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Abstract

Let H and K be normal subgroups of a finite group G and let K ≤ H . If A is a subgroup of G such that AH = AK or
A ∩ H = A ∩ K , we say that A covers or avoids H/K respectively. The purpose of this paper is to investigate factor groups of a
finite group G using this concept. We get some characterizations of a finite group being solvable or supersolvable and generalize
some known results.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Covering and avoidance have proved to be very interesting and useful concepts when characterizing finite solvable
groups and some of their subgroups. For example, Gaschütz [3] introduced a conjugacy class of subgroups of a finite
solvable group, so-called pre-Frattini subgroups. Pre-Frattini subgroups avoid the complemented chief factors of a
finite solvable group G but cover the rest of its chief factors. Chambers [1] got a sufficient condition for a subgroup
of a finite solvable group to be an f -pre-Frattini subgroup. Tomkinson [7] gave a general method for constructing
subgroups which either cover or avoid each chief factor of a finite solvable group. In these papers, the authors aimed to
find subgroups having the covering and avoidance properties of a finite soluble group. In 1993, Ezquerro [2] considered
problems converse to above approach and gave some characterization for a finite group G to be p-supersolvable and
supersolvable under the assumption that all maximal subgroups of some Sylow subgroup of G have the covering and
avoidance properties. In his paper, Guo [4] pushed this approach further and obtained some characterizations of a
finite solvable group based on the assumption that some of its maximal subgroups or 2-maximal subgroups have the
covering and avoidance properties.

We observe that the previous authors imposed strong conditions on a finite group, which confines authors to a very
restricted area, to study a finite group. In this paper, we will extend the previous methods to chief factors of finite
groups (not necessarily solvable). To be precise, we will investigate the solvability of chief factors of a finite group
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with the help of covering and avoidance of some subgroups. Fortunately, we get some meaning theorems. And thus
we may obtain known results as corollaries of our theorems in many cases.

In this paper G always denotes a finite group, p a prime, π(G) the set of prime divisors of the order of G. For the
sake of convenience, we call H/K a factor group of a finite group G if H and K are normal subgroups with K ≤ H .

2. Elementary results

Definition 1. Let A be a subgroup of a group G and H and K normal subgroups of G. Further suppose H ≥ K . We
will say that:

(1) A covers H/K if H A = K A.
(2) A avoids H/K if H ∩ A = K ∩ A.

We will say that A has the covering and avoidance properties in G if A either covers or avoids every chief factor of
G. Also we say that A is a CAP-subgroup of G.

For convenience, further, we introduce, following [4], the following notation.
Let F be the set of maximal subgroups of G.
Fn = {M ∈ F and M is non-nilpotent}.
Fc = {M ∈ F | |G : M | is composite}.
F p

= {M ∈ F and NG(P) ≤ M for a Sylow p-subgroup P of G}.
Fop

=
⋃

p∈π(G)−{2}
F p.

Focn
= Fop

∩ Fc ∩ Fn .
These are families of subgroups of G.

Definition 2. Socn
= ∩{M ∈ Focn

} if Focn is non-empty; otherwise Socn(G) = G.

We note that Socn(G) is a characteristic subgroup of G, and that Φ(G) ≤ Socn(G) always holds.

Lemma 1. (1) Let A be a subgroup of G and H/K a factor group of G.
(a) A covers H/K if and only if K (H ∩ A) = H.
(b) A avoids H/K if and only if K A ∩ H = K .

(2) Let A ≤ G and H/K a chief factor of G. If A ∩ H E G, A covers or avoids H/K . In particular, normal
subgroups cover or avoid any chief factor of G.

(3) G is a non-abelian simple group if and only if any non-trivial proper subgroup of G is not a CAP-subgroup.
(4) Let A be a subgroup of G and H/K a chief factor of G. Then A covers or avoids H/K if and only if there exists

a normal subgroup N with N ≤ A ∩ K and A/N covers or avoids (H/N )/(K/N ) respectively. Further, A is a
CAP-subgroup of G if and only if there exists a normal subgroup L of G which is contained in A and such that
A/L is a CAP-subgroup of G/L.

