. R is called left min-CS if C1 is required only for minimal left
ideals.

Lemma 2.2. Let R be semilocal, right Kasch and right simple-injective. Then

(1) R is left GPF , i.e., R is semiperfect, left P-injective and Sl �e RR.
(2) R is left and right finitely cogenerated.
(3) R is left and right Kasch.
(4) SocnðRRÞ ¼ SocnðRRÞ ¼ lðJnÞ ¼ rðJnÞ for n � 1.
(5) R is right continuous.

Proof. (1)–(3) follows from Chen and Ding (2001, Theorem 2.3) and its proof.

(4) Since R is semilocal, rðJÞ ¼ Sl ¼ Sr ¼ lðJÞ by Lemma 2.1 (2). It is easy to see
that rðJnÞ ¼ lðJnÞ for n � 1. By Goodearl and Warfield (1989, Proposition 3.14),
SocnðRRÞ ¼ rðJnÞ and SocnðRRÞ ¼ lðJnÞ. So SocnðRRÞ ¼ SocnðRRÞ ¼ lðJnÞ ¼ rðJnÞ
for n � 1.

Generalizations of PF-Rings 523
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(5) For every right ideal I of R, I ¼ rðlðIÞÞ by Lemma 2.1 (1). Since
Sl ¼ Sr �e RR, I ¼ rðlðIÞÞ is essential in a summand of RR by Nicholson and
Yousif (2001b, Lemma 3.11). So R is right CS. Since R is left Kasch, R is right C2
by Nicholson and Yousif (2001b, Proposition 4.1). So (5) holds.

Theorem 2.3. The following are equivalent for a ring R.

(1) R is semilocal, right Kasch and right simple-injective.
(2) R is semiperfect, right Kasch and right simple-injective.
(3) R is semiperfect, right simple-injective and Sr �e RR.
(4) R is semiperfect, right simple-injective and Sr �e RR.
(5) R is left finitely cogenerated, right Kasch and right simple-injective.
(6) R is left finite dimensional, right Kasch and right simple-injective.
(7) R is left and right Kasch, and right simple-injective.
(8) R is left min-CS, right Kasch and right simple-injective.
(9) R is right continuous, right finitely cogenerated and right simple-injective.

(10) R is right Kasch and right simple-injective and Sr is a finitely generated
left ideal.

Proof. (1) ) (2) by Lemma 2.2(1).

(2) ) (3) and (4) by Lemma 2.2(2) and (4).

(3) ) (1) By (3), R is right minfull (i.e., R is semiperfect, right mininjective and
SocðeRÞ 6¼ 0 for each local idempotent e 2 R), and so R is right Kasch by Nicholson
and Yousif (1997a, Theorem 3.7).

(4) ) (1) Since Sr �e RR, Sr \ Re 6¼ 0 for every local idempotent e 2 R.
Let 0 6¼ a 2 Sr \ Re, then a ¼ ae 2 Sre. Thus Sre 6¼ 0, and so R is right Kasch by
Nicholson and Yousif (1997a, Proposition 3.3).

(1) ) (5) by Lemma 2.2(2).

(5) ) (6) is clear.

(6) ) (7) Since R is right Kasch, R is left C2. Hence R is semilocal by
Nicholson and Yousif (2001b, Lemma 3.6). So R is left Kasch by Lemma 2.2(3).

(7) ) (1) By Nicholson and Yousif (1997a, Lemma 4.2), every right ideal is a
right annihilator. Since R is left Kasch, R is semilocal by Gómez Pardo and Guil
Asensio (1998, Theorem 2.5).

(1) ) (8) R is semiperfect, left finitely cogenerated and Sr ¼ Sl by Lemma 2.2.
Thus Sr �e RR, and so lðrðIÞÞ is essential in a summand of RR for every left ideal I of
R by Nicholson and Yousif (2001b, Lemma 3.11). Since every minimal left ideal is a
left annihilator by Lemma 2.1(7), R is left min-CS. So (8) holds.

(1) ) (9) By Lemma 2.2(2) and (5).

