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Abstract Let C be a class of R-modules closed under

isomorphisms and finite direct sums. We first show that

the finite direct sum of almost C-precovers is an almost

C-precover and the direct sum of an almost C-cover and

a weak C-cover is a weak C-cover. Then the notion of

almost C-preenvelopes is introduced and studied.
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1. Introduction

Throughout this paper, R is an associative ring with identity and all modules

are unitary right R-modules. N ≤ M , N ≤e M and N ≪ M means that N is a

submodule, an essential submodule and a superfluous submodule of M , respectively.

The class C ofR-modules are assumed to contain 0 and be closed under isomorphisms

and finite direct sums. General background materials can be found in [1, 2].

Recall that an R-homomorphism φ : M → F with F ∈ C is called a C-preenvelope

of a module M [3] if for any R-homomorphism f : M → F
′

where F
′

∈ C, there is

an R-homomorphism g : F → F
′

such that gφ = f . If, furthermore, when F
′

= F

and f = φ, the only such g are automorphisms of F , then φ is called a C-envelope of

M . If C is the class of injective modules, then we get the usual injective envelopes. If

envelopes exist, they are unique up to isomorphism. Dually we have the concepts of

C-precovers and C-covers. Recently, the notions of almost C-(pre)covers and weak C-

covers were introduced in [4] as generalizations of (pre)covers. In the present paper,

we first show that the finite direct sum of weak C-precovers is a weak C-precover and
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the direct sum of an almost C-cover and a weak C-cover is a weak C-cover. Then

the notion of almost C-preenvelopes is defined as the dual of almost C-precovers and

some properties are given.

2. Properties of almost precovers

Recall that an R-module homomorphism f : M → N is an essential monomor-

phism if f is monic and imf ≤e N ; f is a superfluous epimorphism if f is epic and

kerf ≪ M (see [1]).

Following [4], an R-homomorphism ϕ : X → M with X ∈ C is called an almost

C-precover of M if for each F ∈ C and each R-homomorphism f : F → M , there is

an essential submodule F
′

of F with F
′

∈ C, and an R-homomorphism g : F
′

→ X

such that ϕg = fι, where ι : F
′

→ F is the inclusion map. It is easy to see that

ϕ : X → M is an almost C-precover if and only if for each F ∈ C and each R-

homomorphism f : F → M , there is an essential monomorphism ψ : E → F with

E ∈ C and an R-homomorphism g : E → X such that ϕg = fψ.

Lemma 2.1. Consider the following pullback diagram:

A
β

//

α

��

B

g

��
C

f

// M

where A = {(c, b)|f(c) = g(b), c ∈ C, b ∈ B}, α(c, b) = c, β(c, b) = b.

(1) If g is an essential monomorphism and f a monomorphism, then α is an

essential monomorphism.

(2) If f and g are both essential monomorphisms, then α and β are both essential

monomorphisms.

Proof. (1). Since g is a monomorphism, α is also a monomorphism by the property

of a pullback. So it is enough to show that α is essential. Suppose there exists

0 6= N ≤ C such that (imα) ∩ N = 0. Since f is a monomorphism, f(N) 6= 0. It

follows that (img) ∩ f(N) 6= 0 since g is an essential monomorphism. Hence there

exist 0 6= a ∈ N , 0 6= b ∈ B such that f(a) = g(b) 6= 0, and so (a, b) ∈ A. Since

α(a, b) = a, a ∈ (imα) ∩N = 0. So a = 0, a contradiction.

(2) follows from (1). �

Recall that a class C of modules is called weakly hereditary [4] if for any 0 6= M ∈

C, every non-zero submodule of M contains an essential submodule from C.
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It is well known that, if ϕi : Xi → Mi, i = 1, 2, . . . , n, are C-precovers, then

⊕ϕi : ⊕Xi → ⊕Mi is a C-precover [2]. Here we have the following

Theorem 2.2. Let C be weakly hereditary. If ϕi : Xi → Mi, i = 1, 2, . . . , n, are

almost C-precovers. Then ⊕ϕi : ⊕Xi → ⊕Mi is an almost C-precover.

Proof. It is enough to show the case n = 2. Suppose f : D → M1 ⊕ M2 is any

R-homomorphism with D ∈ C. Let πi : M1 ⊕M2 →Mi be the canonical projection,

i = 1, 2. Since each ϕi : Xi → Mi is an almost C-precover, there exist Bi ≤e D

with Bi ∈ C and R-homomorphisms ψi : Bi → Xi such that the following diagram

is commutative:

Bi

ιi //

ψi

��

D

πif

��
Xi ϕi

// Mi

where ιi : Bi → D is the inclusion map, i = 1, 2.