(5) Let A be a subgroup of G and H/K a factor group of G. If (|A|, |H/K |) = 1, A avoids H/K .
(6) Let H/K be a factor group of G and A a subgroup of G that covers or avoids H/K . Suppose that B ≥ A is a

subgroup of G. Then (H ∩ B)/(K ∩ B) is covered or avoided by A as is H/K .

Proof. (1) Easy.
(2) Since A ∩ H E G, (A ∩ H)K/K E G/K . Noting that (A ∩ H)K/K ≤ H/K and that H/K is a minimal normal

subgroup of G/K , (A ∩ H)K/K = H/K or 1, that is, (A ∩ H)K = H or (A ∩ H)K = K , which implies that A
covers or avoids H/K .

(3) Easy.
(4) Let N = (A ∩ K )G . Then AH = AK ⇐⇒ (A/N )(H/N ) = (A/N )(K/N ) and A ∩ H = A ∩ K ⇐⇒

(A/N ) ∩ (H/N ) = (A/N ) ∩ (K/N ).
(5) We have the identity |H/K | = |AH : AK ||A ∩ H : A ∩ K |; noting |A ∩ H : A ∩ K | | |A|, |A ∩ H : A ∩ K | = 1,

this shows A ∩ H = A ∩ K , that is, A avoids H/K .
(6) Easy. �

Lemma 2. Let H/K be a factor group of G and A a subgroup which covers H/K of G. Further suppose that P is a
group theoretical property which is inherited by subgroups and quotient groups. Then H/K has P if A has P.
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Proof. Suppose that A has the property P and that A covers H/K , that is, AH = AK . We have H/K ≤ AH/K =

AK/K ∼= A/A ∩ K . Noting the choice of P, the lemma is proved. �

Lemma 3. Let H/K be a chief factor of G. Every cyclic subgroup of G covers or avoids H/K ⇐⇒ H/K is of
prime order.

Proof. H⇒ Suppose p ∈ π(H/K ) and let A/K be a subgroup with order p of H/K . We may assume A/K =

〈x〉K/K , where x ∈ H . Of course, x is not contained in K . By assumption, H〈x〉 = K 〈x〉, or H ∩ 〈x〉 = K ∩ 〈x〉. If
H〈x〉 = K 〈x〉, H/K is of order p by Lemma 2. Suppose H ∩ 〈x〉 = K ∩ 〈x〉. But H ∩ 〈x〉 = 〈x〉 since x ∈ H . On
the other hand, K ∩ 〈x〉 < 〈x〉 because x is not contained in K . This contradiction shows that H/K is of prime order.

⇐H We need only to note the identity |H/K | = |AH : AK ||A ∩ H : A ∩ K | and |H/K | = p for some prime. �

Proposition 1. Let G be a finite group and let V be a subgroup of G. If V covers the factor group H/K with order
a prime power of G, every Hall subgroup of V covers or avoids H/K .

Proof. Let Q be a Hall subgroup of V . Set π = π(Q). We prove that Q covers or avoids H/K .
By the assumption, we may suppose |H/K | = pα for some prime p ∈ π(G). If p is not contained in π, Q avoids

H/K by Lemma 1(5).
Suppose p ∈ π . Observing H V = K V, |H V |π = |K V |π . Also |H V |π = |H Q|π , |K V |π = |K Q|π . Thus

|H Q|π = |K Q|π . So

|H Q : K Q| = |H Q|/|K Q| = (|H Q|π |H Q|π ′)/(|K Q|π |K Q|π ′) = |H Q|π ′/|K Q|π ′ ,

which is a π ′-number. On the other hand, |H Q : K Q| | |H/K | = pα . Hence |H Q : K Q| = 1, that is, H Q = K Q;
in other words, Q covers H/K . �

Remark. Without the solvability of H/K , the above theorem is false. Let G, for example, be a non-abelian simple
group. It is evident that G covers its only chief factor G/1. However, no proper non-trivial subgroup of G covers or
avoids G/1. In particular, no Hall subgroup of G covers or avoids G/1.

Corollary. Every Hall subgroup of the solvable group G is a CAP-group.

Proof. Let V = G in Proposition 1. Then we have the corollary. �

Lemma 4. Let A and B be the subgroups with relatively prime indices of G. Suppose that H/K is a factor group of
G. Then either A or B does not avoid H/K .