(8) ) (2) Let M be a maximal right ideal, then lðMÞ is a minimal left ideal since
R is right Kasch and right mininjective. Hence lðMÞ is essential in a summand of RR

by (8). Note that R is right Kasch, and so R is semiperfect by Nicholson and Yousif
(2001b, Proposition 3.14).

(9)) (3) Since R is right finitely cogenerated, Sr �e RR. Next we’ll show that R
is semiperfect. By hypothesis, Sr is finitely generated. Let Sr ¼ K1 � K2 � � � � � Kn,

524 Chen, Ding, and Yousif
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where each Ki is a simple right ideal, i ¼ 1; 2; . . . ; n. Since R is right min-CS,
there exist idempotents ei 2 R such that Ki �e eiR, i ¼ 1; 2; . . . ; n. Since
fK1;K2; . . . ;Kng is an independent family, so is fe1R; e2R; . . . ; enRg by Goodearl
(1976, Proposition 1.1(d)).

Note that R is right C2, and so it is right C3. Hence T ¼ e1R� e2R� � � � � enR

is a direct summand. Since Sr � T � R and Sr �e RR, T �e RR. So T ¼ R,
i.e., R ¼ e1R� e2R� � � � � enR.

Note that RR is finite dimensional and C2, and hence monomorphisms RR ! RR

are epic by Nicholson and Yousif (2001b, Lemma 3.6). Let 0 6¼ K be a submodule of
eiR. Since Ki �e eiR, K \ Ki 6¼ 0. Note that Ki is simple, and so K \ Ki ¼ Ki, i.e.,
Ki � K. Similarly, for any nonzero submodule L of eiR, we have Ki � L. Therefore
0 6¼ Ki � K \ L, and hence eiR is uniform for each i ¼ 1; 2; . . . ; n. Consequently R is
semiperfect by Nicholson and Yousif (2001b, Lemma 3.13).

(1) ) (10) By Lemma 2.1(2) and Lemma 2.2(2).

(10) ) (1) Let Sr ¼ Ra1 þ Ra2 þ � � � þ Ran, where Rai is a simple left ideal,
i ¼ 1; 2; . . . ; n. Since R is right Kasch, J ¼ rðSrÞ ¼

Tn
i¼1 rðaiÞ. Note that each

rðaiÞ ¼ rðRaiÞ is a maximal right ideal by Lemma 2.1(8). So R is semilocal.

Definition 2.4. A ring R is called a right WPF-ring (weak PF-ring) if it satisfies the
equivalent conditions in Theorem 2.3.

Remark 2. A ring R is called right PF if and only if R is semiperfect, right self-
injective and Sr �e RR. Clearly every right PF-ring is right WPF , however the
converse is not true in general. There is an example of a commutative WPF-ring with
J2 ¼ J which is not PF (see Nicholson and Yousif, 1997b, Example 3).

Recall that a ring R is a right IN -ring (Camillo et al., 2000) if lðA \ BÞ ¼
lðAÞ þ lðBÞ for all right ideals A and B of R. Now we have the following result.

Theorem 2.5. The following are equivalent for a ring R.

(1) R is a right Kasch, right P-injective and right IN -ring.
(2) R is a semiperfect, right P-injective, right IN -ring and Sr �e RR.
(3) R is a right finitely cogenerated, right P-injective and right IN -ring.

Proof. (1)) (3) By Camillo et al. (2000, Theorem 5), a right IN -ring is rightCS. So
R is right finitely cogenerated byGómez Pardo andGuil Asensio (1998, Corollary 3.8).

(3) ) (2) Since R is right finitely cogenerated by (3), R is right finite
dimensional and Sr �e RR. Since a right P-injective ring is right C2, R is semilocal
by Nicholson and Yousif (2001b, Lemma 3.6). Note that R is right continuous by
Chen et al. (2001, Lemma 2.12), and so it is semiregular. Thus R is semiperfect.

(2) ) (1) R is right GPF by (2), and so R is right Kasch by Nicholson and
Yousif (1995, Corollary 2.3).