Consider the following pullback diagram:

0

��

0

��
0 // A

β
//

α

��

B2

ι2

��
0 // B1 ι1

// D

By Lemma 2.1, α is essential. So ι1α = ι2β : A → D is essential by [1, Exercise

5.14]. Let a ∈ A. Note that (ϕ1⊕ϕ2)(ψ1α⊕ψ2β)(a) = (ϕ1⊕ϕ2)(ψ1α(a), ψ2β(a)) =

(ϕ1ψ1α(a), ϕ2ψ2β(a)) = (π1fι1α(a), π2fι2β(a)) = fι1α(a). Thus (ϕ1 ⊕ ϕ2)(ψ1α ⊕

ψ2β) = fι1α. Since C is weakly hereditary, there exists A
′

≤e A with A
′

∈ C. So we

have the following commutative diagram:

A
′

(ψ1α⊕ψ2β)λ

��

ι1αλ // D

f

��
X1 ⊕X2

ϕ1⊕ϕ2

// M1 ⊕M2

where λ : A
′

→ A is the inclusion map. Note that ι1αλ is an essential monomor-

phism, therefore ϕ1⊕ϕ2 : X1⊕X2 →M1⊕M2 is an almost C-precover, as desired. �
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Recall that an almost C-precover ϕ : G → M of a module M is called a weak

C-cover [4] if each endomorphism f of G with ϕf = ϕ is an essential monomorphism,

and ϕ is called an almost C-cover [4] if each endomorphism f of G with ϕf = ϕ is

an automorphism of G.

It is known that if ϕi : Xi → Mi, i = 1, 2, are C-covers, then ϕ1 ⊕ϕ2 : X1 ⊕X2 →

M1 ⊕M2 is a C-cover [2]. Here we have

Theorem 2.3. Let C be weakly hereditary. If ϕ1 : X1 → M1 is an almost C-cover,

ϕ2 : X2 → M2 is a weak C-cover, then ϕ1 ⊕ ϕ2 : X1 ⊕ X2 → M1 ⊕M2 is a weak

C-cover.

Proof. By Theorem 2.2, ϕ1⊕ϕ2 : X1⊕X2 →M1⊕M2 is an almost C-precover. Now

suppose that f is an endomorphism of X1 ⊕ X2 such that ϕ1 ⊕ ϕ2 = (ϕ1 ⊕ ϕ2)f .

We shall show that f is an essential monomorphism. Let πi : X1 ⊕ X2 → Xi be

the canonical projection and ιi : Xi → X1 ⊕ X2 the canonical injection, i = 1, 2.

For convenience we express the elements in X1 ⊕ X2 as columns

(

x1

x2

)

for x1 ∈

X1, x2 ∈ X2. Then ϕ1 ⊕ ϕ2 =

(

ϕ1 0

0 ϕ2

)

, f =

(

f11 f12

f21 f22

)

, where f11 = π1fι1,

f12 = π1fι2, f21 = π2fι1, f22 = π2fι2. Note that ϕ1 ⊕ ϕ2 = (ϕ1 ⊕ ϕ2)f means

that ϕ1f11 = ϕ1, ϕ1f12 = 0, ϕ2f21 = 0, ϕ2f22 = ϕ2. By hypothesis, f11 is an

automorphism of X1. Consider the matrix equation
(

1 0

−f21f
−1
11 1

)(

f11 f12

f21 f22

)

=

(

f11 f12

0 −f21f
−1
11 f12 + f22

)

Since ϕ2f21 = 0, ϕ2f22 = ϕ2, we get ϕ2(−f21f
−1
11 f12 +f22) = ϕ2. Hence −f21f

−1
11 f12+

f22 is an essential monomorphism by hypothesis. Now by a standard matrix argu-

ment we see that f is monic. So the proof is complete if we show that imf ≤e

X1 ⊕X2. Let g =

(

f11 f12

0 −f21f
−1
11 f12 + f22

)

. We claim that img ≤e X1 ⊕X2. In

fact, im(f11⊕(−f21f
−1
11 f12+f22)) = im

(

f11 0

0 −f21f
−1
11 f12 + f22

)

≤ img ≤ X1⊕X2.

Note that im(f11 ⊕ (−f21f
−1
11 f12 +f22)) ≤e X1 ⊕X2 by [1, Proposition 5.20], and

so img ≤e X1 ⊕X2. Thus imf ≤e X1 ⊕X2. �

3. Almost preenvelopes

In this section, the concept of almost preenvelopes is introduced as the dual of

almost precovers.
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We start with the following

Definition 3.1. Let C be a class of modules.

A homomorphism φ : M → G with G ∈ C is called an almost C-preenvelope of

M if for each F ∈ C and each homomorphism f : M → F , there are superfluous

epimorphism π : F → F
′

with F
′

∈ C and a homomorphism g : G → F
′

such that

gφ = πf .

An almost C-preenvelope ϕ : M → G with G ∈ C is called a weak C-envelope

if each endomorphism f of G with fϕ = ϕ is a superfluous epimorphism and ϕ

is called an almost C-envelope if each endomorphism f of G with fϕ = ϕ is an

automorphisms of G.