Proof. We may assume H/K 6= 1. Let p | |H/K |. Then p does not divide either |G : A| or |G : B| since A and B are
the subgroups with relatively prime indices of G. Thus we may choose a Sylow p-subgroup P of G such that P ≤ A
or P ≤ B. Without loss of generality, we may assume that P ≤ A. Since p | |H/K |, we have (P K/K )∩(H/K ) 6= 1.
So K < P K ∩ H ≤ AK ∩ H = (H ∩ A)K , which implies that H ∩ A > K ∩ A, that is, A does not avoid H/K . �

Lemma 5. Let H/K be a factor group of G. Suppose that there exist two solvable subgroups A and B which have
relatively prime indices. Then H/K is solvable if both A and B cover or avoid H/K .

Proof. By Lemma 4, either A or B covers H/K . Without loss of generality, assume that A covers H/K . By Lemma 2,
H/K is solvable. �

Proposition 2. G is a solvable group if and only if there exist two subgroups A and B with relatively prime indices
of G such that both A and B are solvable CAP-subgroups of G.

Proof. Suppose that G is solvable. Let A = 1 and B = G. Then A and B are solvable CAP-subgroups with relatively
prime indices of G.

Now assume that A and B are solvable CAP-subgroups with relatively prime indices of G. We need only to prove
that H/K is solvable for any chief factor H/K of G. By Lemma 5, H/K is solvable. �
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Corollary ([4, Theorem 3.2]). Let H1 and H2 be two Hall subgroups of a group G such that G = H1 H2. Then G is
a solvable group if and only if H1 and H2 are both solvable CAP-subgroups of G.

Proposition 3. Let G be a finite group and H/K a chief factor of G. Then the following statements are equivalent
pairwise:

(1) H/K is of prime order.
(2) Every subgroup of G covers or avoids H/K .
(3) Every cyclic subgroup of G covers or avoids H/K .

Proof. (1) H⇒ (2) Assume |H/K | = p for some prime p. Since |H/K | = |P H : P K ||P ∩ H : P ∩ K |, |P H :

P K | = 1, i.e., P H = P K , or |P ∩ H : P ∩ K | = 1, that is, P ∩ H = P ∩ K .
(2) H⇒ (3) Clear.
(3) H⇒ (1) By Lemma 3, H/K is of prime order. �

3. Main theorems

Theorem 1. Let H/K be a chief factor of G. Then the following statements are equivalent in pairs.

(1) H/K is soluble.
(2) Every maximal subgroup of G covers or avoids H/K .
(3) Every maximal subgroup of G in Focn covers or avoids H/K .
(4) Every Hall subgroup of G covers or avoids H/K .
(5) There exists a prime p ∈ π(H/K ) and P ∈ Sylp(G) such that P covers or avoids H/K .

Proof. (1) H⇒ (2) Let M be a maximal subgroup of G. We may assume that H/K is an elementary abelian
p-subgroup for some prime p in π(G) since H/K is soluble.

Suppose that K is not contained in M . Then G = M K , noting the maximality of M . So G = M K = M H , which
shows that M covers H/K .

Now assume K ≤ M . Then M/K is a maximal subgroup of G/K . If H ≤ M, M H = M = M K , i.e.,
M covers H/K clearly. Suppose that H is not contained in M . It is obvious that H/K is a minimal normal
subgroup of G/K and is not contained in M/K . Therefore, by the maximality of M/K , G/K = (M/K )(H/K )

and (M/K ) ∩ (H/K ) = K/K , which implies K = M ∩ H . Hence M ∩ K = K = M ∩ H , that is, M avoids H/K .
(2) is proved.

(2) H⇒ (3) Trivial.
(3) H⇒ (1) Assume K 6= 1. Then H/K is a minimal normal subgroup of G/K . We may assume that

Socn(G/K ) < G/K by [4, Lemma 2.6]. On the other hand, by Lemma 1(4), G/K satisfies the assumption. Hence
H/K is soluble by induction.