Remark 3. Every right P-injective and right IN -ring is right simple-injective by
Chen et al. (2001, Lemma 2.12). Hence every right Kasch, right P-injective and right

Generalizations of PF-Rings 525
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IN -ring is a right WPF-ring by Theorem 2.5, and in general need not be right PF (see
Hajarnavis and Norton, 1985).

Lemma 2.6. Let R be a semilocal ring. Then J=J2 ¼ L
i2I �jijiR, where �jjiR is a simple

right R-module and ji can be chosen in J for each i 2 I, �aa ¼ aþ J2 for any a 2 R,
J ¼ P

i2I jiRþ J2 and J2 ¼ T
i2I Ai with Ai ¼

P
i6¼k2I jkRþ J2, i 2 I.

Proof. Since R is semilocal, J=J2 is a semisimple right R=J-module. Hence J=J2 is
a semisimple right R-module. Let J=J2 ¼ L

i2I �jijiR, where �jjiR is a simple right
R-module and ji can be chosen in J for each i 2 I. Clearly J ¼ P

i2I jiRþ J2.
Now let Ai ¼

P
i6¼k2I jkRþ J2, then J2 � Ai, i 2 I. It is obvious that J2 � T

i2I Ai.
Conversely, let x 2 T

i2I Ai. Then x 2 Ai for all i 2 I. Write x ¼ P
i6¼k2I jkrk þ yi,

where yi 2 J2. Then �xx ¼ P
i6¼k2I �jkjkrk. For any k 6¼ i, �xx ¼ P

k 6¼t2I �jtjtst since x 2 Ak,

and so
P

i6¼k2I �jkjkrk ¼
P

k 6¼t2I �jtjtst. Thus �jkjkrk ¼ 0, i.e., jkrk 2 J2 for all k 6¼ i. Therefore

x ¼ P
i 6¼k2I jkrk þ yi 2 J2. So J2 ¼ T

i2I Ai.

Lemma 2.7. Let R be right simple-injective and Sr a finitely generated right ideal.
If K � I is a pair of right ideals such that I=K is semisimple, then

lðKÞ=lðIÞ ffi HomRðI=K;RÞ
Proof. The proof is motivated by that of Herbera and Shamsuddin (1996, Lemma 2).
Let

f : lðKÞ=lðIÞ ! HomRðI=K;RÞ
be the canonical map given by

fðr þ lðIÞÞðxþ KÞ ¼ rx; for r 2 lðKÞ; x 2 I:

It is easy to see f is a monomorphism. To show that f is an epimorphism, let
f 2 ðI=KÞ� ¼ HomRðI=K;RÞ. Since I=K is semisimple, so is Im(f). Thus Im(fÞ � Sr ,
and hence Im(f) is a direct summand of Sr . By hypothesis, we may assume that
Im(f)¼ Ln

i¼1 Si, where each Si is a simple right R-module. Let p : I ! I=K be the
canonical map and pi : ImðfÞ ! Si be the ith projection, i ¼ 1; 2; . . . ; n. Then
Im(pifp)¼ Si is simple, and so there exists ri 2 R such that pifpðxÞ ¼ rix for all
x 2 I. Put r ¼ Pn

i¼1 ri, then

fðxþ KÞ ¼ fpðxÞ ¼
Xn

i¼1

pifpðxÞ ¼
Xn

i¼1

rix ¼ rx

for all x 2 I. Thus r 2 lðKÞ, and hence f ¼ fðr þ lðIÞÞ. So f is an isomorphism.

Recall that a ring is called left semi-dual (see Xue, 1996) if the sum of left
annihilators is still a left annihilator.

Theorem 2.8. Let R be a right WPF-ring. Assume either

(1) R is left semi-dual, or
(2) J2 ¼ rðAÞ for a finite subset A of R.

526 Chen, Ding, and Yousif
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Then J=J2 is a finitely generated right R-module and Soc2ðRÞ is a finitely generated
left R-module.