C is said to be weakly homomorphically closed if for any A ∈ C and any epimor-

phism A→ B, there exists C ≪ B such that B/C ∈ C.

Theorem 3.2. Let C be a weakly homomorphically closed class of modules and the

following diagram

F
ϕ

//

f

��

F
′

g

��
M

ψ
// G

a pushout diagram. If ϕ is an almost C-preenvelope and π : G → N a superfluous

epimorphism with N ∈ C, then πψ is an almost C-preenvelope.

Proof. Let H ∈ C and α : M → H be an R-homomorphism. Since ϕ is an almost

C-preenvelope, there exist a superfluous epimorphism β : H → L with L ∈ C and an

R-homomorphism γ : F
′

→ L such that γϕ = β(αf) = (βα)f . So by the property of

a pushout, there exists φ : G→ L such that the following diagram is commutative:

F
ϕ

//

f

��

F
′

g

��
γ

��0
0

0

0

0

0

0

0

0

0

0

0

0

0

0

M
ψ

//

α !!B
B

B

B

B

B

B

B

G

φ   A
A

A

A

A

A

A

A

H
β

// L

Thus φψ = βα.

Let K = L/φ(ker π), p : L → K be the canonical map. Since π is a superfluous

epimorphism, φ(ker π) ≪ L. Hence p is a superfluous epimorphism. Let δ : N → K
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be the induced homomorphism. Then we have the following commutative diagram:

L
p

// K

G

φ

OO

π // N

δ

OO

Since C is weakly homomorphically closed, there exists a superfluous epimorphism

θ : K → E with E ∈ C. Thus we get the following commutative diagram:

H
θpβ

// E

M

α

OO

πψ

// N

θδ

OO

Note that θpβ is a superfluous epimorphism by [1, Exercises 5.14]. So πψ is an

almost C-preenvelope. �

Corollary 3.3. Let C be a weakly homomorphically closed class of modules. Then

every module has an almost C-preenvelope if and only if every flat module has an

almost C-preenvelope.

Proof. One direction is obvious. Now suppose every flat module has an almost C-

preenvelope. Let M be any R-module. By [5], M has a flat cover α : F (M) → M .

It follows that F (M) has an almost C-preenvelope φ : F (M) → L by hypothesis.

Consider the following pushout diagram:

F (M)
φ

//

α

��

L

β

��
M

ψ
// N

Note that α is epic, so is β. Since C is weakly homomorphically closed, there is

a superfluous epimorphism π : N → H with H ∈ C. Thus πψ is an almost C-

preenvelope by Theorem 3.2. �

Lemma 3.4. Consider the following pushout diagram:

A
β

//

α

��

B

g

��
C

f

// M
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where M = (C ⊕B)/{(α(a),−β(a))| a ∈ A}, f(c) = (c, 0), g(b) = (0, b).

(1) If α is a superfluous epimorphism and β an epimorphism, then g is a super-

fluous epimorphism.

(2) If α and β are both superfluous epimorphisms, then f and g are both super-

fluous epimorphisms.

Proof. (1). Since α is an epimorphism, g is also an epimorphism by the property of

a pushout. So it is enough to show that g is superfluous. Let kerg + N = B with

N ≤ B. We first claim that kerα + β−1(N) = A. In fact, let a ∈ A. Then there

exist x ∈ kerg, y ∈ N such that β(a) = x + y. Since β is epic, there exists s ∈ A

such that β(s) = y. Note that gβ(a) = g(x) + g(y) = gβ(s), and so gβ(a− s) = 0.

Thus fα(a− s) = gβ(a− s) = 0, that is, (α(a− s), 0) = 0. Hence there exists t ∈ A

such that α(a−s) = α(t) and 0 = −β(t). Note that a−s− t ∈ kerα, s+ t ∈ β−1(N)

and so a = (a− s− t) + (s+ t) ∈ kerα+ β−1(N), therefore kerα+ β−1(N) = A. It

follows that β−1(N) = A since α is superfluous. Thus N = B, as required.

(2) follows from (1). �

We omit the proofs of the following two results which are dual to those of Theorems

2.2 and 2.3 using Lemma 3.4 in place of Lemma 2.1.

Theorem 3.5. Let C be weakly homomorphically closed. If ϕi : Mi → Gi, i =

1, 2, . . . , n, are almost C-preenvelopes, then ⊕ϕi : ⊕Mi → ⊕Gi is an almost C-

preenvelope.

Theorem 3.6. Let C be weakly homomorphically closed. If ϕ1 : M1 → G1 is an

almost C-envelope, ϕ2 : M2 → G2 is a weak C-envelope, then ϕ1 ⊕ ϕ2 : M1 ⊕M2 →

G1 ⊕G2 is a weak C-envelope.
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