Suppose K = 1. Then H is a minimal normal subgroup of G. We may assume H < G by Lemma 1(3) and [4,
Lemma 2.6]. Now applying Frattini’s argument, G = NG(P)H , where p = max π(H), P 6= 1, and is a Sylow
p-subgroup of H . If p = 2, H is a 2-subgroup, and so soluble. Hence we may assume p > 2. If NG(P) = G, H = P
since H is a minimal normal subgroup of G, as desired. Suppose NG(P) < G. Let P1 be a Sylow p-subgroup of G
such that P1 ≥ P . Then P = P1 ∩ H . And so NG(P1) ≤ NG(P) ≤ NG(Z(J (P))), where J (P) is the Thompson
subgroup of P . If NG(Z(J (P))) = G, H ≤ Z(J (P)), which implies that H is soluble, since H is a minimal
normal subgroup of G. Now suppose NG(Z(J (P))) < G. Then there exists a maximal subgroup M of G such that
NG(P1) ≤ NG(P) ≤ NG(Z(J (P))) ≤ M . Hence G = NG(P)H = M H . Suppose that |G : M | = q is a prime. By
Sylow’s theorem, we have q = 1 + kp noting |G : NG(P1)| = |G : M ||M : NG(P1)| = |G : M ||M : NM (P1)|.
On the other hand, q = |G : M | = |H M : M | = |H : H ∩ M |, so q | |H |. This is a contradiction since p is the
largest prime divisor of |H | and q = 1 + kp. Hence |G : M | is a composite number. If M is nilpotent, then so is
NG(Z(J (P))) and therefore NH (Z(J (P))) is nilpotent. By the Glauberman–Thompson theorem, H is p-nilpotent.
Thus H is a p-group and, in particular, soluble, noting the minimality of H . Thus we may assume that |G : M | is
a composite number and M is not nilpotent. Noting that NG(P1) ≤ M , we have M ∈ Focn. By the assumption, M
covers or avoids H . However, M does not avoid H , noting 1 < P ≤ M ∩ H . So M covers H , that is, M H = M , a
contradiction.
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(1) H⇒ (4) This is Proposition 1.
(4) H⇒ (5) Clear.
(5) H⇒ (1) Observe the identity |H/K | = |P H : P K ||P ∩ H : P ∩ K |. If P covers H/K , H/K is a p-

group and, in particular, solvable by Lemma 2. Now suppose that P avoids H/K , that is, P ∩ H = P ∩ K . Then
|H/K | = |P H : P K |. Since P ∈ Sylp(G), p does not divide |P H : P K |. Hence p does not divide |H : K |, a
contradiction. �

Corollary 1 ([4, Theorem 3.1]). A group G is solvable if and only if every maximal subgroup M of G in Focn is a
CAP-subgroup of G.

Proof. The assumption and Theorem 1(3) yield Corollary 1. �

Corollary 2 ([4, Theorem 3.9]). G is p solvable if and only if there exists a Sylow p-subgroup P of G such that P
covers or avoids H/K if H/K is a chief factor of G and p divides the order of H/K .

Proof. The assumption and Theorem 1(5) yield Corollary 2.
Let T be a subgroup of G. We call T a 2-maximal subgroup of G if there exists a maximal subgroup S of G such

that T is a maximal subgroup of S. �

Theorem 2. Let H/K be a chief factor of G. H/K is solvable if one of the following statements is true:

(1) Every 2-maximal subgroup of G covers or avoids H/K .
(2) There exists a solvable subgroup M, whose index |G : M | has at most two distinct prime divisors, such that M

covers or avoids H/K .
(3) There exists a solvable maximal subgroup M such that M covers or avoids H/K .
(4) Every maximal subgroup of every Sylow p-subgroup of G covers or avoids H/K , where p = min π(H/K ).

Proof. (1) Suppose that (1) holds. Use induction on the order of G to prove H/K solvable. Suppose K 6= 1. Consider
the quotient group G/K . The assumptions are satisfied by G/K by Lemma 1(4). So H/K is solvable.

Now assume K = 1. Then H is a minimal normal subgroup of G.
Suppose H = G. Let M be a 2-maximal subgroup of G. Then the assumption implies that M = M H = G or

1 = {1} ∩ M = G ∩ M . But M = M H = G contradicts M < G. If 1 = {1} ∩ M = G ∩ M , we have M = 1, which
shows |π(G)| ≤ 2, and so G is solvable. Hence H/K is solvable.