Proof. (1) By Lemma 2.6, J=J2 ¼ L
i2I �jijiR, where each �jjiR is a simple right

R-module and J2 ¼ T
i2I Ai with Ai ¼

P
i6¼k2I jkRþ J2, i 2 I. Since R is right Kasch,

there exist monomorphisms gi : �jijiR ! R, i 2 I. Let g ¼ L
i2I gi : J=J

2 ! R and
p : J ! J=J2 be the canonical map. Put f ¼ gp, then fðjiÞ ¼ gð�jijiÞ ¼ gið�jijiÞ 6¼ 0,
i 2 I, and Im(f)=Im(gÞ � SocðRRÞ ¼ Sr . Since Sr is a finitely generated semisimple
right R-module, so is Im(f). Note that R is right simple-injective. Hence f is given
by a left multiplication by an element of R by the proof of Lemma 2.7, i.e., there
exists r 2 R such that fðjÞ ¼ rj for all j 2 J . Thus rji ¼ fðjiÞ 6¼ 0, i 2 I, and
rJ2 ¼ fðJ2Þ ¼ 0, and so r 2 lðJ2Þ. Since R is left semi-dual,

P
i2I lðAiÞ ¼ lðKÞ

for some right ideal K of R. Therefore K ¼ rðlðKÞÞ ¼ rðPi2I lðAiÞÞ ¼ \rðlðAiÞÞ
¼ \Ai ¼ J2, and hence lðJ2Þ ¼ lðKÞ ¼ P

i2I lðAiÞ. Note that r 2 lðJ2Þ. Write
r ¼ r1 þ r2 þ � � � þ rn, where rt 2 lðAitÞ, t ¼ 1; 2; . . . ; n. If jIj ¼ 1, then there exists
k 2 Infi1; i2; . . . ; ing. Hence 0 6¼ rjk ¼ ðr1 þ r2 þ � � � þ rnÞjk. But k 6¼ it, then
jk 2 Ait , and so rtjk ¼ 0, t ¼ 1; 2; . . . ; n. This is a contradiction. Consequently
jIj < 1, i.e., J=J2 is a finitely generated right R-module.

(2) Let J2 ¼ rða1; a2; . . . ; anÞ. Define f : R=J2 ! Rn
R via fðaþ J2Þ ¼

ða1a; a2a; . . . ; anaÞ for a 2 R. Then f is a monomorphism. Hence we may regard
J=J2 as a submodule of Rn

R. Note that R is left GPF by Lemma 2.2, and so
J=J2 ¼ SocðJ=J2Þ � SocðRn

RÞ ¼ ðSocðRRÞÞn ¼ Snr . Since Sr is finitely generated by
Chen and Ding (1999, Theorem 2.8), so is ðSrÞn. As a direct summand of ðSrÞn,
J=J2 is a finitely generated right R-module.

Let J=J2 ¼ Ln
i¼1 Mi, where eachMi is a simple right R-module. Note that a right

WPF-ring is right Kasch and right mininjective, and so each ðMiÞ� ¼ HomRðMi;RÞ is
a simple left R-module. Let S2 ¼ Soc2ðRRÞ ¼ Soc2ðRRÞ and S ¼ SocðRRÞ ¼ SocðRRÞ,
then S2=S ¼ lðJ2Þ=lðJÞ ffi HomðJ=J2;RÞ ffi Ln

i¼1ðMiÞ� is a finitely generated left
R-module by Lemmas 2.2 and 2.7. Since S is a finitely generated left R-module,
so is S2.

Lemma 2.9. Let R be a left (resp. right) perfect ring. If J=J2 is a finitely generated
right (resp. left) R-module, then R is right (resp. left) artinian.

Proof. See Rowen (1988, Exercise 8, p. 321) or Osofsky (1966, Lemma 11).

Corollary 2.10. Let R be a left perfect and right simple-injective ring. Assume
either

(1) R is left semi-dual, or
(2) J2 ¼ rðAÞ for a finite subset A of R.

Then R is QF .

Proof. Clearly R is rightWPF , and so J=J2 is a finitely generated right R-module by
Theorem 2.8. Hence R is right artinian by Lemma 2.9. Thus R is QF by Nicholson
and Yousif (1997a, Corollary 4.8) since it is left and right mininjective.