Suppose H < G. Set p ∈ π(H) and P ∈ Sylp(H). Applying Frattini’s argument, G = H NG(P). If
NG(P) = G, P = H , which implies that H is solvable, because of the minimality of H .

Thus we may assume NG(P) < G. And so H ∩ NG(P) < NG(P).
If NG(P) is a maximal subgroup of G, let M be a 2-maximal subgroup of G such that H ∩ NG(P) ≤ M < NG(P).

By the assumption, M = M H or M ∩ H = 1. But M ∩ H = 1 contradicts 1 6= P ≤ H ∩ NG(P) ≤ M . Supposing
M = M H, H ≤ M . So G = H NG(P) = M NG(P) = NG(P), a contradiction.

If NG(P) is not a maximal subgroup of G, let M be a 2-maximal subgroup of G such that NG(P) ≤ M . By the
assumption, M = M H or M ∩ H = 1. But M ∩ H = 1 contradicts 1 6= P ≤ H ∩ NG(P) ≤ H ∩ M . Assuming
M = M H, H ≤ M . So G = H NG(P) = M NG(P) = M , again a contradiction.
(2) Assume that (2) is satisfied. If M covers H/K , H/K is solvable by Lemma 2. Assume that M avoids H/K , that
is, H ∩ M = K ∩ M . Noting the identity |H/K | = |M H : M K ||M ∩ H : M ∩ K |, we have |H/K | = |M H : M K |.
So |H/K | = |M H |/|M K | = |M H : M |/|M K : M |. But both |M H : M | and |M K : M | divide |G : M |, whence
|H/K | has at most two distinct prime divisors, which implies that H/K is solvable by the well-known Burnside
pαqβ -theorem.
(3) Suppose that (3) is true. Use induction on the order of G to prove H/K solvable. By Lemma 2, we may assume
that M avoids H/K , that is, M ∩ H = M ∩ K .

We first assume K 6= 1. If K is not contained in M, G = M K for the maximality of M . So G = M K = M H , a
contradiction. Thus K ≤ M . If H ≤ M, M H = M K , a contradiction again. Hence G = M H for the maximality of
M . Consider the quotient group G/K . Then G/K = (M/K )(H/K ) and (M/K )∩ (H/K ) = K/K , which imply that
G/K satisfies the assumption of [8, Theorem 3.4]. Therefore G/K is solvable again. In particular, H/K is solvable.

Now we assume K = 1. Then H is a minimal normal subgroup of G and 1 = M ∩ H . Also G = M H . This shows
that M is a c-normal maximal subgroup of G. Thus [8, 3.4] yields that G is solvable. In particular, H is solvable.
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(4) Suppose that (4) is satisfied and that H/K is not solvable. By Lemma 2, every maximal subgroup of every Sylow
subgroup of G avoids H/K . Let p = min π(H/K ) and P ∈ Sylp(H). Then P is not contained in K . So P ∩ K < P .
It is easy to see that p2 divides |H/K |; otherwise H/K is p-nilpotent, which implies that H/K is a group of order
p-power, a contradiction. Let G p ∈ Sylp(G) such that P ≤ G p.

Suppose P = G p and that P1 is a maximal subgroup of P . Then P1 is not contained in K since p2 divides |H/K |

and |P : P1| = p. Hence P1∩K < P1. But the assumption yields P1∩K = P1∩H . Thus P1 = P1∩H = P1∩K < P1,
a contradiction.

Now assume P < G p. Let P2 be a maximal subgroup of G p such that P ≤ P2. Thus P ≤ P2 ∩ H = P2 ∩ K ,
which yields P ≤ K , a contradiction again. �

Remark. (i) The converse of (1) is not true. Let, for example, G = A4 and H be the Sylow 2-subgroup of G. Then
H is a chief factor of G. Suppose that P1 is a maximal subgroup of H . P1 neither avoids nor covers H clearly.

(ii) The converse of (4) is not true. Let, for example, G, H and P1 be as above. P1 neither avoids nor covers H clearly.

Corollary ([4, Theorem 3.4]). G is solvable if every 2-maximal subgroup of a group G is a CAP-subgroup of G.

Let G be a finite group. The generalized Fitting subgroup F∗(G) of G is the unique maximal normal quasi-
nilpotent subgroup of G. Now F∗(G) is an important subgroup of G and is a natural generalization of F(G). We can
get a sufficient condition for a finite group to be solvable using F∗(G) some of whose subgroups are required to avoid
or cover some chief factors of G. To the end, we need the following lemma.

Lemma 6 ([9, Lemma 2.3] and [5, X,13]). Let G be a finite group and N a subgroup of G.

(1) F∗(N ) ≤ F∗(G) if N is normal in G.
(2) F∗(G) > 1 if G > 1.
(3) F∗(F∗(G)) = F∗(G) ≥ F(G). If F∗(G) is solvable, F∗(G) = F(G).
(4) Supposing that P is a normal p-subgroup of G for some prime p, then F∗(G/Φ(P)) = F∗(G)/Φ(P).
(5) If K is a subgroup of G contained in Z(G), F∗(G/K ) = F∗(G)/K .

Theorem 3. Let G be a group. Suppose that there exists a chief seriesH of G passing through F∗(G) such that every
maximal subgroup of every Sylow subgroup of F∗(G) either covers or avoids each chief factor of G inH. Then G is
solvable.

Proof. Assume the theorem is false and let G be a counterexample of minimal order. Clearly G 6= 1 and so
F∗(G) 6= 1.

We prove first that F∗(G) is solvable and so F∗(G) = F(G). Assume 1 ≤ K < H ≤ F∗(G) and H/K is an
insolvable chief factor of G in H if possible. Then p2

| |H/K |, where p = min π(H/K ). Let Hp ∈ Sylp(H) and
P ∈ Sylp(F∗(G)) such that Hp ≤ P . Hp is not contained in K .

Suppose Hp = P . Let P1 be a maximal subgroup of P . P1 is not contained in K since p2
| |H/K |. And so

P1 ∩ K < P1. On the other hand, P1 ∩ H = P1 ∩ K by the assumption and Lemma 2. But P1 = P1 ∩ H , which yields
P1 ≤ P1 ∩ H = P1 ∩ K contrary to P1 ∩ K < P1.

Now assume Hp < P . Let P2 be a maximal subgroup of P such that Hp ≤ P2. By the assumption and Lemma 2,
Hp ≤ P2 ∩ H = P2 ∩ K , which implies Hp ≤ K , a contradiction. Thus F∗(G) is solvable and so F∗(G) = F(G) by
Lemma 6(3).

Let N be the minimal normal subgroup of G which appears in H. We have that N is an elementary abelian
p-subgroup for some prime p divisor of the order of G. Denote by P the Sylow p-subgroup of F(G). Obviously
N ≤ P .

If N is contained in every maximal subgroup of P , then N ≤ Φ(P) ≤ Φ(G). Recall that F∗(G/N ) = F∗(G)/N
by Lemma 6(4). Taking the quotient groups over N of all non-trivial normal subgroups of G appearing inH, we obtain
a chief series H′ of G/N passing through F∗(G/N ). Let A/N be a maximal subgroup of some Sylow subgroup of
F∗(G/N ). There exists a maximal subgroup A1 of some Sylow subgroup of F∗(G) such that A = A1 N . It is easy
to see that A either covers or avoids each chief factor of G in H and consequently A/N covers or avoids each chief
factor of G/N inH′. By the minimality of G, the quotient group G/N is solvable. Thus G is solvable, a contradiction.
Let now P1 be a maximal subgroup of P such that N is not contained in P1. P = P1 N and |P : P1| = p clearly.
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The assumption yields P1 N = P1 or P1 ∩ N = 1. But P1 N = P1 leads to N ≤ P1. This is a contradiction. Hence
P1 ∩ N = 1 and |N | = |P : P1| = p.