Generalizations of PF-Rings 527
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Remark 4. In general, if R is a left perfect left GPF ring with J2 ¼ rðAÞ for a finite
subset A of R, R need not be QF . In fact, there is a two-sided perfect left P-injective
ring and J2 ¼ 0 ¼ rð1Þ which is not QF (see Rutter, 1975, Example 1).

3. ON F-INJECTIVE PERFECT RINGS

A ring R is called right f-injective (2-injective) if every right R-homomorphism
from a finitely generated (2-generated) right ideal of R to R extends to an endo-
morphism of R.

Lemma 3.1. Let R be a semilocal, right Kasch and right 2-injective ring. Then

(1) R is left and right Kasch.
(2) R is left and right P-injective.
(3) Sr ¼ Sl.
(4) J ¼ lðSÞ ¼ rðSÞ, where S ¼ Sr ¼ Sl.
(5) S ¼ lðJÞ ¼ rðJÞ, where S ¼ Sr ¼ Sl.
(6) R is left and right finitely cogenerated.
(7) J ¼ rðk1; k2; . . . ; knÞ ¼ lðm1;m2; . . . ;msÞ, where ki; mj 2 R, i ¼ 1; 2; . . . ; n

and j ¼ 1; 2; . . . ; s. Moreover the elements ki and mj can be chosen so that
Rki, kiR, Rmj and mjR are simple.

Proof. Since R is right Kasch and right 2-injective, R is left P-injective by
Nicholson and Yousif (1995, Lemma 2.2). Thus R is left and right P-injective, and
so Sr ¼ Sl. It follows that R is left and right Kasch by Nicholson and Yousif
(2001b, Lemma 3.3) (for R is two-sided mininjective). By Chen and Ding (1999,
Theorem 2.8), R is left and right finitely cogenerated. Since R is semilocal, lðJÞ ¼
SocðRRÞ ¼ S ¼ SocðRRÞ ¼ rðJÞ. Since R is left Kasch, J ¼ lðSlÞ. Similarly, J ¼ rðSrÞ.
Since R is right finitely cogenerated, Sr is finitely generated. Let Sr ¼ m1Rþ
m2Rþ � � � þmsR, where eachmjR is a simple right ideal, j ¼ 1; 2; . . . ; s. SinceR is right
P-injective, each Rmj is a simple left ideal. Clearly, J ¼ lðm1;m2; . . . ;msÞ. Similarly,
J ¼ rðk1; k2; . . . ; knÞ, where both Rki and kiR are simple, i ¼ 1; 2; . . . ; n.

Corollary 3.2. The following are equivalent for a ring R.

(1) R is semilocal, right 2-injective and right Kasch.
(2) R is semilocal, right 2-injective and J ¼ rðk1; k2; . . . ; knÞ, where ki 2 R,

i ¼ 1; 2; . . . ; n.
(3) R is right finitely cogenerated, right 2-injective and right Kasch.
(4) R is left finitely cogenerated, right 2-injective and right Kasch.
(5) R is right finite dimensional, right 2-injective and right Kasch.
(6) R is left finite dimensional, right 2-injective and right Kasch.

Proof. (1) ) (2) follows from Lemma 3.1(7).

(2) ) (1). Let K be a simple right R-module. Then K is a simple right R=J-
module. Since R=J is semisimple, there is a monic R=J-homomorphism
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f : K ! R=J . Clearly, f is a monic R-homomorphism. By hypothesis,
J ¼ rðk1; k2; . . . ; knÞ, and so there is a monomorphism c : R=J ! Rn. Hence
f ¼ cf is monic. Let pi : Rn ! R be the ith projection, i ¼ 1; 2; . . . ; n. Then it is easy
to see pif is monic for some i. So K embeds in RR.

(1) ) (3) and (4). By Lemma 3.1(6).

(3) ) (5) Clear.

(5) ) (1) follows since a right P-injective and right finite dimensinal ring is
semilocal by Nicholson and Yousif (1995, Theorem 3.3).

(4) ) (6) Obvious.

(6)) (1) A right Kasch left finite dimensinal ring is semilocal by Gómez Pardo
and Guil Asensio (1998, Proposition 2.3).