Assume that N ≤ Z(G). By Lemma 6(5) and Lemma 1(4), mimicking the preceding methods, G/N satisfies the
assumption. Consequently G/N is solvable because of the minimality of G. Hence G is solvable, a contradiction.
Therefore CG(N ) is a proper normal subgroup of G. Moreover F∗(G) = F(G) ≤ CG(N ). Thus F∗(G) =

F∗(F∗(G)) ≤ F∗(CG(N )) ≤ F∗(G). This implies that F∗(CG(N )) = F∗(G). Taking the intersection of all normal
subgroups of G in H with CG(N ), we construct a normal series of CG(N ) passing F∗(CG(N )). Considering the
non-trivial factors of this normal series and refining we obtain a chief seriesH0 of CG(N ). Let H/K be a chief factor
of G in H below F∗(G) and suppose that H0/K0 is a chief factor of CG(N ) in H0 such that K ≤ K0 < H0 ≤ H .
It is easy to check that if a subgroup A of CG(N ) covers H/K , then A covers H0/K0, and if A avoids H/K , then A
avoids H0/K0. Hence every maximal subgroup of every Sylow subgroup of F∗(CG(N )) either covers or avoids the
factors of a chief seriesH0 of passing through F∗(CG(N )). By minimality of G, the group CG(N ) is solvable. On the
other hand, since N is of prime order, then G/CG(N ) is isomorphic to a subgroup to a subgroup of Aut(N ), which is
cyclic. This shows that G is solvable. This is the final contradiction.

For the sake of convenience, we need to introduce a new term. A subgroup L is called a pure 2-maximal subgroup
of G if L is a maximal element inM, whereM is the set of 2-maximal subgroups of G. �

Remark. It is clear that pure 2-maximal subgroups are 2-maximal subgroups. But 2-maximal subgroups need not to
be pure 2-maximal subgroups. We have the following.

Example. Let G = A5, B = 〈(123), (12)(45)〉 and B2 ∈ Syl2(B). |B| = 6 and B is a maximal subgroup of G clearly.
So B2 = 〈(12)(45)〉 is a 2-maximal subgroup of G. On the other hand, A4 = 〈(123), (124)〉 is a maximal subgroup
of G evidently. Suppose D ∈ Syl2(A4) and D1 = 〈(12)(34)〉. It follows that D1 is a maximal subgroup of D with
|D1| = 2 and D is a 2-maximal subgroup of G. Let x = (345). Then D1

x
= B2. So B2 = D1

x < Dx < A4
x < G,

which implies that B2 is a 2-maximal subgroup but not a pure 2-maximal subgroup of G.

Proposition 4. Let G be a group. If the trivial subgroup is a 2-maximal subgroup of G, then G is solvable.

Proof. Because 1 is a 2-maximal subgroup of G, there is a maximal subgroup M of G such that 1 is maximal in
M . We have easily that M is of order a prime, say p. If G is a p-group, G is solvable, and so we are done. Hence
we can assume that G is not a p-group. It is easy to see that M is a Sylow p-subgroup of G. If M < NG(M), then
NG(M) = G, that is, M E G. Thus |G : M | is a prime, say q (which is distinct from p as G is not a p-group). This
means G is of order pq and so solvable, as claimed. Therefore M = NG(M), and NG(M) = CG(M) obviously. The
well-known Burnside theorem implies that G is p-nilpotent. Let L be the normal p-complement of G. Pick r ∈ π(L).
Assume |π(L)| > 1. Then L has a subgroup R ∈ Sylr (L) such that RM

= 〈Rg
|g ∈ M〉 = R [6, 8.2.3]. In particular

M R is a proper subgroup of G. This contradicts the maximality of M . Hence L is an r -group and G is a group of
order pαrβ . Now G is solvable by Burnside’s paqb-theorem, as desired. �

Theorem 4. Let G be a group and consider a chief factor H/K of G. Assume that there exists a solvable pure
2-maximal subgroup L of G such that L avoids H/K . Then H/K is solvable.

Proof. Assume the theorem is false and let G be a counterexample of minimal order. In the group G there exists a
solvable pure 2-maximal subgroup L of G such that L avoids a non-abelian chief factor H/K of G. By Proposition 4,
we can assume that L 6= 1. �

Suppose LG 6= 1. By Lemma 2, LG avoids H/K . Then (H LG/LG)/(K LG/LG) ∼= H/K is a chief factor of
G/LG . Also L/LG is a pure 2-maximal subgroup of G/LG clearly. Now the choice of G implies that H/K is
solvable. This is a contradiction. Thus LG = 1.

Assume that K 6= 1. Consider the quotient group G/K . Then L K > L . If L K = G, G = L K = L H , that is, L
covers H/K , which contradicts the assumption that L avoids H/K . Hence L K and L K/K are maximal subgroups of
G and G/K respectively since L is a pure 2-maximal subgroup of G. By Lemma 1(4), L K/K avoids the chief factor
H/K of G/K . Now Theorem 2(3) implies that H/K is solvable; this is a contradiction.

Hence K = 1. Then H is a minimal normal subgroup of G and L ∩ H = 1. Set S = L H . Then L < L H ≤ G.
Noting that L is a pure 2-maximal subgroup of G, either S = G or S is a maximal subgroup of G and L is a maximal
subgroup of S.



796 X. Liu, N. Ding / Journal of Pure and Applied Algebra 210 (2007) 789–796

Suppose first that S is a proper subgroup of G. Since L is a maximal subgroup of S and H ∩ L = 1, we have that H
is a minimal normal subgroup of S. Now Theorem 2(3) implies that H is solvable and this is a contradiction. Hence
G = S = L H .

Let T be a minimal normal subgroup of L . Then T is a p-group for some prime p ∈ π(L). It follows that
L ≤ NG(T ) < G. Since L is a pure 2-maximal subgroup of G, either L = NG(T ) or NG(T ) is a maximal subgroup
of G and L is a maximal subgroup of NG(T ).

Assume that L = NG(T ). We consider the subgroup T H . If p ∈ π(H), there exists a Hp ∈ Sylp(H) such
that Hp is T -invariant, that is, T normalizes Hp. Then CHp (T ) > 1. This contradicts that NG(T ) = L , noting
CHp (T ) ≤ CH (T ) ≤ NH (T ) ≤ NG(T ) = L . Therefore H is a p′-group and CH (T ) = 1. Let r ∈ π(H).
Then H has the unique R ∈ Sylr (H) such that RT

= 〈Rg
|g ∈ T 〉 = R [6, 8.2.3]. Let g ∈ L . We have

(Rg)T
= RgT

= RT g
= (RT )g

= Rg . So Rg
= R and RL

= R. Consider L R. Then L R is solvable. If L R = G, G
is solvable, and we are done. So we may assume L R < G. Because L is a pure 2-maximal subgroup of G and
L < L R, L is a maximal subgroup of L R and L R is a maximal subgroup of G. We have that R is a minimal normal
subgroup of L R. Hence R is an elementary abelian r -group and R ≤ CH (R). If NH (R) > R, R E G since L R is
a maximal subgroup of G and L normalizes R. But this shows R = H since H is a minimal normal subgroup of G.
This is impossible, noting the assumption that L R < G.

As a result, NH (R) = R. So R ≤ CH (R) ≤ NH (R) = R, that is, NH (R) = CH (R) = R. Now, by the well-known
Burnside theorem, H is r -nilpotent. Since H is a minimal normal subgroup of G, H = R. This implies that H is
solvable and this is a contradiction.

So NG(T ) is a maximal subgroup of G and L is a maximal subgroup of NG(T ). We have NG(T ) = NG(T )∩ G =

NG(T )∩L H = L(NG(T )∩H). Now [8, Theorem 3.4] yields that NG(T ) is solvable. It follows easily that NG(T )∩H
is a minimal normal subgroup of NG(T ). And so NG(T ) ∩ H is an elementary abelian q-group for some prime
q ∈ π(NG(T )). Write Q = NG(T ) ∩ H . If Q is normal in G, then Q = H . In this case G = NG(T ) and this
is impossible. Then NG(Q) = NG(T ). If Q is not a Sylow q-subgroup of H , then Q is a proper normal subgroup
of a q-subgroup Q0 of H . But then Q0 ≤ NG(Q) = NG(T ) and then Q0 ≤ Q. This is not possible and hence
Q ∈ Sylq(H). Clearly NH (Q) ≤ NG(Q) ∩ H = Q and then NG(Q) = CG(Q). Thus the well-known Burnside
theorem implies that H is q-nilpotent. Further H = Q, and this is the final contradiction.
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