Remark 5. Since right FP-injective rings are right 2-injective, the above corollary
extends the work in Nicholson and Yousif (2001b, Theorem 3.7 (1)(3)(5)(7)).

Theorem 3.3. The following are equivalent for a ring R.

(1) R is semiperfect, right 2-injective and right Kasch.
(2) R is semiperfect, right 2-injective and Sr �e RR.
(3) R is semiperfect, right 2-injective and Sr �e RR.
(4) R is left min-CS, right 2-injective and right Kasch.
(5) R is right min-CS, right 2-injective and right finitely cogenerated.

Proof. (1) ) (2) and (3) R is left and right finitely cogenerated and Sr ¼ Sl by
Lemma 3.1. So (2) and (3) follow.

(2) ) (1) R is right GPF by hypothesis, and so R is left and right Kasch by
Nicholson and Yousif (1995, Corollary 2.3).

(3) ) (1) By the proof of (4) ) (1) in Theorem 2.3.

(1) ) (4) and (5) R is left and right finitely cogenerated and Sr ¼ Sl by
Lemma 3.1. Thus Sl �e RR and Sr �e RR, and so rðlðKÞÞ is essential in a summand
of RR and lðrðIÞÞ is essential in a summand of RR for every right ideal K and every
left ideal I of R by Nicholson and Yousif (2001b, Lemma 3.11). Note that R is left
and right P-injective by Lemma 3.1. Hence aR ¼ rðlðaÞÞ is essential in a summand
of RR and Ra ¼ lðrðaÞÞ is essential in a summand of RR for any a 2 R. In particular,
R is left and right min-CS.

(4) ) (1) Since R is right Kasch and right mininjective, lðMÞ is a minimal left
ideal for every maximal right ideal M. Thus lðMÞ is essential in a summand of RR,
and so R is semiperfect by Nicholson and Yousif (2001b, Proposition 3.14).

(5) ) (2) This can be proven in the same way as in the proof of (9) ) (3) in
Theorem 2.3 by noting that a right 2-injective ring is a right C2-ring.

Lemma 3.4. Let R be a semiperfect, right f-injective ring with Sr �e RR. Then

(1) R is left and right Kasch.
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(2) R is left and right finitely cogenerated and Sr ¼ Sl.
(3) Every finitely generated right ideal of R is a right annihilator.

Proof. R is a right GPF ring by hypothesis, and so it is right Kasch by Nicholson
and Yousif (1995, Corollary 2.3).

(1) and (2) follow from Lemma 3.1.

(3) holds by Björk (1970, Proposition 4.2) or Chen et al. (2001, Corollary 2.8(3)).

The next theorem extends the work in Clark and Huynh (1994a, Corollary) and
Xue (1996, Proposition 9).

Theorem 3.5. Let R be a one-sided perfect and left f-injective ring with Sl �e RR.
If rðJÞ ¼ rðAÞ for some finitely generated left ideal A, then R is QF .

Proof. Since R is semilocal, rðJÞ ¼ Sl. Hence J ¼ lðSlÞ ¼ lðrðJÞÞ ¼ lðrðAÞÞ ¼ A

is a finitely generated left ideal by the left version of Lemma 3.4. Thus J is nilpotent
by Lam (1995, Exercise 23.1, p. 259) or Kasch (1982, Exercise 9, p. 305), and hence
R is semiprimary. So R is left artinian by Lemma 2.9. Note that R is left f-injective.
Therefore R is QF .

Recall that a ring R is called an FP-ring (Nicholson and Yousif, 2001a) if R is
semiperfect, right FP-injective and Sr �e RR; or equivalently, if R is semiperfect,
left FP-injective and Sl �e RR.

Corollary 3.6. Let R be a one-sided perfect FP-ring. If rðJÞ ¼ rðAÞ for some
finitely generated left ideal A, then R is QF .

Corollary 3.7. Let R be a left perfect and right FP-injective (or right P-injective
and right IN) ring. If rðJÞ ¼ rðAÞ for some finitely generated left ideal A, then R

is QF .

Proof. If R is a left perfect and right FP-injective ring, then R is an FP-ring.
If R is a left perfect, right P-injective and right IN , then R is right WPF . Thus R is

left f-injective by Chen et al. (2001, Theorem 2.13) and left finitely cogenerated by
Theorem 2.3. So the result follows from Theorem 3.5.

Lemma 3.8. Let R be a semiperfect, left and right f-injective ring with Sr �e RR.
Then J is finitely generated as a left ideal if and only if R=S is finitely cogenerated
as a right R-module, where S ¼ Sr ¼ Sl.

Proof. ‘‘(’’. By Lemma 3.4(2), S is a finitely generated right ideal. Thus S is a
right annihilator by Lemma 3.4(3), and so R=S is a torsionless right R-module.
Since R=S is a finitely cogenerated right R-module, there is a monomorphism
f : R=S ! Rn for some positive integer n. Let fð1þ SÞ ¼ ða1; a2; . . . ; anÞ, then
S ¼ rða1; a2; . . . ; anÞ. Since R is left Kasch and left f-injective, J ¼ lðSlÞ ¼ lðSÞ
¼ lðrða1; a2; . . . ; anÞÞ ¼ Ra1 þ Ra2 þ � � � þ Ran is a finitely generated left ideal.
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‘‘)’’. Let J ¼ Rx1 þ Rx2 þ � � � þ Rxn. Since R is semilocal, S ¼ rðJÞ ¼
rðx1; x2; . . . ; xnÞ. Hence R=S embeds in the right R-module Rn. Since R is a right
finitely cogenerated right R-module, so is Rn. Therefore the result follows.

The following theorem extends the work in Clark and Huynh (1994a, Theorem),
Nicholson and Yousif (2001a, Theorem 7) and Xue (1996, Theorem 7).

Theorem 3.9. Let R be a left perfect, left and right f-injective ring. Then

(1) R is QF if and only if Soc2ðRÞ is a finitely generated right R-module.
(2) R is QF if and only if R=S is a finitely cogenerated left R-module, where

S ¼ Sr ¼ Sl.
(3) If R is also right perfect, then R is QF if and only if Soc2ðRÞ is a finitely

generated left R-module.

Proof. (1) Since R is left perfect, it is right semiartinian by Stenström (1975).
Hence R=S has an essential right socle. Note that SocðR=SÞ ¼ Soc2ðRÞ=S. If
Soc2ðRÞ is a finitely generated right R-module, so is SocðR=SÞ. Thus R=S is a finitely
cogenerated right R-module, and so J is a finitely generated left ideal by Lemma 3.8.
Therefore J is nilpotent by Lam (1995, Exercise 23.1, p. 259) or Kasch (1982,
Exercise 9, p. 305), and hence R is semiprimary. So R is left artinian by
Lemma 2.9. Since R is left f-injective, it is injective. Thus R is QF .

(2) If R=S is a finitely cogenerated left R-module, then J is a finitely generated
right ideal by Lemmas 3.4 and 3.8. Note that R is left perfect, and so R is right
artinian by Lemma 2.9. Clearly R is QF .

(3) If R is also right perfect, it is left semiartinian. Thus R=S has an essential left
socle. If Soc2ðRÞ is a finitely generated left R-module, so is SocðR=SÞ. Thus R=S is a
finitely cogenerated left R-module. Therefore R is QF by (2).

Corollary 3.10. Let R be a left perfect, right P-injective and right IN -ring.
Then

(1) R is QF if and only if Soc2ðRÞ is a finitely generated right R-module.
(2) R is QF if and only if R=S is a finitely cogenerated left R-module.
(3) If R is also right perfect, then R is QF if and only if Soc2ðRÞ is a finitely

generated left R-module.

Proof. It is clear that R is right f-injective. R is left f-injective by the proof of
Corollary 3.7.

Corollary 3.11. Let R be a left perfect, right P-injective and right IN -ring. If J=J2

is countably generated as a left R-module, then R is QF .

Proof. The result follows from Corollary 3.10 and Nicholson and Yousif (1997b,
Remark (1), p. 983).
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